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DISCLAIMER 

This Unified Guidance has been prepared to assist EPA's Regions, the States and the regulated 
community in testing and evaluating groundwater monitoring data under 40 CFR Parts 264 and 265 and 
40 CFR Part 258. This guidance is not a rule, is not legally enforceable, and does not confer legal rights 
or impose legal obligations on any member of the public, EPA, the States or any other agency. While 
EPA has made every effort to ensure the accuracy of the discussion in this guidance, the obligations of 
the regulated community are determined by the relevant statutes, regulations, or other legally binding 
requirements. The use of the term "should" when used in this guidance does not connote a requirement. 
This guidance may not apply in a particular situation based on the circumstances. Regional and State 
personnel retain the discretion to adopt approaches on a case-by-case basis that differ from this guidance 
where appropriate. 

It should be stressed that this guidance is a work in progress. Given the complicated nature of 
groundwater and geochemical behavior, statistical applications describing and evaluating data patterns 
have evolved over time. While many new approaches and a conceptual framework have been provided 
here based on our understanding at the time of pub lication, outstanding issues remain. The Unified 
Guidance sets out mostly classical statistical methods using reasonable interpretations of existing 
regulatory objectives and constraints. But even these highly developed mathematical models deal 
primarily with sorting out chance effects from potentially real differences or trends. They do not exhaust 
the possibilities of groundwater definition using other technical or scientific techniques (e.g., 
contaminant modeling or geostatistical evaluations). While providing a workable decision framework, 
the models and approaches offered within the Unified Guidance are only approximations of a complex 
underlying reality. 

While providing a basic understanding of underlying statistical principles, the guidance doesn't 
attempt to provide the reader with more thorough explanations and derivations found in standard texts 
and papers. It also doesn't comprehensively cover all potential statistical approaches, and confines itself 
to reasonable and current methods, which will work in the present RCRA groundwater context. While it 
is highly likely that methods promoted in this guidance will be applied using commercial or proprietary 
statistical software, a detailed discussion of software applications is beyond the scope of this document. 

This document has been reviewed by the Office of Resource Conservation and Recovery (former 
Office of Solid Waste), U.S. Environmental Protection Agency, Washington, D.C., and approved for 
publication. Mention of trade names, commercial products, or publications does not constitute 
endorsement or recommendation for use. 

"It is far better to have an approximate answer to the right 
question than a precise answer to the wrong question. .. " - John 
Hauser 
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EXECUTIVE SUMMARY 

The Unified Guidance provides a suggested framework and recommendations for the statistical 
analysis of groundwater monitoring data at RCRA facility units subject to 40 CFR Parts 264 and 265 
and 40 CFR Part 258, to determine whether groundwater has been impacted by a hazardous constituent 
release. Specific statistical methods are identified in the RCRA regulations, but their application is not 
described in any detail. The Unified Guidance provides examples and background information that will 
aid in successfully conducting the required statistical analyses. The Unified Guidance draws upon the 
experience gained in the last decade in implementing the RCRA Subtitle C and D groundwater 
monitoring programs and new research that has emerged since earlier Agency guidance. 

The guidance is primarily oriented towards the groundwater monitoring statistical analysis 
provisions of 40 CFR Parts 264.90 to .100. Similar requirements for groundwater monitoring at solid 
waste landfill facilities under 40 CFR Part 258 are also addressed. These regulations govern the 
detection, characterization and response to releases from regulated units into the uppermost aquifer. 
Some of the methods and strategies set out in this guidance may also be appropriate for analysis of 
groundwater monitoring data from solid waste management units subject to 40 CFR 264.101. 
Although the focus of this guidance is to address the RCRA regulations, it can be used by the CERCLA 
program and for improving remedial actions at other groundwater monitoring programs. 

Part I of the Unified Guidance introduces the context for statistical testing at RCRA facilities. It 
provides an overview of the regulatory requirements, summarizing the current RCRA Subtitle C and D 
regulations and outlining the statistical methods in the final rules, as well as key regulatory sections 
affecting statistical decisions. It explains the basic groundwater monitoring framework, philosophy and 
intent of each stage of monitoring - detection, compliance (or assessment), and corrective action -
and certain features common to the groundwater monitoring environment. Underlying statistical ideas 
common to all statistical test procedures are identified, particularly issues involving false positives 
arising from multiple statistical comparisons and statistical power to detect contamination. 

A new component of the Unified Guidance addresses issues of statistical design: what factors are 
important in constructing a reasonable and effective statistical monitoring program. These include the 
establishment and updating of background data, designing an acceptable detection monitoring plan, and 
statistical strategies for compliance/assessment monitoring and corrective action. This part also 
includes a short summary of statistical methods recommended in the Unified Guidance, detailing 
conditions for their appropriate use. 

Part II of the Unified Guidance covers diagnostic evaluations of historical facility data for the 
purpose of checking key assumptions implicit in the recommended statistical tests and for making 
appropriate adjustments to the data (e.g., consideration of outliers, seasonal autocorrelation, or non­
detects). Also included is a discussion of groundwater sampling and how hydro logic factors such as 
flow and gradient can impact the sampling program. Concepts of statistical and physical independence 
are compared, with caveats provided regarding the impact of dependent data on statistical test results. 
Statistical methods are suggested for identifying special kinds of dependence known as spatial and 
temporal variation, including reasonable approaches when these dependencies are observed. Tests for 
trends are also included in this part. 
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Part III of the Unified Guidance presents a range of detection monitoring statistical procedures. 
First, there is a discussion of the Student's !-test and its non-parametric counterpart, the Wilcoxon rank­
sum test, when comparing two groups of data (e.g., background versus one downgradient well). This 
part defines both parametric and non-parametric prediction limits, and their application to groundwater 
analysis when multiple comparisons are involved. A variety of prediction limit possibilities are 
presented to cover likely interpretations of sampling and testing requirements under the RCRA 
regulations. 

Substantial detailed guidance is offered for using prediction limits with retesting procedures, and 
how various retesting algorithms might be constructed. The final chapter of this Part considers another 
statistical method especially useful for intrawell comparisons, namely the Shewhart-CUSUM control 
chart. A brief discussion of analysis of variance [ ANOV A] and tolerance limit tests identified in the 
RCRA regulations is also provided. 

Part IV of the Unified Guidance is devoted to statistical methods recommended for compliance 
or assessment monitoring and corrective action. Compliance monitoring typically involves a 
comparison of downgradient well data to a groundwater protection standard [GWPS], which may be a 
limit derived from background or a fixed concentration limit (such as in 40 CFR 264.94 Table 1, an 
MCL, a risk-based limit, an alternate concentration limit, or a defined clean-up standard under 
corrective action). The key statistical procedure is the confidence interval, and several confidence 
interval tests (mean, median, or upper percentile) may be appropriate for compliance evaluation 
depending on the circumstances. The choice depends on the distribution of the data, frequency of non­
detects, the type of standard being compared, and whether or not the data exhibit a significant trend. 
Discussions in this part consider fixed compliance standards used in a variety of EPA programs and 
what they might represent in statistical terms. Strategies for corrective action differ from those 
appropriate for compliance monitoring primarily because statistical hypotheses are changed, although 
the same basic statistical methods may be employed. 

Since some programs will also utilize background as standards for compliance and corrective 
action monitoring, those tests and discussions under Part III detection monitoring (including statistical 
design in Part I) may pertain in identifying the appropriate standards and tests. 

A glossary of important statistical terms, references and a subject index are provided at the end 
of the main text. The Appendices contain additional notes on a number of topics including previous 
guidance, a special study for the guidance, more detailed statistical power discussions, and an extensive 
set of statistical tables for implementing the methods outlined in the Unified Guidance. Some tables, 
especially those for prediction limit retesting procedures, have been extended within the Unified 
Guidance beyond published sources in order to cover a wider variety of plausible scenarios. 
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Chapter 1 provides introductory information, including the purposes and goals of the guidance, as 
well as its potential applicability to other environmental programs. Chapter 2 presents a brief discussion 
of the existing regulations and identifies key portions of these rules which need to be addressed from a 
statistical standpoint, as well as some recommendations. In Chapter 3, fundamental statistical principles 
are highlighted which play a prominent role in the Unified Guidance including the notions of individual 
test false positive and negative decision errors and the accumulation of such errors across multiple tests 
or comparisons. Chapter 4 sets the groundwater monitoring program context, the nature of formal 
statistical tests for groundwater and some caveats in identifying statistically significant increases. 
Typical groundwater monitoring scenarios also are described in this chapter. Chapter 5 describes how 
to establish background and how to periodically update it. Chapters 6 and 7 outline various factors to be 
considered when designing a reasonable statistical strategy for use in detection monitoring, 
compliance/assessment monitoring, or corrective action. Finally, Chapter 8 summarizes the 
recommended statistical tests and methods, along with a concise review of assumptions, conditions of 
use, and limitations. 

l L J I - •C c 

EPAPAV0116897 



l L J 1-1 • c 0 = IJi = v c t 0 I 

l L J I - •C c 

EPAPAV0116898 



i en t d T !! 
~ !! d T ... en 

• c 0 = IJi = v c t 0 I 

f~ t 

1.1 OBJECTNES ..................................................................................................................................................... 1-1 
1.2 APPLICABILITY TO OTHER ENVIRONMENTAL PROGRAMS ................................................................ . ............... 1-3 

The fundamental goals of the RCRA groundwater monitoring regulations are fairly 
straightforward. Regulated parties are to accurately characterize existing groundwater quality at their 
facility, assess whether a hazardous constituent release has occurred and, if so, determine whether 
measured levels meet the compliance standards. Using accepted statistical testing, evaluation of 
groundwater quality should have a high probability ofleading to correct decisions about a facility's 
regulatory status. 

To implement these goals, EPA first promulgated regulations in 1980 (for interim status 
facilities) and 1982 (permitted facilities) for detecting contamination of groundwater at hazardous waste 
Subtitle C land disposal facilities. In 1988, EPA revised portions of those regulations found at 40 CFR 
Part 264, Subpart F. A similar set ofregulations applying to Subtitle D municipal and industrial waste 
facilities was adopted in 1991 under 40 CFR Part 25 8. In April 2006, certain modifications were made 
to the 40 CFR Part 264 groundwater monitoring regulations affecting statistical testing and decision­
making. 

EPA released the Interim Final Guidance [IFG] in 1989 for implementing the statistical 
methods and sampling procedures identified in the 1988 rule. A second guidance document followed in 
July 1992 called Addendum to Interim Final Guidance [Addendum], which expanded certain 
techniques and also served as guidance for the newer Subpart D regulations. 

As the RCRA groundwater monitoring program has matured, it became apparent that the existing 
guidance needed to be updated to adequately cover statistical methods and issues important to detecting 
changes in groundwater. 1 Research conducted in the area of groundwater statistics since 1992 has 
provided a number of improved statistical techniques. At the same time, experience gained in applying 
the regulatory statistical tests in groundwater monitoring contexts has identified certain constraints. 
Both needed to be factored into the guidance. This Unified Guidance document addresses these 
concerns and supercedes both the earlier IFG and Addendum. 

The Unified Guidance offers guidance to owners and operators, EPA Regional and State 
personnel, and other interested parties in selecting, using, and interpreting appropriate statistical 
methods for evaluating data under the RCRA groundwater monitoring regulations. The guidance 

1 Some recommendations in EP A's Statistical Training Course on Groundwater Monitoring were developed to better 
reflect the reality of groundwater conditions at many sites, but were not generally available in published form. See RCRA 
Docket# EPA\530-R-93-003, 1993 
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identifies recent approaches and recommends a consistent framework for applying these methods. One 
key aspect of the Unified Guidance is providing a systematic application of the basic statistical principle 
of balancing false positives and negative errors in designing good testing procedures (i.e., minimizing 
both the risk of falsely declaring a site to be out-of-compliance and of missing real evidence of an 
adverse change in the groundwater). Topics addressed in the guidance include basic statistical concepts, 
sampling design and sample sizes, selection of appropriate statistical approaches, how to check data and 
run statistical tests, and the interpretation ofresults. References for the suggested procedures and to 
more general statistical texts are provided. The guidance notes when expert statistical consultation may 
be advisable. Such guidance may also have applicability to other remedial activities as well. 

Enough commonality exists in sampling, analysis, and evaluation under the RCRA regulatory 
requirements that the Unified Guidance often suggests relatively general strategies. At the same time, 
there may be situations where site-specific considerations for sampling and statistical analysis are 
appropriate or needed. EPA policy has been to promulgate regulations that are specific enough to 
implement, yet flexible in accommodating a wide variety of site-specific environmental factors. Usually 
this is accomplished by specifying criteria appropriate for the majority of monitoring situations, while at 
the same time allowing alternatives that are also protective of human health and the environment. 

40 CFR Parts 264 and 258 allow the use of other sampling procedures and test methods 2 beyond 
those explicitly identified in the regulations, 3 subject to approval by the Regional Administrator or state 
Director. Alternative test methods must be able to meet the performance standards at §264.97(i) or 
§258.53(h). While these performance standards are occasionally specific, they are much less so in other 
instances. Accordingly, further guidance is provided concerning the types of procedures that should 
generally satisfy such performance standards. 

Although the Part 264 and 258 regulations explicitly identify five basic formal statistical 
procedures for testing two- or multiple-sample comparisons characteristic of detection monitoring, the 
rules are silent on specific tests under compliance or corrective action monitoring when a groundwater 
protection standard is fixed (a one-sample comparison). The rules also require consideration of data 
patterns (normality, independence, outliers, non-detects, spatial and temporal dependence), but do not 
identify specific tests. This document expands the potential statistical procedures to cover these 
situations identified in earlier guidance, thus providing a comprehensive single EPA reference on 
statistical methods generally recommended for RCRA groundwater monitoring programs. Not every 
technique will be appropriate in a given situation, and in many cases more than one statistical approach 
can be used. The Unified Guidance is meant to be broad enough in scope to cover a high percentage of 
the potential situations a user might encounter. 

The Unified Guidance is not designed as a treatise for statisticians; rather it is aimed at the 
informed groundwater professional with a limited background in statistics. Most methods discussed are 
well-known to statisticians, but not necessarily to regulators, groundwater engineers or scientists. A key 
thrust of the Unified Guidance has been to tailor the standard statistical techniques to the RCRA 
groundwater arena and its unique constraints. Because of this emphasis, not every variation of each test 

For example, §264.97(g)(2), §264.97(h)(5) and §258.53(g)(5) 

3 §264.97(g)(l), §264.97(h)(l-4), and §258.53(g)(l-4) respectively 
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is discussed in detail. For example, groundwater monitoring m a detection monitoring program is 
generally concerned with increases rather than decreases in concentration levels of monitored 
parameters. Thus, most detection monitoring tests in the Unified Guidance are presented as one-sided 
upper-tailed tests. In the sections covering compliance and corrective action monitoring (Chapters 21 
and 22 in Part IV), either one-sided lower-tail or upper-tail tests are recommended depending on the 
monitoring program. Users requiring two-tailed tests or additional information may need to consult 
other guidance or the statistical references listed at the end of the Unified Guidance. 

The Unified Guidance is not intended to cover all statistical methods that might be applicable to 
groundwater. The technical literature is even more extensive, including other published frameworks for 
developing statistical programs at RCRA facilities. Certain statistical methods and general strategies 
described in the Unified Guidance are outlined in American Society for Testing and Materials [ ASTM] 
documents entitled Standard Guide for Developing Appropriate Statistical Approaches for 
Groundwater Detection Monitoring Programs (D6312-98[2005]) (ASTM, 2005) and Standard Guide 
for Applying Statistical Methods for Assessment and Corrective Action Environmental Monitoring 
Programs (D7048-04) (ASTM, 2004). 

The first of these ASTM guidelines primarily covers strategies for detection monitoring, 
emphasizing the use of prediction limits and control charts. It also contains a series of flow diagrams 
aimed at guiding the user to an appropriate statistical approach. The second guideline covers statistical 
strategies useful in compliance/assessment monitoring and corrective action. While not identical to 
those described in the Unified Guidance, the ASTM guidelines do provide an alternative framework for 
developing statistical programs at RCRA facilities and are worthy of careful consideration. 

EPA's primary consideration in developing the Unified Guidance was to select methods both 
consistent with the RCRA regulations, as well as straightforward to implement. We believe the methods 
in the guidance are not only effective, but also understandable and easy to use. 

The Unified Guidance is tailored to the context of the RCRA groundwater monitoring 
regulations. Some of the techniques described are unique to this guidance. Certain regulatory 
constraints and the nature of groundwater monitoring limit how statistical procedures are likely to be 
applied. These include typically small sample sizes during a given evaluation period, a minimum of 
annual monitoring and evaluation and typically at least semi-annual, often a large number of potential 
monitoring constituents, background-to-downgradient well comparisons, and a limited set of identified 
statistical methods. There are also unique regulatory performance constraints such as §264.97(i)(2), 
which requires a minimum single test false positive a level of 0.01 and a minimum 0.05 level for 
multiple comparison procedures such as analysis of variance [ANOVA]. 

There are enough commonalities with other regulatory groundwater monitoring programs (e.g., 
certain distributional features of routinely monitored background groundwater constituents) to allow for 
more general use of the tests and methods in the Unified Guidance. Many of these test methods and the 
consideration of false positive and negative errors in site design are directly applicable to corrective 
action evaluations of solid waste management units under 40 CFR 264.101 and Comprehensive 
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Environmental Response, Compensation, and Liability Act [CERCLA] groundwater monitoring 
programs. 

There are also comparable situations involving other environmental media to which the Unified 
Guidance statistical methods might be applied. Groundwater detection monitoring involves either a 
comparison between different monitoring stations (i.e., downgradient compliance wells vs. upgradient 
wells) or a contrast between past and present data within a given station (i.e., intrawell comparisons). 
To the extent that an environmental monitoring station is essentially fixed in location (e.g., air quality 
monitors, surface water stations) and measurements are made over time, the same statistical methods 
may be applicable. 

The Unified Guidance also details methods to compare background data against measurements 
from regulatory compliance points. These procedures (e.g., Welch's /-test, prediction limits with 
retesting, etc.) are designed to contrast multiple groups of data. Many environmental problems involve 
similar comparisons, even if the groups of data are not collected at fixed monitoring stations (e.g., as in 
soil sampling). Furthermore, the guidance describes diagnostic techniques for checking the assumptions 
underlying many statistical procedures. Testing of normality is ubiquitous in environmental statistical 
analysis. Also common are checks of statistical independence in time series data, the assumption of 
equal variances across different populations, and the need to identify outliers. The Unified Guidance 
addresses each of these topics, providing useful guidance and worked out examples. 

Finally, the Unified Guidance discusses techniques for comparing datasets against fixed 
numerical standards (as in compliance monitoring or corrective action). Comparison of data against a 
fixed standard is encountered in many regulatory programs. The methods described in Part IV of the 
Unified Guidance could therefore have wider applicability, despite being tailored to the groundwater 
monitoring data context. 

EPA recognizes that many guidance users will make use of either commercially available or 
proprietary statistical software in applying these statistical methods. Because of their wide range of 
diversity and coverage, the Unified Guidance does not evaluate software usage or applicability. Certain 
software is provided with the guidance. The guidance limits itself to describing the basic statistical 
principles underlying the application of the recommended tests. 
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This chapter generally summarizes the RCRA groundwater monitoring regulations under 40 CFR 
Parts 264, 265 and 258 applicable to this guidance. A second section identifies the most critical 
regulatory statistical issues and how they are addressed by this guidance. Finally, recommendations 
regarding interim status facilities and certain statistical methods in the regulations are presented at the 
end of the chapter. 
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Section 3004 ofRCRA directs EPA to establish regulations applicable to owners and operators 
of facilities that treat, store, or dispose of hazardous waste as may be necessary to protect human health 
and the environment. Section 3005 provides for the implementation of these standards under permits 
issued to owners and operators by EPA or authorized States. These regulations are codified in 40 CFR 
Part 264. Section 3005 also provides that owners and operators of facilities in existence at the time of 
the regulatory or statutory requirement for a permit, who apply for and comply with applicable 
requirements, may operate until a permit determination is made. These facilities are commonly known 
as interim status facilities, which must comply with the standards promulgated in 40 CFR Part 265. 

EPA first promulgated the groundwater monitoring regulations under Part 265 for interim status 
surface impoundments, landfills and land treatment units ("regulated units") in 1980. 1 Intended as a 
temporary system for units awaiting full permit requirements, the rules set out a minimal detection and 
assessment monitoring system consisting of at least a single upgradient and three downgradient wells. 
Following collection of the minimum number of samples prescribed in the rule for four indicator 
parameters - pH, specific conductance, total organic carbon (TOC) and total organic halides (TOX) -
and certain constituents defining overall groundwater quality, the owner/operator of a land disposal 
facility is required to implement a detection monitoring program. Detection monitoring consists of 
upgradient-to-downgradient comparisons using the Student's !-test of the four indicator parameters at 
no less than a .0 I level of significance ( ). The regulations refer to the use of "replicate" samples for 
contaminant indicator comparisons. Upon failure of a single detection-level test, as well as a repeated 

1 [45 FR 33232ff, May 19, 1980] Interim status regulations; later amended in 1983 and 1985 
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follow-up test, the facility is required to conduct an assessment program identifying concentrations of 
hazardous waste constituents from the unit in groundwater. A facility can return to detection monitoring 
if none of the latter constituents are detected. These regulations are still in effect today. 

Building on the interim status rules, Subtitle C regulations for Part 264 permitted hazardous 
waste facilities followed in 1982, 2 where the basic elements of the present RCRA groundwater 
monitoring program are defined. In §264.91, three monitoring programs - detection monitoring, 
compliance monitoring, and corrective action - serve to protect groundwater from releases of 
hazardous waste constituents at certain regulated land disposal units (surface impoundments, waste 
piles, landfills, and land treatment). In developing permits, the Regional Administrator/State Director 
establishes groundwater protection standards [GWPS] under §264.92 using concentration limits 
[§264.94) for certain monitoring constituents [§264.93). Compliance well monitoring locations are 
specified in the permit following the rules in §264.95 for the required compliance period [§264.96). 
General monitoring requirements were established in §264.97, along with specific detection [§264.98), 
compliance [§264.99), and corrective action [§264.100) monitoring requirements. Facility owners and 
operators are required to sample groundwater at specified intervals and to use a statistical procedure to 
determine whether or not hazardous wastes or constituents from the facility are contaminating the 
groundwater. 

As found in §264.91, detection monitoring is the first stage of monitoring when no or minimal 
releases have been identified, designed to allow identification of significant changes in the groundwater 
when compared to background or established baseline levels. Downgradient well observations are 
tested against established background data, including measurements from upgradient wells. These are 
known as two- or multiple-sample tests. 

If there is statistically significant evidence of a release of hazardous constituents [§264.91 ( a)(l) 
and (2)), the regulated unit must initiate compliance monitoring, with groundwater quality 
measurements compared to the groundwater protection standards [GWPS]. The owner/operator is 
required to conduct a more extensive Part 261 Appendix VIII (later Part 264 Appendix IX)3 evaluation 
to determine if additional hazardous constituents must be added to the compliance monitoring list. 

Compliance/assessment as well as corrective action monitoring differ from detection monitoring 
in that groundwater well data are tested against the groundwater protection standards [GWPS] as 
established in the permit. These may be fixed health-based standards such as Safe Drinking Water Act 
[SDWA] maximum concentration limits [MCLs], §264.94 Table 1 values, a value defined from 
background, or alternate-concentration limits as provided in §264.94(a). Statistically, these are 
considered single-sample tests against a fixed limit (a background limit can either be a single- or two­
sample test depending on how the limit is defined). An exceedance occurs when a constituent level is 
shown to be significantly greater than the GWPS or compliance standard. 

If a hazardous monitoring constituent under compliance monitoring statistically exceeds the 
GWPS at any compliance well, the facility is subject to corrective action and monitoring under 
§264.100. Following remedial action, a return to compliance consists of a statistical demonstration that 

2 [47 FR 32274ff, July 26, 1982] Permitting Requirements for Land Disposal Facilities 
3 [52 FR 25942, July 9, 1987] List (Phase I) of Hazardous Constituents for Groundwater Monitoring; Final Rule 
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the concentrations of all relevant hazardous constituents lie below their respective standards. Although 
the rules define a three-tiered approach, the Regional Administrator or State Director can assess 
available information at the time of permit development to identify which monitoring program is 
appropriate [ § 264. 91 (b)]. 

Noteworthy features of the 1982 rule included retammg use of the four Part 265 indicator 
parameters, but allowing for additional constituents in detection monitoring. The number of upgradient 
and downgradient wells was not specified; rather the requirement is to have a sufficient number of 
wells to characterize upgradient and downgradient water quality passing beneath a regulated unit. 
Formalizing the "replicate" approach in the 1980 rules and the use of Student's t-test, rules under 
§264.97 required the use of aliquot replicate samples, which involved analysis of at least four physical 
splits of a single volume of water. In addition, Cochran's Approximation to the Behrens-Fisher [CABF] 
Student's !-test was specified for detection monitoring at no less than a .01 level of significance ( ). 
Background sampling was specified for a one-year period consisting of four quarterly samples (also 
using the aliquot approach). The rules allowed use of a repeated, follow-up test subsequent to failure of 
a detection monitoring test. A minimum of semi-annual sampling was required. 

In response to a number of concerns with these regulations, EPA amended portions of the 40 
CFR Part 264 Subpart F regulations including statistical methods and sampling procedures on October 
11, 1988. 4 Modifications to the regulations included requiring (if necessary) that owners and/or 
operators more accurately characterize the hydrogeology and potential contaminants at the facility. The 
rule also identifies specific performance standards in the regulations that all the statistical methods and 
sampling procedures must meet (discussed in a following section). That is, it is intended that the 
statistical methods and sampling procedures meeting these performance standards defined in §264.97 
have a low probability both of indicating contamination when it is not present (Type I error), and of 
failing to detect contamination that actually is present (Type II error). A facility owner and/or operator 
must demonstrate that a procedure is appropriate for the site-specific conditions at the facility, and 
ensure that it meets the performance standards. This demonstration applies to any of the statistical 
methods and sampling procedures outlined in the regulation as well as any alternate methods or 
procedures proposed by facility owners and/or operators. 

In addition, the amendments removed the required use of the CABF Student's t-test, in favor of 
five different statistical methods deemed to be more appropriate for analyzing groundwater monitoring 
data (discussed in a following section). The CABF procedure is still retained in Part 264, Appendix IV, 
as an option, but there are no longer specific citations in the regulations for this test. These newer 
procedures offer greater flexibility in designing a groundwater statistical program appropriate to site­
specific conditions. A sixth option allows the use of alternative statistical methods, subject to approval 
by the Regional Administrator. EPA also instituted new groundwater monitoring sampling 
requirements, primarily aimed at ensuring adequate statistical sample sizes for use in analysis of 
variance [ ANOV A] procedures, but also allowing alternative sampling plans to be approved by the 
Regional Administrator. The requirements identify the need for statistically independent samples to be 
used during evaluation. The Agency further recognizes that the selection of appropriate hazardous 

4 [53 FR 39720, October 11, 1988] 40 CFR Part 264: Statistical Methods for Evaluating Groundwater Monitoring From 
Hazardous Waste Facilities; Final Rule 
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constituent monitoring parameters is an essential part of a reliable statistical evaluation. EPA addressed 
this issue in a 1987 Federal Register notice. 5 

§264.101 requirements for corrective action at non-regulated units were added in 1985 and later. 6 

The Agency determined that since corrective action at non-regulated units would work under a different 
program, these units are not required to follow the detailed steps of Subpart F monitoring. 

In 1991, EPA promulgated Subtitle D groundwater monitoring regulations for municipal solid 
waste landfills in 40 CFR Part 258. 7 These rules also incorporate a three-tiered groundwater monitoring 
strategy (detection monitoring, assessment monitoring, and corrective action), and describe statistical 
methods for determining whether background concentrations or the groundwater protection standards 
[GWPS] have been exceeded. 

The statistical methods and related performance standards in 40 CFR Part 258 essentially mirror 
the requirements found as of 1988 at 40 CFR Part 264 Subpart F, with certain differences. Minimum 
sampling frequencies are different than in the Subtitle C regulations. The rules also specifically provide 
for the GWPS using either current MCLs or standardized risk-based limits as well as background 
concentrations. In addition, a specific list of hazardous constituent analytes is identified in 40 CFR Part 
258, Appendix I for detection-level monitoring, including the use of unfiltered (total) trace elements. 

The 1988 and 1991 rule amendments identify certain statistical methods and sampling 
procedures believed appropriate for evaluating groundwater monitoring data under a variety of 
situations. Initial guidance to implement these methods was released in 1989 as: Statistical Analysis of 
Groundwater Monitoring Data at RCRA Facilities: Interim Final Guidance [IFG]. The IFG covered 
basic topics such as checking distributional assumptions, selecting one of the methods and sampling 
frequencies. Examples were provided for applying the recommended statistical procedures and 
interpreting the results. Two types of compliance tests were provided for comparison to the GWPS -
mean/median confidence intervals and upper limit tolerance intervals. 

Given additional interest from users of the comparable regulations adopted for Subtitle D solid 
waste facilities in 1991, and with experience gained in implementing various tests, EPA actively sought 
to improve existing groundwater statistical guidance. This culminated in a July 1992 publication of: 
Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Addendum to Interim 
Final Guidance [Addendum]. 

The 1992 Addendum included a chapter devoted to retesting strategies, as well as new guidance 
on several non-parametric techniques not covered within the IFG. These included the Wilcoxon rank­
sum test, non-parametric tolerance intervals, and non-parametric prediction intervals. The Addendum 
also included a reference approach for evaluating statistical power to ensure that contamination could 
be adequately detected. The Addendum did not replace the IFG - the two documents contained 
overlapping material but were mostly intended to complement one another based on newer information 

5 [52 FR25942, July 9, 1987] op. cit. 
6 [50 FR 28747, July 15, 1985] Amended in 1987, 1993, and 1998 

[56 FR 50978, October 9, 1991] 40 CFR Parts 257 & 258: Solid Waste Disposal Facility Criteria: Final Rule, especially 
Part 258 Subpart E Groundwater Monitoring and Cmrective Action 
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and comments from statisticians and users of the guidance. However, the Addendum changed several 
recommendations within the IFG and replaced certain test methods first published in the IFG. The two 
documents provided contradictory guidance on several points, a concern addressed by this guidance. 

More recently in April 2006, EPA promulgated further changes to certain 40 CFR Part 264 
groundwater monitoring provisions as part of the Burden Reduction Initiative Rule. 8 A brief summary 
of the regulatory changes and the potential effects on existing RCRA groundwater monitoring programs 
is provided. Four items of specific interest are: 

Elimination of the requirements to sample four successive times per statistical evaluation 
under §264.98(d) and §264.99(±) in favor of more flexible, site-specific options as identified 
in §264.97(g)(l )&(2); 

Removal of the requirements in §264.98(g) and §264.99(g) to annually sample all 
monitoring wells for Part 264 Appendix IX constituents in favor of a specific subset of 
wells; 

Modifications of these prov1s10ns to allow for a specific subset of Part 264 Appendix IX 
constituents tailored to site needs; and 

A change in the resampling requirement in §264.98(g)(3) from "within a month" to a site­
specific schedule. 

These changes to the groundwater monitoring prov1s10ns require coordination between the 
regulatory agency and owner/operator with final approval by the agency. Since the regulatory changes 
are not issued under the 1984 Hazardous and Solid Waste Amendments [HSW A] to RCRA, authorized 
State RCRA program adoption of these rules is discretionary. States may choose to maintain more 
stringent requirements, particularly if already codified in existing regulations. Where EPA has direct 
implementation authority, the provisions would go into effect following promulgation. 

The first provision reaffirms the flexible approach in the Unified Guidance for detection 
monitoring sampling frequencies and testing options. State RCRA programs using the four-successive 
sampling requirements can still continue to do so under §264.97(g)(l), but the rule now allows for 
alternate sampling frequencies under §264.97(g)(2) in both detection and compliance monitoring. The 
second and third provisions provide more site- and waste-specific options for Part 264 Appendix IX 
compliance monitoring. The final provision provides more flexibility when resampling these Appendix 
IX constituents. 

Since portions of the earlier and the most recent rules are still operative, all are considered in the 
present Unified Guidance. The effort to create this guidance began in 1996, with a draft release in 
December 2004, a peer review in 2005, and a final version completed in 2009. 

8 [71 FR 16862-16915] April 4, 2006 
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This section describes critical portions of the RCRA groundwater monitoring regulations which 

the present guidance addresses. The regulatory language is provided below in bold and italics. 9 A brief 
discussion of each issue is provided in statistical terms and how the Unified Guidance deals with it. 
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The owner or operator will specify one of the following statistical methods to be used in 
evaluating groundwater monitoring data for each hazardous constituent which, upon 
approval by the Regional Administrator, will be specified in the unit permit. The statistical test 
chosen shall be conducted separately for each hazardous constituent in each well ... 

1. A parametric analysis of variance (ANO VA) followed by multiple comparison procedures 
to identify statistically significant evidence of contamination. The method must include 
estimation and testing of the contrasts between each compliance we/l's mean and the 
background mean levels for each constituent. 

2. An analysis of variance (ANOVA) based on ranks followed by multiple comparison 
procedures to identify statistically significant evidence of contamination. The method 
must include estimation and testing of the contrasts between each compliance we/l's 
median and the background median levels for each constituent. 

3. A tolerance interval or prediction interval procedure in which an interval for each 
constituent is established from the distribution of the background data, and the level of 
each constituent in each compliance well is compared to the upper tolerance or prediction 
limit. 

4. A control chart approach that gives control limits for each constituent. 

5. Another statistical method submitted by the owner or operator and approved by the 
Regional Administrator. 

Part III of the Unified Guidance addresses these specific tests, as applied to a detection 
monitoring program. It is assumed that statistical testing will be conducted separately for each hazardous 
constituent in each monitoring well. The recommended non-parametric ANOVA method based on ranks 
is identified in this guidance as the Kruskal-Wallis test. ANOVA tests are discussed in Chapter 17. 
Tolerance interval and prediction limit tests are discussed separately in Chapters 17 and 18, with 
particular attention given to implementing prediction limits with retesting when conducting multiple 
comparisons in Chapter 19. The recommended type of control chart is the combined Shewhart-CUSUM 
control chart test, discussed in Chapter 20. Where a groundwater protection standard is based on 
background levels, application of these tests is discussed in Part I, Chapter 7 and Part IV, Chapter 22. 

The following discussions somewhat condense the regulatory language for ease of presentation and understanding. Exact 
citations for regulatory text should be obtained from the most recent Title 40 Code ofFederal Regulations. 
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If a groundwater protection standard involves a fixed limit, none of the listed statistical methods in 
these regulations directly apply. Consequently, a number of other single-sample tests for comparison 
with a fixed limit are recommended in Part IV. Certain statistical limitations encountered when using 
ANOV A and tolerance level tests in detection and compliance monitoring are also discussed in these 
chapters. Additional use of ANOV A tests for diagnostic identification of spatial variation or temporal 
effects is discussed in Part II, Chapters 13 and 14. 

1!!1!!~~l!~llfl•• ~ & 

Any statistical method chosen under §264.97(h) for §258.53(g)] for specification in the unit 
permit shall comply with the following performance standards, as appropriate: 

1. The statistical method used to evaluate ground-water monitoring data shall be appropriate 
for the distribution of chemical parameters or hazardous constituents. If the distribution of 
the chemical parameters or hazardous constituents is shown by the owner or operator to be 
inappropriate for a normal theory test, then the data should be transformed or a 
distribution-free test should be used. If the distributions for the constituents differ, more 
than one statistical method may be needed. 

2. If an individual well comparison procedure is used to compare an individual compliance 
well constituent concentration with background constituent concentrations or a 
groundwater protection standard, the test shall be done at a Type I error level no less than 
0.01 for each testing period. If a multiple comparisons procedure is used, the Type I 
experiment-wise error rate for each testing period shall be no less than 0.05; however, the 
Type I error of no less than 0.01 for individual well comparisons must be maintained. This 
performance standard does not apply to control charts, tolerance intervals, or prediction 
intervals. 

3. If a control chart approach is used to evaluate groundwater monitoring data, the specific 
type of control chart and its associated parameter values shall be proposed by the owner or 
operator and approved by the Regional Administrator if he or she finds it to be protective 
of human health and the environment. 

4. If a tolerance interval or a prediction interval is used to evaluate groundwater monitoring 
data, the levels of confidence, and for tolerance intervals, the percentage of the population 
that the interval must contain, shall be proposed by the owner or operator and approved by 
the Regional Administrator if he or she finds it protective of human health and the 
environment. These parameters will be determined after considering the number of 
samples in the background data base, the data distribution, and the range of the 
concentration values for each constituent of concern. 

5. The statistical method shall account for data below the limit of detection with one or more 
procedures that are protective of human health and the environment. Any practical 
quantification limit (pql) approved by the Regional Administrator under §264.97(h) for 
§258.53(g)] that is used in the statistical method shall be the lowest concentration level that 
can be reliably achieved within specified limits of precision and accuracy during routine 
laboratory operating conditions available to the facility. 
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6. If necessary, the statistical method shall include procedures to control or correct for 
seasonal and spatial variability as well as temporal correlation in the data. 

These performance standards pertain to both the listed tests as well as others (such as those 
recommended in Part IV of the guidance for comparison to fixed standards). Each of the performance 
standards is addressed in Part I of the guidance for designing statistical monitoring programs and in 
Part II of the guidance covering diagnostic testing. 

The first performance standard considers distributional properties of sample data; procedures for 
evaluating normality, transformations to normality, or use of non-parametric (distribution-free) methods 
are found in Chapter 10. Since some statistical tests also require an assumption of equal variances 
across groups, Chapter 11 provides the relevant diagnostic tests. Defining an appropriate distribution 
also requires consideration of possible outliers. Chapter 12 discusses techniques useful in outlier 
identification. 

The second performance standard identifies mm1mum false positive error rates required when 
conducting certain tests. "Individual well comparison procedures" cited in the regulations include 
various ANOVA-type tests, Student's !-tests, as well as one-sample compliance monitoring/corrective 
action tests against a fixed standard. Per the regulations, these significance level ( ) constraints do not 
apply to the other listed statistical methods - control charts, tolerance intervals, or prediction intervals. 

When comparing an individual compliance well against background, the probability of the test 
resulting in a false positive or Type I error should be no less than 1 in 100 (1 % ). EPA required a 
minimum Type I error level for a given test and fixed sample size because false positive and negative 
rates are inversely related. By limiting Type I error rates to 1 %, EPA felt that the risk of incurring false 
positives would be sufficiently low, while providing sufficient statistical power (i.e., the test's ability to 
control the false negative rate, that is, the rate of missing or not detecting true changes in groundwater 
quality). 

Though a procedure to test an individual well like the Student's t-test may be appropriate for the 
smallest of facilities, more extensive networks of groundwater monitoring wells and monitoring 
parameters will generally require a multiple comparisons procedure. The 1988 regulations recognized 
this need in specifying a one-way analysis of variance [ANOVA] procedure as the method of choice for 
replacing the CABF Student's !-test. The F-statistic in an analysis of variance [ANOVA] does indeed 
control the site-wide or experiment-wise error rate when evaluating multiple upgradient and 
downgradient wells, at least for a single constituent. Using this technique allowed the Type I 
experiment-wise error rate for each constituent to be controlled to about 5% for each testing period. 

To maintain adequate statistical power, the regulations also mandate that the ANOV A procedure 
be run at a minimum 5% false positive rate per constituent. But when a full set of well-constituent 
combinations are considered (particularly large suites of detection monitoring analytes at numerous 
compliance wells), the site-wide false positive rate can be much greater than 5%. The one-way ANOVA 
is inherently an interwell technique, designed to simultaneously compare datasets from different well 
locations. Constituents with significant natural spatial variation are likely to trigger the ANOVA F­
statistic even in the absence ofreal contamination, an issue discussed in Chapter 13. 
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Control charts, tolerance intervals, and prediction intervals provide alternate testing strategies for 
simultaneously controlling false positive rates while maintaining adequate power to detect contamination 
during detection monitoring. Although the rules do not require a minimum nominal false positive rate as 
specified in the second performance standard, use of tolerance or prediction intervals combined with a 
retesting strategy can result in sufficiently low experiment-wise Type I error rates and the ability to 
detect real contamination. Chapters 17, 18 and 20 consider how tolerance limits, control charts, and 
prediction limits can be designed to meet the third and fourth performance standards specific to these 
tests considering the number of samples in background, the data distribution, and the range of 
concentration values for each constituent of concern [COC]. Chapters 19 and 20 on multiple 
comparison procedures using prediction limits or control charts identify how retesting can be used to 
enhance power and meet the specified false positive objectives. 

The fifth performance standard requires statistical tests to account for non-detect data. Chapter 15 
provides some alternative approaches for either adjusting or modeling sample data in the presence of 
reported non-detects. Other chapters include modifications of standard tests to properly account for the 
non-detect portion of data sets. 

The sixth performance standard requires consideration of spatial or temporal (including seasonal) 
variation in the data. Such patterns can have major statistical consequences and need to be carefully 
addressed. Most classical statistical tests in this guidance require assumptions of data independence and 
stationarity. Independence roughly means that observing a given sample measurement does not allow a 
precise prediction of other sample measurements. Drawing colored balls from an urn at random 
illustrates and fits this requirement; in groundwater, sample volumes are assumed to be drawn more or 
less at random from the population of possible same-sized volumes comprising the underlying aquifer. 
Stationarity assumes that the population being sampled has a constant mean and variance across time 
and space. Spatial or temporal variation in the well means and/or variances can negate these test 
assumptions. Chapter 13 considers the use of ANOVA techniques to establish evidence of spatial 
variation. Modification of the statistical approach may be necessary in this case; in particular, 
background levels will need to be established at each compliance well for future comparisons (termed 
intrawell tests). Control chart, tolerance limit, and prediction limit tests can be designed for intrawell 
comparisons; these topics are considered in Part III of this guidance. 

Temporal variation can occur for a number ofreasons - seasonal fluctuations, autocorrelation, 
trends over time, etc. Chapter 14 addresses these forms of temporal variation, along with recommended 
statistical procedures. In order to achieve stationarity and independence, sample data may need to be 
adjusted to remove trends or other forms of temporal dependence. In these cases, the residuals remaining 
after trend removal or other adjustments are used for formal testing purposes. Correlation among 
monitoring constituents within and between compliance wells can occur, a subject also treated in this 
chapter. 

When evaluating statistical methods by these performance standards, it is important to recognize 
that the ability of a particular procedure to operate correctly in minimizing unnecessary false positives 
while detecting possible contamination depends on several factors. These include not only the choice of 
significance level and test hypotheses, but also the statistical test itself, data distributions, presence or 
absence of outliers and non-detects, the presence or absence of spatial and temporal variation, sampling 
requirements, number of samples and comparisons to be made, and frequency of sampling. Since all of 
these statistical factors interact to determine the procedure's effectiveness, any proposed statistical 
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procedure needs to be evaluated in its entirety, not by individual components. Part I, Chapter 5 
discusses evaluation of potential background databases considering all of the performance criteria. 
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The Part 264 Subpart F groundwater monitoring regulations do not specifically identify the test 
hypotheses to be used in detection monitoring (§264.98), compliance monitoring (§264.99), and 
corrective action (§264.100). The same is true for the parallel Part 258 regulations for detection 
monitoring (§258.54), assessment monitoring (§258.55), and assessment of corrective measures 
(§258.56), as well as for evaluating interim status indicator parameters (§265.93) or Appendix III 
constituents. However, the language of these regulations as well as accepted statistical principles allow 
for clear definitions of the appropriate test hypotheses. Two- or multiple-sample comparisons 
(background vs. downgradient well data) are usually involved in detection monitoring (the comparison 
could also be made against an ACL limit based on background data). Units under detection monitoring 
are initially presumed not to be contributing a release to the groundwater unless demonstrated otherwise. 
From a statistical testing standpoint, the population of downgradient well measurements is assumed to 
be equivalent to or no worse than those of the background population; typically this translates into an 
initial or null hypothesis that the downgradient population mean is equal to or less than the background 
population mean. Demonstration of a release is triggered when one or more well constituents indicate 
statistically significant levels above background. 

Compliance and corrective action tests generally compare single sets of sample data to a fixed limit 
or a background standard. The language of §264.99 indicates that a significant increase above a GWPS 
will demonstrate the need for corrective action. Consequently, the null hypothesis is that the compliance 
population mean (or perhaps an upper percentile) is at or below a given standard. The statistical 
hypothesis is thus quite similar to that of detection monitoring. In contrast, once an exceedance has been 
established and §264.100 is triggered, the null hypothesis is that a site is contaminated unless 
demonstrated to be significantly below the GWPS. The same principles apply to Part 258 monitoring 
programs. In Part 265, the detection monitoring hypotheses apply to an evaluation of the contaminant 
indicator parameters. The general subject of hypothesis testing is discussed in Chapter 3, and specific 
statistical hypothesis formulations are found in Parts III and IV of this guidance. 
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Each of the RCRA groundwater monitoring regulations defines somewhat different mm1mum 

sampling requirements. §264.97(g)(l) & (2) provides two main options: 

1. Obtaining a sequence of at least four samples taken at an interval that ensures, to the 
greatest extent technically feasible, that a statistically independent sample is obtained, by 
reference to the uppermost aquifer effective porosity, hydraulic conductivity, and 
hydraulic gradient, and the fate and transport characteristics of potential contaminants; 
or 

2. An alternate sampling procedure proposed by the owner or operator and approved by the 
Regional Administrator if protective of human health and the environment. 

l LJ 
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Additional regulatory language m detection [§264.98(d)] and compliance [§264.99(±)) 
monitoring reaffirms the first approach: 

[A] a sequence of at least four samples from each well (background and compliance wells) 
must be collected at least semi-annually during detection/compliance monitoring ... 

Interim status sampling requirements under §265.92[c] read as follows: 

(1) For all monitoring wells, the owner or operator must establish initial background 
concentrations or values of all parameters specified in paragraph (b) of this section. He 
must do this quarterly for one year; 

(2) For each of the indicator parameters specified in paragraph (b)(3) of this section, at 
least four replicate measurements must be obtained for each sample and the initial 
background arithmetic mean and variance must be determined by pooling the replicate 
measurements for the respective parameter concentrations or values in samples obtained 
from upgradient wells during the first year. 

The requirements under Subtitle D §258.54(b) are somewhat different: 

The monitoring frequency for all constituents listed in Appendix I to this part, ... shall be at 
least semi-annual during the active life of the facility .... A minimum of four independent 
samples from each well (background and downgradient) must be collected and analyzed 
for the Appendix I constituents... during the first semi-annual event. At least one sample 
from each well (background and downgradient) must be collected and analyzed during 
subsequent semi-annual events ... 

The 1980 and 1982 regulations required four analyses of essentially a single physical sample for 
certain constituents, i.e., the four contaminant indicator parameters. The need for statistically 
independent data was recognized in the 1988 revisions to Part 264 and in the Part 258 solid waste 
requirements. In the latter rules, only a minimum single sample is required in successive semi-annual 
sampling events. Individual Subtitle C programs have also made use of the provision in §264.97(g)(2) to 
allow for fewer than four samples collected during a given semi-annual period, while other State 
programs require the four successive sample measurements. As noted, by the recent changes in the April 
2006 Burden Reduction Rule, the explicit requirements to obtain at least four samples during the next 
evaluation period under 40 CFR §264.98(d) and §264.99(±) have been removed, allowing more general 
flexibility under the §264.97(g) sampling options. Individual State RCRA programs should be consulted 
as to whether these recent rule changes may be applicable. 

The requirements of Parts 264 and 258 were generally intended to provide sufficient data for 
ANOV A-type tests in detection monitoring. However, control chart, tolerance limit, and prediction limit 
tests can be applied with as few as one new sample per evaluation, once background data are established. 
The guidance provides maximum flexibility in offering a range of prediction limit options in Chapter 
18 in order to address these various sample size requirements. Although not discussed in detail, the same 
conclusions pertain to the use of control charts or tolerance limits. 

The use of the term "replicate" in the Part 265 interim status regulations can be a significant 
problem, if interpreted to mean repeat analyses of splits (or aliquots) of a single physical sample. The 

l LJ J 

EPAPAV0116913 



regulations indicate the need for statistical independence among sample data for testing purposes. This 
guidance discusses the technical statistical problems that arise ifreplicate (aliquot) sample data are used 
with the required Student's t-test in Part 265. Thus, the guidance recommends, if possible, that interim 
status statistical evaluations be based on independent sample data as discussed in Chapters 13 and 14 
and at the end of this chapter. A more standardized Welch's version of the Student-t test for unequal 
variances is provided as an alternative to the CABF Student's t-test. 
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Part 265 does not use the term groundwater protection standards. A first-year requirement under 
§265.92(c)(l) is: 

For all monitoring wells, the owner or operator must establish background 
concentrations or values of all parameters specified in paragraph (b) of this section. He 
must do this quarterly for one year. 

Paragraph (b) includes water supply parameters listed in Part 265 Appendix III, which also 
provides a Maximum Level for each constituent. If a facility owner or operator does not develop and 
implement an assessment plan under §265.93(d)(4), there is a requirement in §265.94(a)(2) to report the 
following information to the Regional Administrator: 

(i) During the first year when initial background concentrations are being established for 
the facility: concentrations or values of the parameters listed in §265.92(b)(J) for each 
groundwater monitoring well within 15 days after completing each quarterly analysis. The 
owner or operator must separately identify for each monitoring well any parameters whose 
concentrations or value has been found to exceed the maximum contaminant levels in 
Appendix III. 

Since the Part 265 regulations are explicit in requiring a one-to-one companson, no statistical 
evaluation is needed or possible. 

§264.94(a) identifies the permissible concentration limits as a GWPS under §264.92: 

The Regional Administrator will specify in the facility permit concentrations limits in the 
groundwater for hazardous constituents established under §264.93. The concentration of a 
constituent: 

(1) must not exceed the background level of that constituent in the groundwater at the time 
the limit is specified in the permit; or 

(2) for any of the constituents listed in Table 1, must not exceed the respective value given 
in that table if the background level is below the value given in Table 1; or 

(3) must not exceed an alternate limit established by the Regional Administrator under 
paragraph (b) of this section. 
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The RCRA Subtitle D regulations establish the following standards under §258.55(h) and (i): 

(h) The owner or operator must establish a groundwater protection standard for each 
Appendix II constituent detected in groundwater. The groundwater protection standard 
shall be: 

(1) For constituents for which a maximum contaminant level (MCL) has been 
promulgated under Section 1412 of the Safe Drinking Water Act (codified) under 40 
CFR Part 141, the MCL for that constituent; 

(2) for constituents for which MCLs have not been promulgated, the background 
concentration for the constituent established from wells in accordance with 
§258.51(a)(l); or 

(3) for constituents for which the background level is higher than the MCL identified 
under paragraph (h)(l) of this section or health based levels identified under 
§258(i)(l), the background concentration. 

(i) The Director of an approved State program may establish an alternative groundwater 
protection standard for constituents for which MCLs have not been established. These 
groundwater protection standards shall be appropriate health based levels that satisfy the 
following criteria: 

(1) the level is derived in a manner consistent with Agency guidelines for assessing 
health risks or environmental pollutants [51 FR 33992, 34006, 34014, 34028, Sept. 24, 
1986] 

(2) to (4) ... [other detailed requirements for health risk assessment procedures] 

The two principal alternatives for defining a groundwater protection standard [GWPS] are either 
a limit based on background data or a fixed health-based value (e.g., MCLs, §264.94 Table 1 values, or a 
calculated risk limit). The Unified Guidance discusses these two basic kinds of standards in Chapters 7 
and 21. If a background limit is applied, some definition of how the limit is constructed from prior 
sample data is required at the time of development. For fixed health-based limits, the regulatory program 
needs to consider the statistical characteristic of the data (e.g., mean, median, upper percentile) that best 
represents the standard in order to conduct appropriate statistical comparisons. This subject is also 
discussed in Chapter 21; the guidance provides a number of testing options in this regard. 
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As discussed in Chapter 14, replicates required for the four contaminant indicator parameters are 
not statistically independent when analyzed as aliquots or splits from a single physical sample. This 
results in incorrect estimates of variance and the degrees of freedom when used in a Student's t-test. One 
of the most important revisions in the 1988 regulations was to require that successive samples be 
independent. Therefore, at a minimum, the Unified Guidance recommends that only independent 
water quality sample data be applied to the detection monitoring Student's !-tests in Chapter 16. 
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There are other considerations limiting the application of these tests as well. As noted in Chapter 
5, at least two of the indicator parameters (pH and specific conductance) are likely to exhibit natural 
spatial differences among monitoring wells. Depending on site groundwater characteristics, TOC and 
TOX may also vary spatially. TOX analytical limitations described in SW-846 10 also note that levels of 
TOX are affected by inorganic chloride levels, which themselves can vary spatially by well. In short, all 
four indicator parameters may need to be evaluated on an intrawell basis, i.e., using historical data from 
compliance monitoring wells. 

Since this option is not identified in ex1stmg Part 265 regulations for indicator detection 
monitoring, a more appropriate strategy is to develop an alternative groundwater quality assessment 
monitoring plan under §265.90(d)(3) and (4) and §265.93(d)(3) and (4). These sections of the 
regulations require evaluation of hazardous waste constituents reasonably derived from the regulated 
unit (either those which served as a basis for listing in Part 265 Appendix VII or which are found in 
§261.24 Table 1 ). Interim status units subject to a permit are also subject to the groundwater 
contaminant information collection provisions under §270.14[c], which potentially include all hazardous 
constituents (a wider range of contaminants, e.g., Part 264 Appendix IX) reasonably expected from the 
unit. While an interim status facility can return to indicator detection monitoring if no hazardous 
constituent releases have been identified, such a return is itself optional. 

EPA recommends that interim status facilities develop the §265.90(d)(3) & (4) alternative 
groundwater quality assessment monitoring plan, if possible, using principles and procedures found in 
this guidance for monitoring design and statistical evaluation. Unlike Part 264 monitoring, there are no 
formal compliance/corrective action steps associated with statistical testing. A regulatory agency may 
take appropriate enforcement action if data indicate a release or significant adverse effect. The 
monitoring plan can be applied for an indefinite period until permit development. Multi-year collection 
of semi-annual or quarterly hazardous constituent data is more determinative of potential releases. The 
facility or the regulatory agency may also wish to continue evaluation of some or all of the Part 265 
water quality indicators. Eventually these groundwater data can be used to establish which monitoring 
program(s) may be appropriate at the time of permit development under §264.91(b). 
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As described in Chapter 13, many of the commonly monitored inorganic analytes exhibit natural 
spatial variation among wells. Since the two ANOVA techniques in §264.97(h) and §258.53(g) depend 
on an assumption of a single common background population, these tests may not be appropriate in 
many situations. Additionally, at least 50% of the data should be detectable in order to compare either 
well means or medians. For many hazardous trace elements, detectable percentages are considerably 
lower. Interwell ANOV A techniques would also not be generally useful in these cases. ANOV A may 
find limited applicability in detection monitoring with trace organic constituents, especially where 
downgradient levels are considerably higher than background and there is a high percentage of detects. 
Based on ranks alone, it may be possible to determine that compliance well(s) containing one or more 
hazardous constituents exceed background. However, the Unified Guidance recommends avoiding 
ANOV A techniques in the limiting situations just described. 

10 Test Methods for Evaluating Solid Waste (SW-846), EPA OSWER, 3rd Edition and subsequent revisions, Method 9020B, 
September 1994 
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Another detection monitoring method rece1vmg less emphasis in this guidance is the tolerance 
limit. In previous guidance, an upper tolerance limit based on background was suggested to identify 
significant increases in downgradient well concentration levels. While still acceptable by regulation 
(e.g., under existing RCRA permits), use of prediction limits are preferable to tolerance limits in 
detection monitoring for the following reasons. The construction of a tolerance limit is nearly identical 
to that of a prediction limit. In parametric normal distribution applications, both methods use the general 
formula: x +Ks. The kappa (1) multiplier varies depending on the coverage and confidence levels 
desired, but in both cases some multiple of the standard deviation (s) is added or subtracted from the 
sample mean ( x ). For non-parametric limits, the similarity is even more apparent. Often the identical 
statistic (e.g., the maximum observed value in background) can either be used as an upper prediction 
limit or an upper tolerance limit, with only a difference in statistical interpretation. 

More fundamentally, given the wide variety of circumstances in which retesting strategies are now 
encouraged and even necessary, the mathematical underpinnings of retesting with prediction limits are 
well established while those for retesting with tolerance limits are not. Monte Carlo simulations were 
originally conducted for the 1992 Addendum to develop appropriate retesting strategies involving 
tolerance limits. Such simulations were found insufficient for the Unified Guidance. 11 

While the simultaneous prediction limits presented in the Unified Guidance consider the actual 
number of comparisons in defining exact false positive error rates, some tolerance limit approaches 
(including past guidance) utilized an approximate and less precise pre-selected low level of probability. 
On balance, there is little practical need for recommending two highly similar (but not identical) 
methods in the Unified Guidance, both for the reasons just provided and to avoid confusion of which 
method to use. The final regulation-specified detection monitoring method - control charts - is 
comparable to prediction limits, but possesses some unique benefits and so is also recommended in this 
guidance. 
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A second use of tolerance limits recommended in earlier guidance was for comparing 
downgradient monitoring well data to a fixed limit during compliance/assessment monitoring. In this 
case, an upper tolerance limit constructed on each compliance well data set could be used to identify 
non-compliance with a fixed GWPS limit. Past guidance also used ~ confidence limits around an 
upper proportion in defining these tolerance limits. A number of problems were identified using this 
approach. 

A tolerance limit makes statistical sense if the limit represents an upper percentile, i.e., when a 
limit is not to be exceeded by more than, for instance, 1 % or 5% or 10% of future individual 
concentration values. However, GWPS limits can also be interpreted as long-term averages, e.g., chronic 
risk-based values, which are better approximated by a statistic like the mean or median. Chapters 7 & 

11 1) there were minor errors in the algorithms employed; 2) Davis and McNichols (1987) demonstrated how to compute exact 
kappa multipliers for prediction limits using a numerical algorithm instead of employing an inefficient simulation strategy; 
and 3) further research (as noted in Chapter 19) done in preparation of the guidance has shown that repeated prediction 
limits are more statistically powerful than retesting strategies using tolerance limits for detecting changes in groundwater 
quality. 
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22 discuss important considerations when identifying the appropriate statistical parameter to be 
compared against a fixed GWPS limit. 

More importantly, since the upper confidence level of tolerance limit overestimates the true 
population proportion by design, demonstrating an exceedance of a GWPS by this limit does not 
necessarily indicate that the corresponding population proportion also exceeds the standard, leading to a 
high false positive rate. Therefore, the Unified Guidance recommends that the compliance/assessment 
monitoring null hypothesis be structured so that the compliance population characteristic (e.g., mean, 
median, upper percentile) is assumed to be less than or equal to the fixed standard unless demonstrated 
otherwise. The correct test statistic in this situation is then the lower confidence limit. The upper 
confidence limit is used in corrective action to identify whether a constituent has returned to compliance. 

To ensure consistency with the underlying statistical presumptions of compliance/assessment 
monitoring (see Chapter 4) and to maintain control of false positive rates, the Unified Guidance 
recommends that this tolerance interval approach be replaced with a more coherent and comprehensive 
strategy based on the use of confidence intervals (see Chapters 21 and 22). Confidence intervals can be 
applied in a consistent fashion to GWPS concentration limits representing either long-term averages or 
upper percentiles. 

l LJ 

EPAPAV0116918 



3.1 INTRODUCTION TO GROUNDWATER STATISTICS................................................................ . ............................. 3-2 
3.2 COMMON STATISTICAL ASSUMPTIONS................................................................ ............................................. 3-4 

3.2.1 Statistical Independence.................................................... ................................................................ . .... 3-4 
3.2.2 Stationarity.................................................... ................................................................ . ........................ 3-5 
3.2.3 Lack of Statistical Outliers................................................................ ..................................................... 3-7 
3.2.4 Normality....................................................... ................................................................ . ........................ 3-7 

3.3 COMMON STATISTICAL MEASURES ................................................................ ................................................. 3-9 
3.4 HYPOTHESIS TESTING FRAMEWORK................................................................ .............................................. 3-12 
3.5 ERRORS IN HYPOTHESIS TESTING .................................................................................................................. 3-14 

3.5.1 False Positives and Type I Errors ................................................................ ........................................ 3-15 
3.5.2 Sampling Distributions, Central Limit Theorem ................................................................ . ................. 3-16 
3.5.3 False Negatives, Type II Errors, and Statistical Power ................................................................ ....... 3-18 
3.5.4 Balancing Type I and Type II Errors ................................................................ ................................... 3-22 

The success of any discipline rests on its ability to accurately model and explain real problems. 
Spectacular successes have been registered during the past four centuries by the field of mathematics in 
modeling fundamental processes in mechanics and physics. The last century, in tum, saw the rise of 
statistics and its fundamental theory of estimation and hypothesis testing. All of the tests described in the 
Unified Guidance are based upon this theory and involve the same key concepts. The purpose of this 
chapter is to summarize the statistical concepts underlying the methods presented in the Unified 
Guidance, and to consider each in the practical context of groundwater monitoring. These include: 

Statistical inference: the difference between samples and populations; the concept of sampling. 

Common statistical assumptions used in groundwater monitoring: statistical independence, 
stationarity, lack of outliers, and normality. 

Frequently-used statistical measures: mean, standard deviation, percentiles, correlation 
coefficient, coefficient of variation, etc. 

Hypothesis testing: How probability distributions are used to model the behavior of groundwater 
concentrations and how the statistical evidence is used to "prove" or "disprove" the validity of 
competing models. 

Errors in hypothesis testing: What false positives (Type I errors) and false negatives (Type II 
errors) really represent. 

Sampling distributions and the Central Limit Theorem: How the statistical behavior of test 
statistics differs from that of individual population measurements. 

Statistical power and power curves: How the ability to detect real contamination depends on the 
size or degree of the concentration increase. 

Type I vs. Type II errors: The tradeoff between false positives and false negatives; why it is 
generally impossible to minimize both kinds of error simultaneously. 
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This section briefly covers some basic statistical terms and principles used in this guidance. All of 
these topics are more thoroughly discussed in standard textbooks. It is presumed that the user already has 
some familiarity with the following terms and discussions. 

Statistics is a branch of applied mathematics, dealing with the description, understanding, and 
modeling of data. An integral part of statistical analysis is the testing of competing mathematical models 
and the management of data uncertainty. Uncertainty is present because measurement data exhibit 
variability, with limited knowledge of the medium being sampled. The fundamental aim of almost every 
statistical analysis is to draw inferences. The data analyst must infer from the observed data something 
about the physical world without knowing or seeing all the possible facts or evidence. So the question 
becomes: how closely do the measured data mimic reality, or put another way, to what extent do the data 
correctly identify a physical truth (e.g., the compliance well is contaminated with arsenic above 
regulatory limits)? 

One way to ascertain whether an aquifer is contaminated with certain chemicals would be to 
exhaustively sample and measure every physical volume of groundwater underlying the site of interest. 
Such a collection of measurements would be impossible to procure in practice and would be infinite in 
size, since sampling would have to be continuously conducted over time at a huge number of wells and 
sampling depths. However, one would possess the entire population of possible measurements at that 
site and the exact statistical distribution of the measured concentration values. 

A statistical distribution is an organized summary of a set of data values, sorted into the relative 
frequencies of occurrence of different measurement levels (e.g., concentrations of 5 ppb orless occur 
among 30 percent of the values, or levels of 20 ppb or more only occur 1 percent of the time). More 
generally, a distribution may refer to a mathematical model (known as a probability distribution) used to 
represent the shape and statistical characteristics of a given population and chosen according to one's 
experience with the type of data involved. 

By contrast to the population, a statistical sample is a finite subset of the population, typically 
called a data set. Note that the statistical definition of sample is usually different from a geological or 
hydrological definition of the same term. Instead of a physical volume or mass, a statistical sample is a 
collection of measurements, i.e., a set of numbers. This collection might contain only a single value, but 
more generally has a number of measurements denoted as the sample size, n. 

Because a sample is only a partial representation of the population, an inference is usually desired 
in order to conclude something from the observed data about the underlying population. One or more 
numerical characteristics of the population might be of interest, such as the true average contaminant 
level or the upper 95th percentile of the concentration distribution. Quantities computed from the sample 
data are known as statistics, and can be used to reasonably estimate the desired but unknown population 
characteristics. An example is when testing sample data against a regulatory standard such as a 
maximum concentration limit [MCL] or background level. A mean sample estimate of the average 
concentration can be used to judge whether the corresponding population characteristic - the true mean 
concentration (denoted by the Greek letter ) - exceeds the MCL or background limit. 

The accuracy of these estimates depends on how representative the sample measurements of the 
underlying population are. In a representative sample, the distribution of sample values have the best 
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chance of closely matching the population distribution. Unfortunately, the degree ofrepresentativeness 
of a given sample is almost never known. So it quite important to understand precisely how the sample 
values were obtained from the population and to explore whether or not they appear representative. 
Though there is no guarantee that a sample will be adequate, the best protection against an 
unrepresentative sample is to select measurements from the population at random . A random sample 
implies that each potential population value has an equivalent chance of being selected depending only 
on its likelihood of occurrence. Not only does random sampling guard against selection of an 
unrepresentative portion of the population distribution, it also enables a mathematical estimate to be 
drawn of the statistical uncertainty associated with the ability of a given sample to represent the desired 
characteristic of the population. It can be very difficult to gauge the uncertainty surrounding a sample 
collected haphazardly or by means of professional judgment. 

As a simple example, consider an urn filled with red and green balls. By thoroughly mixing the urn 
and blindly sampling (i.e., retrieving) 10 percent of the balls, a very nearly random sample of the 
population of balls will be obtained, allowing a fair estimate of the true overall proportion of one color 
or the other. On the other hand, if one looked into the urn while sampling and only picked red balls or 
tried to alternate between red and green, the sample would be far from random and likely 
unrepresentative of the true proportions. 

At first glance, groundwater measurements obtained during routine monitoring would not seem to 
qualify as random samples. The well points are generally not placed in random locations or at random 
depths, and the physical samples are usually collected at regular, pre-specified intervals. Consequently, 
further distinctions and assumptions are necessary when performing statistical evaluations of 
groundwater data. First, the distribution of a given contaminant may not be spatially uniform or 
homogeneous. That is, the local distribution of measured values at one well may not be the same as at 
other wells. Because this is often true for naturally-occurring groundwater constituents, the statistical 
population(s) of interest may be well-specific. A statistical sample gathered from a particular well must 
then be treated as potentially representative only of that well's local population. On the other hand, 
samples drawn from a number ofreference background wells for which no significant differences are 
indicated, may permit the pooled data to serve as an estimate of the overall well field behavior for that 
particular monitoring constituent. 

The distribution of a contaminant may also not be temporally uniform or stationary over time. If 
concentration values indicates a trend, perhaps because a plume intensifies or dissipates or natural in-situ 
levels rise or fall due to drought conditions, etc., the distribution is said to be non-stationary. In this 
situation, some of the measurements collected over time may not be representative of current conditions 
within the aquifer. Statistical adjustments might be needed or the data partitioned into usable and 
unusable values. 

A similar difficulty is posed by cyclical or seasonal trends. A long-term constituent concentration 
average at a well location or the entire site may essentially be constant over time, yet temporarily 
fluctuate up and down on a seasonal basis. Given a fixed interval between sampling events, some of this 
fluctuation may go unobserved due to the non-random nature of the sampling times. This could result in 
a sample that is unrepresentative of the population variance and possibly of the population mean as well. 
In such settings, a shorter (i.e., higher frequency) or staggered sampling interval may be needed to better 
capture key characteristics of the population as a part of the distribution of sample measurements. 
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The difficulties in identifying a valid statistical framework for groundwater monitoring highlight a 
fundamental assumption governing almost every statistical procedure and test. It is the presumption that 
sample data from a given population should be independent and identically distributed, commonly 
abbreviated as i.i.d. All of the mathematics and statistical formulas contained in this guidance are built 
on this basic assumption. If it is not satisfied, statistical conclusions and test results may be invalid or in 
error. The associated statistical uncertainty may be different than expected from a given test procedure. 

Random sampling of a single, fixed, stationary population will guarantee independent, identically­
distributed sample data. Routine groundwater sampling typically does not. Consequently, the Unified 
Guidance discusses both below and in later chapters what assumptions about the sample data must be 
routinely or periodically checked. Many but not all of these assumptions are a simple consequence of the 
i.i.d. presumption. The guidance also discusses how sampling ought to be conducted and designed to get 
as close as possible to the i.i.d. goal. 

Every statistical test or procedure makes certain assumptions about the data used to compute the 
method. As noted above, many of these assumptions flow as a natural consequence of the presumption 
of independent, identically-distributed data (i.i.d. ). The most common assumptions are briefly described 
below: 

A major advantage of truly random sampling of a population is that the measurements will be 
statistically independent. This means that observing or knowing the value of one measurement does not 
alter or influence the probability of observing any other measurement in the population. After one value 
is selected, the next value is sampled again at random without regard to the previous measurement, and 
so on. By contrast, groundwater samples are not chosen at random times or at random locations. The 
locations are fixed and typically few in number. The intervals between sampling events are fixed and 
fairly regular. While samples of independent data exhibit no pairwise correlation (i.e., no statistical 
association of similarity or dissimilarity between pairs of sampled measurements), non-independent or 
dependent data do exhibit pairwise correlation and often other, more complex forms of correlation. 
Aliquot split sample pairs are generally not independent because of the positive correlation induced by 
the splitting of the same physical groundwater sample. Split measurements tend to be highly similar, 
much more so than the random pairings of data from distinct sampling events. 

In a similar vein, measurements collected close together in time from the same well tend to be 
more highly correlated than pairs collected at longer intervals. This is especially true when the 
groundwater is so slow-moving that the same general volume of groundwater is being sampled on 
closely-spaced consecutive sampling events. Dependence may also be exhibited spatially across a well 
field. Wells located more closely in space and screened in the same hydrostratigraphic zone may show 
greater similarity in concentration patterns than wells that are farther apart. For both of these temporal or 
time-related and spatial dependencies, the observed correlations are a result not only of the non-random 
nature of the sampling but also the fact that many groundwater populations are not uniform throughout 
the subsurface. The aquifer may instead exhibit pockets or sub-zones of higher or lower concentration, 
perhaps due to location-specific differences in natural geochemistry or the dynamics of contaminant 
plume behavior over time. 
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As a mathematical construct, statistical independence is essentially impossible to check directly in 
a set of sample data - other than by ensuring ahead of time that the measurements were collected at 
random. However, non-zero pairwise correlation , a clear sign of dependent data, can be checked and 
estimated in a variety of ways. The Unified Guidance describes two methods for identifying temporal 
correlation in Chapter 14: the rank van Neumann ratio test and the sample autocorrelation function . 
Measurable correlation among consecutive sample pairs may dictate the need for decreasing the 
sampling frequency or for a more complicated data adjustment. 

Defining and modeling wellfield spatial correlation is beyond the scope of this guidance, but is 
very much the purview of the field of geostatistics. The Unified Guidance instead looks for evidence of 
well-to-well spatial variation, i.e., statistically identifiable differences in mean and/or variance levels 
across the well field. If evident, the statistical approach would need to be modified so that distinct wells 
are treated as individual populations with statistical testing being conducted separately at each one (i.e., 
intrawell comparisons). 

A stationary statistical distribution is one whose population characteristics do not change over time 
and/or space. In a groundwater context, this means that the true population distribution of a given 
contaminant is the same no matter where or when it is sampled. In the strictest form of stationarity, the 
full distribution must be exactly the same at every time and location. However, in practice, a weaker 
form is usually assumed: that the population mean ( ) and variance (denoted by the Greek symbol l 

2
) 

are the same over time and/or space. 

Stationarity is important to groundwater statistical analysis because of the way that monitoring 
samples must be collected. If a sample set somehow represented the entire population of possible aquifer 
values, stationarity would not be an issue in theory. A limited number of physical groundwater samples, 
however, must be individually collected from each sampled location. To generate a statistical sample, 
the individual measurements must be pooled together over time from multiple sampling events within a 
well, or pooled together across space by aggregating data from multiple wells, or both. 

As long as the contaminant distribution is stationary, such pooling poses no statistical problem. But 
with a non-stationary distribution, either the mean and/or variance is changing over time in any given 
well, or the means and variances differ at distinct locations. In either case, the pooled measurements are 
not identically-distributed even if they may be statistically independent. 

The effects of non-stationarity are commonly seen in four basic ways in the groundwater context: 
1) as spatial variability, 2) in the existence of trends and/or seasonal variation, 3) via other forms of 
temporal variation, and 4) in the lack ofhomogeneity of variance. Spatial variability (discussed more 
extensively in Chapter 13) refers to statistically identifiable differences in mean and/or variance levels 
(but usually means) across the well field (i.e., spatial non-stationarity). The existence of such variation 
often precludes the pooling of data across multiple background wells or the proper upgradient-to­
downgradient comparison of background wells against distinct compliance wells. Instead, the usual 
approach is to perform intrawell comparisons, where well-specific background data is culled from the 
early sampling history at each well. Checks for spatial variability are conducted graphically with the aid 
of side-by-side box plots (Chapter 9) and through the use of analysis ofvariance [ANOVA, Chapter 
13]. 
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A trend over time at a given well location indicates that the mean level is not stationary but is 
instead rising or falling. A seasonal trend is similar in that there are periodic increases and decreases. 
Pooling several sampling events together thus mixes measurements with differing statistical 
characteristics. This can violate the identically-distributed presumption of almost all statistical tests and 
usually leads to an inflated estimate of the current population variance. Trends or seasonal variations 
identified in (upgradient) background wells or in intrawell background data from compliance wells can 
severely impact the accuracy and effectiveness of statistical procedures described in this guidance if data 
are pooled over time to establish background limits. The approach that should be taken will vary with 
the circumstance. Sometimes the trend component might need to be estimated and removed from the 
original data, so that what gets tested are the data residuals (i.e., values that result from subtracting the 
estimated trend from the original data) instead of the raw measurements. In other cases, an alternate 
statistical approach might be needed such as a test for (positive) trend or construction of a confidence 
band around an estimated trend. More discussion of these options is presented in Chapters 6, 7, 14, and 
21. 

To identify a linear trend, the Unified Guidance describes simple linear regression and the Mann­
Kendall test in Chapter 17. For seasonal patterns or a combination oflinear and seasonal trend effects, 
the guidance discusses the seasonal Mann-Kendall test and the use of ANOVA tests to identify seasonal 
effects. These diagnostic procedures are also presented in Chapter 14. 

Temporal variations are distinguished in this guidance from trends or seasonal effects by the lack 
of a regular or identifiable pattern. Often a temporal effect will be observed as a temporary shift in 
concentration levels that is similar in magnitude and direction at multiple wells. This can occur at some 
sites, for instance, due to rainfall or recharge events. Because the mean level changes at least 
temporarily, pooling data over time again violates the assumption of identically-distributed data. In this 
case, the temporal effect can be identified by looking for parallel traces on a time series plot of multiple 
wells and then more formally by performing a one-way ANO VA for temporal effects. These procedures 
are described in Chapter 14. Once identified, the residuals from the ANOV A can be used for 
compliance testing, since the common temporal effect has been removed. 

Lastly, homogeneity of variance is important in ANOVA tests, which simultaneously evaluates 
multiple groups of data each representing a sample from a distinct statistical population. In the latter 
test, well means need not be the same; the reason for performing the test in the first place is to find out 
whether the means do indeed differ. But the procedure assumes that all the group variances are equal or 
homogeneous. Lack of homogeneity or stationarity in the variances causes the test to be much less 
effective at discovering differences in the well means. In extreme cases, the concentration levels would 
have to differ by large amounts before the ANOV A would correctly register a statistical difference. Lack 
of homogeneity of variance can be identified graphically via the use of side-by-side box plots and then 
more formally with the use of Levene's test. Both these methods are discussed further in Chapter 11. 
Evidence of unequal variances may necessitate the use of a transformation to stabilize the variance prior 
to running the ANOV A. It might also preclude use of the ANOVA altogether for compliance testing, but 
require intrawell approaches to be considered instead. 

ANOVA is not the only statistical procedure which assumes homogeneity of variance. Prediction 
limits and control charts require a similar assumption between background and compliance well data. 
But if only one new sample measurement is collected per well per evaluation period (e.g., semi­
annually) it can be difficult to formally test this assumption with the diagnostic methods cited above. As 

Ln 
l 

EPAPAV0116924 



an alternative, homogeneity of variance can be periodically tested when a sufficient sample size has been 
collected for each compliance well (see Chapter 6). 

Many authors have noted that outliers - extreme, unusual-looking measurements - are a regular 
occurrence among groundwater data (Helsel and Hirsch, 2002; Gibbons and Coleman, 2001). Sometimes 
an outlier results from nothing more than a typographical error on a laboratory data sheet or file. In 
others, the fault is an incorrectly calibrated measuring device or a piece of equipment that was not 
properly decontaminated. An unusual measurement might also reflect the sampling of a temporary, local 
'hot spot' of higher concentration. In each of these situations, outliers in a statistical context represent 
values that are inconsistent with the distribution of the remaining measurements. Tests for outliers thus 
attempt to infer whether the suspected outlier could have reasonably been drawn from the same 
population as the other measurements, based on the sample data observed up to that point. Statistical 
methods to help identify potential outliers are discussed in Chapter 12, including both Dixon's and 
Rosner's tests, as well as references to other methods. 

The basic problem with including statistical outliers in analyzing groundwater data is that they do 
not come from the same distribution as the other measurements in the sample and so fail the identically­
distributed presumption of most tests. The consequences can be dramatic, as can be seen for instance 
when considering non-parametric prediction limits. In this testing method, one of the largest values 
observed in the background data such as the maximum, is often the statistic selected as the prediction 
limit. If a large outlier is present among the background measurements, the prediction limit may be set to 
this value despite being unrepresentative of the background population. In effect, it arises from another 
population, e.g., the 'population' of typographical errors. The prediction limit could then be much higher 
than warranted based on the observed background data and may provide little if any probability that truly 
contaminated compliance wells will be identified. The test will then have lower than expected statistical 
power. 

Overall, it pays to try to identify possible outliers and to either correct the value(s) if possible, or 
exclude known outliers from subsequent statistical analysis. It is also possible to select a statistical 
method that is resistant to the presence of outliers, so that the test results are still likely to be accurate 
even if one or more outliers is unidentified. Examples of this last strategy include setting non-parametric 
prediction limits to values other than the background maximum using repeat testing (see Chapter 18) or 
using Sen's slope procedure to estimate the rate of change in a linear trend (Chapter 17). 

l 91 9l .... .... !! I p ~ i ~ T 

Probability distributions introduced in Section 3.1 are mathematical models used to approximate 
or represent the statistical characteristics of populations. Knowing the exact form and defining equation 
of a probability distribution allows one to assess how likely or unlikely it will be to observe particular 
measurement values (or ranges of values) when selecting or drawing independent, identically distributed 
[i.i.d.] samples from the associated population. This can be done as follows. In the case of a continuous 
distributional model, a curve can be drawn to represent the probability distribution by plotting 
probability values along the y-axis and measurement or concentration values along the x-axis. Since the 
continuum of x-values along this curve is infinite, the probability of occurrence of any single possible 
value is negligible (i.e., zero), and does not equal the height of the curve. Instead, positive probabilities 
can be computed for ranges of possible values by summing the area under the distributional curve 
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associated with the desired range. Since by definition the total area under any probability distribution 
curve sums to unity, all probabilities are then numbers between 0 and 1. 

Probability distributions form the basic building blocks of all statistical testing procedures. Every 
test relies on comparing one or more statistics computed from the sample data against a reference 
distribution. The reference distribution is in tum a probability distribution summarizing the expected 
mathematical behavior of the statistic(s) of interest. A formal statistical test utilizes this reference 
distribution to make inferences about the sample statistic in terms of two contrasting conditions or 
hypotheses. 

In any event, probability distributions used in statistical testing make differing assumptions about 
how the underlying population of measurements is distributed. A case in point is simultaneous 
prediction limits using retesting (Chapter 19 ). The first and most common version of this test (Davis 
and McNichols, 1987) is based on an assumption that the sample data are drawn from a normal 
probability distribution. The normal distribution is the well-known bell-shaped curve, perhaps the single 
most important and frequently-used distribution in statistical analysis. However, it is not the only one. 
Bhaumik and Gibbons (2006) proposed similar prediction limits for data drawn from a gamma 
distribution and Cameron (2008) did the same for Weibull-distributed measurements. This more recent 
research demonstrates that prediction limits with similar statistical decision error rates can vary greatly 
in magnitude, depending on the type of data distribution assumed. 

Because many tests make an explicit assumption concerning the distribution represented by the 
sample data, the form and exact type of distribution often has to be checked using a goodness-of-fit test. 
A goodness-of-fit test assesses how closely the observed sample data resemble a proposed distributional 
model. Despite the wide variety of probability distributions identified in the statistical literature, only a 
very few goodness-of-fit tests generally are needed in practice. This is because most tests are based on an 
assumption of normally-distributed or normal data. Even when an underlying distribution is not normal, 
it is often possible to use a mathematical transformation of the raw measurements (e.g., taking the 
natural logarithm or log of each value) to normalize the data set. The original values can be 
transformed into a set of numbers that behaves as if drawn from a normal distribution. The transformed 
values can then be utilized in and analyzed with a normal-theory test (i.e., a procedure that assumes the 
input data are normal). 

Specific goodness-of-fit tests for checking and identifying data distributions are found in Chapter 
10 of this guidance. These methods all are designed to check the fit to normality of the sample data. 
Besides the normal, the lognormal distribution is also commonly used as a model for groundwater data. 
This distribution is not symmetric in shape like the bell-shaped normal curve, nor does it have similar 
statistical properties. However, a simple log transformation of lognormal measurements works to 
normalize such a data set. The transformed values can be tested using one of the standard goodness-of­
fit tests of normality to confirm that the original data were indeed lognormal. 

More generally, if a sample shows evidence of non-normality using the techniques in Chapter 10, 
the initial remedy is to try and find a suitable normalizing transformation. A set of useful possible 
transformations in this regard has been termed the ladder of powers (Helsel and Hirsch, 2002). It 
includes not only the natural logarithm, but also other mathematical power transformations such as the 
square root, the cube root, the square, etc. If none of these transformations creates an adequately 
normalized data set, a second approach is to consider what are known as non-parametric tests. Normal-
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theory and other similar parametric statistical procedures assume that the form of the underlying 
probability distribution is known. They are called parametric because the assumed probability 
distribution is generally characterized by a small set of mathematical parameters. In the case of the 
normal distribution, the general formula describing its shape and properties is completely specified by 
two parameters: the population mean ( ) and the population variance ( l 2

). Once values for these 
quantities are known, the exact distribution representing a particular normal population can be computed 
or analyzed. 

Most parametric tests do not require knowledge of the exact distribution represented by the sample 
data, but rather just the type of distribution (e.g., normal, lognormal, gamma, Weibull, etc.). In more 
formal terms, the test assumes knowledge of the family of distributions indexed by the characterizing 
parameters. Every different combination of population mean and variance defines a different normal 
distribution, yet all belong to the normal family. Nonetheless, there are many data sets for which a 
known distributional family cannot be identified. Non-parametric methods may then be appropriate, 
since a known distributional form is not assumed. Non-parametric tests are discussed in various chapters 
of the Unified Guidance. These tests are typically based on either a ranking or an ordering of the sample 
magnitudes in order to assess their statistical performance and accuracy. But even non-parametric tests 
may make use of a normal approximation to define how expected rankings are distributed. 

One other common difficulty in checking for normality among groundwater measurements is the 
frequent presence of non-detect values, known in statistical terms as left-censored measurements. The 
magnitude of these sample concentrations is known only to lie somewhere between zero and the 
detection or reporting limit; hence the true concentration is partially 'hidden' or censored on the left­
hand side of the numerical concentration scale. Because the most effective normality tests assume that 
all the sample measurements are known and quantified and not censored, the Unified Guidance suggests 
two possible approaches in this circumstance. First, it is usually possible to simply assume that the true 
distributional form of the underlying population cannot be identified, and to instead apply a non­
parametric test alternative. This solution is not always ideal, especially when using prediction limits and 
the background sample size is small, or when using control charts (for which there is no current non­
parametric alternative to the Unified Guidance recommended test). 

As a second alternative, Chapter 10 discusses methods for assessing approximate normality in the 
presence of non-detects. If normality can be established, perhaps through a normalizing transformation, 
Chapter 15 describes methods for estimating the mean and variance parameters of the specific normal 
distribution needed for constructing tests (such as prediction limits or control charts), even though the 
exact value of each non-detect is unknown. 

!! 1 ~ 
Due to the variety of statistical tests and other methods presented in the Unified Guidance, there 

are a large number of equations and formulas of relevance to specific situations. The most common 
statistical measures used in many settings are briefly described below. 

Sample mean and standard deviation -the mean of a set of measurements of sample size n is 
simply the arithmetic average of each of the numbers in the sample (denoted by xi), described by formula 
[3 .1] below. The sample mean is a common estimate of the center or middle of a statistical distribution. 
That is, x is an estimate of , the population mean. The basic formula for the sample standard deviation 
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is given in equation [3.2). The sample standard deviation is an estimate of the degree of variability 
within a distribution, indicating how much the values typically vary from the average value or mean. 
Thus, the standard deviation s is an estimate of the population standard deviation l . Note that another 
measure of variability, the sample variance, is simply the square of the standard deviation (denoted by 
s2

) and serves as an estimate of the population variance 1
2

. 
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X=- X 
i 

n i=I 
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(3.1] 

[3.2) 

Coefficient of Variation - for positively-valued measurements, the sample coefficient of 
variation provides a quick and useful indication of the relative degree of variability within a data set. It is 

computed as s/x and so indicates whether the amount of 'spread' in the sample is small or large relative 

to the average observed magnitude. Sample coefficients of variation can also be calculated for other 
distributions such as the logarithmic (see discussion on logarithmic statistics below and Chapter 10, 
Section 10.4). 

Sample percentile - the pth percentile of a sample (denoted as xP) is the value such that 

p x 100 % of the measurements are no greater than xP , while (1 - p )x 100 % of the values are no less 

than xP. Sample percentiles are computed by making an ordered list of the measurements (termed the 

order statistics of the sample) and either selecting an observed value from the sample that comes closest 
to satisfying the above definition or interpolating between the pair of sample values closest to the 
definition if no single value meets it. 

Slightly different estimates of the sample percentile are used to perform the interpolation 
depending on the software package or statistics textbook. The Unified Guidance follows Tukey's (1977) 
method for computing the lower and upper quartiles (i.e., the 25th and 75th sample percentiles, termed 
hinges by Tukey) when constructing box plots (Chapter 9 ). In that setting, the pair of sample values 
closest to the desired percentile is simply averaged. Another popular method for more generally 
computing sample percentiles is to set the rank of the desired order statistic as k = ( n+ 1) 0 p. If k is not 
an integer, perform linear interpolation between the pair of ordered sample values with ranks just below 
and just above k. 

Median and interquartile range - the sample median is the 50th percentile of a set of 
measurements, representing the midpoint of an ordered list of the values. It is usually denoted as x or 
x 5 , and represents an alternative estimate of the center of a distribution. The interquartile range [IQR] is 

the difference between the 75th and 25th sample percentiles, thus equal to(~ 75 . - x.AlsJ. The IQR offers an 

alternative estimate of variability in a population, since it represents the measurement range of the 
middle 50% of the ordered sample values. Both the median and the interquartile range are key statistics 
used to construct box plots (Chapter 9). 

EPAPAV0116928 



The median and interquartile range can be very useful as alternative estimates of data centrality and 
dispersion to the mean and standard deviation, especially when samples are drawn from a highly skewed 
(i.e., non-symmetric) distribution or when one or more outliers is present. The table below depicts two 
data sets, one with an obvious outlier, and demonstrates how these statistical measures compare. 

The median and interquartile ranges are not affected by the inclusion of an outlier (perhaps an 
inadvertent reporting of units in terms of ppb rather than ppm). Large differences between the mean and 
median, as well as between the standard deviation and interquartile range in the second data set can 
indicate that an anomalous data point may be present. 
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Log-mean, log-standard deviation and Coefficient of Variation - The lognormal distribution 
is a frequently-used model in groundwater statistics. When lognormally distributed data are 
transformed, the normally-distributed measurements can then be input into normal-theory tests. The 
Unified Guidance frequently makes use of quantities computed on log-transformed values. Two of these 
quantities, the log-mean and the log-standard deviation, represent the sample mean and standard 
deviation computed using log-transformed values instead of the raw measurements. Formulas for these 
quantities - denoted y and Sy to distinguish them from the measurement-scale mean ( x) and standard 

deviation (s) - are given below. Prior to calculating the logarithmic mean and standard deviation, the 
measurement scale data must first be log-transformed. Taking logarithms of the sample mean ( x) and 
the sample standard deviation (s) based on the original measurement-scale data, will not give the correct 
result. 

s = 
y 

1 11 

y = - log(xJ 
n i=I 

[3.3) 

(3.4) 

A population logarithmic coefficient of variation can be estimated from the logarithmically 

transformed data as: cvlog =~es; -1 . It is based solely on the logarithmic standard deviation' s y, and 

represents the intrinsic variability of the untransformed data. 
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Sample correlation coefficient - correlation is a common numerical measure of the degree of 
similarity or linear association between two random variables, say x and y. A variety of statistics are used 
to estimate the correlation depending on the setting and how much is known about the underlying 
distributions of x and y. Each measure is typically designed to take on values in the range of -1 to + 1, 
where -1 denotes perfect inverse correlation (i.e., as x increases, y decreases, and vice-versa), while + 1 
denotes perfect correlation (i.e., x and y increase or decrease together), and 0 denotes no correlation (i.e., 
x and y behave independently of one another). The most popular measure of linear correlation 1s 
Pearson's correlation coefficient (r), which can be computed for a set of n sample pairs (xi, Yi) as: 

r= ~ 
" fx -xXy -.Y) 
I=l \: I I [3.5) 
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An important component of statistical analysis involves the testing of competing mathematical 
models, an activity known as hypothesis testing. In hypothesis testing, a formal comparison is made 
~wemfctmm nfutndli~)ti:aglustiatiisqDml;iphpis;latinne:rlltsmbwilntiakallDiy .samphllylalremigliamnm,nts ec,orid~m the 
observed data came from one statistical population or from another, but not both. The sample data are 
used to judge which statistical model identified by the two hypotheses is most consistent with the 
collected observations. 

Hypothesis testing is similar in nature to what takes place in a criminal trial. Just as one of the two 
statements in an hypothesis test is judged true and the other false, so the defendant is declared either 
innocent or guilty. The opposing lawyers each develop their theory or model of the crime and what really 
happened. The jury must then decide whether the available evidence better supports the prosecution's 
theory or the defense's explanation. Just as a strong presumption of innocence is given to a criminal 
defendant, one of the statements in a statistical hypothesis is initially favored over the other. This 
statement, known as the null hypothesis [H 

0), is only rejected as false if the sample evidence strongly 
favors the other side of the hypothesis, known as the alternative hypothesis [HA]. 

Another important parallel is that the same mistakes which can occur in statistical hypothesis 
testing are made in criminal trials. In a criminal proceeding, the innocent can falsely be declared guilty or 
the guilty can wrongly be judged innocent. In the same way, if the null hypothesis [Ho] is a true 
statement about reality but is rejected in favor of the alternative hypothesis [HA], a mistake akin to 
convicting the innocent has occurred. Such a mistake is known in statistical terms as a false positive or 
Type I error. If the alternative hypothesis [HA] is true but is rejected in favor of H0 , the mistake is akin to 
acquitting the guilty. This mistake is known as a false negative or Type II error. 

In a criminal investigation, the test hypotheses can be reversed. A detective investigating a crime 
might consider a list of probable suspects as potentially guilty (the null hypothesis [Ho]), until substantial 
evidence is found to exclude one or more suspects [HA]. The burden of proof for accepting the 
alternative hypothesis and the kinds of errors which can result are the opposite from a legal trial. 
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Certain steps are involved in conducting any statistical hypothesis test. First, the null hypothesis 
Ho must be specified and is given presumptive weight in the hypothesis testing framework. The observed 
sample (or a statistic derived from these data) is assumed to follow a known statistical distribution, 
consistent with the distributional model used to describe reality under H0 . In groundwater monitoring, a 
null hypothesis might posit that concentration measurements of benzene, for instance, follow a normal 
distribution with zero mean. This statement is contrasted against the alternative hypothesis, which is 
constructed as a competing model ofreality. Under HA, the observed data or statistic follows a different 
distribution, corresponding to a different distributional model. In the simple example above, HA might 
posit that benzene concentrations follow a normal distribution, but this time with a mean no less than 20 
ppb, representing a downgradient well that has been contaminated. 

Complete descriptions of statistical hypotheses are usually not made. Typically, a shorthand 
formula is used for the two competing statements. Denoting the true population mean as the Greek letter 

and a possible value of this mean as 0, a common specification is: 

[3.6) 

This formulation clearly distinguishes between the location (i.e., magnitude) of the population mean µ 
under the two competing models, but it does not specify the form of the underlying population itself In 
most parametric tests, as explained in Section 3.2, the underlying model is assumed to be the normal 
jliBViijmti£nl,i3DribtltiiGms iW t spentfiemaby thmdiy\ootooBicl}e nhtstwrasiaihitpimmual,irnpHcitiistsdiMrikutil:ms .tMtnJ 
distribution with a true mean no greater than 

0 satisfies the null hypothesis, while any distribution from 
the same family with true mean larger than 0 satisfies the alternative hypothesis. 

Once the statistical hypothesis has been specified, the next step is to actually collect the data and 
compute whatever test statistic is required based on the observed measurements and the kind of test. 
The pattern of the observed measurements or the computed test statistic is then compared with the 
population model predicted or described under H0 . Because this model is specified as a statistical 
distribution, it can be used to assign probabilities to different results. If the observed result or pattern 
occurs with very low probability under the null hypothesis model (e.g., with at most a 5% or 1 % 
chance), one of two outcomes is assumed to have occurred. Either the result is a "chance" fluctuation in 
the data representing a real but unlikely outcome under H0 , or the null hypothesis was an incorrect 
model to begin with. 

A low probability of occurrence under H0 is cause for rejecting the null hypothesis in favor of HA, 
as long as the probability of occurrence under the latter alternative is also not too small. Still, one should 
be careful to understand that statistics involves the art of managing uncertainty. The null hypothesis may 
indeed be true, even if the measured results seem unlikely to have arisen under the H0 model. A small 
probability of occurrence is not the same as no possibility of occurrence. The judgment in favor of HA 
should be made with full recognition that a false positive mistake is always possible even if not very 
likely. 

Consider the measurement of benzene in groundwater in the example above. Given natural 
fluctuations in groundwater composition from week-to-week or month-to-month and the variability 
introduced in the lab during the measurement process, the fact that one or two samples show either non­
detect or very low levels of benzene does not guarantee that the true mean benzene concentration at the 
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well is essentially zero. Perhaps the true mean is higher, but the specific sample values collected were 
gotten from the "lower tail" of the benzene distribution just by chance or were measured incorrectly in 
the lab. Figure 3-1 illustrates this possibility, where the full benzene distribution is divided into a lower 
tail portion that has been sampled and a remaining portion that has not so far been observed. The 
sampled values are not representative of the entire population distribution, but only of a small part of it. 

Along a similar vein, if the observed result or pattern can occur with moderate to high probability 
under the null hypothesis, the model represented by H0 is accepted as consistent with the sample 
measurements. Again, this does not mean the null hypothesis is necessarily true. The alternative 
hypothesis could be true instead, in which case the judgment to accept Ho would be considered a false 
negative. Nevertheless the sample data do not provide sufficient evidence or justification to reject the 
initial presumption. 
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In order to properly interpret the results of any statistical test, it is important to understand the risks 
of making a wrong decision. The risks of the two possible errors or mistakes mentioned above are not 
fixed quantities; rather, false positive and false negative risks are best thought of as statistical parameters 
that can be adjusted when performing a particular test. This flexibility allows one, in general, to 
"calibrate" any test to meet specific risk or error criteria. However, it is important to recognize what the 
different risks represent. RCRA groundwater regulations stipulate that any test procedure maintain a 
"reasonable balance" between the risks of false positives and false negatives. But how does one decide 
on a reasonable balance? The answer lies in a proper understanding of the real-life implications attached 
to wrong judgments. 
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A false positive or Type I error occurs whenever the null hypothesis [Ho] is falsely rejected in 
favor of the alternative hypothesis [HA]. What this means in terms of the underlying statistical models is 
somewhat different for every test. Many of the tests in the Unified Guidance are designed to address the 
basic groundwater detection monitoring framework, namely, whether the concentrations at downgradient 
wells are significantly greater than background. In this case, the null hypothesis is that the background 
and downgradient wells share the same underlying distribution and that downgradient concentrations 
should be consistent with background in the absence of any contamination. The alternative hypothesis 
presumes that downgradient well concentrations are significantly greater than background and come 
from a distribution with an elevated concentration. 

Given this formulation of H0 and HA, a Type I error occurs whenever one decides that the 
groundwater at downgradient locations is significantly higher than background when in reality it is the 
same in distribution. A judgment of this sort concerns the underlying statistical populations and not the 
observed sample data. The measurements at a downgradient well may indeed be higher than those 
collected in background. But the disparity must be great enough to decide with confidence that the 
underlying populations also differ. A proper statistical test must account for not just the difference in 
observed mean levels but also variability in the data likely to be present in the underlying statistical 
populations. 

False positive mistakes can cause regulated facilities to incur substantial unnecessary costs and 
oversight agencies to become unnecessarily involved. Consequently, there is usually a desire by 
regulators and the regulated community alike to minimize the false positive rate (typically denoted by 
the Greek letter a). For reasons that will become clear below, the false positive rate is inversely related 
to the false negative rate for a fixed sample size n. It is impossible to completely eliminate the risk of 
either Type I or Type II errors, hence the regulatory mandate to minimize the inherent tradeoff by 
maintaining a "reasonable balance" between false positives and false negatives. 

Type I errors are strictly defined in terms of the hypothesis structure of the test. While the 
conceptual groundwater detection monitoring framework assumes that false positive errors are incorrect 
judgments of a release when there is none, Type I errors in other statistical tests may have a very 
different meaning. For instance, in tests of normality (Chapter 10) the null hypothesis is that the 
underlying population is normally-distributed, while the alternative is that the population follows some 
other, non-normal pattern. In this setting, a false positive represents the mistake of falsely deciding the 
population to be non-normal, when in fact it is normal in distribution. The implication of such an error is 
quite different, perhaps leading one to select an alternate test method or to needlessly attempt a 
normalizing transformation of the data. 

As a matter of terminology, the false positive rate a is also known as the significance level of the 
test. A test conducted at the a = .01 level of significance means there is at most a 1 % chance or 
probability that a Type I error will occur in the results. The test is likely to lead to a false rejection of the 
null hypothesis at most about 1 out of every 100 times the same test is performed. Note that this last 
statement says nothing about how well the test will work if HA is true, when Ho should be rejected. The 

l LJ ! 

EPAPAV0116933 



false positive rate strictly concerns those cases where Ho is an accurate reflection of the physical reality, 
but the test rejects Ho anyway. 
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The false positive rate of any statistical test can be calibrated to meet a given risk criterion. To see 
how this is done, it helps to understand the concept of sampling distribution. Most statistical test 
decisions are based on the magnitude of a particular test statistic computed from the sample data. 
Sometimes the test statistic is relatively simple, such as the sample mean ( x ), while in other instances 
the statistic is more complex and non-intuitive. In every case, however, the test statistic is formulated as 
it is for a specific purpose: to enable the analyst to identify the distributional behavior of the test statistic 
under the null hypothesis. Unless one knows the expected behavior of a test statistic, probabilities cannot 
be assigned to specific outcomes for deciding when the probability is too low to be a chance fluctuation 
of the data. 

The distribution of the test statistic is known as its sampling distribution. It is given a special 
name, in part, to distinguish the behavior of the test statistic from the potentially different distribution of 
the individual observations or measurements used to calculate the test. Once identified, the sampling 
distribution can be used to establish critical points of the test associated with specific maximal false 
positive rates for any given a level of significance. For most tests, a single level of significance is 
generally chosen. 

An example of this idea can be illustrated via the F-test. It is used for instance in parametric 
analysis of variance [ANOVA] to identify differences in the population means at three or more 
monitoring wells. Although ANOV A assumes that the individual measurements input to the test are 
normally-distributed, the test statistic under a null hypothesis [ H0] of no differences between the true 
means follows an F-distribution. More specifically, it applies to one member of the F-distribution family 
(an example using 5 wells and 6 measurements per well is pictured in Figure 3-2). As seen in the right­
hand tail of this distribution by summing the area under the distributional curve, large values of the F­
statistic become less and less probable as they increase in magnitude. For a given significance level (a), 
there is a corresponding F-statistic value such that the probability of exceeding this cutoff value is a or 
less. In such situations, there is at most an a x I 00% chance of observing an F-statistic under Ho that is 
as large or larger than the cutoff (shaded area in Figure 3-2 ). If a is quite small (e.g., 5% or I%), one 
may then judge the null hypothesis to be an untenable model and accept HA. As a consequence, the 
cutoff value can be defined as an a-level critical point for the F-test. 

Because test statistics can be quite complicated, there is no easy rule for determining the sampling 
distribution of a particular test. However, the sampling behavior of some statistics is a consequence of a 
fundamental result known as the Central Limit Theorem . This theorem roughly states that averages or 
sums of identically-distributed random variables will follow an approximate normal distribution, 
regardless of the distributional behavior of the individual measurements. This averaged distribution will 
have the same mean as the population of individual measurements and whose variance, compared to 
the underlying population variance l 

2 
, is scaled by a factor of the sample size n on which the average or 

sum is based. Specifically, the variance is greater by a factor of n in the case of a sum ~1 ·a 2 ~ and 

smaller by a factor of n in the case of an average~ 2 /n ~- The approximation of the averages or sums to 

the normal distribution improves as sample size increases (also see the power discussion on page 3-21 ). 
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Because of the Central Limit Theorem, a number of test statistics at least approximately follow the 
normal distribution. This allows critical points for these tests to be determined from a table of the 
standard normal distribution. The Central Limit Theorem also explains why sample means provide a 
better estimate of the true population mean than individual measurements drawn from the same 
population (Figure 3-3). Since the sampling distribution of the mean is centered on the true average (µ) 
of the underlying population and the variance is lower by a factor of n, the sample average x will tend to 
be much closer to µ than a typical individual measurement. 
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False negatives or Type II errors are the logical opposites of false positive errors. An error of this 
type occurs whenever the null hypothesis [Ho] is accepted, but instead the alternative hypothesis [HA] is 
true. The false negative rate is denoted by the Greek letter 13. In terms of the groundwater detection 
monitoring framework, a Type II error represents a mistake of judging the compliance point 
concentrations to be consistent with background, when in reality the compliance point distribution is 
higher on average. False negatives in this context describe the risk of missing or not identifying 
contaminated groundwater when it really exists. EPA has traditionally been more concerned with such 
false negative errors, given its mandate to protect human health and the environment. 

Statistical power is an alternate way of describing false negative errors. Power is merely the 
complement of the false negative rate. If 13 is the probability of a false negative, (1-13) is the statistical 
power of a particular test. In terms of the hypothesis structure, statistical power represents the probability 
of correctly rejecting the null hypothesis. That is, it is the minimum chance that one will decide to accept 
HA, given that HA is true. High power translates into a greater probability of identifying contaminated 
groundwater when it really exists. 

A convenient way to keep track of the differences between false positives, false negatives, and 
power is via a Truth Table (Figure 3-4 ). A truth table distinguishes between the underlying truth of each 
hypothesis H0 or HA and the decisions made on the basis of statistical testing. If H0 is true, then a 
decision to accept the alternative hypothesis (HA) is a false positive error which will occur with a 
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probability of at most L. Because only one of two decisions is possible, Ho will also be accepted with a 
probability of at least (1- L). This is also known as the confidence probability or confidence level of the 
test, associated with making a 'true negative' decision. Similarly if HA is actually true, making a false 
negative decision error by accepting the null hypothesis (Ho) has at most a probability of J. Correctly 
accepting HA when true then has a probability of at least (1- J) and is labeled a' truepositive' decision. 
This probability is also known as the statistical power of the test. 

For any application of a test to a particular sample, only one of the two types of decision errors can 
occur. This is because only one of the two mutually exclusive hypotheses will be a true statement. In the 
detection monitoring context, this means that if a well is uncontaminated (i.e., H0 is true), it may be 
possible to commit a Type I false positive mistake, but it is not possible to make a Type II false negative 
error. Similarly, if a contaminated well is tested (i.e., HA is true), Type I false positive errors cannot 
occur, but a Type II false negative error might occur. 
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Since the false positive rate can be fixed in advance of running most statistical tests by selecting a, 
one might think the same could be done with statistical power. Unfortunately, neither statistical power 
nor the false negative rate can be fixed in advance for a number ofreasons. One is that power and the 
false negative rate depends on the degree to which the true mean concentration level is elevated with 
respect to the background null condition. Large concentration increases are easier to detect than small 
increments. In fact, power can be graphed as an increasing function of the true concentration level in 
what is termed a power curve (Figure 3-5). A power curve indicates the probability ofrejecting H 0 in 
favor of the alternative HA for any given alternative to the null hypothesis (i.e., for a range of possible 
mean-level increases above background). 
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In interpreting the power curve below, note that the x-axis is labeled in terms of relative 
background standard deviation units ( l ) above the true background population mean ( ). The zero point 
along the x-axis is associated with the background mean itself, while the kth positive unit along the axis 
represents a 'true' mean concentration in the compliance well being tested equal toµ+ ka. This mode of 

scaling the graph allows the same power curve to be potentially applied to any constituent of interest 
subject to the same test conditions. This is true no matter what the typical background concentration 
levels of a chemical typically found in groundwater may be. But it also means that the same point along 
the power curve will represent different absolute concentrations for different constituents. Even if the 
background means are the same, a two standard deviation increase in a chemical with highly variable 
background concentrations will correspond to a larger population mean increase at a compliance well 
than the same relative increase in a less variable constituent. 

As a simple example, if the background population averages for arsenic and manganese both 
happen to be 10 ppb, but the arsenic standard deviation is 5 ppb while that for manganese is only 2 ppb, 
then a compliance well with a mean equivalent to a three standard deviation increase over background 
would have an average arsenic level of 25 ppb, but an average manganese level of only 16 ppb. For both 
constituents, however, there would be approximately a 50% probability of detecting a difference 
between the compliance well and background. 
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Because the power probability depends on the relative difference between the actual downgradient 
concentration level and background, power cannot typically be fixed ahead of time like the critical false 
positive rate for a test. The true concentration level (and associated power) in a compliance well is 
unknown. If it were known, no hypothesis test would be needed. Additionally, it is often not clear what 
specific magnitude of increase over background is environmentally significant. A two standard 
deviation increase over the background average might not be protective of human health and/or the 
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environment for some monitoring situations. For others, a four standard deviation increase or more may 
be tolerable before any threat is posed. 

Since the exact ramifications of a particular concentration increase are uncertain, it points to the 
difficulty in setting a minimum power requirement (or a maximum false negative rate) for a given 
statistical test. Some State statutes contain water quality non-degradation provisions, for which any 
measurable increase might be of concern. By emphasizing relative power as in Figure 3-5, all detection 
monitoring constituents can be evaluated for significant concentration increases on a common footing, 
subject only to differences in measurement variability. 

Another key factor affecting statistical power is sample size. All other test conditions being equal, larger 
sample sizes provide higher statistical power and the lower the false negative rate ( ~). Statistical tests 
perform more accurately with larger data sets, leading to greater power and fewer errors in the process. 
The Central Limit Theorem illustrates why this is true. Even if a downgradient well mean level is only 
slightly greater than background, upgradient and downgradient well sample means will have so little 
variance in their sampling distributions with enough measurements that they will tend to hover very 
close to their respective population means. True mean differences in the underlying populations can be 
distinguished with higher probability as sample sizes increase. In Figure 3-6, the sampling distributions 
of means of size 5 and 10 between two different normal populations are provided for illustration. The 
narrower width of the distribution for the n = 10 sample means are more clearly distinguished from each 
other than for means of sample size n = 5. This implies higher probability and power to distinguish 
between the two population means. 
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In maintaining an appropriate balance between false positive and false negative error rates, one 
would ideally like to simultaneously minimize both kinds of errors. However, both risks are inherent to 
any statistical test procedure, and the risk of committing a Type I error is indirectly but inversely related 
to the risk of a Type II error unless the sample size can be increased. It is necessary to find a balance 
between the two error rates. But given that the false negative rate depends largely on the true 
compliance point concentrations, it is first necessary to designate what specific mean difference (known 
as an effect size) between the background and compliance point populations should be considered 
environmentally important. A minimum power requirement can be based on this difference (see 
Chapter 6). 
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Consider a simple example of using the downgradient sample mean to test the proposition that the 
downgradient population mean is 4 ppb larger than background. Assume that extensive sampling has 
demonstrated that the background population mean is equal to 1 ppb. If the true downgradient mean 
were the same as the background level, curves of the two sampling distributions would coincide (as 
depicted in Figure 3-7). Then a critical point (e.g., CP = 4.5 ppb) can be selected so that the risk of a 
false positive mistake is a. The critical point establishes the decision criteria for the test. If the observed 
sample mean based on randomly selected data from the downgradient sampling distribution exceeds the 
critical point, the downgradient population will be declared higher in concentration than the background, 
even though this is not the case. The frequency that such a wrong decision will be made is just the area 
under the sampling distribution to the right of the critical point equal to a. 

$--+, • - l L#<J1 !! -/ ---.2~:1 3--1 ~ ; 2- I - 1? ~ 2- I I 1 •• 9• 3& + 

: p 1 ppb 

p 5 ppb 
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CP 5 
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If the true downgradient mean is actually 5 ppb, the sampling distribution of the mean will instead 
be centered over 5 ppb as in the right-hand curve (i.e., the downgradient population) in Figure 3-8. 
Since there really is a difference between the two populations, the alternative hypothesis and not the null 
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hypothesis is true. Thus, any observed sample mean drawn from the downgradient population then 
falling below the critical point is a false negative mistake. Consequently, the area under the right-hand 
sampling distribution in Figure 3-8 to the left of the critical point represents the frequency of Type II 
errors (13). 

The false negative rate (13) in Figure 3-8 is obviously larger than the false positive rate (a) of 
Figure 3-7. This need not be the case in general, but the key point is to understand that for a fixed 
sample size, the Type I and Type II error rates cannot be simultaneously minimized. If a is increased, by 
selecting a lower critical point in Figure 3-7, the false negative rate will also be lowered in Figure 3-8. 
Likewise, if a is decreased by selecting a higher critical point, 13 will be enlarged. If the false positive 
rate is indiscriminately lowered, the false negative rate (or reduced power) will likely reach unacceptable 
levels even for mean concentration levels of environmental importance. Such reasoning lay behind 
EPA's decision to mandate minimum false positive rates for !-tests and ANOV A procedures in both the 
revised 1988and1991 RCRA rules. 
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This chapter provides an overview of the basic groundwater monitoring framework, explaining the 
intent of the federal groundwater statistical regulations and offering insight into the key identification 
mechanism of groundwater monitoring, the statistically significant increase [SSI]: 

What are statistically significant increases and how should they be interpreted? 

What factors, both statistical and non-statistical can cause SSis? 

What factors should be considered when demonstrating that an SSI does not represent evidence 
of actual contamination? 
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The RCRA regulations frame a consistent approach to groundwater monitoring, defining the 
conditions under which statistical testing takes place. Upgradient and downgradient wells must be 
installed to monitor the uppermost aquifer in order to identify releases or changes in existing conditions 
as expeditiously as possible. Geological and hydrological expertise is needed to properly locate the 
monitoring wells in the aquifer passing beneath the monitored unit(s). The regulations identify a variety 
of design and sampling requirements for groundwater monitoring (such as measuring well piezometric 
surfaces and identifying flow directions) to assure that this basic goal is achieved. Indicator or hazardous 
constituents are measured in these wells at regular time intervals; these sample data serve as the basis for 
statistical comparisons. For identifying releases under detection monitoring, the regulations generally 
presume comparisons of observations from downgradient wells against those from upgradient wells 
(designated as background). The rules also recognize certain situations (e.g., mounding effects) when 
other means to define background may be necessary. 

The Unified Guidance may apply to facility groundwater monitoring programs straddling a wide 
range of conditions. In addition to units regulated under Parts 264 and 265 Subpart F and Part 258 solid 
waste landfills, other non-regulated units at Subtitle C facilities or CERCLA sites may utilize similar 
programs. Monitoring can vary from a regulatory minimum of one upgradient and three downgradient 
wells, to very large facilities with multiple units, and perhaps 50-200 upgradient and downgradient 
wells. Although the rules presume that monitoring will occur in the single uppermost aquifer likely to be 
affected by a release, complex geologic conditions may require sampling and evaluating a number of 
aquifers or strata. 
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Detection monitoring constituents may include indicators like common ions and other general 
measures of water quality, pH, specific conductance, total organic carbon [TOC] and total organic 
halides [TOX]. Quite often, well monitoring data sets are obtained for filtered or unfiltered trace 
elements (or both) and sizeable suites ofhazardous trace organic constituents, including volatiles, semi­
volatiles, and pesticide/herbicides. Measurement and analysis ofhazardous constituents using standard 
methods (in SW-846 or elsewhere) have become fairly routine over time. A large number of analytes 
may be potentially available as monitoring constituents for statistical testing, perhaps 50-100 or more. 
Identification of the most appropriate constituents for testing depends to a great extent on the 
composition of the managed wastes (or their decomposition products) as measured in leachate analyses, 
soil gas sampling, or from prior knowledge. 

Nationally, enough groundwater monitoring experience has been gained in using routine 
constituent lists and analytical techniques to suggest some common underlying patterns. This is 
particularly true when defining background conditions in groundwater. Sampling frequencies have also 
been standardized enough (e.g., semi-annual or quarterly sampling) to enable reasonable computation of 
the sorts of sample sizes that can be used for statistical testing. Nevertheless, complications can and do 
occur over time - in the form of changes in laboratories, analytical methods, sampled wells, and 
sampling frequencies -which can affect the quality and availability of sample data. 

Facility status can also affect what data are potentially available for evaluation and testing - from 
lengthy regulated unit monitoring records under the Part 265 interim status requirements at sites awaiting 
either operational or post-closure 264 permits or permit re-issuance, to a new solid waste facility located 
in a zone of uncontaminated groundwater with little prior data. Some combined RCRA/CERCLA 
facilities may have collected groundwater information under differing program requirements. 
Contamination from offsite or non-regulated units (or solid waste management units) may complicate 
assessment oflikely contaminant sources or contributions. 

Quite often, regulators and regulated parties find themselves with considerable amounts of 
historical constituent-well monitoring data that must be assessed for appropriate action, such as a permit, 
closure, remedial action or enforcement decision. Users will need to closely consider the diagnostic 
procedures in Part II of the Unified Guidance, with an eye towards selection of one or more appropriate 
statistical tests in Parts III and IV. Selection will depend on key factors such as the number of wells and 
constituents, statistical characteristics of the observed data, and historical patterns of contamination (if 
present), and may also reflect preferences for certain types of tests. While the Unified Guidance 
purposely identifies a range of tests which might fit a situation, it is generally recommended that one set 
of tests be selected for final implementation, in order to avoid "test-shopping" (i.e., selecting tests during 
permit implementation based on the most favorable outcomes). EPA recognizes that the final permit 
requirements are approved by the regulatory agency. 

All of the above situations share some features in common. A certain number of facility wells will 
be designated as compliance points, i.e., those locations considered as significant from a regulatory 
standpoint for assessing potential releases. Similarly, the most appropriate and critical indicator and/or 
hazardous constituents for monitoring will be identified. If detection monitoring (i.e., comparative 
evaluations of compliance wells against background) is deemed appropriate for some or all wells and 
constituents, definitions of background or reference comparison levels will need to be established. 
Background data can be obtained either from the upgradient wells or from the historical sampling 
database as described in Chapter 5. Choice of background will depend on how statistically comparable 

l L 

EPAPAV0116944 



~ Ji 1 i 1 -l) CJr 1 l) L Ji ~ -C 

the compliance point data are with respect to background and whether individual constituents exhibit 
spatial or temporal variability at the facility. 

Compliance/assessment or corrective action monitoring may be appropriate choices when there is a 
prior or historical indication of hazardous constituent releases from a regulated unit. In those situations, 
the regulatory agency will establish GWPS limits. Typically, these limits are found in established tables, 
in SDWA drinking water MCLs, through risk-based calculations or determined from background data. 
For remedial actions, site-specific levels may be developed which account not only for risk, but 
achievability and implementation costs as well. Nationally, considerable experience has been gathered in 
identifying cleanup targets which might be applicable at a given facility, as well as how practical those 
targets are likely to be. 

Use of the Unified Guidance should thus be viewed in an overall context. While the guidance 
offers important considerations and suggestions in selecting and designing a statistically-based approach 
to monitoring, it is important to realize that it is only a part of the overall decision process at a facility. 
Geologic and hydrologic expertise, risk-based decisions, and legal and practical considerations by the 
regulated entity and regulatory agency are fundamental in developing the final design and 
implementation. The guidance does not attempt to address the many other relevant decisions which 
impact the full design of a monitoring system. 

l<i] !!!!p1-!!T~j~-+{)~1!! 1Ti+-~T!!+-j1-t!!T1-!!pl 

Under the RCRA regulations, some form of statistical testing of sample data will generally be 
needed to determine whether there has been a release, and if so, whether concentration levels lie below 
or above a protection standard. The regulations frame the testing programs as detection, 
compliance/assessment, and corrective action monitoring. 

Under RCRA permit development and during routine evaluations, all three monitoring program 
options may need to be simultaneously considered. Where sufficient hazardous constituent data from site 
monitoring or other evidence of a release exists, the regulatory agency can evaluate which monitoring 
program(s) are appropriate under §264.91. Statistical principles and testing provided in the Unified 
Guidance can be used to develop presumptive evidence for one program over another. 

In some applications, more than one monitoring program may be appropriate. Both the number of 
wells and constituents to be tested can vary among the three monitoring programs at a given site. The 
types of non-hazardous indicator constituents used for detection monitoring might not be applied in 
compliance or corrective action monitoring. The latter focus is on hazardous constituents. Only a few 
compliance well constituents may exceed their respective GWPSs. The focus in a corrective action 
monitoring program might then be placed on the latter, with the remaining well constituents evaluated 
under the other monitoring schemes. But following the general regulatory structure, the three monitoring 
systems are presented below and elsewhere in the guidance as an ordered sequence: 

Detection monitoring is appropriate either when there is no evidence of a release from a 
regulated unit, or when the unit situated in a historically contaminated area is not impacted by current 
RCRA waste management practices. Care must be taken to avoid a situation where the constituents 
might reasonably have originated offsite or from units not subject to testing, since any adverse change in 
groundwater quality would be attributed to on-site causes. Whether an observed change in groundwater 
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quality is in fact due to a release from on-site waste activities at the facility may be open to dispute 
and/or further demonstration. However, this basic framework underlies each of the statistical methods 
used in detection monitoring. 

A crucial step in setting up a detection monitoring program is to establish a set of background 
measurements, a baseline or reference level for statistical comparisons (see Chapter 5 ). Groundwater 
samples from compliance wells are then compared against this baseline to measure changes in 
groundwater quality. If at least one chemical parameter on the monitoring indicates a statistically 
significant increase above the baseline [SSI, see Section 4.3 ], the facility or regulated unit moves into 
the next phase: compliance or assessment monitoring. 

Compliance or assessment monitoring 1 is appropriate when there is reliable statistical evidence 
that a concentration increase over the baseline has occurred. The purpose of compliance/assessment 
monitoring is two-fold: 1) to assess the extent of contamination (i.e., the size of the increase, the 
chemical parameters involved, and the locations on-site where contamination is evident); and 2) to 
measure compliance with pre-established numerical concentration limits generally referred to as 
GWPSs. Only the second purpose is fully addressed using formal statistical tests. While important 
information can be gleaned from compliance well data, more complex analyses (e.g., contaminant 
modeling) may be needed to address the first goal. 

GWPSs can be fixed health- or risk-based limits, against which single-sample tests are made. At 
some sites, no specific fixed concentration limit may be assigned or readily available for one or more 
monitoring parameters. Instead, the comparison is made against a limit developed from background data. 
In this case, an appropriate statistical approach might be to use the background measurements to 
compute a statistical limit and set it as the GWPS. See Chapter 7 for further details. Many of the 
detection monitoring design principles (Chapter 6) and statistical tests (Part 111) can also be applied to 
a set of constituents defined by a background-type GWPS. 

The RCRA Parts 264 and 258 regulations require an expanded analysis of potential hazardous 
constituents (Part 258 Appendix II for municipal landfills or Part 264 Appendix IX for hazardous waste 
units) when detection monitoring indicates a release and compliance monitoring is potentially triggered. 
The purpose is to better gauge which hazardous constituents have actually impacted groundwater. Some 
detection monitoring programs may require only limited testing of indicator parameters. This additional 
sampling can be used to determine which wells have been impacted and provide some understanding of 
the on-site distribution of hazardous constituent concentrations in groundwater. . The course of action 
decided by the Regional Administrator or State Director will depend on the number of such chemicals 
that are present in quantifiable levels and the actual concentration levels. 

The terms compliance monitoring (§264.99 & 100) and assessment monitoring (§258.55 & 56) are used interchangeably in 
this document to refer to RCRA monitoring programs. Compliance monitoring is generally used for permitted hazardous 
waste facilities under RCRA Subtitle C, while assessment monitoring is applied to municipal solid waste landfills regulated 
under RCRA Subtitle D. The term "assessment" is also used in 40 CFR 265 Subpart F for a second phase of additional 
analyte testing. Occasional use is also made of the term "compliance wells," which refers to downgradient monitoring wells 
located at the point(s) of compliance under §264.95 (any of the three monitoring programs may apply when evaluating 
these wells). 
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Following the occurrence of a valid statistically significant increase [SSI] over baseline during 
detection monitoring, the statistical presumption in compliance/assessment monitoring is quite similar to 
the detection stage. Given G as a fixed compliance or background-derived GWPS, the null hypothesis is 
that true concentrations (of the underlying compliance point population) are no greater than G. This 
compares to the detection monitoring presumption that concentration levels do not exceed background. 
One reason for the similarity is that compliance limits may be higher than background levels in some 
situations. An increase over background in these situations does not necessarily imply an increase over 
the compliance limit, and the latter must be formally tested. On the other hand, if a health- or risk-based 
limit is below a background level, the RCRA regulations provide that the GWPS should be based on 
background. 

The Subtitle D regulations for municipal solid waste landfills [MSWLF] stipulate 2 that if "the 
concentrations of all Appendix II constituents are shown to be at or below background values, using the 
statistical procedures in §258.53(g), for two consecutive sampling events, the owner or operator... may 
return to detection monitoring." In other words, assessment monitoring may be exited in favor of 
detection monitoring when concentrations at the compliance wells are statistically indistinguishable from 
background for two consecutive sampling periods. While a demonstration that concentration levels are 
below background would generally not be realistic, it may be possible to show that compliance point 
levels of contaminants do not exceed an upper limit computed from the background data. Conformance 
to the limit would then indicate an inability to statistically distinguish between background and 
compliance point concentration levels. 

If a hazardous constituent under compliance or assessment monitoring statistically exceeds a 
GWPS, the facility is subject to corrective action. Remedial activities must be undertaken to remove 
and/or prevent the further spread of contamination into groundwater. Monitoring under corrective 
action is used to track the progress of remedial activities and to determine if the facility has returned to 
compliance. Corrective action is usually preceded or accompanied by a formal Remedial Investigation 
[RI] or RCRA Facility Investigation [RFI] to further delineate the nature and extent of the contaminated 
plume. Corrective action may be confined to a single regulated unit if only that unit exhibits SSis above 
a standard during the detection and compliance/assessment monitoring phases. 

Often, clean-up levels are established by the Regional Administrator or State Director during 
corrective action. Remediation must continue until these clean-up levels are met. The focus ofremedial 
action and monitoring would be on those hazardous constituents and well locations exceeding the 
GWPSs. If specific clean-up levels have not been met, corrective action must continue until there is 
evidence of a statistically significant decrease [SSD] below the compliance limit for three consecutive 
years. At this point, corrective action may be exited and compliance monitoring re-started. (As 
described above and in Chapter 7, the protocol for assessing corrective action compliance with a 
background-type standard can differ). If subsequent concentrations are statistically indistinguishable 
from background or no detectable concentrations can be demonstrated for three consecutive years in any 
of the contaminants that triggered corrective measures in the first place, corrective action may be exited 
in favor of detection monitoring. 

2 [56 FR 51016] October 9, 1991 

EPAPAV0116947 



~ Ji 1 i 1 -l) CJr 1 l) L Ji ~ -C 

l 11 +-- l_ j +-- #+-- p j 1 +-- j l_ !! T ~ j ~ --+ p ~ 1 !! ~ 1 

The outcome of any statistical test is judged either to be statistically significant or non-significant. 
In groundwater monitoring, a valid statistically significant result can force a change in the monitoring 
program, perhaps even leading to remedial activity. Consequently, it is important to understand what 
statistically significant results represent and what they do not. In the language of groundwater hypothesis 
testing (Chapter 3 ), a statistically significant test result is a decision to reject the null hypothesis (Ho) 
and to accept the alternative hypothesis (HA), based on the observed pattern of the sample data. At the 
most elementary level, a statistically significant increase [SSI] (the kind ofresult typically of interest 
under RCRA detection and compliance monitoring) represents an observed increase in concentration at 
one or more compliance wells. In order to be declared an SSI, the change in concentration must be large 
enough after accounting for variability in the sample data, that the result is unlikely to have occurred 
merely by chance. What constitutes a statistically significant result depends on the phase of monitoring 
and the type of statistical test being employed. 

If the detection monitoring statistical test being used is a t-test or Wilcoxon rank-sum test 
(Chapter 16), an SSI occurs whenever the !-statistic or W-statistic is larger than an a-level critical point 
for the test. If a retesting procedure is chosen using a prediction limit (Chapter 19 ), an SSI occurs only 
when both the initial compliance sample or initial mean/median and one or more resamples all exceed 
the upper prediction limit. For control charts (Chapter 20), an SSI occurs whenever either the CUSUM 
or Shewhart portions of the chart exceed their respective control limits. In another variation, an SSI only 
occurs if one or another of the CUSUM or Shewhart statistics exceeds the control limits when 
recomputed using one or more resamples. For tests of trend (Chapter 17), an SSI is declared whenever 
the slope is significantly greater than zero at some significance level a. 

In compliance/assessment monitoring, tests are often made against a fixed compliance limit or 
GWPS. In this setting, one can utilize a confidence interval around a mean, median, upper percentile or a 
trend line (Chapter 21 ). A confidence interval is an estimated concentration or measurement range 
intended to contain a given statistical characteristic of the population from which the sample is drawn. A 
most common formulation is a two-way confidence interval around a normally-distributed mean µ, as 
shown below: 
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where xis the mean of a sample of size n, sis the sample standard deviation, and t1_ , n-l is an upper 
percentile selected from a Student's !-distribution. By constructing a range around the sample mean ( x ), 
this confidence interval is designed to locate the true population mean (1) with a high degree of 
statistical confidence(J-2 ) or conversely, with a low probability of error (2 ). If a one-way lower 
confidence interval is used, the right-hand term in equation [4.1) would be replaced by+ L at confidence 
level 1- . In a similar fashion, the upper 1- confidence interval would be defined in the range from - L 

for the left-hand term to the right hand term in equation [4.1). 

When using a lower confidence interval on the mean, median, or upper percentile, an SSI occurs 
whenever the lower edge of the confidence interval range exceeds the GWPS. For a confidence interval 
around a trend line, an SSI is declared whenever the lower confidence limit around the estimated trend 
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line first exceeds the GWPS at some point in time. By requiring that a lower confidence limit be used as 
the basis of comparison, the statistical test will account for data variability and ensure that the apparent 
violation is unlikely to have occurred by chance. Figure 4-1 below visually depicts a comparison to a 
fixed GWPS for both lower confidence intervals for a stationary test like a mean, and around an 
increasing trend. Where the confidence interval straddles the limit, the test results are inconclusive. In 
similar fashion, an SSD can be identified by using upper confidence intervals. 
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Means, Percentiles 

Out-of-Compliance 

Time ) 

GWPS 

Increasing Trend 

Time ) 

SSis offer the primary statistical justification for moving from detection monitoring to compliance 
monitoring, or from compliance/assessment monitoring to corrective action. However, it is important 
that an SSI be interpreted correctly. Any SSI at a compliance well represents a probable increase in 
concentration level, but it does not automatically imply or prove that contaminated groundwater from 
the facility is the cause of the increase. Due to the complexities of the groundwater medium and the 
nature of statistical testing, there are numerous reasons why a test may exhibit a statistically significant 
result. These may or may not be indications of an actual release from a regulated unit. 
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It is always reasonable to allow for a separate demonstration once an SSI occurs, to determine 
whether or not the increase is actually due to a contaminant release. Such a demonstration will rely 
heavily on hydrological and geochemical evidence from the site, but could include additional statistical 
factors. Key questions and factors to consider are listed in the following sections. 

#P ~ T !! 

Is the result a false positive? That is, were the data tested simply an unusual sample of the 
underlying population triggering an SSI? Generally, this can be evaluated with repeat sampling. 

Did the test correctly identify an actual release of an indicator or hazardous constituent? 

Are there corresponding SSis in upgradient or background wells? If so, there may be evidence of 
a natural in-situ concentration increase, or perhaps migration from an off-site source. 

Is there evidence of significant concentration differences between separate upgradient or 
background wells, particularly for inorganic constituents? If so, there may be natural spatial 
variations between distinct well locations that have not been accounted for. These spatial 
differences could be local or systematic (e.g., upgradient wells in one formation or zone; 
downgradient wells in another). 

Could observed SSis for naturally occurring analytes be due to longer-term (i.e., seasonal or 
multi-year) variation? Seasonal or other cyclical patterns should be observable in upgradient 
wells. Is this change occurring in both upgradient and downgradient wells? Depending on the 
statistical test and frequency of sampling involved, an observed SSI may be entirely due to 
temporal variation not accounted for in the sampling scheme. 

Do time series plots of the sampling data show parallel "spikes" in concentration levels from 
both background and compliance well samples that were analyzed at about the same time? 
Perhaps there was an analytical problem or change in lab methodology. 

Are there substantial correlations among within-well constituents (in both upgradient and 
downgradient wells)? Highly correlated analytes treated as independent monitoring constituents, 
may generate incorrect significance levels for individual tests. 

Were trends properly accounted for, particularly in the background data? 

Was a correct assumption made concerning the underlying distribution from which the 
observations were drawn (e.g., was a normal assumption applied to lognormal data)? 

Was the test computed correctly? 

Were the data input to the test of poor quality? (see various factors below) 

p I + .... I J_ #P ~ T 

Were early sample data following well installation utilized in statistical testing? Initial well 
measurements are sometimes highly variable during a 'break in' sampling and analysis period 
and potentially less trustworthy. 

Was there an effect attributable to recent well development, perhaps due to the use of hazardous 
constituent chemicals during development or present in drilling muds? 

Are there multiple geological formations at the site, leading to incorrect well placements? 

EPAPAV0116950 



~ Ji 1 i 1 -l) CJr 1 l) L Ji ~ -C 

Has there been degradation of the well casings and screens (e.g., PVC pipe)? Deteriorating PVC 
materials can release organic constituents under certain conditions. Occasionally, even stainless 
steel can corrode and release a number of metallic trace elements. 

Have there been changes in well performance over time? 

Were there excessive holding times or incorrect use of preservatives, cooling, etc. 

Was there incorrect calibration or drift in the field instrumentation? This effect should be 
observable in both upgradient and downgradient data and possibly over a number of sample 
events. The data itself may be compromised or useless. 

Have there been 'mid-stream' changes in sampling procedures, e.g., increased or decreased well 
purging? Have sampling or purging techniques been consistently applied from well to well or 
from sampling event to sampling event? 

~ !! T T l_ +-- p #P ~ T !! 

Does the site have a history of previous waste management activity (perhaps prior to RCRA), and 
is there any evidence of historical groundwater contamination? Previous contamination or waste 
management contaminant levels can limit the ability to distinguish releases from the regulated 
unit, particularly for those analytes found in historical contamination. 

Is there evidence of groundwater mounding or other anomalies that could lead to the lack of a 
reliable, definable gradient? Interwell statistical tests assume that changes in downgradient 
groundwater quality only affect compliance wells and not upgradient (background) wells. 
Changes that impact background wells also, perhaps in a complex manner involving seasonal 
fluctuations, are often best resolved by running intrawell tests instead. 

Is there hydrologic evidence of any migration of contaminants (including DNAPL) from off-site 
sources or from other non-regulated units? Are any of these contaminants observed upgradient of 
the regulated units? 

Have there been other prior human or site-related waste management activities which could 
result in the observed SSI changes for certain well locations (e.g., buried waste materials, 
pipeline leaks, spills, etc.)? 

Have there been unusual changes in groundwater directions and depths? Is there confidence that 
the SSI did indeed correspond to a potential unit release based on observed groundwater 
directions, distance of the well from the unit, other well information, etc.? 

Is there evidence of migration oflandfill gas affecting one or more wells? 

Have there been increases in well turbidity and sedimentation, which could affect observed 
contaminant levels? 

Are there preferential flow paths in the aquifer that could affect where contaminants are likely to 
be observed or not observed? 

Are the detected contaminants consistent with those found in the waste or leachate of the 
regulated unit? 

Are there other nearby well pumping or extraction activities? 

L-
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Were the measurements that triggered the SSI developed from unfiltered or filtered trace element 
sample data? If unfiltered, is there any information regarding associated turbidity or total 
suspended solid measurements? Unusual increases in well turbidity can introduce excess 
naturally occurring trace elements into the samples. This can be a particularly difficult problem in 
compliance monitoring when comparing data to a fixed standard, but can also affect detection 
monitoring well-to-well comparisons if turbidity levels vary. 

Were there changes in associated analytes at the "triggered" well consistent with local 
geochemistry? For example, given an SSI for total dissolved solids [TDS], did measured 
cations/anions and pH also show a consistent change? As another example, slight natural 
geochemical changes can result in large specific conductance changes. Did other constituents 
demonstrate a consistent change? 

Is there evidence of a simultaneous release of more than one analyte, consistent with the 
composition of the waste or leachate? In particular, is there corollary evidence of degradation or 
daughter products for constituents like halogenated organics? For groundwater constituents with 
identified SSis, is there a probable relationship to measured concentrations in waste or waste 
leachate? Are leachate concentrations high enough to be detectable in groundwater? 

If an SSI is observed in one or more naturally occurring species, were organic hazardous 
constituents not normally present in background and found in the waste or leachate also 
detected? This could be an important factor in assessing the source of the possible release. 

Have aquifer mobility factors been considered? Certain soluble constituents like sodium, 
chloride, or conservative volatile organics might be expected to move through the aquifer much 
more quickly than easily adsorbed heavy metals or 4-5 ring polynuclear aromatic [PNA] 
compounds. 

Do the observed data patterns (particularly for naturally occurring constituents in upgradient 
wells or other background conditions) make sense in an overall site geochemical context, 
especially as compared with other available local or regional site data and published studies? If 
not, suspect background data may need to be further evaluated for potential errors prior to formal 
statistical comparisons. 

Do constituents exhibit correlated behavior among both upgradient and downgradient wells due 
to overall changes in the aquifer? 

Have there been natural changes in groundwater constituents over time and space due to multi­
year, seasonal, or cyclical variation? 

Are there different geochemical regimes in upgradient vs. downgradient wells? 

Has there been a release of soil trace elements due to changes in pH? 

#t/. ~ T !! 

Have there been changes in laboratories, analytical methods, instrumentation, or procedures 
including specified detection limits that could cause apparent jumps in concentration levels? In 
some circumstances, using different values for non-detects with different reporting limits has 
triggered SSis. Were inexperienced technicians involved in any of the analyses? 
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Was more than one analytical method used (at different points m time) to generate the 
measurements? 

Were there changes in detection/quantification limits for the same constituents? 

Were there calibration problems, e.g., drift in instrumentation? 

Was solvent or other laboratory contamination (e.g., phthalates, methylene chloride extractant, 
acetone wash) introduced into any of the physical samples? 

Were there known or probable interferences among the analytes being measured? 

Were there "spikes" or unusually high values on certain sampling events (either for one 
constituent among many wells or related analytical constituents) that would suggest laboratory 
error? 
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Were there data transcription errors (incorrect decimal places, analyte units, or data column 
entries)? These data can often be identified as being highly improbable. 

Were there calculation errors in either the analytical (e.g., incorrect trace element valence 
assumptions or dilution factors) or in the statistical portions (mathematical mistakes, incorrect 
equation terms) of the analysis? 
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This chapter discusses the importance and use of background data in groundwater monitoring. 
Guidance is provided for the proper identification, review, and periodic updating of background. Key 
questions to be addressed include: 

How should background be established and defined? 

When should existing background data sets be reviewed? 

How and when should background be updated? 

What impact does retesting have on background updating? 

T p -+ !! 

High quality background data is the single most important key to a successful statistical 
groundwater monitoring program, especially for detection monitoring. All of the statistical tests listed in 
the RCRA regulations are predicated on having appropriate and representative background 
measurements. As indicated in Chapter 3, a statistical sample is representative ifthe distribution of the 
sample measurements best follows the distribution of the population from which the sample is drawn. 
Representative background data has a similar but slightly different connotation. The most important 
quality of background is that it reflects the historical conditions unaffected by the activities it is designed 
to be compared to. These conditions could range from an uncontaminated aquifer to an historically 
contaminated site baseline unaffected by recent RCRA-actionable contaminant releases. Representative 
background data will therefore have numerical characteristics closely matching those arising from the 
site-specific aquifer being evaluated. 

Background must also be appropriate to the statistical test. All RCRA detection monitoring tests 
involve comparisons of compliance point data against background. If natural groundwater conditions 
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have changed over time - perhaps due to cycles of drought and recharge - background measurements 
from five or ten years ago may not reflect current uncontaminated conditions. Similarly, recent 
background data obtained using improved analytical methods may not be comparable to older data. In 
each case, older background data may have to be discarded in favor of more recent measurements in 
order to construct an appropriate comparison. If intrawell tests are utilized due to strong evidence of 
spatial variability, traditional upgradient well background data will not provide an appropriate 
comparison. Even if the upgradient measurements are reflective of uncontaminated groundwater, 
appropriate background data must be obtained from each compliance point well. The main point is that 
compliance samples should be tested against data which best can represent background conditions now 
and those likely to occur in the future. 

Background measurements, especially from upgradient wells, can provide essential information for 
other than formal statistical testing. For one, background data can be used to gauge mean levels and 
develop estimates of variability in naturally occurring groundwater constituents. They can also be used 
to confirm the presence or absence of anthropogenic or non-naturally occurring constituents in the site 
aquifer. Ongoing sampling of upgradient background wells provides a means of tracking natural 
groundwater conditions. Changes that occur in parallel between the compliance point and background 
wells may signal site-wide aquifer changes in groundwater quality not specifically attributable to onsite 
waste management. Such observed changes may also be indicative of analytical problems due to 
common artifacts of laboratory analysis (e.g., re-calibration of lab equipment, errors in batch sample 
handling, etc.), as well as indications of groundwater mounding, changes in groundwater gradients and 
direction, migration of contaminants from other locations or offsite, etc. 

Fixed GWPS like maximum contaminant levels [MCLs] may be contemplated for 
compliance/assessment monitoring or corrective action. Background data analysis is important if it is 
suspected that naturally occurring levels of the constituent(s) in question are higher than the standards or 
if a given hazardous constituent does not have a health- or risk-based standard. In the first case, 
concentrations in downgradient wells may indeed exceed the standard, but may not be attributable to 
onsite waste management if natural background levels also exceed the standard. The Parts 264 and 258 
regulations recognize these possibilities, and allow for GWPS to be based on background levels. 
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Establishing appropriate background depends on the statistical approach contemplated (e.g., 
interwell vs. intrawell). This section outlines the major considerations concerning how to select and 
develop background data including monitoring constituents and sample sizes, statistical assumptions, 
and the presence of data outliers, spatial variation or trends. Expanding and reviewing background data 
are also discussed. 
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Due to the cost of management, mobilization, field labor, and especially laboratory analysis, 
groundwater monitoring can be an expensive endeavor. The most efficient way to limit costs and still 
meet environmental performance requirements is to minimize the total number of samples which must 
be sampled and analyzed. This will require tradeoffs between the number of monitoring constituents 
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chosen, and the frequency of background versus compliance well testing. The number of compliance 
wells and annual frequency of testing also affect overall costs, but are generally site-specific 
considerations. By limiting the number of constituents and ensuring adequate background sample sizes, 
it is possible to select certain statistical tests which help minimize future compliance (and total) sample 
requirements. 

Selection of an appropriate number of detection monitoring constituents should be dictated by the 
knowledge of waste or waste leachate composition and the corresponding groundwater concentrations. 
When historical background data are available, constituent choices may be influenced by their statistical 
characteristics. A few representative constituents or analytes may serve to accurately assess the potential 
for a release. These constituents should stem from the regulated wastes, be sufficiently mobile, stable 
and occur at high enough concentrations to be readily detected in the groundwater. Depending on the 
waste composition, some non-hazardous organic or inorganic indicator analytes may serve the same 
purpose. The guidance suggests that between 10-15 formal detection monitoring constituents should be 
adequate for most site conditions. Other constituents can still be reported but not directly incorporated 
into formal detection monitoring, especially when large simultaneously analyzed suites like ICP-trace 
elements, volatile or semi-volatile organics data are run. The focus of adequate background and future 
compliance test sample sizes can then be limited to the selected monitoring constituents. 

The RCRA regulations do not consistently specify how many observations must be collected in 
background. Under the Part 265 Interim Status regulations, four quarterly background measurements are 
required during the first year of monitoring. Recent modifications to Part 264 for Subtitle C facilities 
require a sequence of at least four observations to be collected in background during an interval 
approved by the Regional Administrator. On the other hand, at least four measurements must be 
collected from each background well during the first semi-annual period along with at least one 
additional observation during each subsequent period, for Subtitle D facilities under Part 258. Although 
these are minimum requirements in the regulations, are they adequate sample sizes for background 
definition and use? 

Four observations from a population are rarely enough to adequately characterize its statistical 
features; statisticians generally consider sample sizes of n 4 to be insufficient for good statistical 
analysis. A decent population survey, for example, requires several hundred and often a few to several 
thousand participants to generate accurate results. Clinical trials of medical treatments are usually 
conducted on dozens to hundreds of patients. In groundwater tests, such large sample sizes are a rare 
luxury. However, it is feasible to obtain small sample sets of up to n = 20 for individual background 
wells, and potentially larger sample sizes if the data characteristics allow for pooling of multiple well 
data. 

The Unified Guidance recommends that a minimum of at least 8 to 10 independent background 
observations be collected before running most statistical tests. Although still a small sample size by 
statistical standards, these levels allow for minimally acceptable estimates of variability and evaluation 
of trend and goodness-of fit. However, this recommendation should be considered a temporary 
minimum until additional background sampling can be conducted and the background sample size 
enlarged (see further discussions below). 

Small sample sizes in background can be particularly troublesome, especially in controlling 
statistical test false positive and negative rates. False negative rates in detection monitoring, i.e., the 
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statistical error of failing to identify a real concentration increase above background, are in part a 
function of sample size. For a fixed false positive test rate, a smaller sample size results in a higher false 
negative rate. This means a decreased probability (i.e., statistical power) that real increases above 
background will be detected. With certain parametric tests, control of the false positive rate using very 
small sample sets comes at the price of extremely low power. Power may be adequate using a non­
parametric test, but control of the false positive can be lost. In both cases, increased background sample 
sizes result in better achievable false positive and false negative errors. 

The overall recommendation of the guidance is to establish background sample sizes as large as 
feasible. The final tradeoff comes in the selection of the type of detection tests to be used. Prediction 
limit, control chart, and tolerance limit tests can utilize very small future sample sizes per compliance 
well (in some cases a single initial sample), but require larger background sample sizes to have sufficient 
power. Since background samples generally are obtained from historical data sets (plus future 
increments as needed), total annual sample sizes (and costs) can be somewhat minimized in the future. 

~ T p .... !! 

Any background sample should satisfy the key statistical assumptions described in Chapter 3. 
These include statistical independence of the background measurements, temporal and spatial 
stationarity, lack of statistical outliers, and correct distribution assumptions of the background sample 
when a parametric statistical approach is selected. How independence and autocorrelation impact the 
establishment of background is presented below, with additional discussions on outliers, spatial 
variability and trends in the following sections. Stationarity assumptions are considered both in the 
context of temporal and spatial variation. 

Both the Part 264 and 258 groundwater regulations require statistically independent measurements 
(Chapter 2). Statistical independence is indicated by random data sets. But randomness is only 
demonstrated by the presence of mean and variance stationarity and the lack of evidence for effects such 
as autocorrelation , trends, spatial and temporal variation. These tests (described in Part II of this 
guidance) generally require at least 8 to 10 separate background measurements. 

Depending on site groundwater velocity, too-frequent sampling at any given background well can 
result in highly autocorrelated, non-independent data. Current or proposed sampling frequencies can be 
tested for autocorrelation or other statistical dependence using the diagnostic procedures in Chapter 14. 
Practically speaking, the best way to ensure some degree of statistical independence is to allow as much 
time as possible to elapse between sampling events. But a balance must be drawn between collecting as 
many measurements as possible from a given well over a specified time period, and ensuring that the 
sample measurements are statistically independent. If significant dependence is identified in already 
collected background, the interval between sampling events may need to be lengthened to minimize 
further autocorrelation. With fewer sampling events per evaluation period, it is also possible that a 
change in statistical method may be needed, say from analysis of variance [ANOVA], which requires at 
least 4 new background measurements per evaluation, to prediction limits or control charts, which may 
require new background only periodically (e.g., during a biennial update). 
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Outliers or observations not derived from the same population as the rest of the sample violate the 
basic statistical assumption of identically-distributed measurements. The Unified Guidance recommends 
that testing of outliers be performed on background data, but they generally not be removed unless some 
basis for a likely error or discrepancy can be identified. Such possible errors or discrepancies could 
include data recording errors, unusual sampling and laboratory procedures or conditions, inconsistent 
sample turbidity, and values significantly outside the historical ranges ofbackground data. Management 
of potential outliers carries both positive and negative risks, which should be carefully understood. 

If an outlier value with much higher concentration than other background observations is not 
removed from background prior to statistical testing, it will tend to increase both the background sample 
mean and standard deviation. In turn, this may substantially raise the magnitude of a parametric 
prediction limit or control limit calculated from that sample. A subsequent compliance well test against 
this background limit will be much less likely to identify an exceedance. The same is true with non­
parametric prediction limits, especially when the maximum background value is taken as the prediction 
limit. If the maximum is an outlier not representative of the background population, few truly 
contaminated compliance wells are likely to be identified by such a test, lowering the statistical power of 
the method and the overall quality of the statistical monitoring program. 

Because of these concerns, it may be advisable at times to remove high-magnitude outliers in 
background even if the reasons for these apparently extreme observations are not known. The overall 
impact ofremoval will tend to improve the power of prediction limits and control charts, and thus result 
in a more environmentally protective program. 

But strategies that involve automated evaluation and removal of outliers may unwittingly eliminate 
the evidence ofreal and important changes to background conditions. An example of this phenomenon 
may have occurred during the 1970s in some early ozone depletion measurements over Antarctica 

Automated computer routines for 
outlier detection apparently removed several measurements indicating a sharp reduction in ozone 
concentrations, and thus prevented identification of an enlarging ozone hole by many years. Later 
review of the raw observations revealed that these automated routines had statistically classified 
measurements as outliers, which were more extreme than most of the data from that time period. Thus, 
there is some merit in saving and revisiting apparent 'outliers' in future investigations, even if removed 
from present databases. 

In groundwater data collection and testing, background conditions may not be static over time. 
Caution should be observed in removing observations which may signal a change in natural groundwater 
quality. Even when conditions have not changed, an apparently extreme measurement may represent 
nothing more than a portion of the background distribution that has yet to be observed. This is 
particularly true if the background data set contains fewer than 20 samples. 

In balancing these contrasting risks in retaining or removing one or more outliers, analyses of 
historical data patterns can sometimes provide more definitive information depending on the types of 
analytes and methods. For example, if a potential order-of magnitude higher outlier is identified in a 
sodium data set used as a monitoring constituent, cation-anion balances can help determine if this 
change is geochemically probable. In this case, changes to other intrawell ions or TDS should be 
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observed. Similarly, if a trace element outlier is identified in a single well sampling event and occurred 
simultaneously with other trace element maxima measured using the same analytical method (e.g., ICP­
AES) either in the same well or groups of wells, an analytical error should be strongly suspected. On 
the other hand, an isolated increase without any other evidence could be a real but extreme background 
measurement. Ideally, removal of one or more statistically identified outliers should be based on other 
technical information or knowledge which can support that decision. 

J_ + p ... I p ~ ! p !! I p T I ~ I ... I 

In the absence of contamination, comparisons made between upgradient-to-downgradient wells 
assume that the concentration distribution is spatially stationary across the well field (Chapter 3 ). This 
implies that every well should have the same population mean and variance, unless a release occurs to 
increase the concentration levels at one or more compliance wells. At many sites, this is not the case for 
many naturally occurring constituents. Natural or man-made differences in mean levels - referred to as 
spatial variability or spatial variation - impact how background must be established. 

Evidence of spatial variation should drive the selection of an intrawell statistical approach if 
observed among wells known to be uncontaminated (e.g., among a group of upgradient background 
locations). Lack of spatial mean differences and a common variance allow for interwell comparisons. 
Appropriate background differs between the two approaches. 

With interwell tests, background is derived from distinct, initially upgradient background wells, 
which may be enhanced by data from historical compliance wells also shown not to exhibit significant 
mean and variance differences. Future data from each of these compliance wells are then tested against 
this common background. On the other hand, intrawell background is derived from and represents 
historical groundwater conditions in each individual compliance well. When the population mean levels 
vary across a well field, there is little likelihood that the upgradient background will provide an 
appropriate comparison by which to judge any given compliance well. 

Although spatial variability impacts the choice of background, it does so only for those constituents 
which evidence spatial differences across the well field. Each monitoring constituent should be 
evaluated on its own statistical merits. Spatial variation in some constituents (e.g., common ions and 
inorganic parameters) does not preclude the use of interwell background for other infrequently detected 
or non-naturally occurring analytes. At many sites, a mixture of statistical approaches may be 
appropriate: interwell tests for part of the monitoring list and intrawell tests for another portion. Distinct 
background observation sets will need to be developed under such circumstances. 

Intrawell background measurements should be selected from the available historical samples at 
each compliance well and should include only those observations thought to be uncontaminated. 
Initially, this might result in very few measurements (e.g., 4 to 6). With such a small background sample, 
it can be very difficult to develop an adequately powerful intrawell prediction limit or control chart, even 
when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment 
the testing power. One option is to periodically augment the existing background data base with recent 
compliance well samples (discussed in a further section below). Another possible remedy is to 
statistically augment the available sample data by running an analysis of variance [ANOVA] 
simultaneously on all the sets of intrawell background from the various upgradient and compliance wells 
(see Chapter 13). The root mean squared error [RMSE] from this procedure can be used in place of the 
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background standard deviation in parametric prediction and control limits to substantially increase the 
effective background sample size of such tests, despite the limited number of observations available per 
well. 

This strategy will only work if the key assumptions of ANOV A can be satisfied (Chapter 17 ), 
particularly the requirement of equal variances across wells. Since natural differences in mean levels 
often correspond to similar differences in variability, a transformation of the data will often be necessary 
to homogenize the variances prior to running the ANOV A. For some constituents, no transformation 
may work well enough to allow the RMSE to be used as a replacement estimate for the intrawell 
background standard deviation. In that case, it may not be possible to construct reasonably powerful 
intrawell background limits until background has been updated once or twice (see Section 5.3). 
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A key implication of the independent and identically distributed assumption [i.i.d.] is that a series 
of sample measurements should be stationary over time (i.e., stable in mean level and variance). Data 
that are trending upward or downward violate this assumption since the mean level is changing. 
Seasonal fluctuations also violate this assumption since both the mean and variance will likely oscillate. 
The proper handling of trends in background depends on the statistical approach and the cause of the 
trend. With interwell tests and a common (upgradient) background, a trend can signify several 
possibilities: 

Contaminated background; 

A 'break-in' period following new well installation; 

Site-wide changes in the aquifer; 

Seasonal fluctuations, perhaps on the order of several months to a few years. 

If upgradient well background becomes contaminated, intrawell testing may be needed to avoid 
inappropriate comparisons. Groundwater flow patterns should also be re-examined to determine if 
gradients are properly defined or if groundwater mounding might be occurring. With newly-installed 
background wells, it may be necessary to discard initially collected observations and to wait several 
months for aquifer disturbances due to well construction to stabilize. Site-wide changes in the 
underlying aquifer should be identifiable as similar trends in both upgradient and compliance wells. In 
this case, it might be possible to remove a common trend from both the background and compliance 
point wells and to perform interwell testing on the trend residuals. However, professional statistical 
assistance may be needed to do this correctly. Another option would be to switch to intrawell trend tests 
(Chapter 17). 

Seasonal fluctuations in interwell background which are also observed in compliance wells, can be 
accommodated by modeling the seasonal trend and removing it from all background and compliance 
well data. Data seasonally-adjusted in this way (see Chapter 14 for details) will generally be less 
variable than the unadjusted measurements and lead to more powerful tests than if the seasonal patterns 
had been ignored. For this adjustment to work properly, the same seasonal trend should be observed 
across the well field and not be substantially different from well to well. 
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Roughly linear trends in intrawell background usually signify the need to switch from an intrawell 
prediction limit or control chart to an explicit trend test, such as linear regression or the Mann-Kendall 
(Chapter 17 ). Otherwise the background variance will be overestimated and biased on the high side, 
leading to higher than expected and ultimately less powerful prediction and control limits. Seasonal 
fluctuations in intrawell background can be treated in one of two ways. A seasonal Mann-Kendall trend 
test built to accommodate such fluctuations can be employed (Section 14.3.4 ). Otherwise, the seasonal 
pattern can be estimated and removed from the background data, leaving a set of seasonally-adjusted 
data to be analyzed with either a prediction limit or control chart. In this latter approach, the same 
seasonal pattern needs to be extrapolated beyond the current background to more recent measurements 
from the compliance well being tested. These later observations also need to be seasonally-adjusted prior 
to comparison against the adjusted background, even if there is not enough compliance data yet collected 
to observe the same seasonal cycles. 

When trends are apparent in background, another option is to modify the groundwater monitoring 
list to include only those constituents that appear to be temporally stable. Only certain analytes may 
indicate evidence of trends or seasonal fluctuations. More powerful statistical tests might be constructed 
on constituents that appear to be stationary. All such changes to the monitoring list and method of 
testing may require approval of the Regional Administrator or State Director. 
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In the initial development of a detection monitoring statistical program under a permit or other 
legal mechanism, a period of review will identify the appropriate monitoring constituents. For new sites 
with no prior data, plans for initial background definition need to be developed as part of permit 
conditions. A more typical situation occurs for interim status or older facilities which have already 
collected substantial historical data in site monitoring wells. For the most part, the suggestions below 
cover ways of expanding background data sets from existing information. 

Under the RCRA interim status regulations, only a single upgradient well is required as a 
mm1mum. Generally speaking, a single background well will not generate observations that are 
adequately representative of the underlying aquifer. A single background well draws groundwater from 
only one possible background location. It is accordingly not possible to determine if spatial variation is 
occurring in the upgradient aquifer. In addition, a single background well can only be sampled so often 
since measurements that are collected too frequently run the risk of being autocorrelated. Background 
observations collected from a single well are typically neither representative nor constitute a large 
enough sample to construct powerful, accurate statistical tests. One way to expand background is to 
install at least 3-4 upgradient wells and collect additional data under permit. 

The early RCRA regulations also allowed for aliquot replicate sampling as a means of expanding 
background and other well sample sizes. This approach consisted of analyzing splits or aliquots of 
single water quality samples. As indicated in Chapter 2, this approach is not recommended in the 
guidance. Generally limited analytical variability does not adequately capture the overall variation based 
on independent water quality sample data, and results in incorrect estimates of variability and degrees of 
freedom (a function of sample size). 

Existing historical groundwater well data under consideration will need to meet the assumptions 
discussed earlier in this chapter- independence, stationarity, etc., including using statistical methods 
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which can deal with outliers, spatial and temporal vanat10n including trends. Presuming these 
conditions are met, it is statistically desirable to develop as large a background sample size as practical. 
But no matter how many measurements are utilized, a larger sample size is advantageous only if the 
background samples are both appropriate to the tests selected and representative of baseline conditions. 

In limited situations, upgradient-to-downgradient, interwell comparisons may be determined to be 
appropriate using ANOVA testing of well mean differences. To ensure appropriate and representative 
background, other conditions may also need to be satisfied when data from separate wells are pooled. 
First, each background well should be screened at the same hydrostratigraphic position as other 
background wells. Second, the groundwater chemistry at each of these wells should be similar. This can 
be checked via the use of standard geochemical bar charts, pie charts, and tri-linear diagrams of the 
major constituent groundwater ions and cations (Hem, 1989). Third, the statistical characteristics of the 
background wells should be similar - that is, they should be spatially stationary , with approximately 
the same means and variances. These conditions are particularly important for major water quality 
indicators, which generally reflect aquifer-specific characteristics. For infrequently detected analytes 
(e.g., filtered trace elements like chromium, silver, and zinc), even data collected from wells from 
different aquifers and/or geologic strata may be statistically indistinguishable and also eligible for 
pooling on an interwell basis. 

If a one-way ANOVA (Chapter 13) on the set of background wells finds significant differences in 
the mean levels for some constituents, and hence, evidence of spatial variability, the guidance 
recommends using intrawell tests. The data gathered from the background wells will generally not be 
used in formal statistical testing, but are still invaluable in ensuring that appropriate background is 
selected. 1 As indicated in the discussions above and Chapter 13, it may be possible to pool constituent 
data from a number ofupgradient and/or compliance wells having a common variance when parametric 
assumptions allow, even if mean differences exist. 

When larger historical databases are available, the data can be reviewed and diagnostically tested 
to determine which observations best represent natural groundwater conditions suitable for future 
comparisons. During this review, all historical well data collected from both upgradient and compliance 
wells can be evaluated for potential inclusion into background. Wells suspected of prior contamination 
would need to be excluded, but otherwise each uncontaminated data point adds to the overall statistical 
picture of background conditions at the site and can be used to enlarge the background database. 
Measurements can be preferentially selected to establish background samples, so long as a consistent 
rationale is used (e.g., newer analytical methods, substantial outliers in a portion of a data set, etc.) 
Changes to an aquifer over time may require selecting newer data representing current groundwater 
quality over earlier results even if valid. 

If the spatial variation is ignored and data are pooled across wells with differing mean levels (and perhaps variances) to mn 
an interwell parametric prediction limit or control chart test, the pooled standard deviation will tend to be substantially 
larger than expected. This will result in a higher critical limit for the test. Using pooled data with spatial variation will also 
tends to increase observed maximum values in background, leading to higher and less powerful non-parametric prediction 
limit tests. In either application, there will be a loss of statistical power for detecting concentration changes at individual 
compliance wells. Compliance wells with naturally higher mean levels will also be more frequently determined to exceed 
the limit than expected, while real increases at compliance wells with naturally lower means will go undetected more often. 
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As mentioned above, if a large historical database is available, a critical review of the data can be 
undertaken to help establish initially appropriate and representative background samples. We 
recommend that other reviews ofbackground also take place periodically. These include the following 
situations: 

When periodically updating background, say every 1-2 years (see Section 5.3) 

When performing a 5-10 year permit review 

During these reviews, all observations designated as background should be evaluated to ensure that 
they still adequately reflect current natural or baseline groundwater conditions. In particular, the 
background samples should be investigated for apparent trends or outliers. Statistical outliers may need 
to be removed, especially if an error or discrepancy can be identified, so that subsequent compliance 
tests can be improved. If trends are indicated, a change in the statistical method or approach may be 
warranted (see earlier section on "Trends in Background"). 

If background has been updated or enlarged since the last review, and is being utilized in 
parametric tests, the assumption of normality (or other distributional fit) should be re-checked to ensure 
that the augmented background data are still consistent with a parametric approach. The presence of non­
detects and multiple reporting limits (especially with changes in analytical methods over time) can prove 
particularly troublesome in checking distribution assumptions. The methods of Chapters 10 "Fitting 
Distributions" and Chapter 15 "Handling Non-Detects" can be consulted for guidance. 

Other periodic checks of the revised background should also be conducted, especially in relation to 
accumulated knowledge from other sites regarding analyte concentration patterns in groundwater. The 
following are potential sources for comparison and evaluation: 

reliable regional groundwater data studies or investigations from nearby sites; 

published literature; EPA or other agency groundwater databases like STORET; 

knowledge of typical patterns for background inorganic constituents and trace elements. An 
example is found in Table 5-1 at the end of this chapter. Typical surface and groundwater levels 
for filtered trace elements can also be found in the published literature (e.g., Hem, 1989). 

Certain common features of routine groundwater monitoring analytes summarized in Table 5-1 
have been observed in Region 8 and other background data sets, which can have implications for 
statistical applications. Common water quality indicators like cations and anions, pH, TDS, specific 
conductance are almost always measurable (detectable) and generally have limited within-well 
variability. These would be more amenable to parametric applications; however, these measurable 
analytes are also most likely to exhibit well-to-well spatial variation and various kinds of within- and 
between-well temporal variation including seasonal and annual trends. Many of these within-well 
analytes are highly correlated, and would not meet the criterion for independent data if simultaneously 
used as monitoring constituents. 

A second level of common indicator analytes- nitrate/nitrite species, fluoride, TOC and TOX­
are less frequently detected and subject to more analytical detection instability (higher and lower 
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detection/quantitation limits). As such, these analyte data are somewhat less reliable. There is less 
likelihood of temporal variation, although they can exhibit spatial well differences. 

Among routinely monitored .451 -filtered trace elements, different groups stand out. Barium is 
routinely detected with limited variation within most wells, but does exhibit spatial variation. Arsenic 
and selenium commonly occur in groundwater as oxyanions, and data can range from virtually non­
detectable to always detected in different site wells. The largest group of trace elements can be 
considered colloidal metals (Sb, Al, Be, Cd, Cr, Co, Fe, Hg, Mn, Pb, Ni, Sn, Tl, V and Zn). While Al, 
Mn and Fe are more commonly detected, variability is often quite high; well-to-well spatial variability 
can occur at times. The remaining colloidal metals are solubility-limited in most background 
groundwater, generally <1 to < 10 l g/1. But even with filtration, some natural colloidal geologic solid 
materials can often be detected in individual samples. Since naturally occurring Al, Mn and Fe soil solid 
levels are much higher, the effects on measured groundwater levels are more pronounced and variable. 
For most of the analytically and solubility-limited colloidal metals, there may not be any discernible well 
spatial differences. Often these data can be characterized by a site-wide lognormal distribution, and may 
be possible to pool individual well data to form larger background sizes. 

With unfiltered trace element data, it is more difficult to generalize even regarding background 
data. The method of well sample extraction and the aquifer characteristics will determine how much 
solids material may be present in the samples. Excessive amounts of sample solids can result in higher 
levels of detection but also elevated average values and variability even for solubility-limited trace 
elements. The effect is most clearly seen when TSS is simultaneously collected with unfiltered data. 
Increases are proportional to the amount of TSS and the natural background levels for trace elements in 
soil/solid materials. It is recommended that TSS always be simultaneously monitored with unfiltered 
trace elements. 

Most trace organic monitoring constituents are absent or non-detectable under clean background 
conditions. However, with existing up-gradient sources, it is more difficult to generalize. More soluble 
constituents like benzene or chlorinated hydrocarbons may be amenable to parametric distributions, but 
changes in groundwater levels or direction can drastically affect observed levels. For sparingly soluble 
compounds like polynuclear aromatics (e.g., naphthalene), aquifer effects can result in highly variable 
data less amenable to statistical applications. 

Table 5-1 was based on the use of analytical methods common in the 1990' s to the present. 
Detectable filtered trace element data for the most part were limited by the available analytic techniques, 
generally SW-846 Method 6010 ICP-AES and select AA (atomic absorption) methods with lower 
detection limits in the 1-10 ppb range. As newer methods are incorporated (particularly Method 6020 
ICP-MS capable of parts-per-trillion detection limits for trace elements), higher quantification 
frequencies may result in data demonstrating more complex spatial and temporal characteristics. Table 
5-1 merely provides a rough guide to where various data patterns might occur. Any extension of these 
patterns to other facility data sets should be determined by the formal guidance tests in Part 11. 

The background database can also be specially organized and summarized to examine common 
behavior among related analytes (e.g., filtered trace elements using ICP-AES) either over time or across 
wells during common sampling events. Parallel time series plots (Chapter 9) are very useful in this 
regard. Groups ofrelated analytes can be graphed on the same set of axes, or groups of nearby wells for 
the same analyte. With either plot, highly suspect sampling events can be identified if a similar spike in 
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concentration or other unusual pattern occurs simultaneously at all the wells or in all the analytes. 
Analytical measurements that appear to be in error might be removed from the background database. 

Cation-anion balances and other more sophisticated geochemical analysis programs can also be 
used to evaluate the reliability of existing water quality background data. A suite of tests like linear or 
non-parametric correlations, simple or non-parametric ANOV A described in later chapters offer overall 
methods for evaluating historical data for background suitability. 

--+ !! 

Due both to the complex behavior of groundwater and the need for sufficiently large sample sizes, 
background once obtained should not be regarded as a single fixed quantity. Background should be 
sampled regularly throughout the life of the facility, periodically reviewed and revised as necessary. If a 
site uses traditional, upgradient-to-downgradient comparisons, it might seem that updating of 
background is conceptually simple: collect new measurements from each background well at each 
sampling event and add these to the overall background sample. However, significant trends or changes 
in one or more upgradient wells might indicate problems with individual wells, or be part of a larger site­
wide groundwater change. It is worthwhile to consider the following principles for updating, whether 
interwell or intrawell testing is used. 
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There are no firm rules on how often to update background data. The Unified Guidance adopts the 
general principle that updating should occur when enough new measurements have been collected to 
allow a two-sample statistical comparison between the existing background data and a potential set of 
newer data. As mentioned in the following section, trend testing might also be used. With quarterly 
sampling, at least 4 to 8 new measurements should be gathered to enable such a test; this implies that 
updating would take place every 1-2 years. With semi-annual sampling, the same principle would call 
for updating every 2-3 years. 

Updating should generally not occur more frequently, since adding a new observation to 
background every one or two sampling rounds does not allow a statistical evaluation of whether the 
background mean is stationary over time. Enough new data needs to be collected to ensure that a test of 
means (or medians in the case of non-normal data) can be conducted. Adding individual observations to 
background can introduce subtle trends that might go undetected and ultimately reduce the statistical 
power of formal monitoring tests. 

Another practical aspect is that when background is updated, all statistical background limits (e.g., 
prediction and control limits) needs to be recomputed to account for the revised background sample. At 
complex sites, updating the limits at each well and constituent on the monitoring list may require 
substantial effort. This includes resetting the cumulative sum [CUSUM] portions of control charts to 
zero after re-calculating the control limits and prior to additional testing against those limits. Too­
frequent updating could thereby reduce the efficacy of control chart tests. 
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Updating background is primarily a concern for intrawell tests, although some of the guidelines 
apply to interwell data. The common (generally upgradient) interwell background pool can be tested for 
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trends and/or changes at intervals depending on the sampling frequencies identified above. Those 
recently collected measurements from the background well(s) can be added to the existing pool if a 
Student's t-test or Wilcoxon rank-sum test (Chapter 16) finds no significant difference between the two 
groups at the L = 0.01 level of significance. Individual background wells should also be evaluated in the 
same manner for their respective newer data. Two-sample tests of the interwell background data are 
conducted to gauge whether or not background groundwater conditions have changed substantially since 
the last update, and are not tests for indicating a potential release under detection monitoring. A 
significant t-test or Wilcoxon rank-sum result should spur a closer investigation and review of the 
background sample, in order to determine which observations are most representative of the current 
groundwater conditions. 

With intrawell tests using prediction limits or control charts, updating is performed both to enlarge 
initially small well-specific background samples and to ensure that more recent compliance 
measurements are not already impacted by a potential release (even if not triggered by the formal 
detection monitoring tests). A finding of significance using the above two-sample tests means that the 
most recent data should not be added to intrawell background. However, the same caveat as above 
applies: these are not formal tests for determining a potential release and the existing tests and 
background should continue to be used. 

Updating intrawell background should also not occur until at least 4 to 8 new compliance 
observations have been collected. Further, a potential update is predicated on there being no statistically 
significant increase [SSI] recorded for that well constituent, including since the last update. Then a t­
test or Wilcoxon rank-sum comparison can be conducted at each compliance well between existing 
intrawell background and the potential set of newer background. A non-significant result implies that 
the newer compliance data can be re-classified as background measurements and added to the existing 
intrawell background sample. On the other hand, a determination of significance suggests that the 
compliance observations should be reviewed to determine whether a gradual trend or other change has 
occurred that was missed by the intervening prediction limit or control chart tests. If intrawell tests 
make use of a common pooled variance, the assumption of equal variance in the pooled wells should 
also be checked with the newer data. 

Some users may wish to evaluate historical and future background data for potential trends. If 
plots of data versus time suggest either an overall trend in the combined data sets or distinct differences 
in the respective sets, linear or non-parametric trend tests covered in Chapter 17 might be used. A 
determination of a significant trend might occur even if the two-sample tests are inconclusive, but 
individual group sample sizes should be large enough to avoid identifying a significant trend based on 
too few samples and perhaps randomly occurring. A trend in the newer data may reflect or depart from 
the historical data conditions. Some form of statistical adjustments may be necessary, but see Section 
5.3.4 below. 
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A key question when updating intrawell background is how to handle the results of retesting. 2 If a 
retest confirms an SSI, background should not be updated. Rather, some regulatory action at the site 
should be taken. But what if an initial exceedance of a prediction or control limit is dis confirmed by 
retesting? According to the logic ofretesting (Chapter 19), the well passes the compliance test for that 
evaluation and monitoring should continue as usual. But what should be done with the initial exceedance 
when it comes time to update background at the well? 

The initial exceedance may be due to a laboratory error or other anomaly that has caused the 
observation to be an outlier. If so, the error should be documented and not included in the updated 
background sample. But if the exceedance is not explainable as an outlier or error, it may represent a 
portion of the background population that has heretofore not been sampled. In that case, the data value 
could be included in the updated background sample (along with the repeat sample) as evidence of the 
expanded but true range of background variation. Ultimately, it is important to characterize the 
background conditions at the site as completely and accurately as possible, so as to minimize both false 
positive and false negative decision errors in compliance testing. 

The severity and classification of the initial exceedance will depend on the specific retesting 
strategy that has been implemented (Chapter 19). Using the same background data in a parametric 
prediction limit or control chart test, background limits are proportionately lower as the 1-of- m order 
increases (higher m ). Thus, a l-of-4 prediction limit will be lower than a l-of-3 limit, and similarly the 
l-of-3 limit lower than for a l-of-2 test. An initial exceedance triggered by a l-of-4 test limit and 
disconfirmed by a repeat sample, might not trigger a lower order prediction limit test. The initial sample 
value may represent an upper tail value from the true distribution. Retesting schemes derive much of 
their statistical power by allowing more frequent initial exceedances, even if some of these represent 
possible measurements from background. The initial and subsequent resamples taken together are 
designed to identify which initial exceedances truly represent SSis and which do not. These tests 
presume that occasional excursions beyond the background limit will occur. Unless the exceedance can 
be documented as an outlier or other anomaly, it should probably be included in the updated intrawell 
background sample. 
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An increasing or decreasing trend may be apparent between the existing background and the newer 
set of candidate background values, either using a time series plot or applying Chapter 17 trend 
analyses. Should such trend data be added to the existing background sample? Most detection 
monitoring tests assume that background is stationary over time, with no discernible trends or seasonal 
variation. A mild trend will probably make very little difference, especially if a Student- tor Wilcoxon 
rank-sum test between the existing and candidate background data sets is non-significant. More severe 
or continuing trends are likely to be flagged as SSis by formal intrawell prediction limit or control chart 
tests. 

2 With interwell tests, the common (upgradient) background is rarely affected by retests at compliance point wells (unless the 
latter were included in the common pool). Should retesting fail to confirm an initial exceedance , the initial value can be 
reported alongside the disconfirming resamples in statistical reports for that facility. 
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With interwell tests, a stronger trend in the common upgradient background may signify a change 
in natural groundwater quality across the aquifer or an incomplete characterization of the full range of 
background variation. If a change is evident, it may be necessary to delete some of the earlier 
background values from the updated background sample, so as to ensure that compliance testing is based 
on current groundwater conditions and not on outdated measures of groundwater quality. 
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This chapter addresses the initial statistical design of a detection monitoring program, prior to 
routine implementation. It considers what important elements should be specified in site permits, 
monitoring development plans or during periodic reviews. A good statistical design can be critically 
important for ensuring that the routine process of detection monitoring meets the broad objective of the 
RCRA regulations: using statistical testing to accurately evaluate whether or not there is a release to 
groundwater at one or more compliance wells. 

This guidance recommends a comprehensive detection monitoring program design, based on two 
key performance characteristics: adequate statistical power and a low predetermined site-wide false 
positive rate [SWFPR]. The design approach presented in Section 6.2 was developed in response to the 
multiple comparisons problem affecting RCRA and other groundwater detection programs, discussed in 
Section 6.2.1. Greater detail in applying design cumulative false positives and assessing power follows 
in the next three sub-sections. In Section 6.3, consideration is given to data features that impact proper 
implementation of statistical testing, such as outliers and non-detects, using interwell versus intrawell 
tests, as well as the presence of spatial variability or trends. Section 6.4 provides a general discussion of 
specific detection testing methods listed in the regulations and their appropriate use. Finally, Section 6.5 
applies the design concepts to three hypothetical site examples. 

The principles and statistical tests which this chapter covers for a detection monitoring program 
can also apply to compliance/corrective action monitoring when a background standard is used. 
Designing a background standards compliance program is discussed in Chapter 7 (Section 7.5). 
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The foremost goal in detection monitoring is to identify a real release to groundwater when it 
occurs. Tests must have adequate statistical power to identify concentration increases above 
background. A second critical goal is to avoid false positive decision errors, evaluations where one or 
more wells are falsely declared to be contaminated when in fact their concentration distribution is similar 
to background. Unfortunately, there is a trade-off (discussed in Chapter 3) between maximizing power 
and minimizing the false positive rate in designing a statistical testing protocol. The statistical power of 
a given test procedure using a fixed background sample size ( n) cannot be improved without increasing 
the risk of false positive error (and vice-versa). 

In RCRA and other groundwater detection monitoring programs, most facilities must monitor and 
test for multiple constituents at all compliance wells one or more times per year. A separate statistical 
test 1 for each monitoring constituent-compliance well pair is generally conducted semi-annually. Each 
additional background comparison test increases the accumulative risk of making a false positive 
mistake, known statistically as the multiple comparisons problem .2 

The false positive rate a (or Type I error) for an individual test is the probability that the test will 
falsely indicate an exceedance of background. Often, a single fixed low false positive error rate typically 
found in textbooks or regulation, e.g., a= .01 or .05, is applied to each statistical test performed for 
every well-constituent pair at a facility. Applying such a common false positive rate ( ) to each of 
several tests can result in an acceptable cumulative false positive error if the number of tests is quite 
small. 

But as the number of tests increases, the false positive rate associated with the testing network as a 
whole (i.e., across all well-constituent pairs) can be surprisingly high. If enough tests are run, at least 
one test is likely to indicate potential contamination even if a release has not occurred. As an example, if 
the testing network consists of 20 separate well-constituent pairs and a 99% confidence upper prediction 
limit is used for each test (a= .01), the expected overall network-wide false positive rate is about 18%. 
There is nearly a 1 in 5 chance that one or more tests will falsely identify a release to groundwater at 
uncontaminated wells. For 100 tests and the same statistical procedure, the overall network-wide false 
positive rate increases to more than 63%, creating additional steps to verify the lack of contamination at 
falsely triggered wells. This cumulative false positive error is also indicative of at least one well 
constituent false positive error, but there could be more. Controlling this cumulative false positive error 
rate is essential in addressing the multiple comparisons problem. 

1 The number of samples collected may not be the same as the number of statistical tests (e.g., a mean test based on 2 
individual samples). It is the number of tests which affect the multiple comparisons problem. 

2 To minimize later confusion, note that the Unified Guidance applies the term "comparison" somewhat differently than most 
statistical literature. In statistical theory, multiple tests are synonymous with multiple comparisons, regardless of the kind of 
statistical test employed. But because of its emphasis on retesting and resampling techniques, the Unified Guidance uses 
"comparison" in referring to the evaluation of a single sample value or sample statistic against a prediction or control chart 
limit. In many of the procedures described in Chapters 19 and 20, a single statistical test will involve two or more such 
individual comparisons, yet all the comparisons are part of the same (individual) test. 
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Three main strategies (or their combination) can be used to counter the excessive cumulative false 
positive error rate-- 1) the number of tests can be reduced; 2) the individual test false positive rate can 
be lowered, or 3) the type of statistical test can be changed. A fourth strategy to increase background 
sample sizes may also be appropriate. Under an initial monitoring design, one usually works with fixed 
historical sample sizes. However, background data can later be updated in periodic program reviews. 

To make use of these strategies, a sufficiently low target cumulative SWFPR needs to be initially 
identified for design purposes. The target cumulative error applies to a certain regular time period. The 
guidance recommends and uses a value of 10% over a year period of testing. Reasons for this particular 
choice are discussed in Section 6.2.2. These strategies have consequences for the overall test power of a 
well monitoring network, which are considered following control of the false positive error. 

The number of tests depends on the number of monitoring constituents, compliance wells and 
periodic evaluations. Statistical testing on a regular basis can be limited to constituents shown to be 
reliable indicators of a contaminant release (discussed further in Section 6.2.2). Depending on site 
conditions, some constituents may need to be tested only at wells for a single regulated waste unit, rather 
than across the entire facility well network. The frequency of evaluation is a program decision, but 
might be modified in certain circumstances. 

Monitoring data for other parameters should still be routinely collected and reported to trace the 
potential arrival of new chemicals into the groundwater, whether from changes in waste management 
practices or degradation over time into hazardous daughter products. By limiting statistically evaluated 
constituents to the most useful indicators, the overall number of statistical tests can be reduced to help 
meet the SWFPR objective. Fewer tests also imply a somewhat higher single test false positive error 
rate, and therefore an improvement in power. 

As a second strategy, the Type I error rate ( Utest) applied to each individual test can be lowered to 
meet the SWFPR. Using the Bonferroni adjustment (Miller, 1981 ), the individual test error is designed 
to limit the overall (or experiment-wise) false positive rate a associated with n individual tests by 
conducting each individual test at an adjusted significance level of Utest = a/n. Computational details for 
this approach are provided in a later section. 

A full Bonferroni adjustment strategy was neither implemented in previous guidance 3 nor allowed 
by regulation. However, the principle of partitioning individual test error rates to meet an overall 
cumulative false positive error target is highly recommended as a design element in this guidance. 
Because of RCRA regulatory limitations, its application is restricted to certain detection monitoring 

3 A BonfelToni adjustment was recommended in the 1989 Interim Final Guidance [IFG] as a post-hoc (i.e., 'after the fact') 
testing strategy for individual background-to-downgradient well comparisons following an analysis of variance [AN 0 VA]. 
However, the adjustment does not always effectively limit the risks to the intended 5% false positive error for any ANO VA 
test. If more than 5 compliance wells are tested, RCRA regulations restrict the single test error rate to a minimum of a= 
1 % for each of the individual post-hoc tests following the F-test. This in effect raises the cumulative ANO VA test risk 
above 5% and considerably higher with a larger number of tested wells. At least one contaminated well would typically be 
needed to trigger the initial F-test prior to post-hoc testing. This fact was also noted in the 1989 IFG. Additionally, RCRA 
regulations mandate a minimum a error rate of 5% per constituent tested with this strategy. For sites with extensive 
monitoring parameter lists, this means a substantial risk of at least one false positive test result during any statistical 
evaluation. 
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tests-- prediction and tolerance limits along with control charts. Where not restricted by regulation, the 
Bonferroni approach could be used to design workable single-test or post-hoc testing for ANOV As to 
meet the overall SWFPR criterion. 

Using this strategy of defining individual false positive test rates to meet a cumulative error 
target, the effect on statistical power is direct. Given a statistical test and fixed sample size, a lower 
false positive rate coincides with lower power of the test to detect contamination at the well. Some 
improvement in single test power can be gained by increasing background sample sizes at a fixed test 
error rate. However, the third strategy of utilizing a different or modified statistical test is generally 
necessary. 

This strategy involves choices among certain detection monitoring tests-- prediction limits, control 
charts and tolerance intervals-- to enhance both power and false positive error control. Except for small 
sites with a very limited number of tests, any of the three detection monitoring options should 
incorporate some manner of retesting. Through proper design, retesting can simultaneously achieve 
sufficiently high statistical power while maintaining control of the SWFPR. 
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The design of all testing strategies should specifically address the multiple comparisons problem in 
light of these two fundamental concerns-- an acceptably low false positive site-wide error rate and 
adequate power. The Unified Guidance accordingly recommends two statistical performance criteria 
fundamental to good design of a detection monitoring program: 

1. Application of an annual cumulative SWFPR design target, suggested at 10% per year. 

2. Use of EPA reference power curves [ERPC] to gauge the cumulative, annual ability of any 
individual test to detect contaminated groundwater when it exists. Over the course of a 
single year assuming normally-distributed background data, any single test performed at 
the site should have the ability to detect 3 and 4 standard deviation increases above 
background at specific power levels at least as high as the reference curves. 

False positive rates (or errors) apply both to individual tests and cumulatively to all tests 
conducted in some time period. Applying the SWFPR annual 10% rate places different sites and state 
regulatory programs on an equal footing, so that no facility is unfairly burdened by false positive test 
results. Use of a single overall target allows a proper comparison to be made between alternative test 
methods in designing a statistical program. Additional details in applying the SWFPR include the 
following: 

The SWFPR false positive rate should be measured on a site-wide basis, partitioned among the 
total number of annual statistical tests. 

The SWFPR applies to all statistical tests conducted in an annual or calendar year period. 

The total number of annual statistical tests used in SWFPR calculations depends on the number 
of valid monitoring constituents, compliance wells and evaluation periods per year. The number 
of tests may or may not coincide with the number of annual sampling events, for example, if data 
for a future mean test are collected quarterly and tested semi-annually. 
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The Unified Guidance recommends a uniform approach for dealing with monitoring constituents 
not historically detected in background (e.g., trace organic compounds routinely analyzed in large 
analytical suites). It is recommended that such constituents not be included in SWFPR 
computations, and an alternate evaluation protocol be used (referred to as the Double 
Quantification rule) discussed in Section 6.2.2. 

Statistical power refers to the ability of a test to identify real increases in concentration levels 
above background (true SSis). The power of a test is evaluated on population characteristics and 
represents average behavior defined by repeated or an infinitely large number of samples. Power is 
reported as a fraction between 0 and 1, representing the probability that the test will identify a specific 
level or degree of increase above background. Statistical power varies with the size of the average 
population concentration above background-- generally fairly low power to detect small incremental 
concentrations and substantially increasing power at higher concentrations. 

The ERPC describe the cumulative, annual statistical power to detect increasing levels of 
contamination above a true background mean. These curves are based on specific normal detection 
monitoring prediction limit tests of single future samples against background conducted once, twice, or 
four times in a year. Reference curve power is linked to relative, not absolute, concentration levels. 
Actual statistical test power is closely tied to the underlying variability of the concentration 
measurements. Since individual data set variability will differ by site, constituent, and often by well, the 
EPA reference power curves provide a generalized ability to estimate power by standardizing variability. 
By convention, all background concentration data are assumed to follow a standard normal distribution 
(occasionally referred to in this document as a Z-normal distribution) with a true mean l = 0 and 
standard deviation L = 1.0. Then, increases above background are measured in increasing the k standard 
deviation units corresponding to ka mean units above baseline. When the background population can be 
normalized via a transformation, the same normal-based ERPC can be used without loss of generality. 

Ideally, actual test power should be assessed using the original concentration data and associated 
variability, referred to as effect size power analysis. The power of any statistical test can be readily 
computed and compared to the appropriate reference curve, if not analytically, then by Monte Carlo 
simulation. But the reference power curves laid out in the Unified Guidance offer an important standard 
by which to judge the adequacy of groundwater statistical programs and tests. They can be universally 
applied to all RCRA sites and offer a uniform way to assess the environmental and health protection 
afforded by a particular statistical detection monitoring program. 4 

Consequently, it is recommended that design of any detection monitoring statistical program 
include an assessment of its ability to meet the power standards set out in the Unified Guidance. The 
reference power curve approach does not place an undue statistical burden on facility owners or 
operators, and is believed to be generally protective of human health and the environment. 

4 The ERPCs are specifically intended for comparing background to compliance data in detection monitoring. Power issues 
in compliance/assessment monitoring and cmrective action are considered in Chapters 7 and 22. 
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Principal features of the ERPC approach include the following: 

Reference curves are based on upper 99% prediction limit tests of single future samples against 
background. The background sample consists of n = 10 measurements, a minimally adequate 
background sample size typical ofRCRA applications. It is assumed that the background sample 
and compliance well data are normally distributed and from the same population. 

The three reference curves described below are matched to the annual frequency of statistical 
evaluations: one each for quarterly, semi-annual, and annual evaluations. The annual cumulative 
false positive testing error is maintained at 1 %, testing 1, 2, or 4 single future samples annually 
against the same background. This represents the ability to identify a release to groundwater in at 
least one of the 1, 2 or 4 tests over the course of a year. Reporting power on an annual basis was 
chosen to correspond with the application of a cumulative annual SWFPR. 

In the absence of an acceptable effect size increase (Section 6.2.4), the Unified Guidance 
recommends that any statistical test provide at least 55-60% annual power to detecting a 3 a (i.e., 
3 standard deviation) increase above the true background mean and at least 80-85% annual 
power for detecting increases of 4a. The percent power criteria change slightly for the respective 
reference power curves, depending on the annual frequency of statistical evaluations. For normal 
populations, a 3 a increase above the background average approximately corresponds to the upper 
99th percentile of the background distribution, implying better than a 50% chance of detecting 
such an increase. Likewise, a 4cr increase corresponds to a true mean greater than the upper 
99.99th percentile of the background distribution, with better than a4-in-5 chance of detecting it. 

A single statistical test is not adequately powerful unless its power matches or betters the 
appropriate reference curve, at least for mean-level increases of 3 to 4 standard deviation units. 
The same concept can be applied to the overall detection monitoring test design. It is assumed 
for statistical design purposes that each individual monitoring well and constituent is of equal 
importance, and assigned a common test false positive error. Effective power then measures the 
overall ability of the statistical program to identify any single constituent release in any well, 
assuming all remaining constituents and wells are at background levels. If a number of different 
statistical methods are employed in a single design, effective power can be defined with respect 
to the least powerful of the methods being employed. Applying effective power in this manner 
would ensure that every well and constituent is evaluated with adequate statistical power to 
identify potential contamination, not just those where more powerful tests are applied. 

While the Unified Guidance recommends effective power as a general approach, other 
considerations may outweigh statistical thoroughness. Not all wells and constituents are 
necessarily of equal practical importance. Specific site circumstances may also result in some 
anomalous weak test power (e.g., a number of missing samples in a background data set for one 
or more constituents), which might be remedied by eventually increasing background size. The 
user needs to consider all factors including effective statistical power criteria in assessing the 
overall strength of a detection monitoring program. 
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In this section, a number of considerations in developing and applying the SWFPR are provided. 
Following a brief discussion of SWFPR computations, the next section explains the rationale for the 
10% design target SWFPR. Additional detail regarding the selection of monitoring constituents follows, 
and a final discussion of the Double Quantification rule for never-detected constituents is included in the 
last section. 

For cumulative false positive error and SWFPR computations, the following approach is used. A 
cumulative false positive error rate cum is calculated as the probability of at least one statistically 
significant outcome for a total number of tests nT in a calendar year at a single false positive error rate 

test using the properties of the Binomial distribution: 

(1 t- - )"T a cum fk:fest 

By rearranging to solve for test, the 10% design SWFPR (.1) can be substituted for cum and the 
needed per-test false positive error rate calculated as: 

_ _i 9 ~!}1T a test -\ :)1 

Although these calculations are relatively straightforward and were used to develop certain J 

factor tables in the Unified Guidance (discussed in Section 6.5 and in later chapters), a further 
simplification is possible using the Bonferroni approximation. This assumes that cumulative, annual 
SWFPR is roughly the additive sum of all the individual test errors. For low false positive rates typical 
of guidance application, the Bonferroni results are satisfactorily close to the Binomial formula for most 
design considerations. 

Using this principle, the design 10% SWFPR can be partitioned among the potential annual 
statistical tests at a facility in a number of ways. For facilities with different annual monitoring 
frequencies, the SWFPR can be divided among quarterly or semi-annual period tests. Given sWFPR = .1 
and nE evaluation periods, the quarterly cumulative false positive target rate E at a facility conducting 
quarterly testing would be E = sWFPR/nE = .1/4 = .025 or 2.5% (and similarly for semi-annual testing). 
The total or sub-divided SWFPR can likewise be partitioned among dedicated monitoring well 
groupings at a multi-unit facility or among individual monitoring constituents as needed. 

J_ 1 $1 ~ + I 1 i ... pi J_ !! p ... T ~ i p 1 ~ 11 ... n 1 ~ # + 11 

The existing RCRA Part 264 regulations for parametric or non-parametric analysis of variance 
[ ANOV A] procedures mandate a Type I error of at least 1 % for any individual test, and at least 5% 
overall. Similarly, the RCRA Part 265 regulations require a minimum 1 % error for indicator parameter 
tests. The rationale for minimum false positive requirements is motivated by statistical power. If the 
Type I error is set too low, the power of the test will be unacceptably low for any given test. EPA was 
historically not able to specify a minimum level of acceptable power within the RCRA regulations. To 
do so would require specification of a minimum difference of environmental concern between the null 
and alternative test hypotheses. Limits on current knowledge about the health and/or environmental 
effects associated with incremental changes in concentration levels of Part 264 Appendix IX or Part 258 
Appendix II constituents greatly complicate this task. Tests of non-hazardous or low-hazard indicators 
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might have different power requirements than for hazardous constituents. Therefore, minimum false 
positive rates were adopted for ANOVA-type procedures until more specific guidance could be 
recommended. EPA's main concern was adequate statistical power to detect real contamination of 
groundwater, and not enforcing commonly-used false positive test rates. 

This emphasis is evident in §264.98(g)(6) and §258.54(c)(3) for detection monitoring and 
§264.99(i) and §258.55(g)(2) for compliance monitoring. Both pairs of provisions allow the owner or 
operator to demonstrate that any statistically significant difference between background and compliance 
point wells or between compliance point wells and the GWPS is an artifact caused by an error in 
sampling, analysis, statistical evaluation, or natural variation in groundwater chemistry. The rules 
clearly expect that there will be occasional false positive errors, but existing rules are silent regarding the 
cumulative frequency of false positives at regulated facilities. 

As previously noted, it is essentially impossible to maintain a low cumulative SWFPR for 
moderate to large monitoring networks if the Type I errors for individual tests must be kept at or above 
1 %. However, the RCRA regulations do not impose similar false positive error requirements on the 
remaining control chart, prediction limit and tolerance interval tests. Strategies that incorporate 
prediction limit or control chart retesting can achieve very low individual test false positive rates while 
maintaining adequate power to detect contamination. Based on prediction limit research in the 1990' s 
and after, it became clear that these alternative methods with suitable retesting could also control the 
overall cumulative false positive error rate to manageable levels. 

This guidance suggests the use of an annual SWFPR of .1 or 10% as a fundamental element of 
overall detection monitoring design. The choice of a 10% annual SWFPR was made in light of the 
tradeoffs between false positive control and testing power. An annual period was chosen to put different 
sized facilities on a common footing regardless of variations in scheduled testing. It is recognized that 
even with such a limited error rate, the probability of false positive outcomes over a number of years 
(such as in the lifetime of a 5-10 year permit) will be higher. However, such relatively limited 
eventualities can be identified and adjusted for, since the RCRA regulations do allow for demonstration 
of a false positive error. State programs may choose to use a different annual rate such as 5% depending 
on the circumstances. But some predefined SWFPR in a given evaluation period is essential for 
designing a detection monitoring program, which can then be translated into target individual test rates 
for any alternative statistical testing strategy. 

To implement this recommendation, a given facility should identify its yearly evaluation schedule 
as quarterly, semi-annual, or annual. This designation is used both to select an appropriate EPA 
reference power curve by which to gauge acceptable power, and to select prediction limit and control 
chart multipliers useful in constructing detection monitoring tests. Some of the strategies described in 
the Unified Guidance in later chapters require that more than one observation per compliance well be 
collected prior to statistical testing. The cumulative, annual false positive rate is linked not to the 
frequency of sampling but rather to the frequency of statistical evaluation. When resamples (or 
verification resamples) are incorporated into a statistical procedure (Chapter 19), the individual 
resample comparisons comprise part of a single test. When a single future mean of m individual 
observations is evaluated against a prediction limit, this constitutes a test based on one mean 
comparison. 
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In designing a detection monitoring program to achieve the target SWFPR, the number of annual 
statistical tests to be conducted needs to be identified. This number is calculated as the number of 
distinct monitoring constituents x the number of compliance wells in the network x the number of 
annual evaluations. Five constituents and 10 well locations statistically evaluated semi-annually 
constitute 100 annual tests ( 5 x 10 x 2) since each distinct well-constituent pair represents a different 
statistical test that must be evaluated against their respective backgrounds. Even smaller facilities are 
likely to have a substantial number of such tests, each incrementally adding to the SWFPR. 

While the retesting strategies outlined in Chapters 19 and 20 can aid tremendously in limiting the 
SWFPR and ensure adequate statistical power, there are practical limits to meeting these goals due to the 
limited number of groundwater observations that can be collected and/or the number of retests which can 
feasibly be run. To help balance the risks of false positive and false negative errors, the number of 
statistically-tested monitoring parameters should be limited to constituents thought to be reliable 
indicators of a contaminant release. 

The guidance assumes that data from large suites of trace elements and organics along with a set of 
inorganic water quality indicators (pH, TDS, common ions, etc.) are routinely collected as part of 
historical site groundwater monitoring. The number of constituents potentially available for testing can 
be quite large, perhaps as many as 100 different analytes. At some sites, the full monitoring lists are too 
large to feasibly limit the SWFPR while maintaining sufficiently high power. 

Non-naturally occurring chemicals such as volatile organic compounds [VOC] and semi-volatile 
organic compounds [SVOC] are often viewed as excellent indicators of groundwater contamination, and 
are thereby included in the monitoring programs of many facilities. There is a common misperception 
that the greater the number ofVOCs and SVOCs on the monitoring list, the greater the statistical power 
of the monitoring program. The reasoning is that if none of these chemicals should normally be detected 
in groundwater - barring a release - testing for more of them ought to improve the chances of 
identifying contamination. 

But including a large suite ofVOCs and/or SVOCs among the mix of monitoring parameters can 
be counterproductive to the goal of maintaining adequate effective power for the site as a whole. 
Because of the trade-off between statistical power and false positive rates (Chapter 3), the power to 
detect groundwater contamination in one of these wells even with a retesting strategy in place may be 
fairly low unless background sample sizes are quite large. This is especially true if the regulatory 
authority only allows for a single retest. 

Suppose 40 VOCs and certain inorganic parameters are to be tested semi-annually at 20 
compliance wells totaling 1600 annual statistical tests. To maintain a 10% cumulative annual SWFPR, 
the per-test false positive rate would then need to be set at approximately atest = .0000625. If only IO 
constituents were selected for formal testing, the per-test rate would be increased to Utest = .00025. For 
prediction limits and other detection tests, higher false positive test rates translate to lower J -factors and 
improved power. 

Some means ofreducing the number of tested constituents is generally necessary to design an 
effective detection monitoring system. Earlier discussions have already suggested one obvious first step, 
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by eliminating historically non-detected constituents in background from the formal list of detction 
monitoring constituents (discussed further in the following section). These constituents are still 
analyzed and informally tested, but do not count against the SWFPR. 

Results of waste and leachate testing and possibly soil gas analysis should serve as the initial basis 
for designating constituents that are reliable leak detection indicators. Such specific constituents actually 
present in, or derivable from, waste or soil gas samples, should be further evaluated to determine which 
can be analytically detected a reasonable proportion of the time. This evaluation should include 
considerations of how soluble and mobile a constituent may be in the underlying aquifer. Additionally, 
waste or leachate concentrations should be high enough relative to the groundwater levels to allow for 
adequate detection. By limiting monitoring and statistical tests to fewer parameters with reasonable 
detection frequencies and that are significant components of the facility's waste, unnecessary statistical 
tests can be avoided while focusing on the reliable identification of truly contaminated groundwater. 

Initial leachate testing should not serve as the sole basis for designating monitoring parameters. 
At many active hazardous waste facilities and solid waste landfills, the composition of the waste may 
change over time. Contaminants that initially were all non-detect may not remain so. Because of this 
possibility, the Unified Guidance recommends that the list of monitoring parameters subject to formal 
statistical evaluation be periodically reviewed, for example, every three to five years. Additional leachate 
compositional analysis and testing may be necessary, along with the measurement of constituents not on 
the monitoring list but of potential health or environmental concern. If previously undetected parameters 
are discovered in this evaluation, the permit authority should consider revising the monitoring list to 
reflect those analytes that will best identify potentially contaminated groundwater in the future. 

Further reductions are possible in the number of constituents used for formal detection monitoring 
tests, even among constituents periodically or always detected. EPA's experience at hazardous waste 
sites and landfills across the country has shown that VOCs and SVOCs detected in a release generally 
occur in clusters; it is less common to detect only a single constituent at a given location. Statistically, 
this implies that groups of detected VOCs or SVOCs are likely to be correlated. In effect, the correlated 
constituents are measuring a release in similar fashion and not providing fully independent measures. 
At petroleum refinery sites, benzene, toluene, ethylbenzene and xylenes measured in a VOC scan are 
likely to be detected together Similarly at sites having releases of 1, 1, I-trichloroethane, perhaps I 0-12 
intermediate chlorinated hydrocarbon degradation compounds can form in the aquifer over time. 
Finally, among water quality indicators like common ions and TDS, there is a great deal of geochemical 
inter-relatedness. Again, two or three indicators from each of these analyte groups may suffice as 
detection monitoring constituents. 

The overall goal should be to select only the most reliable monitoring constituents for detection 
monitoring test purposes. Perhaps I 0-15 constituents may be a reasonable target, depending on site­
specific needs. Those analytes not selected should still continue to be collected and evaluated. In 
addition to using the informal test to identify previously undetected constituents described in the next 
section, information on the remaining constituents (e.g., VOCs, SVOCs and trace elements) can still be 
important in assessing groundwater conditions, including additional confirmation of a detected release. 
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From the previous discussion, a full set of site historical monitoring parameters can be split into 
three distinct groups: a) those reliable indicators and hazardous constituents selected for formal detection 
monitoring testing and contributing to the SWFPR; b) other analytes which may be occasionally or even 
frequently detected and will be monitored for general groundwater quality information but not tested; 
and c) those meeting the "never-detected" criteria. The last group may still be of considerable interest 
for eventual formal testing, should site or waste management conditions change and new compounds be 
detected. All background measurements in the "never-detected" group should be non-detects, whether 
the full historical set or a subgroup considered most representative (e.g., recently collected background 
measurements using an improved analytical method. 5

). The following rule is suggested to provide a 
means of evaluating "never-detected" constituents. 

The Double Quantification rule implies that statistical tests should be designed for each of the 
constituents in the first group. Calculations involving the SWFPR should cover these constituents, but 
not include constituents in second and the third '100% non-detect' categories. Any constituent in this 
third group should be evaluated by the following simple, quasi-statistical rule6

: 

A confirmed exceedance is registered if any well-constituent pair in the '100% 
non-detect' group exhibits quantified measurements (i.e., at or above the 
reporting limit [RLJ) in two consecutive sample and resample events. 

It is assumed when estimating an SWFPR using the Bonferroni-type adjustment, that each well­
constituent test is at equal risk for a specific, definable false positive error. As a justification for this 
Double Quantification rule, analytical procedures involved in identifying a reported non-detect value 
suggest that the error risk is probably much lower for most chemicals analyzed as "never-detected." 
Reporting limits are set high enough so that if a chemical is not present at all in the sample, a detected 
amount will rarely be recorded on the lab sheet. This is particularly the case since method detection 
limits [MDLs] are often intended as 99% upper prediction limits on the measured signal of an 
uncontaminated laboratory sample. These limits are then commonly multiplied by a factor of 3 to 10 to 
determine the RL. 

Consequently, a series of measurements for VOCs or SVOCs on samples of uncontaminated 
groundwater will tend to be listed as a string of non-detects with possibly a very occasional low-level 
detection. Because the observed measurement levels (i.e., instrument signal levels) are usually known 
only to the chemist, an approximate prediction limit for the chemical basically has to be set at the RL. 
However, the true measurement distribution is likely to be clustered much more closely around zero than 
the RL (Figure 6-1 ), meaning that the false positive rate associated with setting the RL as the prediction 

5 Note: Early historical data for some constituents (e.g., certain filtered trace elements) may have indicated occasional and 
perhaps unusual detected values using older analytical techniques or elevated reporting limits. If more recent sampling 
exhibits no detections at lower reporting limits for a number of events, the background review discussed in Chapter 5 may 
have determined that the newer, more reliable recent data should be used as background. These analytes could also be 
included in the '100% non-detect' group. 

6 The term "quasi-statistical" indicates that although the form is a statistical prediction limit test, only an approximate false 
positive error rate is implied for the reporting limit critical value. The test form follows l-of-2 or l-of-3 non-parametric 
prediction limit tests using the maximum value from a background data set (Chapter 19). 
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limit is likely already much lower than the Bonferroni-adjusted error rate calculated above. A similar 
chain ofreasoning would apply to site-specific chemicals that may be on the monitoring list but have 
never been detected at the facility. Such constituents would also need a prediction limit set at the RL. 
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In general, there should be some minimally sufficient sample numbers to justify placing 
constituents in the "never-detected" category. Even such a recommendation needs to consider individual 
background well versus pooled well data. Depending on the number of background wells (including 
historical compliance well data used as background which reflect the same non-detect patterns), certain 
risks may have to be taken to implement this strategy. With the same total number of non-detects (e.g., 
4 each in 5 wells versus 20 from a single well), the relative risk can change. Certain non-statistical 
judgements may be needed, such as the likelihood of particular constituents arising from the waste or 
waste management unit. At a minimum, we recommend that at least 6 consecutive non-detect values 
initially be present in each well of a pooled group, and additional background well sampling should 
occur to raise this number to 1 0-15. 

Having 10-15 non-detects as a basis, a maximum worst-case probability of a future false positive 
exceedance under Double Quantification rule testing could be estimated. But it should be kept in mind 
that the true individual comparison false positive rates based on analytical considerations are likely to be 
considerably lower. The number of non-detect constituents evaluated under the rule will also play a role. 
There will be some cumulative false positive error based on the number of comparisons at some true 
false positive single test error or errors. Since the true false positive test rates cannot be known (and may 
vary considerably among analytes), it is somewhat problematic to make this cumulative false positive 
error estimate. Yet there is some likelihood that occasional false positive exceedances will occur under 
this rule. 
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Some flexibility will be required in evaluating such outcomes, particularly if there is doubt that a 
confirmed exceedance is actually due to a release from the regulated unit. In this circumstance, it might 
be appropriate to allow for a second resample as more definitive confirmation. 

In implementing the Double Quantification rule, consideration should be given to how soon a 
repeat sample should be taken. Unlike detectable parameters, the question of autocorrelation is 
immaterial since the compound should not be present in the background aquifer. A sufficiently long 
interval should occur between the initial and repeat samples to minimize the possibility of a systematic 
analytical error. But the time interval should be short enough to avoid missing a subsequent real 
detection due to seasonal changes in the aquifer depth or flow direction. It is suggested that 1-2 months 
could be appropriate, but will depend on site-specific hydrological conditions. 

Using this rule, it should be possible to construct adequately powerful prediction and control limits 
for naturally-occurring and detectable inorganic and organic chemicals in almost every setting. This is 
especially helpful at larger sites, since the total number of tests on which the per-test false positive rates 
( test) are based will be significantly reduced. Requiring a verified quantification for previously non­
detected constituents should ensure that spurious lab results do not falsely trigger a facility into 
compliance/assessment monitoring, and will more reliably indicate the presence of chemicals that have 
heretofore not been found in background. 

The second but more important regulatory goal of a testing strategy is to ensure sufficient 
statistical power for detecting contaminated groundwater. Technically, in the context of groundwater 
monitoring, power refers to the probability that a statistical test will correctly identify a significant 
increase in concentration above background. Note that power is typically defined with respect to a single 
test, not a network of tests. In this guidance, cumulative power is assessed for a single test over an 
annual period, depending on the frequency of the evaluation. Since some testing procedures may 
identify contamination more readily when several wells in the network are contaminated as opposed to 
just one or two, the Unified Guidance recommends that all testing strategies be compared on the 
following more stringent common basis. 

The effective power of a testing protocol across a network of well-constituent pairs is defined as 
the probability of detecting contamination in the monitoring network when one and only one well­
constituent pair is contaminated. Effective power is a conservative measure of how a testing regimen 
will perform across the network, because the set of statistical tests must uncover one contaminated well 
among many clean ones (i.e., like 'finding a needle in a haystack'). As mentioned above, this initial 
judgment may need to be qualified with effect size and other site-specific considerations. 
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Perhaps the best way to describe the power function associated with a particular testing procedure 
is via a graph, such as the example below of the power of a standard normal-based upper prediction limit 
with 99% confidence (Figure 6-2). The power in percent is plotted along the y-axis against the 
standardized mean level of contamination along the x-axis. The standardized contamination levels are 
presented in units of standard deviations above the baseline (defined as the true background mean). This 
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allows different power curves to be compared across constituents, wells, or well-constituent pairs. These 
standardized units 11 in the case of normally-distributed data may be computed as: 

11 
= (Mean Contamination Level) - (Mean Background Level) 

(SD of Background Population) 
(6.1] 

In some situations, the probability that contamination will be detected by a particular testing 
procedure may be difficult if not impossible to derive analytically and will have to be simulated using 
Monte Carlo analysis on a computer. In these cases, power is typically estimated by generating normally­
distributed random values at different mean contamination levels and repeatedly simulating the test 
procedure. With enough repetitions a reliable power curve can be plotted. 

In the case of the normal power curve in Figure 6-2, the power values were computed analytically, 
using properties of the non-central !-distribution . In particular, the statistical power of a normal 99% 
prediction limit for the next single future value can be calculated as 

. /F:J b 1 - 13 = Pr CT L() = 11 1 + - - > t 
11-1 n I 11-1.1-a 

l 

[6.2) 

where 11 is the number of standardized (i.e., standard deviation) units above the background population 
mean, (1-13) is the fractional power, 8 is a non-centrality parameter, and: 

T L8=l1/~1+!~ 
11-11 n I 

[6.3) 

represents a non-central !-variate with (n-1) degrees of freedom and non-centrality parameter 8. 
Equation [6.2) was used with n = 10 to generate Figure 6-2. 7 

On a general power curve, the power at 11 = 0 represents the false positive rate or size of the 
statistical test, because at that point no contamination is actually present (i.e., the background condition), 
even though the curve indicates how often a significant concentration increase will be detected. One 
should be careful to distinguish between the SWFPR across many statistical tests and the false positive 
rate represented on a curve measuring effective power. Since the effective power is defined as the testing 
procedure's ability to identify a single contaminated well-constituent pair, the effective power curve 
represents an individual test, not a network of tests. Therefore, the value of the curve at 11 = 0 will only 
indicate the false positive rate associated with an individual test ( test), not across the network as a 
whole. For many of the retesting strategies discussed in Chapters 19 and 20, the individual per-test 
false positive rate will be quite small and may appear to be nearly zero on the effective power curve. 

7 For users with access to statistical software containing the non-central I-distribution, this power curve can be duplicated. 
For example, the I = 3 L fractional power can be obtained using the following inputs: a central t-value oft 99• 9 = 2.821, 9 df, 

and 8 = /-J + ( /10~1:3 8604.2 The fractional power is .5414. It should be noted that the software may report the 
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To properly interpret a power curve, note that not only is the probability greater of identifying a 
concentration increase above background (shown as a decimal value between 0 and I along the vertical 
axis) as the magnitude of the increase gets bigger (as measured along the horizontal axis), but one can 
determine the probability of identifying certain kinds of increases. For instance, with effective power 
equivalent to that in Figure 6-2, any mean concentration increase of at least 2 background standard 
deviations will be detected about 25% percent of the time, while an increase of 3 standard deviations 
will be detected with approximately 55% probability or better than 50-50 odds. A mean increase of at 
least 4 standard deviations will be detected with about 80% probability. 

)6)0 ... 

An increase of 3 or 4 standard deviations above the baseline may or may not have practical 
implications for human health or the environment. That will ultimately depend on site-specific factors 
such as the constituents being monitored, the local hydrogeologic environment, proximity to 
environmentally sensitive populations, and the observed variability in background concentrations. In 
some circumstances, more sensitive testing procedures might be warranted. As a general guide especially 
in the absence of direct site-specific information, the Unified Guidance recommends that when 
background is approximately normal in distribution, 8 any statistical test should be able to detect a 3 

probability as ( -) rather than ( 1- -). For more complex power curves involving multiple repeat samples or multiple tests, 
integration is necessary to generate the power estimates. 

8 If a non-parametric test is performed, power (or more technically, efficiency) is often measured by Monte Carlo simulation 
using normally distributed data. So these recommendations also apply to that case. 
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standard deviation increase at least 5 5-60% of the time and a 4 standard deviation increase with at least 
80-85% probability. 
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Since effect sizes discussed in the next section often cannot or have not been quantified, the 
Unified Guidance recommends using the ERPC as a suitable basis of comparison for proposed testing 
procedures. Each reference power curve corresponds to one of three typical yearly statistical evaluation 
schedules - quarterly, semi-annual, or annual - and represents the cumulative power achievable 
during a single year at one well-constituent pair by a 99% upper (normal) prediction limit based on n = 

10 background measurements and one new measurement from the compliance well (see Chapter 18 for 
discussion of normal prediction limits). The ERPC are pictured in Figure 6-3 below. 

Any proposed statistical test procedure with effective power at least as high as the appropriate 
ERPC, especially in the range of three or more standard deviations above the background mean, should 
be considered to have reasonable power. 9 In particular, if the effective power first exceeds the ERPC at a 
mean concentration increase no greater than 3 background standard deviations (i.e., I • 3), the power is 
labeled 'good;' if the effective power first exceeds the ERPC at a mean increase between 3 and 4 
standard deviations (i.e., 3 < I • 4), the power is considered 'acceptable;' and if the first exceedance of 
the ERPC does not occur until an increase greater than 4 standard deviations (i.e., I > 4), the power is 
considered 'low.' 

With respect to the ERPCs, one should keep the following considerations in mind: 

1. The effective power of any testing method applied to a groundwater monitoring network can be 
increased merely by relaxing the SWFPR guideline, letting the SWFPR become larger than 10%. 
This is why a maximum annual SWFPR of 10% is suggested as standard guidance, to ensure fair 
power compansons among competing tests and to limit the overall network-wide false positive 
rate. 

2. The ERPCs are based on cumulative power over a one-year period. That is, if a single well­
constituent pair is contaminated at standardized level I during each of the yearly evaluations, the 
ERPC indicates the probability that a 99% upper prediction limit test will identify the 
groundwater as impacted during at least one of those evaluations. Because the number of 
evaluations not only varies by facility, but also impacts the cumulative one-year power, different 
reference power curves should be employed depending on a facility's evaluation schedule. 
Quarterly evaluators should utilize the quarterly reference power curve (Q); semi-annual 
evaluators the semi-annual curve (S); and annual evaluators the annual curve (A). 

3. If Monte Carlo simulations are used to evaluate the power of a proposed testing method, it 
should incorporate every aspect of the procedure, from initial screens of the data to final 

9 When using a retesting strategy in a larger network, the false positive rate associated with a single contaminated well (used 
to determine the effective power) will tend to be much smaller than the targeted SWFPR. Since the point at which the 
effective power curve intersects I = 0 on the standardized horizontal axis represents the false positive rate for that 
individual test, the effective power curve by construction will almost always be less than the EPA reference power curve for 
small concentration increases above background. Of more concern is the relative behavior ofthe effective power curve at 
larger concentration increases, say two or more standard deviations above background. 
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decisions concerning the presence of contamination. This is especially applicable to strategies 
that involve some form of retesting at potentially contaminated wells. 

4. Although monitoring networks incorporate multiple well-constituent pairs, effective power can 
be gauged by simulating contamination in one and only one constituent at a single well. 

5. The ERPCs should be considered a minimal power standard. The prediction limit test used to 
construct these reference curves does not incorporate retesting of any sort, and is based on 
evaluating a single new measurement from the contaminated well-constituent pair. In general, 
both retesting and/or the evaluation of multiple compliance point measurements tend to improve 
statistical power, so proposed tests that include such elements should be able to match the ERPC. 

6. At sites employing multiple types of test procedures (e.g., non-parametric prediction limits for 
some constituents, control charts for other constituents), effective power should be computed for 
each type of procedure to determine which type exhibits the least statistical power. Ensuring 
adequate power across the site implies that the least powerful procedure should match or exceed 
the appropriate ERPC, not just the most powerful procedure. 
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If site-specific or chemical-specific risk/health information is available particularly for naturally­
occurring constituents, it can be used in some circumstances to develop an effect size of importance. An 
effect size ( cp) is simply the smallest concentration increase above the mean background level that is 
presumed or known to have a measurable, deleterious impact on human health and/or the environment, 
or that would clearly signal the presence of contamination. 

When an effect size can be quantified for a given constituent and is approved by the regulating 
authority, the acceptable power of the statistical test can be tailored to that amount. For instance, if an 
effect size for lead in groundwater at a particular site is cp = 10 ppb, one might require that the statistical 
procedure have an 80% or 95% chance of detecting such an increase. This would be true regardless of 
whether the power curve for lead at that site matches the ERPC. In some cases, an agreed-upon effect 
size will result in a more stringent power requirement compared to the ERPCs. In other cases, the power 
standard might be less stringent. 

Effect sizes are not known or have not been determined for many groundwater constituents, 
including many inorganic parameters that have detection frequencies high enough to be amenable to 
effect size calculations. Because of this, many users will routinely utilize the relative power guidelines 
embodied in the ERPC. Even if a specific effect size cannot be determined, it is helpful to consider the 
site-specific and test-specific implications of a three or four standard deviation concentration increase 
above background. Taking the background sample mean ( x) as the estimated baseline, and estimating 
the underlying population variability by using the sample background standard deviation ( s ), one can 
compute the approximate actual concentrations associated with a three, four, five, etc. standard deviation 
increase above the baseline (as would be done in computing a data-based power curve; Section 6.2.4 ). 
These concentration values will only be approximate, since the true background mean (µ)and standard 
deviation ( cr) are unknown. However, conducting this analysis can be useful in at least two ways. Each 
is illustrated by a simple example. 

By associating the standardized units on a reference power curve with specific but approximate 
concentration levels, it is possible to evaluate whether the anticipated power characteristics of the chosen 
statistical method are adequate for the site in question. If not, another method with better power might 
be needed. Generally, it is useful to discuss and report statistical power in terms of concentration 
levels rather than theoretical units. 

c 1 ?PI t 1 l u 

A potential permit GWPS for lead is 15 ppb, while natural background lead levels are normally 
distributed with an average of 6 ppb and a standard deviation of 2 ppb. The regulatory agency 
determines that a statistical test should be able to identify an exceedance of this GWPS with high power. 
Further assume that the power curve for a particular statistical test indicated 40% power at 3 standard 
deviations and 78% power at 4 L above background (a low power rating). 

By comparing the actual standard deviation estimate to the required target increase = (15-6)/2 = 

4.5 standard units, the power at the critical effect size would be 80% or higher using Figure 6-2 as a 

LJ • 
l 

EPAPAV0116988 



l u 1-•c c:JJ-l-=l!ivCl-Jivlfi•v~cr-1~i>c 

rough guide. This might be sufficient for monitoring needs even though the test did not meet the EPA 
reference criteria. Of course, the results apply only to this specific well-constituent test. 

For a given background sample, one can consider the regulatory and environmental impact of 
using that particular background as the basis of comparison in detection monitoring. Especially when 
deciding between interwell and intrawell tests at the same site, it is not unusual for the intrawell 
background from an individual well to exhibit much less variability than a larger set of observations 
pooled from multiple upgradient wells. This difference can be important since an intrawell test and an 
interwell test applied to the same site - using identical relative power criteria - might be associated 
with different risks to human health and the environment. A similar type of comparison might also aid in 
deciding whether the degrees of freedom of an intrawell test ought to be enlarged via a pooled estimate 
of the intrawell standard deviation (Chapter 13 ), whether a non-adjusted intrawell test is adequate, or 
whether more background sampling ought to be conducted prior to running intrawell tests. 

c 1 ?PI + 1 l L 

The standard deviation of an intrawell background population is Lintra = 5 ppb, but that of 
upgradient, interwell background is Linter= 10 ppb. With the increased precision of an intrawell method, 
it may be possible to detect a 20 ppb increase with high probability (representing a I = 4crintra increase), 
while the corresponding probability for an interwell test is much lower (i.e., 20 ppb = 2 Linter= I ). Of 
course, even if the intrawell test meets the ERPC target at four standardized units above background, 
consideration should be given as to whether or not 20 ppb is a meaningful increase. 

One caveat is that calculation of either effect sizes or data-based power curves (see below) requires 
a reasonable estimate of the background standard deviation ( cr). Such calculations may often be possible 
only for naturally-occurring inorganics or other constituents with fairly high detection frequencies in 
groundwater. Otherwise, power computations based on an effect size or the estimated standard deviation 
(s) are likely to be unreliable due to the presence ofleft-censored measurements (i.e., non-detects). 

A type of effect size calculation is presented in Chapter 22 regarding methods for 
compliance/assessment and corrective action monitoring. A comparable effect size is computed by 
considering changes in mean concentration levels equal to a multiple of a fixed GWPS or clean­
up/action level. While the mean level changes are multiples of the concentration limit and in that sense 
still relative, because they are tied to a fixed concentration standard, the power of the test can be linked 
to specific concentration levels. 

J_ p ~p L P--> 1 J_ + ~ #1 !! +-- !! $1 ---> 

Even if basing power on a specific effect size is impractical for a given facility or constituent, it is 
still possible to relate power to absolute concentration levels rather than to the standardized units of the 
ERPC. While exact statistical power depends on the unknown population standard deviation (cr), an 
approximate power curve can be constructed based on the estimated background standard deviation (s). 
Instead of an estimate of power at a single effect size (depicted in Example 6-1), the actual power over a 
range of effect sizes can be evaluated. Such a graph is denoted in the Unified Guidance as a data-based 
power curve, a term first coined by Davis (1998). 
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Since the sample standard deviation (s) is calculated from actual groundwater measurements, this 
in turn changes an abstract power curve based on relative concentrations (i.e., ka units above the 
baseline mean) into one displaying approximate, but absolute, concentrations (i.e., ks units above 
baseline). The advantages of this approach include the following: 

Approximate data-based power curves allow the user to determine statistical power at any 
desired effect size (<I>). 

Even if the effect size (<!>) is unspecified, data-based power curves tie the performance of the 
statistical test back to actual concentration levels of the population being tested. 

Once the theoretical power curve of a particular statistical test is known, a data-based power 
curve is extremely easy to construct. One merely substitutes the observed background standard 
deviation ( s) for a and multiply by k to determine concentration values along the horizontal axis 
of the power curve. Even ifthe theoretical power curve is unknown, the same calculations can be 
made on the reference curve to derive an approximate site-specific, data-based power curve for 
tests roughly matching the performance of the ERPCs. 

If the choice between an interwell test and an intrawell approach is a difficult one (Section 
6.3.2 ), helpful power comparisons can be made between intrawell and interwell tests at the same 
site using data-based power curves. Even if both tests meet the ERPC criteria, they may be based 
on different sets of background measurements, implying that the interwell standard deviation 
(sinter) might differ from the intrawell standard deviation (sintra). By plotting both data-based 
power curves on the same set of axes, the comparative performance of the tests can be gauged. 

c 1 ?PI + 1 l L 

The following background sample is used to construct a test with theoretical statistical power 
similar to the ERPC for annual evaluations (see Figure 6-2). What will an approximate data-based 
power curve look like, and what is the approximate power for detecting a concentration increase of 75 
ppm? 
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The sample standard deviation of the pooled background sulfate concentrations is 29.7 ppm. 

Multiplying this amount by the number of standard deviations above background along the x-axis in 
Figure 6-2 and re-plotting, the approximate data-based power curve of Figure 6-3 can be generated. 
Then the statistical power for detecting an increase of 75 ppm is almost 40%. 
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Had the pooled sample size been n = 16 using the same test and sample statistics, a different and 
somewhat more powerful theoretical power curve would result. This theoretical curve can be generated 
(for a 1-of-l prediction limit test) using the non-central T-distribution described earlier, if a user has the 
appropriate statistical software package. The power for a 75 ppm increase can be calculated using 

8 = / ~ + (/ ) = 45 .2<hfil lt7~. 15 = 2.602, as closer to 46%. The larger background sample size 

makes for a more powerful test. 

I 1 ... n ~ J_ 

There is no requirement that a facility apply one and only one statistical method to its groundwater 
monitoring program. The RCRA regulations explicitly allow for the use of multiple techniques, 
depending on the distributional properties of the constituents being monitored and the characteristics of 
the site. If some constituent data contain a high percentage of non-detect values, but others can be 
normalized, the statistical approach should vary by constituent. 

With interwell testing, parametric prediction limits might be used with certain constituents and 
non-parametric prediction limits for other highly non-detect parameters. If intrawell testing is used, the 
most appropriate statistical technique for one constituent might differ at certain groups of wells than for 
others. Depending on the monitoring constituent, available individual well background, and other site­
specific factors, some combination of intrawell prediction limits, control charts, and Wilcoxon rank-sum 
tests might come into play. At other sites, a mixture of intra well and interwell tests might be conducted. 

The Unified Guidance offers a range of possible methods which can be matched to the statistical 
characteristics of the observed data. The primary goal is that the statistical program should maximize the 
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odds of making correct judgments about groundwater quality. The guidance SWFPR and ERPC 
minimum power criteria serve as comprehensive guides for assessing any of the statistical methods. 

One major concern is how statistical power should be compared when multiple methods are 
involved. Even if each method is so designed as not to exceed the recommended SWFPR, the effective 
power for identifying contaminated groundwater may vary considerably by technique and specific type 
of test. Depending on the well network and statistical characteristics of available data, a certain control 
chart test may or may not be as powerful as normal prediction limits. In turn, a specific non-parametric 
prediction limit test may be more powerful than some parametric versions. It is important that effective 
power be defined consistently, even at sites where more than one statistical method is employed. 

The guidance encourages employing the effective power concept in assessing the ability of the 
statistical program to correctly identify and flag real concentration increases above background. As 
already defined, effective power is the probability that such an increase will be identified even if only 
one well-constituent pair is contaminated. Each well-constituent pair being tested should be considered 
equally at risk of containing a true increase above background. This also implies that the effective power 
of each statistical test in use should meet the criteria of the EPA reference curves. That is, the test with 
the least power should still have adequate power for identifying mean concentration increases. 

The Unified Guidance does not recommend that a single composite measure of effective power be 
used to gauge a program's ability to identify potential contamination. To understand this last 
recommendation, consider the following hypothetical example. Two constituents exhibiting different 
subsurface travel times and diffusive potentials in the underlying aquifer are monitored with different 
statistical techniques. The constituent with the faster travel time might be measured using a test with 
very low effective power (compared to the ERPC), while the slower moving parameter is measured with 
a test having very high effective power. Averaging the separate power results into a single composite 
measure might result in an effective power roughly equivalent to the ERPC. Then the chances of 
identifying a release in a timely manner would be diminished unless rather large concentrations of the 
faster constituent began appearing in compliance wells. Smaller mean increases - even if 3 or 4 
standard deviation units above background levels -would have little chance of being detected, while 
the time it took for more readily-identified levels of the slower constituent to arrive at compliance wells 
might be too long to be environmentally protective. Statistical power results should be reported 
separately, so that the effectiveness of each distinct test can be adequately judged. Further data-specific 
power evaluations could still be necessary to identify the appropriate test(s). 

The following basic steps are recommended for assessing effective power at sites using multiple 
statistical methods: 

1. Determine the number and assortment of distinct statistical tests. Different power characteristics 
may be exhibited by different statistical techniques. Specific control charts, !-tests, non­
parametric prediction limits, etc. all tend to vary in their performance. The performance of a 
given technique is also strongly affected by the data characteristics. Background sample sizes, 
interwell versus intrawell choices, the number ofretests and type ofretesting plan, etc., all affect 
statistical power. Each distinct data configuration and retesting plan will delineate a slightly 
different statistical test method. 
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2. Once the various methods have been identified, gauge the effective power of each. 10 Often the 
easiest way to measure power is via Monte Carlo simulation. Effective power involves a single 
well-constituent pair, so the simulation needs to incorporate only one population of background 
measurements representing the baseline condition and one population of compliance point 
measurements. 

3. To run a Monte Carlo simulation, repeat the following algorithm a large number of times (e.g., N 
= I 0,000). Randomly generate a set of measurements from the background population in order to 
compute either a comparison limit for a control chart or some type of prediction limit test, or the 
background portion for at-test or Wilcoxon rank-sum calculation, etc. Then generate compliance 
point samples at successively higher mean concentration levels, representing increases in 
standard deviation units above the baseline average. Perform each distinct test on the simulated 
data, recording the result of each iteration. By determining how frequently the concentration 
increase is identified at each successive mean level (including retests if necessary), the effective 
power for each distinct method can be estimated and compared. 

c 1 ?PI + 1 l L 

As a simple example of measuring effective power, consider a site using two different statistical 
methods. Assume that most of the constituents will be tested interwell with a l-of-3 parametric normal 
prediction limit retesting plan for individual observations (Chapter 19). The remaining constituents 
having low detection rates and small well sample sizes will be tested intrawell with a Wilcoxon rank­
sum test. 

To measure the effective power of the normal prediction limits, note that the same number of 
background measurements (n = 30) is likely to be available for each of the relevant constituents. Since 
the per-constituent false positive rate ( ac) and the number of monitored wells ( w) will also be identical 
for these chemicals, the same K multiplier can be used for each prediction limit, despite the fact that the 
background mean and standard deviation will almost certainly vary by constituent. 

Because of these identical data and well configurations, the effective power of each normal 
prediction limit will also be the same, 11 so that only one prediction limit test need be simulated. It is 
sufficient to assume the background population has a standard normal distribution. The compliance 
point population at the single contaminated well also has a normal distribution with the same standard 
deviation but a mean (µ) shifted upward to reflect successive relative concentration increases of I 
standard deviation, 2 standard deviations, 3 standard deviations, etc. 

Simulate the power by conducting a large number of iterations (e.g., N= 10,000-20,000) of the 
following algorithm: Generate 30 random observations from background and compute the sample mean 

10 Since power is a property of the statistical method and not linked to a specific data set, power curves are not needed for all 
well-constituent pairs, but only for each distinct statistical method. For instance, if intrawell prediction limits are employed 
to monitor barium at 10 compliance wells and the intrawell background sample size is the same for each well, only one 
power curve needs to be created for this group of tests. 

11 Statistical power measures the likely performance of the technique used to analyze the data, and is not a statement about the 
data themselves. 
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and standard deviation. Calculate the prediction limit by adding the background mean to K times the 
background standard deviation. For a 1-of-3 retesting plan, generate 3 values from the compliance point 
distribution (i.e., a normal distribution with unit standard deviation but mean equal to µ).If the first of 
these measurements does not exceed the prediction limit, record a score of zero and move on to the next 
iteration. If, however, the first value is an exceedance, test the second value and possibly the third. If 
either resample does not exceed the prediction limit, record a score of zero and move to the next 
iteration. But if both resamples are also exceedances, record a score of one. The fraction of iterations (N) 
with scores equal to one is an estimate of the effective power at a concentration level of µ standard 
deviations above the baseline. 

In the case of the intrawell Wilcoxon rank-sum test, the power will depend on the number of 
intrawell background samples available at each well and for each constituent. 12 Assume for purposes of 
the example that all the intrawell background sizes are the same with n = 6 and that two new 
measurements will be collected at each well during the evaluation period. The power will also depend on 
the frequency of non-detects in the underlying groundwater population. To simulate this aspect of the 
distribution for each separate constituent, estimate the proportion (p) of observed non-detects across a 
series of wells. Then set a RL for purposes of the simulation equal to z13, the pth quantile of the standard 
normal distribution. 

Finally, simulate the effective power by repeating a large number of iterations of the following 
algorithm: Generate n = 6 samples from a standard normal distribution to represent intrawell 
background. Also generate two samples from a normal distribution with unit standard deviation and 
mean equal to l to represent new compliance point measurements from a distribution with mean level 
equal to l standard deviations above background. Classify any values as non-detects that fall below z13 . 

Then jointly rank the background and compliance values and compute the Wilcoxon rank-sum test 
statistic, making any necessary adjustments for ties (e.g., the non-detects). If this test statistic exceeds its 
critical value, record a score of one for the iteration. If not, record a score of zero. Again estimate the 
effective power at mean concentration level µ as the proportion of iterations (N) with scores of one. 

As a last step, examine the effective power for each of the two techniques. As long as the power 
curves of the normal prediction limit and the Wilcoxon rank-sum test both meet the criteria of the 
ERPCs, the statistical program taken as a whole should provide acceptable power. 

12 Technically, since the Wilcoxon rank-sum test will often be applied to non-normal data, power will also depend 
fundamentally on the true underlying distribution at the compliance well. Since there may be no way to determine this 
distribution, approximate power is measured by assuming the underlying distribution is instead normal. 
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Whether a facility is in detection monitoring, compliance/assessment, or corrective action, having 
an appropriate and valid sampling program is critical. All statistical procedures infer information about 
the underlying population from the observed sample measurements. Since these populations are only 
sampled a few times a year, observations should be carefully chosen to provide accurate information 
about the underlying population. 

As discussed in Chapter 3, the mathematical theory behind standard statistical tests assumes that 
samples were randomly obtained from the underlying population. This is necessary to insure that the 
measurements are independent and identically distributed [i.i.d.]). Random sampling means that each 
possible concentration value in the population has an equal or known chance of being selected any time 
a measurement is taken. Only random sampling guarantees with sufficiently high probability that a set of 
measurements is adequately representative of the underlying population. It also ensures that human 
judgment will not bias the sample results, whether by intention or accident. 

A number of factors make classical random sampling of groundwater virtually impossible. A 
typical small number of wells represent only a very small portion of an entire well-field. Wells are 
screened at specific depths and combine potentially different horizontal and vertical flow regimes. Only 
a minute portion of flow that passes a well is actually sampled. Sampling normally occurs at fixed 
schedules, not randomly. 

Since a typical aquifer cannot be sampled at random, certain assumptions are made concerning the 
data from the available wells. It is first assumed that the selected well locations will generate 
concentration data similar to a randomly distributed set of wells. Secondly, it is assumed that 
groundwater flowing through the well screen(s) has a concentration distribution identical to the aquifer 
as a whole. This second assumption is unlikely to be valid unless groundwater is flowing through the 
aquifer at a pace fast enough and in such a way as to allow adequate mixing of the distinct water 
volumes over a relatively short (e.g., every few months or so) period of time, so that groundwater 
concentrations seen at an existing well could also have been observed at other possible well locations. 

Adequate sampling of aquifer concentration distributions cannot be accomplished unless enough 
time elapses between sampling events to allow different portions of the aquifer to pass through the well 
screen. Most closely-spaced sampling events will tend to exhibit a statistical dependence 
(autocorrelation). This means that pairs of consecutive measurements taken in a series will be positively 
correlated, exhibiting a stronger similarity in concentration levels than expected from pairs collected at 
random times. This would be particularly true for overall water quality indicators which are continuous 
throughout an aquifer and only vary slowly with time. 

Another form of statistical dependence is spatial correlation. Groundwater concentrations of 
certain constituents exhibit natural spatial variability, i.e., a distribution that varies depending on the 
location of the sampling coordinates. Spatially variable constituents exhibit mean and occasionally 
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variance differences from one well to another. Pairs of spatially variable measurements collected from 
the same or nearby locations exhibit greater similarity than those collected from distinct, widely-spaced, 
or distant wells. 

Natural spatial variability can result from a number of geologic and hydrological processes, 
including varying soil composition across an aquifer. Various geochemical, diffusion, and adsorption 
processes may dominate depending on the specific locations being measured. Differential flow paths 
can also impact the spatial distribution of contaminants in groundwater, especially ifthere is limited 
mixing of distinct groundwater volumes over the period of sampling. 

An adequate groundwater monitoring sampling program needs to account for not only site-specific 
factors such as hydrologic characteristics, projected flow rates, and directional patterns, but also meeting 
data assumptions such as independence. Statistical adjustments are necessary, such as selecting 
intrawell comparisons for spatially distinct wells or removing autocorrelation effects in the case of time 
dependence. 

1- P !! CE .... 1 ( .... P~T ~ I PI 1- p.- ~~ ~ !! !! 1 

Past EPA guidance recommended the use of Darcy's equation as a means of establishing a 
minimum time interval between samples. When validly applied as a basic estimate of groundwater 
travel time in a given aquifer, the Darcy equation ensures that separate volumes of groundwater are 
being sampled (i.e., physical independence). This increases the probability that the samples will also be 
statistically independent. 

The Unified Guidance in Chapter 14 also includes a discussion on applying Darcy's equation. 
Caution is advised in its use, however, since Darcy's equation cannot guarantee temporal independence. 
Groundwater travel time is only one factor that can influence the temporal pattern of aquifer 
constituents. The measurement process itself can affect time related dependency. An imprecise 
analytical method might impart enough additional variability to make the measurements essentially 
uncorrelated even in a short sampling interval. Changes in analytical methods or laboratories and even 
periodic re-calibration of analytical instrumentation can impart time-related dependencies in a data set 
regardless of the time intervals between samples. 

The overriding interest is in the behavior of chemical contaminants in groundwater, not the 
groundwater itself Many chemical compounds do not travel at the same velocity as groundwater. 
Chemical characteristics such as adsorptive potential, specific gravity, and molecular size can influence 
the way chemicals move in the subsurface. Large molecules, for example, will tend to travel slower than 
the average linear velocity of groundwater because of matrix interactions. Compounds that exhibit a 
strong adsorptive potential will undergo a similar fate, dramatically changing time of travel predictions 
using the Darcy equation. In some cases, chemical interaction with the matrix material will alter the 
matrix structure and its associated hydraulic conductivity and may result in an increase in contaminant 
mobility. This last effect has been observed, for instance, with certain organic solvents in clay units (see 
Brown and Andersen, 1981 ). 

The Darcy equation is also not valid in turbulent and non-linear laminar flow regimes. Examples of 
these particular hydrological environments include karst and 'pseudo-karst' (e.g., cavernous basalt and 
extensively fractured rock) formations. Specialized methods have been investigated by Quinlan (1989) 
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for developing alternative monitoring procedures. Dye tracing as described by Quinlan (1989) and Mull, 
et al. ( 1988) can be useful for identifying flow paths and travel times in these two particular 
environments; conventional groundwater monitoring wells are often of little value in designing an 
effective monitoring system in these type of environments. 

Thus, we suggest that Darcy's equation not be exclusively relied upon to gauge statistical sampling 
frequency. At many sites, quarterly or semi-annual sampling often provides a reasonable balance 
between maintaining statistical independence among observations yet enabling early detection of 
groundwater problems. The Unified Guidance recommends three tools to explore or test for time-related 
dependence among groundwater measurements. Time series plots (Chapter 9) can be constructed on 
multiple wells to examine whether there is a time-related dependence in the pattern of concentrations. 
Parallel traces on such a plot may indicate correlation across wells as part of a natural temporal, seasonal 
or induced laboratory effect. For longer data series, direct estimates of the autocorrelation in a series of 
measurements from a single well can be made using either the sample autocorrelation function or the 
rank van Neumann ratio (Section 14.2). 
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Some facility data sets may contain both single and aliquot replicate groundwater measurements 
such as duplicate splits. An entire data set may also consist of aliquot replicates from a number of 
independent water quality samples. The guidance recommends against using aliquot data directly in 
detection monitoring tests, since they are almost never statistically independent. Significant positive 
correlation almost always exists between such duplicate samples or among aliquot sets. However, it is 
still possible to utilize some of the aliquot information within a larger water quality data set. 

Lab duplicates and field splits can provide valuable information about the level of measurement 
variability attributable to sampling and/or analytical techniques. However, to use them as separate 
observations in a prediction limit, control chart, analysis of variance [ANOVA] or other procedure, the 
test must be specially structured to account for multiple data values per sampling event. 

Barring the use of these more complicated methods, one suggested strategy has been to simply 
average each set of field splits and lab duplicates and treat the resulting mean as a single observation in 
the overall data set. Despite eliminating the dependence between field splits and/or lab duplicates, such 
averaging is not an ideal solution. The variability in means of two correlated measurements is 
approximately 30% less than the variability associated with two single independent measurements. If a 
data set consists of a mixture of single measurements and lab duplicates and/or field splits, the 
variability of the averaged values will be less than the variability of the single measurements. This 
would imply that the final data set is not identically distributed. 

When data are not identically distributed, the actual false positive and false negative rates of 
statistical tests may be higher or lower than expected. The effect of mixing single measurements and 
averaged aliquot replicates might be balanced out in a two-sample t-test if sample sizes are roughly 
equal. However, the impact of non-identically distributed data can be substantial for an upper prediction 
limit test of a future single sample where the background sample includes a mixture of aliquot replicates 
and single measurements. Background variability will be underestimated, resulting in a lowered 
prediction limit and a higher false positive rate. 
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One statistically defensible but expensive approach is to perform the same number of aliquot 
replicate measurements on all physical samples collected from background and compliance wells. 
Aliquot replicates can be averaged, and the same variance reduction will occur in all the final 
observations. The statistical test degrees of freedom, however, are based on the number of independent, 
averaged samples. 

Mixing single and averaged aliquot data is a serious problem if the component of variability due to 
field sampling methods and laboratory measurement error is a substantial fraction of the overall sample 
variance. When natural variability in groundwater concentrations is the largest component, averaging 
aliquot replicate measurements will do little to weaken the assumption of identically-distributed data. 
Even when variability due to sampling and analytical methods is a large component of the total variance, 
ifthe percentage of samples with aliquot replicate measurements is fairly small (say, 10% or less), the 
impact of aliquot replicate averaging should usually be negligible. However, consultation with a 
professional statistician is recommended. 

The simplest alternative is to randomly select one value from each aliquot replicate set along with 
all non-replicate individual measurements, for use in statistical testing. Either this approach or the 
averaged replicate method described above will result in smaller degrees of freedom than the strategy of 
using all the aliquots, and will more accurately reflect the statistical properties of the data. 

The Unified Guidance recommends two general methods to correct for observable temporal 
correlation. Darcy's equation is mentioned above as a rough guide to physical independence of 
consecutive groundwater observations. A more generally applicable strategy for yet-to-be-collected 
measurements involves adjusting the sampling frequency to avoid autocorrelation in consecutive 
sampling events. Where autocorrelation is a serious concern, the Unified Guidance recommends 
running a pilot study at two or three wells and analyzing the study data by using the sample 
autocorrelation function (Section 14.3.1 ). The autocorrelation function plots the strength of correlation 
between consecutive measurements against the time lag between sampling events. When the 
autocorrelation becomes insignificantly different from zero at a particular sampling interval, the 
corresponding sampling frequency is the maximum that will ensure uncorrelated sampling events. 

Two other strategies are recommended for adjusting already collected data. First, a longer data 
series at a single well can be corrected for seasonality by estimating and removing the seasonal trend 
(Section 14.3.3 ). If both a linear trend and seasonal fluctuations are evident, the seasonal Mann-Kendall 
trend test can be run to identify the trend despite the seasonal effects (Section 14.3.4 ). A second strategy 
is for sites where a temporal effect (e.g., temporal dependence, seasonality) is apparent across multiple 
wells. This involves estimating a temporal effect via a one-way ANOVA and then creating adjusted 
measurements using the ANOVA residuals (Section 14.3.3 ). The adjusted data can then be utilized in 
subsequent statistical procedures. 
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The RCRA groundwater monitoring regulations initially presume that detection monitoring 
background can be defined on the basis of a definable groundwater gradient. In a considerable number of 
situations, this approach is problematic. No groundwater gradient may be measurable for identifying 
upgradient and downgradient well locations around a regulated unit. The hydraulic gradient may change 
in direction, depth or magnitude due to seasonal fluctuations. Groundwater mounding or other flow 
anomalies can occur. At most locations, significant spatial variability among wells exists for certain 
constituents. Where spatial variation is a natural artifact of the site-specific geochemistry, differences 
between upgradient and downgradient wells are unrelated to on-site waste management practices. 

Both the Subtitle C and Subtitle D RCRA regulations allow for a determination that background 
quality may include sampling of wells not hydraulically upgradient of the waste management area. The 
rules recognize that this can occur either when hydrological information is unable to indicate which 
wells are hydraulically upgradient or when sampling other wells will be "representative or more 
representative than that provided by the upgradient wells." 

For upgradient-to-downgradient well comparisons, a crucial detection monitoring assumption is 
that downgradient well changes in groundwater quality are only caused by on-site waste management 
activity. Up- and down-gradient well measurements are also assumed to be comparable and equal on 
average unless some waste-related change occurs. If other factors trigger significant increases in 
downgradient well locations, it may be very difficult to pinpoint the monitored unit as the source or 
cause of the contaminated groundwater. 

Several other critical assumptions apply to the interwell approach. It is assumed that the 
upgradient and downgradient well samples are drawn from the same aquifer and that wells are screened 
at essentially the same hydrostratigraphic position. At some sites, more than one aquifer underlies the 
waste site or landfill, separated by confining layers of clay or other less permeable material. The fate 
and transport characteristics of groundwater contaminants likely will differ in each aquifer, resulting in 
unique concentration patterns. Consequently, upgradient and downgradient observations may not be 
comparable (i.e., drawn from the same statistical population). 

Another assumption is that groundwater flows in a definable pathway from upgradient to 
downgradient wells beneath the regulated unit. If flow paths are incorrectly determined or this does not 
occur, statistical comparisons can be invalidated. For example, a real release may be occurring at a site 
known to have groundwater mounding beneath the monitored unit. Since the groundwater may move 
towards both the downgradient and upgradient wells, it may not be possible to detect the release if both 
sets of wells become equally or similarly contaminated. One exception to this might occur if certain 
analytes are shown to exhibit uniform behavior in both historical upgradient and downgradient wells 
(e.g., certain infrequently detected trace elements). As long as the flow pathway from the unit to the 
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downgradient wells is assured, then an interwell test based on this combined background could still 
reflect a real exceedance in the downgradient wells. 13 

Groundwater flow should also move at a sufficient velocity beneath the site, so that the same 
groundwater observed at upgradient well locations is subsequently monitored at downgradient wells in 
the course of an evaluation period (e.g., six months or a year). If groundwater flow is much slower, 
measurements from upgradient and downgradient wells may be more akin to samples from two separate 
aquifers. Extraneous factors may separately influence the downgradient and background populations, 
confusing the determination of whether or not a release has occurred. 

While statistical testing can determine whether there are significant differences between upgradient 
and downgradient well measurements, it cannot determine why such differences exist. That is primarily 
the concern of a hydrologist who has carefully reviewed site-specific factors. Downgradient 
concentrations may be greater than background because contamination of the underlying aquifer has 
occurred. The increase may be due to other factors, including spatially variable concentration levels 
attributable to changing soil composition and geochemistry from one well location to another. It could 
also be due to the migration of contaminants from off-site sources reaching downgradient wells. These 
and other factors (including those summarized in Chapter 4 on SSI Increases) should be considered 
before deciding that statistically significant background-to-downgradient differences represent site­
related contamination. 

An example of how background-to-downgradient well differences can be misleading is illustrated 
in Figure 6-4 below. At this Eastern coastal site, a Subtitle D landfill was located just off a coastal river 
emptying into the Atlantic Ocean a short distance downstream. Tests of specific conductance 
measurements comparing the single upgradient well to downgradient well data indicated significant 
increases at all downgradient wells, with one well indicating levels more than an order of magnitude 
higher than background concentrations. 

Based on this analysis, it was initially concluded that waste management activities at the landfill 
had impacted groundwater. However, further hydrologic investigation showed that nearby river water 
also exhibited elevated levels of specific conductance, even higher than measurements at the 
downgradient wells. Tidal fluctuations and changes in river discharge caused sea water to periodically 
mix with the coastal river water at a location near the downgradient wells. Mixed river and sea water 
apparently seeped into the aquifer, impacting downgradient wells but not at the upgradient location. An 
off-site source as opposed to the landfill itself was likely responsible for the observed elevations in 
specific conductance. Without this additional hydrological information, the naive statistical comparison 
between upgradient and downgradient wells would have reached an incorrect conclusion. 

13 The same would be true of the "never-detected" constituent comparison, which does not depend on the overall flow 
pathway from upgradient to downgradient wells. 
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The choice between interwell and intrawell testing primarily depends on the statistical 
characteristics of individual constituent data behavior in background wells. It is presumed that a 
thorough background study described in Chapter 5 has been completed. This involves selecting the 
constituents deemed appropriate for detection monitoring, identifying distributional characteristics, and 
evaluating the constituent data for trends, stationarity, and mean spatial variability among wells. 
ANOVA tests can be used to assess both well mean spatial variability and the potential for pooled­
variance estimates if an intrawell approach is needed. 

As discussed in Chapter 5, certain classes of potential monitoring constituents are more likely to 
exhibit spatial variation. Water quality indicator parameters are quite frequently spatially variable. 
Some authors, notably Davis and McNichols (1994) and Gibbons (1994a), have suggested that 
significant spatial variation is a nearly ubiquitous feature at RCRA-regulated landfills and hazardous 
waste sites, thus invalidating the use of interwell test methods. The Unified Guidance accepts that 
interwell tests still have an important role in groundwater monitoring, particularly for certain classes of 
constituents like non-naturally occurring VOCs and some trace elements. Many sites may best be served 
by a statistical program which combines interwell and intrawell procedures. 

Intrawell testing is an appropriate and recommended alternative strategy for many constituents. 
Well-specific backgrounds afford intrawell tests certain advantages over the interwell approach. One 
key advantage is confounding results due to spatial variability are eliminated, since all data used in an 
intrawell test are obtained from a single location. If natural background levels change substantially from 
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one well to the next, intrawell background provides the most accurate baseline for use in statistical 
compansons. 

At times, the variability in a set of upgradient background measurements pooled from multiple 
wells can be larger than the variation in individual intrawell background wells. Particularly if not 
checked with ANOVA well mean testing, interwell variability could substantially increase if changes in 
mean levels from one location to the next are also incorporated. While pooling should not occur among 
well means determined to be significantly different using ANOV A, a more likely situation is that pooled 
well true means and variance may be slightly different at each well. The ANOV A test might still 
conclude that the mean differences were insignificant and satisfy the equal variance assumption. The net 
result (as explained below) is that intrawell tests can be more statistically powerful than comparable 
interwell tests using upgradient background, despite employing a smaller background sample size. 

Another advantage using intrawell background is that a reasonable baseline for tests of future 
observations can be established at historically contaminated wells. In this case, the intrawell background 
can be used to track the onset of even more extensive contamination in the future. Some compliance 
monitoring wells exhibit chronic elevated contaminant levels (e.g., arsenic) considerably above other site 
wells which may not be clearly attributed to a regulated unit release. The regulatory agency has the 
option of continuing detection monitoring or changing to compliance/corrective action monitoring. 
Unless the agency has already determined that the pre-existing contamination is subject to compliance 
monitoring or remedial action under RCRA, the detection monitoring option would be to test for recent 
or future concentration increases above the historical contamination levels by using intrawell 
background as a well-specific baseline. 

Intrawell tests are not preferable for all groundwater monitoring scenarios. It may be unclear 
whether a given compliance well was historically contaminated prior to being regulated or more recently 
contaminated. Using intrawell background to set a baseline of comparison may ignore recent 
contamination subject to compliance testing and/or remedial action. Even more contamination in the 
future would then be required to trigger a statistically significant increase [SSI] using the intrawell test. 
The Unified Guidance recommends the use of intrawell testing only when it is clear that spatial 
variability is not the result of recent contamination attributable to the regulated unit. 

A second concern is that intrawell tests typically utilize a smaller set of background data than 
interwell methods. Since statistical power depends significantly on background sample size, it may be 
more difficult to achieve comparable statistical power with intrawell tests than with interwell methods. 
For the latter, background data can be collected from multiple wells when appropriate, forming a larger 
pool of measurements than would be available at a single well. However, it may also be possible to 
enhance intrawell sample sizes for parametric tests using the pooled- variance approach. 

Traditional interwell tests can be appropriate for certain constituents if the hydraulic assumptions 
discussed earlier are verified and there is no evidence of significant spatial variability. Background data 
from other historical compliance wells not significantly different from upgradient wells using ANOV A 
may also be used in some cases. When these conditions are met, interwell tests can be preferable as 
generally more powerful tests. Upgradient groundwater quality can then be more easily monitored in 
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parallel to downgradient locations. Such upgradient monitoring can signal changes in natural in-situ 
concentrations or possible migration from off-site sources. 14 

For most situations, the background constituent data patterns will determine which option is most 
feasible. Clear indications of spatially distinct well means through ANOV A testing will necessitate 
some form of intrawell methods. Further choices are then which type of statistical testing will provide 
the best power. 

It may be possible to increase the effective sample size associated with a series of intrawell tests. 
As explained in Chapters 13 & 19, the J -multipliers for intrawell prediction limits primarily depend on 
the number of background measurements used to estimate the standard deviation. It is first necessary to 
determine that the intrawell background in a series of compliance wells is both uncontaminated and 
exhibits similar levels of variability from well to well. Background data from these wells can then be 
combined to form a pooled intrawell standard deviation estimate with larger degrees of freedom, even 
though individual well means vary. A transformation may be needed to stabilize the well-to-well 
variances. If one or more of the compliance wells is already contaminated, these should not be mixed 
with uncontaminated well data in obtaining the pooled standard deviation estimate. 

A site-wide constituent pattern of no significant spatial variation will generally favor the 
interwell testing approach. But given the potential for hydrological and other issues discussed above, 
further evaluation of intrawell methods may be appropriate. Example 6-2 provided an illustration of a 
specific intrawell constituent having a lower absolute standard deviation than an interwell pooled data 
set, and hence greater relative and absolute power. In making such an interwell-intrawell comparison, 
the specific test and all necessary design inputs must be considered. Even if a given intrawell data set 
has a low background standard deviation compared to an interwell counterpart, the advantage in absolute 
terms over the relative power approach will change with differing design inputs. The simplest way to 
determine if the intrawell approach might be advantageous is to calculate the actual background limits of 
a potential test using existing intra- and inter-well data sets. In a given prediction limit test, for example, 
the actual lower limit will determine the more powerful test. 

If desired, approximate data-based power curves (Section 6.2.4) can be constructed to evaluate 
absolute power over a range of concentration level increases. In practice, the method for comparing 
interwell versus intrawell testing strategies with the same well-constituent pair involves the following 
basic steps: 

1. Given the interwell background sample size (ninter), the statistical test method (including any 
retesting), and the individual per-test a for that well-constituent pair, compute or simulate the 
relative power of the test at multiples of ksinter above the baseline mean level. Let k range from 0 
to 5 in increments of 0.5, where the interwell population standard deviation (Ginter) has been 
replaced by the sample background standard deviation (sinter). 

14 The same can be accomplished via intrawell methods if upgradient wells continue to be sampled along with required 
compliance well locations. Continued tracking ofupgradient background groundwater quality is recommended regardless 
ofthe testing strategy. 

l L 

EPAPAV0117003 



l u 1-•c c:JJ-l-=l!ivCl-Jivlfi•v~cr-1~i>c 

2. Repeat Step I for the intrawell test. Use the intrawell background sample size ( nintra), statistical 
test method, background sample standard deviation (sintra), and the same individual per-test a to 
generate a relative power curve. 

3. On the same graph, plot overlays of the estimated data-based interwell and intrawell power 
curves (as discussed in Section 6.2.4). Use the same range of (absolute, not relative) 
concentration increases over baseline along the horizontal axis. 

4. Visually inspect the data-based power curves to determine which method offers better power 
over a wider range of possible concentration increases. 

The Unified Guidance recommends that users apply the most powerful statistical methods 
available in detecting and identifying contaminant releases for each well-constituent pair. The ERPC 
identifies a minimum acceptable standard for judging the relative power of particular tests. However, 
more powerful methods based on absolute power may be considered preferable in certain circumstances. 

As a final concern, very small individual well samples in the early stages of a monitoring program 
may make it difficult to utilize an intrawell method having both sufficient statistical power and meeting 
false positive design criteria. One option would be to temporarily defer tests on those well-constituent 
pairs until additional background observations can be collected. A second option is to use the intrawell 
approach despite its inadequate power, until the intrawell background is sufficiently large via periodic 
updates (Chapter 5). A third option might be to use a more powerful intrawell test (e.g., a higher order 
I-of-m parametric or non-parametric prediction limit test). Once background is increased, a lower order 
test might suffice. Depending on the type of tests, some control of power may be lost (parametric) or the 
false positive (non-parametric tests). These tradeoffs are considered more fully in Chapter 19. For the 
first two options and the parametric test under the third option, there is some added risk that a release 
occurring during the period of additional data collection might be missed. For the non-parametric test 
under the third option, there is an increased risk of a true false positive error. Any of these options might 
be included as special permit conditions. 

l 91 91 ~ +-- ~ T 1 !! ___, 

Evaluation of outliers should begin with historical upgradient and possibly compliance well data 
considered for defining initial background, as described in Chapter 5, Section 5.2.3. The key goal is to 
select the data most representative of near-term and likely future background. Potentially discrepant or 
unusual values can occur for many reasons including I) a contaminant release that significantly impacts 
measurements at compliance wells; 2) true but extreme background groundwater measurements, 3) 
inconsistent sampling or analytical chemistry methodology resulting in laboratory contamination or other 
anomalies; and 4) errors in the transcription of data values or decimal points. While the first two 
conditions may appear to be discrepant values, they would not be considered outliers. 

When appraising extensive background data sets with long periods of acquisition and somewhat 
uncertain quality, it is recommended that a formal statistical evaluation of outliers not be conducted until 
a thorough review of data quality (errors, etc.) has been performed. Changes in analytical 
methodologies, the presence of sample interferences or dilutions can affect the historical data record. 
Past and current treatment of non-detects should also be investigated, including whether there are 
multiple reporting limits in the data base. Left-censored values can impact whether or not the sample 
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appears normal (Chapter 15), especially if the data need to be normalized via a transformation. 
Techniques for evaluating censored data should be considered, especially those which can properly 
account for multiple RLs. Censored probability plots (Chapter 15) or quasi-nonparametric box plots 
(Chapter 12) adapted by John Tukey (1977) can be used as methods to screen for outliers. 

The guidance also recommends that statistical testing of potential outliers also be performed on 
initial background data, including historical compliance well data potentially considered as additional 
background data. Recognizing the potential risks as discussed in Chapter 5, removal of significant 
outliers may be appropriate even if no probable error or discrepancy can be firmly identified. The risk is 
that high values registering as statistical outliers may reflect an extreme, but real value from the 
background population rather than a true outlier, thereby increasing the likelihood of a false positive 
error. But the effect ofremoving outliers from the background data will usually be to improve the odds 
of detecting upward changes in concentration levels at compliance wells, and thus providing further 
protection of human health and the environment. Automated screening and removal of background data 
for statistical outliers is not recommended without some consideration of the likelihood of an outlier 
error. 

A statistical outlier is defined as a value originating from a different statistical population than the 
rest of the sample. Outliers or observations not derived from the same population as the rest of the 
sample violate the basic statistical assumption of identically-distributed measurements. If an outlier is 
suspected, an initial helpful step is to construct a probability plot of the ordered sample data versus the 
standardized normal distribution (Chapter 12). A probability plot is designed to judge whether the 
sample data are consistent with a normal population model. If the data can be normalized, a probability 
plot of the transformed observations should also be constructed. Neither is a formal test, but can still 
provide important visual evidence as to whether the suspected outlier(s) should be further evaluated. 

Formal testing for outliers should be done only if an observation seems particularly high compared 
to the rest of the sample. The data can be evaluated with either Dixon's or Rosner's tests (Chapter 12). 
These outlier tests assume that the rest of the data except for the suspect observation(s), are normally­
distributed (Barnett and Lewis, 1994). It is recommended that tests also be conducted on transformed 
data, if the original data indicates one or more potential outliers. Lognormal and other skewed 
distributions can exhibit apparently elevated values in the original concentration domain, but still be 
statistically indistinguishable when normalized via a transformation. If the latter is the case, the outlier 
should be retained and the data set treated as fitting the transformed distribution. 

Future background and compliance well data may also be periodically tested for outliers. 
However, removal of outliers should only take place under certain conditions, since a true elevated value 
may fit the pattern of a release or a change in historical background conditions. If either Dixon's or 
Rosner's test identifies an observation as a statistical outlier, the measurement should not be treated as 
such until a specific physical reason for the abnormal value can be determined. Valid reasons might 
include contaminated sampling equipment, laboratory contamination of the sample, errors in 
transcription of the data values, etc. Records documenting the sampling and analysis of the measurement 
(i.e., the "chain of custody") should be thoroughly investigated. Based on this review, one of several 
actions might be taken as a general rule: 
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If an error in transcription, dilution, analytical procedure, etc. can be identified and the correct 
value recovered, the observation should be replaced by its corrected value and further statistical 
analysis done with the corrected value. 

If it can shown that the observation is in error but the correct value cannot be determined, the 
observation should be removed from the data set and further statistical analysis performed on the 
reduced data set. The fact that the observation was removed and the reason for its removal should 
be documented when reporting results of the analysis. 

If no error in the value can be documented, it should be assumed that the observation is a true but 
extreme value. In this case, it should not be altered or removed. However, it may helpful to 
obtain another observation in order to verify or confirm the initial measurement. 

l 91 91 I ~ I u 1 ~ 1 ~___, 

Statistically, non-detects are considered 'left-censored' measurements because the concentration of 
any non-detect is known or assumed only to fall within a certain range of concentration values (e.g., 
between 0 and the RL). The direct estimate has been censored by limitations of the measurement process 
or analytical technique. 

As noted, non-detect values can affect evaluations of potential outliers. Non-detects and detection 
frequency also impact what detection monitoring tests are appropriate for a given constituent. A low 
detection frequency makes it difficult to implement parametric statistical tests, since it may not be 
possible to determine if the underlying population is normal or can be normalized. Higher detection 
frequencies offer more options, including simple substitution or estimating the mean and standard 
deviation of samples containing non-detects by means of a censored estimation technique (Chapter 15). 

Estimates of the background mean and standard deviation are needed to construct parametric 
prediction and control chart limits, as well as confidence intervals. If simple substitution is appropriate, 
imputed values for individual non-detects can be used as an alternate way to construct mean and 
standard deviation estimates. These estimates are also needed to update the cumulative sum [CUSUM] 
portion of control charts or to compute means of order p compared against prediction limits. 

Simple substitution is not recommended in the Unified Guidance unless no more than 10-15% of 
the sample observations are non-detect. In those circumstances, substituting half the RL for each non­
detect is not likely to substantially impact the results of statistical testing. Censored estimation 
techniques like Kaplan-Meier or robust regression on order statistics [ROS] are recommended any time 
the detection frequency is no less than 50% (see Chapter 15). 

For lower detection frequencies, non-parametric tests are recommended. Non-parametric 
prediction limits (Chapter 18) can be constructed as an alternative to parametric prediction limits or 
control charts. The Tarone-Ware two-sample test (Chapter 16) is specifically designed to accommodate 
non-detects and serves as an alternative to the !-test. By the same token, the Kruskal-Wallis test 
(Chapter 17) is a non-parametric, rank-based alternative to the parametric ANOV A. These latter tests 
can be used when the non-detects and detects can be jointly sorted and partially ordered (except for tied 
values). 

l L l 

EPAPAV0117006 



l u 1-•c c:JJ-l-=l!ivCl-Jivlfi•v~cr-1~i>c 

When all data are non-detect, the Double Quantification rule (Section 6.2.2) can be used to define 
an approximate non-parametric prediction limit, with the RL as an upper bound. Before doing this, it 
should be determined whether chemicals never or not recently detected in groundwater should even be 
formally tested. This will depend on whether the monitored constituent from a large analytical suite is 
likely to originate in the waste or leachate. 

Even if a data set contains only a small proportion of non-detects, care should be taken when 
choosing between the method detection limit [MDL], the quantification limit [QL], and the RL in 
characterizing 'non-detect' concentrations. Many non-detects are reported with one of three data 
qualifier flags: "U,'' "J,'' or "E." Samples with a U data qualifier represent 'undetected' measurements, 
meaning that the signal characteristic of that analyte could not be observed or distinguished from 
'background noise' during lab analysis. Inorganic samples with an E flag and organic samples with a J 
flag may or may not be reported with an estimated concentration. If no concentration estimate is 
reported, these samples represent 'detected, but not quantified' measurements. In this case, the actual 
concentration is assumed to be positive, falling somewhere between zero and the QL or possibly the RL. 

Since the actual concentration is unknown, the suggested imputation when using simple 
substitution is to replace each non-detect having a qualifier ofE or J by one-half the RL. Note, however, 
that E and J samples reported with estimated concentrations should be treated as valid measurements for 
statistical purposes. Substitution of one-half the RL is not recommended for these measurements, even 
though the degree of uncertainty associated with the estimated concentration is probably greater than that 
associated with measurements above the RL. 

As a general rule, non-detect concentrations should not be assumed to be bounded above by the 
MDL. The MDL is usually estimated on the basis of ideal laboratory conditions with physical analyte 
samples that may or may not account for matrix or other interferences encountered when analyzing 
specific field samples. For certain trace element analytical methods, individual laboratories may report 
detectable limits closer to an MDL than a nominal QL. So long as the laboratory has confidence in the 
ability to quantify at its lab- or occasionally event-specific detection level, this RL may also be 
satisfactory. The RL should typically be taken as a more reasonable upper bound for non-detects when 
imputing estimated concentration values to these measurements. 

RLs are sometimes but not always equivalent to a particular laboratory' sQLs. While analytical 
techniques may change and improve over time leading to a lowering of the achievable QL, a 
contractually negotiated RL might be much higher. Often a multiplicative factor is built into the RL to 
protect a contract lab against particular liabilities. A good practice is to periodically review a given 
laboratory's capabilities and to encourage reporting non-detects with actual QLs whenever possible, and 
providing standard qualifiers with all data measurements as well as estimated concentrations for E- and 
J-flagged samples. 

Even when no estimate of concentration can be made, a lab should regularly report the distinction 
between 'undetected' and 'detected, but not quantified' non-detect measurements. Data sets with such 
delineations can be used to advantage in rank-based non-parametric procedures. Rather than assigning 
the same tied rank to all non-detects (Chapter 16 ), 'detected but not quantified' measurements should 
be given larger ranks than those assigned to 'undetected' samples. These two types of non-detects should 
be treated as two distinct groups of tied observations for use in the non-parametric Wilcoxon rank-sum 
procedure. 
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In the following sections, the main formal detection monitoring tests covered in this guidance are 
described in the context of site design choices. Advantages as well as limitations are presented, 
including the use of certain methods as diagnostic tools in determining the appropriate formal test(s). 

A statistical comparison between two sets of data is known as a two-sample test. When normality 
of the sample data can be presumed, the parametric Student t-test is commonly used (Section 16.1 ). This 
test compares two distinct populations, represented by two samples. These samples can either be 
individual well data sets, or a common pooled background versus individual compliance well data. The 
basic goal of the !-test is to determine whether there is any statistically significant difference between the 
two population means. Regulatory requirements for formal use of two-sample t-tests are limited to the 
Part 265 indicator parameters, and have generally been superseded in the Parts 264 and 258 rules by tests 
which can account for multiple comparisons. 

When the sample data are non-normal and may contain non-detects, the Unified Guidance provides 
alternative two-sample tests to the parametric t-test. The Wilcoxon rank-sum test (Section 16.2) requires 
that the combined samples be sorted and ranked. This test evaluates potential differences in population 
medians rather than the means. The Tarone-Ware test (Section 16.3) is specially adapted to handle left­
censored measurements, and also tests for differences in population medians. 

The t-test or a non-parametric variant is recommended as a validation tool when updating intrawell 
or other background data sets (Chapter 5 ). More recently collected data considered for background 
addition are compared to the historical data set. A non-significant test result implies no mean 
differences, and the newer data may be added to the original set. These tests are generally useful for any 
two-sample diagnostic comparisons. 

$P !! T p I 1 %P I ~ $P & 

The parametric one-way ANOVA is an extension of the t-test to multiple sample groups. Like its 
two-sample counterpart, ANOV A tests for significant differences in one or more group (e.g., well) 
means. If an overall significant difference is found as measured by the F-statistic, post-hoc statistical 
contrasts may be used to determine where the differences lie among individual group means. In the 
groundwater detection monitoring context, only differences of mean well increases relative to 
background are considered of importance. The ANOV A test also has wide applicability as a diagnostic 
tool. 
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RCRA regulations under Parts 264 and 258 identify parametric and non-parametric ANOVA as 
potential detection monitoring tests. Because of its flexibility and power, ANOV A can sometimes be an 
appropriate method of statistical analysis when groundwater monitoring is based on an interwell 
comparison of background and compliance well data. Two types of ANOV A are presented in the 
Unified Guidance: parametric and non-parametric one-way ANOV A (Section 17.1 ). Both methods 
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attempt to assess whether distinct monitoring wells differ m average concentration during a given 
evaluation period. 15 

Despite the potential attractiveness of ANOVA tests, use in formal detection monitoring is limited 
by these important factors: 

Many monitoring constituents exhibit significant spatial variability and cannot make use of 
interwell comparisons; 

The test can be confounded by a large number of well network comparisons; 

A minimum well sample size must be available for testing; and 

Regulatory false positive error rate restrictions limit the ability to effectively control the 
overall false positive rate. 

As discussed in Section 6.2.3, many if not most inorganic monitoring constituents exhibit spatial 
variability, precluding an interwell form of testing. Since ANOV A is inherently an interwell procedure, 
the guidance recommends against its use for these constituents and conditions. Spatial variability 
implies that the average groundwater concentration levels vary from well to well because of existing on­
site conditions. Mean differences of this sort can be identified by ANOV A, but the cause of the 
differences cannot. Therefore, results of a statistically significant ANOV A might be falsely attributed as 
a regulated unit release to groundwater. 

ANOV A testing might be applied to synthetic organic and trace element constituent data. 
However, spatial variation across a site is also likely to occur from offsite or prior site-related organic 
releases. An existing contamination plume generally exhibits varying average concentrations 
longitudinally, as well as in cross-section and depth. For other organic constituents never detected at a 
site, ANOV A testing would be unnecessary. Certain trace elements like barium, arsenic and selenium 
do often exhibit some spatial variability. Other trace element data generally have low overall detection 
rates, which may also preclude ANOV A applications. Overall, very few routine monitoring constituents 
are measurable (i.e., mostly detectable) yet not spatially distinct to warrant using ANOVA as a formal 
detection monitoring test. Other guidance tests better serve this purpose. 

ANOV A has good power for detecting real contamination provided the network is small to 
moderate in size. But for large monitoring networks, it may be difficult to identify single well 
contamination. One explanation is that the ANOVA F-statistic simultaneously combines all compliance 
well effects into a single number, so that many other uncontaminated wells with their own variability can 
mask the test effectiveness to detect the contaminated well. This might occur at larger sites with 
multiple waste units, or if only the edge of a plume happens to intersect one or two boundary wells. 

The statistical power of ANOV A depends significantly on having at least 4 observations per well 
available for testing. Since the measurements must be statistically independent, collection of four well 
observations may necessitate a wait of several months to a few years if the natural groundwater velocity 

15 Parametric ANOV A assesses differences in means; the non-parametric ANOV A compares median concentration levels. 
Both statistical measures are a kind of average. 
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is low. In this case, other strategies (e.g., prediction limits) might be considered that allow each new 
groundwater measurement to be tested as it is collected and analyzed. 

The one-way ANOV A test in the RCRA regulations is not designed to control the false positive 
error rate for multiple constituents. The rules mandate a minimum false positive error rate ( ) of 5% per 
test application. With an overall false positive rate of approximately 5% per constituent, a potentially 
very high SWFPR can result as the number of constituents tested by ANOV A increases and if tests are 
conducted more than once per year. 

For these reasons, the Unified Guidance does not generally recommend ANOVA for formal 
detection monitoring. ANOV A might be applicable to a small number of constituents, depending on the 
site. Prediction limit and control chart strategies using retesting are usually more flexible and offer the 
ability to accommodate even very large monitoring networks, while meeting the false positive and 
statistical power targets recommended by the guidance. 

In contrast, ANOV A is a versatile tool for diagnostic testing, and is frequently used in the guidance 
for that purpose. Parametric or non-parametric one-way versions are the principal means of identifying 
prior spatial variability among background monitoring wells (Chapter 13). Improving sample sizes 
using intrawell pooled variances also makes use of ANOVA (Chapter 13). Equality of variances among 
wells is evaluated with ANOVA (Chapter 11). ANOVA is also applied when determining certain 
temporal trends in parallel well sample constituent data (Chapter 14). 

Tests of natural spatial variability can be made by running ANOV A prior to any waste disposal at a 
new facility located above an undisturbed aquifer (Gibbons, l 994a). If ANOVA identifies significant 
upgradient and downgradient well differences when wastes have not yet been managed on-site, natural 
spatial variability is the likely cause. Prior on-site contamination might also be revealed in the form of 
significant ANOV A differences. 

Sites with multiple upgradient background wells can initially conduct an ANOV A on historical 
data from just these locations. Where upgradient wells are not significantly different for a given 
constituent, ANOV A testing can be extended to existing historical compliance well data for evaluating 
potential additions to the upgradient background data base. 

If intrawell tests are chosen because of natural spatial variation, the results of a one-way ANOV A 
on background data from multiple wells can sometimes be used to improve intrawell background limits 
(Section 13.3 ). Though the amount of intrawell background at any given well may be small, the 
ANOV A provides an estimate of the root mean squared error [RMSE], which is very close to an 
estimate of the average per-well standard deviation. By substituting the RMSE for the usual well­
specific standard deviation ( s ), a more powerful and accurate intrawell limit can be constructed, at least 
at those sites where intrawell background across the group of wells can be normalized and the variances 
approximately equalized using a common transformation. 

Although the Unified Guidance primarily makes use of one-way ANOV A, many kinds of ANOV A 
exist. The one-way ANOV A applications so far discussed- in formal detection monitoring or to assess 
well mean differences- utilize data from spatial locations as the factor of interest. In some situations, 
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correlated behavior may exist for a constituent among well samples evaluated in different temporal 
events. A constituent measured in a group of wells may simultaneously rise or fall in different time 
periods. Under these conditions, the data are no longer random and independent. ANOV A can be used 
to assess the significance of such systematic changes, making time the factor of interest. Time can also 
play a role if the sample data exhibit cyclical seasonal patterns or if parallel upward or downward trends 
are observed both in background and compliance point wells. 

If time is an important second factor, a two-way ANOVA is probably appropriate. This procedure 
is discussed in Davis ( 1994). Such a method can be used to test for and adjust data either for seasonality, 
parallel trends, or changes in lab performance that cause temporal (i.e., time-related) effects. It is 
somewhat more complicated to apply than a one-way test. The main advantage of a two-way ANOV A is 
to separate components of overall data variation into three sources: well-to-well mean-level differences, 
temporal effects, and random variation or statistical error. Distinguishing the sources of variation 
provides a more powerful test of whether significant well-to-well differences actually exist compared to 
using only a one-way procedure. 

A significant temporal factor does not necessarily mean that the one-way ANOV A will not identify 
actual well-to-well spatial differences. It merely does not have as strong a chance of doing so. Rarely 
will the one-way ANOVA identify non-existent well-to-well differences. One situation where this can 
occur is when there is a strong statistical interaction between the well-to-well factor and the time factor 
in the two-way ANOV A. This would imply that changes in lab performance or seasonal cycles affect 
certain wells (e.g., compliance point) to a different degree or in a different manner than other wells (e.g., 
background). If this is the case, professional consultation is recommended before conducting more 
definitive statistical analyses. 

l 91 91 ~ !! 1 I J_ ~ 1 .... ~ .... 

Most formal detection monitoring tests in the guidance compare background and compliance point 
populations under the key assumption that the populations are stationary over time. The distributions in 
each group or well are assumed to be stable during the period of monitoring, with only random 
fluctuations around a constant mean level. If a significant trend occurs in the background data, these 
tests cannot be directly used. Trends can occur for several reasons including natural cycles, gradual 
changes in aquifer parameters or the effects of contaminant migration from off-site sources. 

Although not specifically provided for in the RCRA regulations, the guidance necessarily includes 
a number of tests for evaluating potential trends. Chapter 17, Section 17.3 covers three basic trend 
tests. (1) Linear regression is a parametric method requiring normal and independent trend residuals, 
and can be used both to identify a linear trend and estimate its magnitude; (2) For non-normal data 
(including sample data with left-censored measurements), the Mann-Kendall test offers a non-parametric 
method for identifying trends; and (3) To gauge trend magnitude with non-normal data, the Theil-Sen 
trend line can be used. 

Trend analyses are primarily diagnostic tests, which should be applied to background data prior to 
implementing formal detection monitoring tests. If a significant trend is uncovered, two options may 
apply. The particular monitoring constituent may be dropped in favor of alternate constituents not 
exhibiting non-stationary behavior. Alternatively, prediction limit or control chart testing can make use 
of stationary trend residuals for testing purposes. One limitation of the latter approach requires making 
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an assumption that the historical trend will continue into future monitoring periods. In addition, future 
data needs to be de-trended prior to testing. If a trend happened to be of limited duration, this 
assumption may not be reasonable and could result in identifying a background exceedance when it does 
not exist. If a trend occurs in future data at a compliance well and prior background data was stationary, 
other detection monitoring tests are likely to eventually identify it. Trend testing may also be applied to 
once-future data considered for a periodic background update, although the guidance primarily relies on 
t-testing of historical and future groups to assess data suitability. 

At historically contaminated compliance wells, establishing a proper baseline for a prediction 
limit or control chart is problematic, since uncontaminated concentration data cannot be collected. 
Depending on the pattern of contamination, an intrawell background may either have a stable mean 
concentration level or exhibit an increasing or decreasing trend. Particularly when intrawell background 
concentrations are rising, the assumption of a static baseline population required by prediction limits and 
control charts will be violated. 

As an alternative, the Unified Guidance recommends a test for trend to measure the extent and 
nature of the apparent increase. Trend testing can determine if there is a statistically significant positive 
trend over the period of monitoring and can also determine the magnitude (i.e., slope) of the trend. In 
identifying a positive trend, it might be possible to demonstrate that the level of contamination has 
increased relative to historical behavior and indicate how rapidly levels are increasing. 

Trend analyses can be used directly as an alternative test against a GWPS in compliance and 
corrective action monitoring. For typical compliance monitoring, data collected at each compliance well 
are used to generate a lower confidence limit compared to the fixed standard (Chapters 7, 21 and 22). 
A similar situation occurs when corrective action is triggered, but making use of an upper confidence 
interval for comparison. For compliance well data containing a trend, the appropriate confidence 
interval is constructed around a linear regression trend line (or its non-parametric alternative) in order to 
better estimate the most current concentration levels. Instead of a single confidence limit for stationary 
tests, the confidence limit (or band) estimate changes with time. 

Prediction limits, tolerance limits, control chart limits and confidence limits belong to the class of 
methods known as statistical intervals. The first three are used to define their respective detection 
monitoring test limits, while the last is used in fixed standard compliance and corrective action tests. 
When using a background GWPS, either approach is possible (see Section 7.5). Intervals are generated 
as a statistic from reference sample data, and represent a probable range of occurrence either for a future 
sample statistic or some parameter of the population (in the case of confidence intervals) from which the 
sample was drawn. A future sample statistic might be one or more single values, as well as a future 
mean or median of specific size, drawn from one or more sample sets to be compared with the interval 
(generally an upper limit). Both the reference and comparison sample populations are themselves 
unknown, with the latter initially presumed to be identical to the reference set population. In the 
groundwater monitoring context, the initial reference sample is the background data set. 
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The key difference in confidence limits 16 is that a statistical interval based on a single sample is 
used to estimate the probable range of a population parameter like the true mean, median or variance. 
The three detection monitoring tests use intervals to identify ranges of future sample statistics likely to 
arise from the background population based on the initial sample, and are hence two- or multiple-sample 
tests. 

Statistical intervals are inherently two-sided, since they represent a finite range in which the 
desired statistic or population parameter is expected to occur. Formally, an interval is associated with a 
level of confidence (1- ); by construction, the error rate represents the remaining likelihood that the 
interval does not contain the appropriate statistic or parameter. In a two-sided interval, the -probability 
is associated with ranges both above and below the statistical interval. A one-sided upper interval is 
designed to contain the desired statistic or parameter at the same (1- ) level of confidence, but the 
remaining error represents only the range above the limit. As a general rule, detection monitoring 
options discussed below use one-sided upper limits because of the nature of the test hypotheses. 

+ !! 1 J_ T ~T ~ I T I T ~ .... 

Upper prediction limits (or intervals) are constructed to contain with (1- ) probability, the next few 
sample value(s) or sample statistic(s) such as a mean from a background population. Prediction limits 
are exceptionally versatile, since they can be designed to accommodate a wide variety of potential site 
monitoring conditions. They have been extensively researched, and provide a straightforward 
interpretation of the test results. Since this guidance strongly encourages use of a comprehensive design 
strategy to account for both the cumulative SWFPR and effective power to identify real exceedances, 
prediction limit options offer a most effective means of accounting for both criteria. The guidance 
provides test options in the form of parametric normal and non-parametric prediction limit methods. 
Since a retesting strategy of some form is usually necessary to meet both criteria, prediction limit options 
are constructed to formally include resampling as part of the overall tests. 

Chapters 18 and 19 provide nine parametric normal prediction limit test options: four tests of 
future values (l-of-2, l-of-3, l-of-4 or a modified California plan) and five future mean options (l-of-1, 
l-of-2, or l-of-3 tests of mean size 2, and 1-of-l or l-of-2 tests of mean size 3). Non-parametric 
prediction limit options cover the same future value test options as the parametric versions, as well as 
two median tests of size 3 (l-of-1 or l-of-2 tests). Appendix D tables provide the relevant J_factors for 
each parametric normal test option, the achievable false positive rates for non-parametric tests, and a 
categorical rating ofrelative test power for each set of input conditions. Prediction limits can be used 
both for interwell and intrawell testing. Selecting from among these options should allow the two site 
design criteria to be addressed for most groundwater site conditions. 

The options provided in the guidance are based on a wider class known in the statistical literature 
as p-of-m prediction limit tests. Except for the two modified California plan options, those selected are 
1-of-m test varieties. The number of future measurements to be predicted (i.e., contained) by the interval 
is also denoted in the Unified Guidance by m and can be as small as m = 1. To test for a release to 
groundwater, compliance well measurements are designated as future observations. Then a limit is 
constructed on the background sample, with the prediction limit formula based on the number of m 

16 Confidence limits are further discussed in Chapters 7, 21 and 22 for use in compliance and cmrective action testing. 
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future values or statistics to be tested against the limit. As long as the compliance point measurements 
are similar to background, the prediction limit should contain all m of the future values or statistics with 
high probability (the level of confidence). For a I-of-m test, all m values must be larger than the 
prediction limit to be declared an exceedance, as initial evidence that compliance point concentrations 
are higher than background. 

Prediction limits with retesting are presented in Chapter 19. When retesting is part of the 
procedure, there are significant and instructive differences in statistical performance between parametric 
and non-parametric prediction limits. 

Parametric prediction limits are constructed using the general formula: = xFtlK · s , where x 
and s are the background sample mean and standard deviation, and J is the specific multiplicative factor 
for the type oftest, background sample size, and the number of annual tests. The number of tests made 
against a common background is also an input factor for interwell comparison. The Appendix D J -

factors are specifically designed to meet the SWFPR objective, but power will vary. Larger background 
sample sizes and higher order (m) tests afford greater power. 

When background data cannot be normalized, a non-parametric prediction limit can be used 
instead. A non-parametric prediction limit test makes use of one or another of the largest sample values 
from the background data set as the limit. For a given background sample size and test type, the level of 
confidence of that maximal value is fixed. 

Using the absolute maximum of a background data set affords the highest confidence and lowest 
single-test false positive error. However, even this confidence level may not be adequate to meet the 
SWFPR objective, especially for lower order I-of- m tests. A higher order future values test using the 
same maximum and background sample size will provide greater false positive confidence and hence a 
lower false positive error rate. For a fixed background sample size, a I-of-4 retesting scheme will have a 
lower achievable significance level ( ) than a I-of-3 or I-of-2 plan for any specific maximal value. A 
larger background sample size using a fixed maximal value for any test also has a higher confidence 
level (lower ) than a smaller sample. 

But for a fixed non-parametric limit of a given background sample size, the power decreases as the 
test order increases. If the non-parametric prediction limit is set at the maximum, a I-of-2 plan will be 
more powerful than a I-of-4 plan. It is relatively easy to understand why this is the case. A verified 
exceedance in a I-of-2 test occurs only if two values exceed the limit, but would require four to exceed 
for the l-of-4 plan. As a rule, even the highest order non-parametric test using some maximal 
background value will be powerful enough to meet the ERPC power criteria, but achieving a sufficiently 
low single-test error rate to meet the SWFPR is more problematic. 

If the SWFPR objective can be attained at a maximum value for higher order I-of-m tests, it may 
be possible to utilize lower maxima from a large background data base. Lower maxima will have greater 
power and a somewhat higher false positive rate. Limited comparisons of this type can be made when 
choosing between the largest or second-largest order statistics in the Unified Guidance Appendix D 
Tables 19-19 to 19-24. A more useful and flexible comparison for I-of- m future value plans can be 
obtained using the EPA Region 8 Optimal Rank Values Calculator discussed in Chapter 19. The 
calculator identifies the lowest ranked maximal value of a background data set for I-of-I to I-of-4 future 
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value non-parametric tests which can meet the SWFPR objective, while providing ERPC ratings and 
fractional power estimates at 2, 3, and 4 standard deviations above background. 

~~ 1 !! p I 1 T I ~ 1 !! $P 

Tolerance intervals are presented in Section 17.2. A tolerance interval is generated from 
background sample data to contain a pre-specified proportion of the underlying population (e.g., 99% of 
all possible population measurements) at a certain level of confidence. Measurements falling outside the 
tolerance interval can be judged to be statistically different from background. 

While tolerance intervals are an acceptable statistical technique under RCRA as discussed in 
Section 2.3, the Unified Guidance generally recommends prediction limits instead. Both methods can 
be used to compare compliance point measurements to background in detection monitoring. The same 
general formula is used in both tests for constructing a parametric upper limit of comparison: x +Ks. 
For non-parametric upper limit tests, both prediction limits and tolerance intervals use an observed order 
statistic in background (often the background maximum). But prediction limits are ultimately more 
flexible and easier to interpret than tolerance intervals. 

Consider a parametric upper prediction limit test for the next two compliance point measurements 
with 95% confidence. If either measurement exceeds the limit, one of two conditions is true: either the 
compliance point distribution is significantly different and higher than background, or a false positive 
has been observed and the two distributions are similar. False positives in this case are expected to occur 
5% of the time. Using an upper tolerance interval is not so straightforward. The tolerance interval has an 
extra statistical parameter that must be specified - the coverage (d) - representing the fraction of 
background to be contained beneath the upper limit. Since the confidence level (1- ) governs how often 
a statistical interval contains its target population parameter (Section 7.4 ), the complement does not 
necessarily represent the false positive rate in this case. 

In fact, a tolerance interval constructed with 95% confidence to cover 80% of background is 
designed so that as many as 20% of all background measurements will exceed the limit with 95% 
probability. Here, = 5% represents the probability that the true coverage will be less than 80%. But less 
clear is the false positive rate of a tolerance interval test in which as many as 1 in 5 background 
measurements are expected to exceed the upper background limit. Are compliance point values above 
the tolerance interval indicative of contaminated groundwater or merely representative of the upper 
ranges ofbackground? 

Besides a more confusing interpretation, there is an added concern. Mathematically valid retesting 
strategies can be computed for prediction limits, but not yet for tolerance intervals, further limiting their 
usefulness in groundwater testing. It is also difficult to construct powerful intrawell tolerance intervals, 
especially when the intrawell background sample size is small. Overall, there is little practical need for 
two similar (but not identical) methods in the Unified Guidance, at least in detection monitoring. 

If tolerance intervals are employed as an alternative to !-tests or ANOV A when performing 
interwell tests, the RCRA regulations allow substantial flexibility in the choice of . This means that a 
somewhat arbitrarily high confidence level (1- ) can be specified when constructing a tolerance interval. 
However, unless the coverage coefficient ( d) is also set to a high value (e.g., 95% ), the test is likely to 
incur a large risk of false positives despite a small . 
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One setting in which an upper tolerance interval is very appropriate is discussed in Section 7.5. 
Some constituents that must be evaluated under compliance/assessment or corrective action may not 
have a fixed GWPS. Existing background levels may also exceed a fixed GWPS. In these cases, a 
background standard can be constructed using an upper tolerance interval on background with 95% 
confidence and 9 5% coverage. The standard will then represent a reasonable upper bound on background 
and an achievable target for compliance and remediation testing. 

fl p !! ~---> 

Control charts (Chapter 20) are a viable alternative to prediction limits in detection monitoring. 
One advantage of a control chart over a prediction limit is that control charts allow compliance point 
data to be viewed and assessed graphically over time. Trends and changes in concentration levels can be 
easily seen, because the compliance measurements are consecutively plotted on the chart as they are 
collected, giving the data analyst an historical overview of the concentration pattern. Standard prediction 
limits allow only point-in-time comparisons between the most recent data and background, making long­
term trends more difficult to identify. 

The guidance recommends use of the combined Shewhart-CUSUM control chart. The advantage 
is that two statistical quantities are assessed at every sampling event, both the new individual 
measurement and the cumulative sum [CUSUM] of past and current measurements. Prediction limits do 
not incorporate a CUSUM, and this can give control charts comparatively greater sensitivity to gradual 
(upward) trends and shifts in concentration levels. To enhance false positive error rate control and 
power, retesting can also be incorporated into the Shewhart-CUSUM control chart. Following the same 
restrictions as for prediction limits, they may be applied either to interwell or intrawell testing. 

A disadvantage in applying control charts to groundwater monitoring data is that less is understood 
about their statistical performance, i.e., false positive rates and power. The control limit used to identify 
potential releases to groundwater is not based on a formula incorporating a desired false positive rate ( ). 
Unlike prediction limits, the control limit cannot be precisely set to meet a pre-specified SWFPR, unless 
the behavior of the control chart is modeled via Monte Carlo simulation. The same is true for assessing 
statistical power. Control charts usually provide less flexibility than prediction limits in designing a 
statistical monitoring program for a network. 

In addition, Shewhart-CUSUM control charts are a parametric procedure with no existing non­
parametric counterpart. Non-parametric prediction limit tests are still generally needed when the 
background data on which the control chart is constructed cannot be normalized. Control charts are 
mostly appropriate for analytes with a reasonably high detection frequency in monitoring wells. These 
include inorganic constituents (e.g., detectable trace elements and geochemical monitoring parameters) 
occurring naturally in groundwater, and other persistently-found, site-specific chemicals. 

Three hypothetical design examples consider a small, medium and large facility, illustrating the 
principles discussed in this chapter. In each example, the goal is to determine what statistical method or 
methods should be chosen and how those methods can be implemented in light of the two fundamental 
design criteria. Further design details are covered in respective Part III detection monitoring test 
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chapters, although very detailed site design is beyond the scope of the guidance. More detailed 
evaluations and examples of diagnostic tests are found in Part II of the guidance. 

c 1 ?P I + 1 l L~ ~ I p 

A municipal landfill has 3 upgradient wells and 8 downgradient wells. Semi-annual statistical 
evaluations are required for five inorganic constituents. So far, six observations have been collected at 
each well. Exploratory analysis has shown that the concentration measurements appear to be 
approximately normal in distribution. However, each of the five monitored parameters exhibits 
significant levels of natural spatial variation from well to well. What statistical approach should be 
recommended at this landfill? 

~ 1 <- ~T 1 I 
Since the inorganic monitoring parameters are measurable and have significant spatial variability, 

it is recommended that parametric intrawell rather than interwell tests should be considered. Assuming 
that none of the downgradient wells is recently contaminated, each well has n = 6 observations available 
for its respective intrawell background. Six background measurements may or may not be enough for a 
sufficiently powerful test. 

To address the potential problem of inadequate power, a one-way ANOV A should be run on the 
combined set of wells (including background locations). If the well-to-well variances are significantly 
different, individual standard deviation estimates should be made from the six observations at the eight 
downgradient wells. If the variances are approximately equal, a pooled standard deviation estimate can 
instead be computed from the ANOV A table. With 11 total wells and 6 measurements per well, the 
pooled standard deviation has df = 11x5=55 degrees of freedom, instead of df= 5 for each individual 

well. 

Regardless of ANOV A results, the per-test false positive rate is approximately the design SWFPR 
divided by the annual number of tests. For w = 8 compliance wells, c = 5 parameters monitored, and nE 

= 2 statistical evaluations per year, the per-test false positive rate is approximately Utest = 

SWFPR/(wOcOn E) = 0.00125. Given normal distribution data, several different parametric prediction 
limit retesting plans can be examined, 17 using either the combined sample size of df + 1 = 56 or the per­
well sample size of n = 6. 

Explained in greater detail in Chapter 19, J -multiples and power ratings for each test type (using 
the inputs w = 8 and n = 6 or 56 are obtained from the nine parametric Appendix D Intrawell tables 
labeled '5 COC, Semi-Annual'. The following J -factors were obtained for tests of future values at n = 6: 

= 3.46 (l-of-2 test); = 2.41 (l-of-3); = 1.81 (l-of-4); and = 2.97 (modified California) plans. For 
future means, the corresponding J -factors were: = 4.46 (l-of-1 mean size 2); = 2.78 (l-of-2 mean 
size 2); = 2.06 (l-of-3 mean size 2); = 3.85 (l-of-1 mean size 3); and = 2.51 (l-of-2 mean size 3). 
In these tables, -factors reported in Bold have good power, those Italicized have acceptable power and 
Plain Text indicates low power. For single well intrawell tests, only l-of-3 or l-of-4 plans for future 
values, l-of-2 or l-of-3 mean size 2 or l-of-2 mean size 3 plans meet the ERPC criteria. 

17 Intrawell control charts with retesting are also an option, though the control limits associated with each retesting scheme 
need to be simulated. 
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Although each of these retesting plans is adequately powerful, a final choice would be made by 
balancing 1) the cost of sampling and chemical analysis at the site; 2) the ability to collect statistically 
independent samples should the sampling frequency be increased; and 3) a comparison of the actual 
power curves of the three plans. The last can be used to assess how differences in power might impact 
the rapid identification of a groundwater release. Since a l-of-3 test for future observations has good 
power, it is unnecessary to make use of a l-of-4 test. Similarly, the l-of-3 test for mean size 2 and a l­
of-2 test for mean size 3 might also be eliminated, since a l-of-2 test of a mean size 2 is more than 
adequate. This leaves the l-of-3 future values and l-of-2 mean 2 tests as the final prediction limit 
options to consider. 

Though prediction limits around future means are more powerful than plans for observations, only 
3 independent measurements might be required for a l-of-3 test, while 4 might be necessary for the l-of-
2 test for mean size 2. For most tests at background, a single sample might suffice for the l-of-3 test and 
2 independent samples for the test using a l-of-2 mean size 2. 

Much greater flexibility is afforded if the pooled intrawell standard deviation estimate can be used. 
For this example, any of the nine parametric intrawell retesting plans is sufficiently powerful, including a 
l-of-2 prediction limit test on observations and a 1-of-l test of mean size 2. In order to make this 
assessment using the pooled-variance approach, a careful reading of Chapter 13, Section 13.3. is 
necessary to generate comparative J -factors. 

Less overall sampling is needed with the l-of-2 plan on observations, since only a single sample 
may be needed for most background conditions. Two observations are always required for the 1-of-l 
mean size 2 test. More prediction limit testing options are generally available for a small facility. 

c 1 ?P I + 1 l ~ I 1 J_ T +- I 

A medium-sized hazardous waste facility has 4 upgradient background wells and 20 downgradient 
compliance wells. Ten initial measurements have been collected at each upgradient well and 8 at 
downgradient wells. The permitted monitoring list includes 10 inorganic parameters and 30 VOes. No 
voes have yet been detected in groundwater. The remaining 10 inorganic constituents are normal or can 
be normalized, and five show evidence of significant spatial variation across the site. Assume that 
pooled-variances cannot be obtained from the historical upgradient or downgradient well data. If one 
statistical evaluation must be conducted each year, what statistical method and approach are 
recommended? 

~ ~ +- ~T ~ 

At this site, there are potentially 800 distinct well-constituent pairs that might be tested. But since 
none of the voes has been detected in groundwater in background wells, all 30 of the voes should be 
handled using the double quantification rule (Section 6.2.2). A second confirmatory resample should be 
analyzed at those compliance wells for any of the 30 voe constituents initially detected. Two 
successive quantified detections above the RL are considered significant evidence of groundwater 
contamination at that well and voe constituent. To properly limit the SWFPR, the 30 voe constituents 
are excluded from further SWFPR calculations, which is now based on w 0 c 0 nE = 20 0 10 0 1 = 200 
annual tests. 

L ' l 
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The five inorganic constituent background data sets indicate insignificant spatial variation and can 
be normalized. The observations from the four upgradient wells can be pooled to form background data 
sets with an n = 40 for each of these five constituents. Future samples from the 20 compliance wells are 
then compared against the respective interwell background data. With one annual evaluation, c = 10 
constituents, w = 20 wells and n = 40 background samples, the Interwell 'JO CDC, Annual' tables for 
parametric prediction limits with retesting can be searched in Appendix D. Alternatively, control chart 
limits can be fit to this configuration via Monte Carlo simulations. Even though only five constituents 
will be tested this way, all of the legitimate constituents ( c) affecting the SWFPR calculation, are used in 
applying the tables. 

Most of the interwell prediction limit retesting plans, whether for observations or means, offer 
good power relative to the annual evaluation ERPC. The final choice of a plan may be resolved by a 
consideration of sampling effort and cost, as well as perhaps a more detailed power comparison using 
simulated curves. For prediction limits, a l-of-2 test for observations e = 2.18) and the 1-of-l 
prediction limit for a mean of order 2 ( J = 2.56) both offer good power. These two plans also require the 
least amount of sampling to identify a potential release (as discussed in Example 6-6). Beyond this 
rationale, the more powerful 1-of-l test of a future mean size 2 might be selected. Full power curves 
could be constructed and overlaid for several competing plans. 

The remaining 5 inorganic constituents must be managed using intrawell methods based on 
individual compliance well sizes of n = 8. For the same c, w, and nE inputs as above, the Appendix D 
Intra well ' 1 CCOC, Annual' tables should be used. Only four of the higher order prediction limit tests 
have acceptable or good power: l-of-4 future values ( J = 1.84 ); l-of-2 mean size 2 ( J = 2. 68); l-of-3 
mean size 2 e = 2.00); and l-of-2 mean size 3 e = 2.39) tests. The l-of-2 mean size 2 has only 
acceptable power. The first two tests require the fewest samples under most background conditions and 
in total, with the l-of-4 test having superior power. 

C 1 ?P I t 1 l Ln P !! ~ 1 

A larger solid waste facility must conduct two statistical evaluations per year at two background 
wells and 30 compliance wells. Parameters on the monitoring list include five trace metals with a high 
percentage of non-detect measurements, and five other inorganic constituents. While the inorganic 
parameters are either normal or can be normalized, a significant degree of spatial variation is present 
from one well to the next. If 12 observations were collected from each background well, but only 4 
quarterly measurements from each compliance well, what statistical approach is recommended? 

-> ~ <- ~T ~ i 

Because the two groups of constituents evidence distinctly different statistical characteristics, each 
needs to be separately considered. Since the trace metals have occasional detections or 'hits,' they 
cannot be excluded from the SWFPR computation. Because of their high non-detect rates, parametric 
prediction limits or control charts may not be appropriate or valid unless a non-detect adjustment such as 
Kaplan-Meier or robust regression on order statistics is used (Chapter 15). Assuming for this example 
that parametric tests cannot be applied, the trace metals should be analyzed using non-parametric 
prediction limits. The presence of frequent non-detects may substantially limit the potential degree of 
spatial variation, making an interwell non-parametric test potentially feasible. The Kruskal-Wallis non­
parametric ANOVA (Chapter 17) could be used to test this assumption. 

L -
l -
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In this case, the number of background measurements is n = 24, and this value along with w = 30 
compliance wells would be used to examine possible non-parametric retesting plans in the Appendix D 
tables for non-parametric prediction limits. As these tables offer achievable per-evaluation, per­
constituent false positive rates for each configuration of compliance wells and background levels, the 
target a level must be determined. Given semi-annual evaluations, the per-evaluation false positive rate 
is approximately aE = 0.10/nE = 0.05. Then, with 10 constituents altogether, the approximate per­
constituent false positive rate for each trace metal becomes aconst = 0.05/10 = 0.005. 

Only one retesting plan meets the target false positive rate, a l-of-4 non-parametric prediction limit 
using the maximum value in background as the comparison limit. This plan has 'acceptable' power 
relative to the ERPC. Other more powerful plans all have higher-than-targeted false positive rates. 

For the remaining 5 inorganic constituents, the presence of significant spatial variation and the fact 
that the observations can be normalized, suggests the use of parametric intrawell prediction or control 
limits. As in the previous Example 6-6, interwell prediction limit tables in Appendix D are used by 
identifying J multipliers and power ratings based on all 10 constituents subject to the SWFPR 
calculations. This is true even though these parametric options only pertain to 5 constituents. The total 
number of well-constituent pair tests per year is equal to w 0 c 0 nE = 30 0 10 0 2 = 600 annual tests. 

Assuming none of the observed spatial variation is due to already contaminated compliance wells, 
the number of measurements that can be used as intrawell background per well is small (n = 4). A quick 
scan of the intrawell prediction limit retesting plans in Appendix D 'JOCOC, Semi-Annual' tables 
indicates that none of the plans offer even acceptable power for identifying a potential release. A one­
way ANOV A should be run on the combined set of w = 30 compliance wells to determine if a pooled 
intrawell standard deviation estimate can be used. 

Iflevels of variance across these wells are roughly the same, the pooled standard deviation will 

have df = w(n -1)=30 x3 = 90 degrees of freedom, making each intrawell prediction or control limit 

much more powerful. Using the R script provided in Appendix C for intrawell prediction limits with a 
pooled standard deviation estimate (see Section 13.3 ), based on n = 4 and df = 90, all of the relevant 
inm:aptlilbh ioorethetilo-nf-Jlnfut:uranwaimfiid:mmthy apo¥nfile pompD,rdie mhtlretemmhmnngabdE]RR(ler. Withfi:tim 
choice of retesting plan can be made by weighing the costs of required sampling versus perhaps a more 
detailed comparison of the full power curves. Plans with lower sampling requirements may be the most 
attractive. 
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This chapter covers the fundamental design principles for compliance/assessment and corrective 
action statistical monitoring programs. One important difference between these programs and detection 
monitoring is that a fixed external GWPS is often used in evaluating compliance. These GWPS can be 
an MCL, risk-based or background limit as well as a remedial action goal. Comparisons to a GWPS in 
compliance/assessment and corrective action are generally one-sample tests as opposed to the two- or 
multi-sample tests in detection monitoring. Depending on the program design, two- or multiple-sample 
detection monitoring strategies can be used with well constituents subject to background 
compliance/corrective action testing. While a general framework is presented in this chapter, specific 
test applications and strategies are presented in Chapters 21 and 22 for fixed GWPS comparisons. 
Sections 7.1 through 7.4 discuss comparisons to fixed GWPSs, while Section 7.5 covers background 
GWPS testing (either as a fixed limit or based on a background statistic). Discussions of regulatory 
issues are generally limited to 40 CFR Part 264, although they also apply to corresponding sections of 
the 40 CFR Part 258 solid waste rules. 

The RCRA regulatory structure for compliance/assessment and corrective action monitoring is 
outlined in Chapter 2. In detection and compliance/assessment monitoring phases, a facility is presumed 
not to be 'out of compliance' until significant evidence of an impact or groundwater release can be 
identified. In corrective action monitoring, the presumption is reversed since contamination of the 
groundwater has already been identified and confirmed. The null hypothesis of onsite contamination is 
rejected only when there is significant evidence that the clean-up or remediation strategy has been 
successful. 

Compliance/assessment monitoring is generally begun when statistically significant concentration 
exceedances above background have been confirmed for one or more detection monitoring constituents. 
Corrective action is undertaken when at least one exceedance of a hazardous constituent GWPS has 
been identified in compliance/assessment monitoring. The suite of constituents subject to 
compliance/assessment monitoring is determined from Part 264 Appendix IX or Part 258 Appendix II 
testing, along with prior hazardous constituent data evaluated under the detection monitoring program. 
Following a compliance monitoring statistical exceedance, only a few of these constituents may reqmre 
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the change in hypothesis structure to corrective action monitoring. This formal corrective action testing 
will need to await completion of remedial activities, while continued monitoring can track progress in 
meeting standards. 

The same general statistical method of confidence interval testing against a fixed GWPS is 
recommended in both compliance/assessment and corrective action programs. As discussed more fully 
below and in Chapter 21, confidence intervals provide a flexible and statistically accurate method to 
test how a parameter estimated from a single sample compares to a fixed numerical limit. Confidence 
intervals explicitly account for variation and uncertainty in the sample data used to construct them. 

Most decisions about a statistical program under §264.98 detection monitoring are tailored to 
facility conditions, other than selecting a target site-wide cumulative false positive rate and a scheme for 
evaluating power. Statistical design details are likely to be site-specific, depending on the available data, 
observed distributions and the scope of the monitoring network. For compliance/assessment and 
corrective action testing under §264.99 and §264.100 or similar tests against fixed health-based or risk­
based standards, the testing regimen is instead likely to be determined in advance by the regulatory 
agency. The Regional Administrator or State Director is charged with defining the nature of the tests, 
constituents to be tested, and the wells or compliance points to be evaluated. Specific decisions 
concerning false positive rates and power may also need to be defined at a regulatory program level. 

The advantage of a consistent approach for compliance/assessment and corrective action 
monitoring tests is that it can be applied across all Regional or State facilities. Facility-specific input is 
still needed, including the observed distributions of key constituents and the selection of statistical 
power and false positive criteria for permits. Because of the asymmetric nature of the risks involved, 
regulatory agency and facility perspectives may differ on which statistical risks are most critical. 
Therefore, we recommend that the following issues be addressed for compliance/assessment and 
corrective action monitoring (both §264.99 and §264.100), as well as for other programs involving 
comparisons to fixed standards: 

What are the appropriate hypothesis testing structures for making compansons to a fixed 
standard? 

What do fixed GWPS represent in statistical terms and which population parameter(s) should be 
tested against them? 

What is a desirable frequency of sampling and testing, which test(s), and for what constituents? 

What statistical power requirements should be included to ensure protection of health and the 
environment? 

What confidence level(s) should be selected to control false positive error rates, especially 
considering sites with multiple wells and/or constituents? 

Decisions regarding these five questions are complex and interrelated, and have not been fully 
addressed by previous RCRA guidance or existing regulations. This chapter addresses each of these 
points for both §264.99 and §264.100 testing. By developing answers at a regulatory program level, the 
necessity of re-evaluating the same questions at each specific site may be avoided. 
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Compliance testing under §264.99 specifically reqmres a determination that one or more well 
constituents exceeds a permit-specific GWPS. The correct statistical hypothesis during 
compliance/assessment monitoring is that groundwater concentrations are presumed not to exceed the 
fixed standard unless sampling data from one or more well constituents indicates otherwise. The null 
hypothesis, H0 , assumes that downgradient well concentration levels are less than or equal to a standard, 
while the alternative hypothesis, HA, is accepted only if the standard is significantly exceeded. Formally, 
for some parameter ( 0) estimated from sample data and representing a standard G, the relevant 
hypotheses under §264.99 compliance monitoring are stated as: 

[7.1] 

Once a positive determination has been made that at least one compliance well constituent 
exceeds the fixed standard (i.e., GWPS), the facility is subject to corrective action requirements under 
%fr64tll00. sho\rldthbe ~stlie (fo~ulhtiooisc<impljamnrl ~timdi primliqtkfilt~icinrllix:ating tlmch~1beiiliesi); 
Other compliance constituents (i.e., those not exceeding their respective GWPSs) may continue to be 
~i~¥sviriidl'*J~r~~fui.U~-t\limikilviiaimtb9q§iu#I fijd;¥ 

[7.2) 

The reasoning behind this approach is as follows. Background exceedances by one or more well 
~apiri•di@jiijtilr~ T g'Jjil iF '£ ·w~•8§d~"tfi #Mjtp•iriif?Yj · •:ij\iiifoiiillif' lit!~ 

This guidance recognizes that not all regulatory programs are constructed alike. Objectives and 
regulatory interpretations may differ as to the basic goals of compliance/assessment or corrective action 
dm~.tlWh~ehttgfmnrlnbmii~llp~o~~~ 
~¥la8~mniqdiiDim'BMwNsmff1Wiostalb:tiirowl~d~~~ 

statistical approach involves an upper confidence limit, as is appropriate for corrective action. 

l L 

EPAPAV0117023 



Non-RCRA programs seeking to use methods presented in the Unified Guidance may also presume 
a different statistical hypothesis structure from that presented here. The primary goal is to ensure that the 
statistical approach matches the appropriate hypothesis framework. It is also allowable under RCRA 
regulations to define GWPS based on background data, discussed further in Section 7.5. 

Whatever the population parameter ( 0) selected as representative of the GWPS, testing consists of 
a confidence interval derived from the compliance point data at some choice of significance level (a), 
and then compared to the standard G. The confidence intervals describe the probable distribution of the 
sample statistic, , employed to estimate the true parameter 8. For testing under compliance/assessment 
monitoring, a lower confidence limit around the true parameter -LCL( 0) - is utilized. If LCL( l ) 

exceeds the standard, there is statistically significant evidence in favor of the alternative hypothesis, HA: 
8 > G , that the compliance standard has been violated. If not, the confidence limit test is inconclusive 
and the null hypothesis accepted. 

When the corrective action hypothesis of [7.2] is employed, an upper confidence limit UCL( 0) is 
generated from the compliance point data and compared to the standard G. In this case, the UCL( 8) 
should lie below the standard to accept the alternative hypothesis that concentration levels are in 
compliance, HA: 8 < G . If the UCL( l ) is larger than the standard, the test is inconclusive. It should be 
recognized that once corrective action or remediation activities are initiated, there will be a considerable 
time during which the GWPS may still be exceeded. As provided in the RCRA regulations, it is at the 
conclusion of remediation activities that formal corrective action monitoring evaluation is appropriate. 
However, in the intervening period of remedial activity, well constituents can still be monitored and the 
relative efficacy of remediation measures tracked. The same corrective action statistical hypotheses can 
be assumed for the targeted constituents; techniques such as trend testing may be appropriate interim 
applications. 

If the entire confidence interval (considering both the lower and upper confidence limits) lies 
below the fixed standard G in either a compliance/assessment or corrective action setting, there is 
statistically significant evidence that the true parameter or characteristic (e.g., the mean) is less than the 
standard. The constituent concentrations at the well are considered to be in compliance. Conversely, if 
the confidence interval lies entirely above G, the evidence suggests that the true parameter or 
characteristic exceeds the standard, and that concentrations at the well are out of compliance. 

When the confidence interval straddles the standard G (as with the example confidence interval 
around the upper 95th percentile in Figure 7-1 below), the correct decision is uncertain. When the 
population mean is being tested, and a confidence interval around the mean has accurately estimated its 
location, the true mean lies somewhere between the lower and upper confidence limits. But the precise 
value of the population mean within that range is unknown. The mean might be less than G or it might 
be greater than G. No clear decision with high statistical confidence is possible. When testing the 
compliance/assessment monitoring hypothesis o/[7.1], we recommend that the null hypothesis should 
not be rejected unless the entire confidence interval defined by and including the lower confidence 
limit exceeds the GWPS. By the same token, when testing the corrective action hypothesis of equation 
[7.2], we recommend that the null hypothesis not be rejected unless the entire upper confidence 
interval and limit lies below the GWPS. 

These ideas can be illustrated with a normal confidence interval around the arithmetic mean. In this 
case, the population parameter l equals L the true population mean of a given compliance well 
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constituent. The statistic used to estimate µ is the sample mean ( x ). With this statistic and normally­
distributed data, the lower and upper confidence limits are symmetric: 

LCL (µ )= x - tl-a,n-1 Fn [7.3) 

UCL(µ)= x + tl-a,n-1 Fn [7.4) 

for a selected significance level (a) and sample size n. Note in these formulas that s is the sample 

standard deviation, and t
1
_a,n-i is a central Student's !-value with n-1 degrees of freedom. 

The two hypothesis structures and tests are defined as follows: 

Case A. Test of non-compliance (§264.99) vs. a fixed standard (compliance/assessment monitoring): 

Test Hypothesis: H
0

: µ::::; G vs. HA:µ> G 

. . - s 
Test Statistic: LCL1_a = x - t 1_a,n-I .j;; 

Rejection Region: Reject null hypothesis (Ho) if LCL
1
_a > G ; otherwise, accept null hypothesis 

Case B. Test of compliance (§264.100) vs. a fixed standard (corrective action): 

Test Hypothesis: H
0

: µ ~ G vs. HA:µ< G 

Test Statistic: UCL1_a = .X + t 1_a,n-I Fn 

Rejection Region: Reject null hypothesis (Ho) if UCL
1
_a < G; otherwise, accept null hypothesis 

For all confidence intervals and tests presented in Chapters 21 and 22, the test structures are 
similar to those above. But not every pair oflower and upper confidence limits (i.e., LCL and UCL) will 
be symmetric, particularly for skewed distributions and in non-parametric tests on upper percentiles. For 
a non-parametric technique such as a confidence interval around the median, exact confidence levels will 
depend on the available sample size and which order statistics are used to estimate the desired 
population parameter. In these cases, an exact target confidence level may or may not be attainable. 

When calculating confidence intervals, assignment of the false positive error ( J ) differs between a 
one-sided and two-sided confidence interval test. The symmetric upper and lower confidence intervals 
are shown in Figure 7-1 largely for illustration purposes. If the lower confidence interval for some 
tested parameter l is the critical limit, all of the J error is assigned to the region below the LCL( l ). 

Hence, a 1-J confidence level covers the range from the lower limit to positive infinity. Similarly, all of 
the J error for an upper confidence limit UCL( l ) is assigned to the region above this value. For a two-
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sided interval, the error rate is equally partitioned on both sides of the respective confidence interval 
limits. A 95% lower confidence limit implies that a 5% chance of an error exists for values lying below 
the limit. In contrast, a two-sided 95% confidence interval implies a 2.5% chance above and a 2.5% 
chance of an error below the confidence level. Depending on how confidence intervals are defined, the 
appropriate statistical adjustment (e.g., the !-value in Equations 7-3 and 7-4) needs to take this into 
account. 
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A second essential design step is to identify the appropriate population parameter and its associated 
statistical estimate. This is primarily a determination of what a given fixed GWPS represents in 
statistical terms. Not all fixed concentration standards are meant to represent the same statistical 
quantities. A distinction is drawn between 1) those central tendency standards designed to represent a 
mean or average concentration level and 2) those which represent either an upper percentile or the 
maximum of the concentration distribution. If the fixed standard represents an average concentration, it 
is assumed in the Unified Guidance that the mean concentration (or possibly the median concentration) 
in groundwater should not exceed the limit. When a fixed standard represents an upper percentile or 
maximum, no more than a small, specified fraction of the individual concentration measurements should 
exceed the limit. 

The choice of confidence interval should be based on the type of fixed standard to which the 
groundwater data will be compared. A fixed limit best representing an upper percentile concentration 
(e.g., the upper 95th percentile) should not be compared to a confidence interval constructed around the 
arithmetic mean. Such an interval only estimates the location of the population mean, but says nothing 
about the specific upper percentile of the concentration distribution. The average concentration level 
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could be substantially less than the standard even though a significant fraction of the individual 
measurements exceeds the standard (see Figure 7-1). 

There are a variety of fixed standards to which different statistical measures apply. Alternative 
GWPSs based on Agency risk-assessment protocols are cited as an option in the solid waste regulations 
at §258.55(i)(l). Many of the risk-assessment procedures identified in the CERCLA program make use 
of chronic, long-term exposure models for ingestion or inhalation. These procedures are identified in the 
(EPA, l 989b) Risk Assessment Guidance for Superfund (RAGS) and the Supplemental Guidance for 
Calculating the Concentration Term (EPA, l 992c ), and serve as guidance for other EPA programs. In 
the latter document, the arithmetic mean is identified as the appropriate parameter for identifying 
environmental exposure levels. The levels are intended to identify chronic, time-weighted concentration 
averages based on lifetime exposure scenarios. 

The primary maximum contaminant levels [MCL] promulgated under the Safe Drinking Water Act 
(SDWA) follow the same exposure evaluation principles. An MCL is typically based on 70-year risk­
exposure scenarios (for carcinogenic compounds), assuming an ingestion rate of 2 liters of water per day 
at the average concentration over time. Similarly, long-term risk periods (e.g., 6-years) are used for non­
carcinogenic constituents, assuming average exposure concentrations. The promulgated levels also 
contain a safety multiplicative factor and are applied at the end-user tap. Calculations for ingestion 
exposure risk to soil contaminants by an individual randomly traversing a contaminated site are based on 
the average estimated soil concentration. It is expected that an exposed individual drinking the water or 
ingesting the soil is not afforded any protection in the form of prior treatment. 

Other standards which may represent a population mean include some RCRA site permits that 
include comparisons against an alternate concentration limit [ACL] based on the average value of 
background data. In addition, some standards represent time-weighted averages used for carcinogenic 
risk assessments such as the lifetime average daily dose [LADD]. 

Fixed limits based explicitly on the median concentration include fish ingestion exposure factors, 
used in testing fish tissue for certain contaminants. The exposure factors represent the allowable 
concentration level below which at least half of the fish sample concentrations should lie, the 50th 
percentile of the observed concentration distribution. If this distribution is symmetric, the mean and 
median will be identical. For positively skewed populations, the mean concentration could exceed the 
exposure factor even though the median (and hence, a majority of the individual concentrations) is below 
the limit. It would therefore not be appropriate to compare such exposure factors against a confidence 
interval around the mean contaminant level, unless one could be certain the distribution was symmetric. 

Fixed standards are sometimes based on upper percentiles. Scenarios of this type include risk­
based standards designed to limit acute effects that result from short-term exposures to certain chemicals 
(e.g., chlorine gas leaking from a rail car or tanker). There is greater interest in possible acute effects or 
transient exposures having a significant short-term risk. Such exposure events may not happen often, but 
can be important to track for monitoring and/or compliance purposes. 

When even short exposures can result in deleterious health or environmental effects, the fixed limit 
can be specified as a maximum allowable concentration. From a statistical standpoint, the standard 
identifies a level which can only be exceeded a small fraction of the time (e.g., the upper 90th 
percentile). If a larger than allowable fraction of the individual exposures exceeds the standard, action is 
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likely warranted, even if the average concentration level is below the standard. Certain MCLs are 
interpreted in this same manner; the term 'maximum' in maximum contaminant level would be treated 
statistically as an upper percentile limit. Examples include criteria for bacterial counts and nitrate/nitrite 
concentrations, best regarded as upper percentile limits. 

As an example, exposure of infants to nitrate concentrations in excess of 10 mg/L (N03- as N) in 

drinking water is a case where greater concern surrounds acute effects resulting from short-term 
exposure. The flora in the intestinal tract of infant humans and animals does not fully develop until the 
age of about six months. This results in a lower acidity in the intestinal tract, which permits the growth 
of nitrate reducing bacteria. These bacteria convert nitrate to nitrite. When absorbed into the 
bloodstream, nitrite interferes with the absorption of oxygen. Suffocation by oxygen starvation in this 
manner produces a bluish skin discoloration - a condition known as "blue baby" syndrome (or 
methemoglobinemia) - which can result in serious health problems, even death. In such a scenario, 
suppose that acute effects resulting from short-term exposure above some critical level should normally 
occur in no more than 10 percent of all exposure events. Then the critical level so identified would be 
equivalent to the upper 90th percentile of all exposure events. 

Another example is the so-called 20-year flood recurrence interval for structural design. Flood 
walls and drainage culverts are designed to handle not just the average flood level, but also flood levels 
that have a 1 in 20 chance of being equaled or exceeded in any single year. A 20-year flood recurrence 
level is essentially equivalent to estimating the upper 95th percentile of the distribution of flood levels 
(e.g., a flood of this magnitude is expected to occur only 5 times every 100 years). 

The various limits identified as potential GWPS in Chapter 2 pose some interpretation problems. 
§264.94 Table 1 values are identified as "Maximum Concentration[s] of Constituents for Groundwater 
Protection" for 14 hazardous constituents, originating from earlier Federal Water Pollution Control 
Administration efforts. While not a definitive protocol for comparison, it was indicated that the limits 
were intended to represent a concentration level that should not be exceeded most of the time. In an 
early Water Quality Criteria report (USDI, 1968), the language is as follows: 

"It is clearly not possible to apply these (drinking water) criteria solely as maximum single 
sample values. The criteria should not be exceeded over substantial portions of time." 

Similarly, the more current MCLs promulgated under the SDW A are identified as "maximum 
contaminant limits". Even if the limits were derived from chronic, risk-based assessments, the same 
implication is that these limits should not be exceeded. 

Individual EPA programs make sample data comparisons to MCLs using different approaches. 
For small-facility systems monitored under the SDWA, only one or two samples a year might be 
collected for comparison. Anything other than direct comparisons isn' possible. Some Clean Water Act 
programs use arithmetic comparisons (means or medians) rather than a fully statistical approach. 
CERCLA typically utilizes these standards in mean statistical comparisons, consistent with other chronic 
health-based levels derived from their program risk assessment equations. In short, EPA nationwide 
does not have a single operational definition or measure for assessing MCLs with sample data. 

The Unified Guidance cannot directly resolve these issues. Since the regulations promulgated 
under RCRA presume the use of fully statistical measures for groundwater monitoring program 

EPAPAV0117028 



evaluations, the guidance provides a number of options for both centrality-based and upper limit tests. 
It falls upon State or Regional programs to determine which is the most appropriate parameter for 
comparison to a GWPS. As indicated above, the guidance does recommend that any operational 
definition of the appropriate parameter of comparison to GWPS' S:>e applied uniformly across a program. 

If a mean- or median-based centrality parameter is chosen, the guidance offers fairly 
straightforward confidence interval testing options. For a parameter representing some infrequent level 
of exceedance to address the "maximum" or "most" criteria, the program would need to identify a 
specific upper proportion and confidence level that the GWPS represents. Perhaps a proportion of 80 to 
95% would be appropriate, at 90-95% confidence. It is presumed that the same standard would apply to 
both compliance and corrective action testing under §264.99 and §264.100. If non-parametric upper 
proportion tests must be used for certain data, very high proportions make for especially difficult tests to 
determine a return to compliance (Chapter 22) because of the number of samples required. 

As discussed in Chapters 3 and 6, the twin criteria in designing an acceptable detection 
monitoring statistical program are the site-wide false positive rate [SWFPR] and the effective power of 
the testing regimen. Both statistical measures are crucial to good statistical design, although from a 
regulatory perspective, ensuring adequate power to detect contaminated groundwater is of primary 
importance. 

In compliance/assessment monitoring, statistical power is also of prime concern to EPA. There 
should be a high probability that the statistical test will positively identify concentrations that have 
exceeded a fixed, regulatory standard. In typical applications where a confidence interval is compared 
against a fixed standard, a low false positive error rate (a) is chosen without respect to the power of the 
test. Partly this is due to a natural desire to have high statistical confidence in the test, where (1- a) 
designates the confidence level of the interval. But statistical confidence is not the same as power. The 
confidence level merely indicates how often - in repeated applications - the interval will contain the 
true population parameter ( l ); not how often the test will indicate an exceedance of a fixed standard. It 
has historically been much easier to select a single value for the false positive rate ( J ) than to measure 
power, especially since power is not a single number but a function of the level of contamination (as 
discussed in Section 3.5). 

The power to detect increases above a fixed standard using a lower confidence limit can be 
negligible when contaminant variability is high, the sample size is small and especially when a high 
degree of confidence has been selected. To remedy this problem, the Unified Guidance recommends 
reversing the usual sequence: first select a desired level of power for the test (1--), and then compute the 
associated (maximum) false positive rate ( J ). In this way, a pre-specified power can be maintained even 
if the sample size is too low to simultaneously minimize the risks of both Type I and Type II errors (i.e., 
false positives and false negatives). 

Specific methods for choosing power and computing false positive rates with confidence interval 
tests are presented in Chapter 22. Detailed applications of confidence interval tests are provided in 
Chapter 21. The focus here is on setting a basic framework and consistent strategies. 
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As noted above, selecting false positive error rates in compliance or assessment testing (§264.99) 
has traditionally been accomplished under RCRA by choosing a fixed, individual test a. This strategy is 
attractive if only for the sake of simplicity. Individual test-wise false positive rates in the range of a = 

.01 to a= .10 are traditional and easily understood. In addition, the Part 264 regulations in §264.97(i)(2) 
require a minimum individual false positive rate of a= .01 in both compliance and corrective action 
testing against a fixed standard, as well as in those tests not specifically exempted under detection 

. . I 
momtonng. 

Given a fixed sample size and constant level of variation, the statistical power of a test method 
drops as the false positive rate decreases. A low false positive rate is often associated with low power. 
Since statistical power is of particular concern to EPA in compliance/assessment monitoring, somewhat 
higher false positive rates than the minimum J = .01 RCRA requirement may be necessary to maintain a 
pre-specified power over the range of sample sizes and variability likely to be encountered in RCRA 
testing situations. The key is sample variability. When the true population coefficient of variation [CV] 
is no greater than 0.5 (whether the underlying distribution is normal or lognormal), almost all lower 
confidence limit tests exhibit adequate power. When the variation is higher, the risk of false negative 
error is typically much greater (and thus the power is lower), which may necessitate setting a larger than 
usual individual a. 

Based on the discussion regarding false positives in detection monitoring in Chapter 6, some 
might be concerned about the use of relatively high individual test-wise false positive rates (a) in order 
to meet a pre-specified power, especially when considering the cumulative false positive error rate across 
multiple wells and/or constituents (i.e., SWFPR). Given that a number of compliance wells and 
constituents might need to be tested, the likelihood of occurrence of at least one false positive error 
increases dramatically. However, several factors specific to compliance/assessment monitoring need to 
be considered. Unlike detection monitoring where the number of tests is easily identified, the issue is 
less obvious for compliance/assessment or corrective action testing. The RCRA regulations do not 
clearly specify which wells and constituents must be compared to the GWPS in compliance/assessment 
monitoring other than wells at the 'compliance point.' In some situations, this has been interpreted to 
mean all compliance wells; in other instances, only at those wells with a documented exceedance. 

While all hazardous constituents including additional ones detected in Part 264 Appendix IX 
monitoring are potentially subject to testing, many may still be at concentration levels insignificantly 
different from onsite background. Constituents without health-based limits may or may not be included 
in compliance testing. The latter would be tested against background levels, using perhaps an ACL 
computed as a tolerance limit on background (see Section 7.5). This also tends to complicate derivation 
of SWFPRs in compliance testing. It was also noted in Section 7.2 that the levels at which contaminants 
are released bear no necessary relationship to fixed, health-based standards. In a typical release, some 
constituent levels from a suite of analytical parameters may lie orders of magnitude below their GWPS, 
while certain carcinogenic compounds may easily exceed their standards. 

1 In some instances, a test with "reasonable confidence" (that is, having adequate statistical power) for identifying 
compliance violations can be designed even if a < 0.01. This is particularly the case when the sample coefficient of 
variation is quite low, indicating small degrees of sample variability. 
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The simple example below illustrates typical low-level aquifer concentrations following a release 
of four common petrochemical facility hazardous organic constituents often detected together: 
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While benzene as a carcinogen has a very low health standard, the remaining three constituents 
have aquifer concentrations orders of magnitude lower than their respective MCLs. Realistically, only 
benzene is likely to impact the cumulative false positive rate in LCL testing. Similar relationships occur 
in releases measured by trace element and semi-volatile organic suites. 

Even though the null hypotheses in detection and compliance/assessment monitoring are similar 
(and compound) in nature (see [7.1)), it is reasonable to presume in detection monitoring that the 
compliance wells have average concentrations no less than mean background levels. 2 Since it is these 
background levels to which the compliance point data are compared in the absence of a release, the 
compound null hypothesis in detection monitoring (H0: µc • µBa) can be reformulated practically as (H0: 
µc = µBa). In this framework, individual concentration measurements are likely to occasionally exceed 
the background average and at times cause false positives to be identified even when there has been no 
change in average groundwater quality. 

In compliance/assessment monitoring, the situation is generally different. The compound null 
hypothesis (H0 : µc • GWPS) will include some wells and constituents where the sample mean equals or 
nearly equals the GWPS when testing begins. But many well-constituent pairs may have true means 
considerably less than the standard, making false positives much less likely for those comparisons and 
lowering the overall SWFPR. How much so will depend on both the variability of each individual 
constituent and the degree to which the true mean (or relevant statistical parameter l ) is lower than the 
GWPS for that analyte. 

Because of this, determining the relevant number of comparisons with non-negligible false positive 
error rates may be quite difficult. The SWFPR in this situation would be defined as the probability that at 
least one or more lower confidence limits exceeded the fixed standard G, when the true parameter l 

(usually the mean) was actually below the standard. However, the relevant number of comparisons will 
depend on the nature and extent of the release. For a more extensive release, there is greater likelihood 
that the null hypothesis is no longer true at one or more wells. Instead of computing false positive rates, 
the focus should shift to minimizing false negative errors (i.e., the risk of missing contamination above 
the GWPS). 

2 Note that background might consist of early intrawell measurements from compliance wells when substantial spatial 
variability exists. 
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On balance, the Unified Guidance considers computation of cumulative SWFPRs in 
compliance/assessment testing to be problematic, and reliance on individual test false positive rates 
preferable. The above arguments also suggest that flexibility in setting individual test-wise a levels may 
be appropriate. 

When contamination above a GWPS is confirmed, corrective action is triggered. Following a 
period ofremediation activity, formal statistical testing will usually involve an upper confidence limit 
around the mean or an upper percentile compared against a GWPS. EPA's overriding concern in 
corrective action is that remediation efforts not be declared successful without sufficient statistical proof 
Since groundwater is now presumed to be impacted at unacceptable levels, a facility should not exit 
corrective action until there is sufficient evidence that contamination has been abated. 

Given the reversal of test hypotheses from compliance/assessment monitoring to corrective action 
(i.e., comparing equation [7.1) with [7.2)), there is an asymmetry in regulatory considerations of false 
positive and false negative rates depending on the stage of monitoring. In compliance/assessment 
monitoring using tests of the lower confidence limit, the principal regulatory concern is that a given test 
has adequate statistical power to detect exceedances above the GWPS. 

Permitted RCRA monitoring is likely to involve small annual well sample sizes based on quarterly 
or semi-annual sampling. To meet a pre-specified level of power by controlling the false negative rate 
(-)necessitates varying the false positive rate (a) for individual tests. Controlling an SWFPR for these 
tests (using a criterion like the SWFPR) is usually not practical because of the ambiguity in identifying 
the relevant number of potential tests and the difficulty of properly assigning via the subdivision 
principle (Chapter 19) individual fractions of a targeted SWFPR. 

By contrast under corrective action using an upper confidence limit for testing, the principal 
regulatory and environmental concern is that one or more constituents might falsely be declared below a 
GWPS in concentration. Under the corrective action null hypothesis [7.2) this would be a false positive 
error, implying that a should be minimized during this sort of testing, instead of-. Specific methods for 
accomplishing this goal are presented in Chapter 22. 

A remaining question is whether SWFPRs should be controlled during corrective action. While 
potentially desirable, the number of well-constituent pairs exceeding their respective GWPS and subject 
to corrective action testing is likely to be small relative to compliance testing. Not all compliance wells 
or constituents may have been impacted, and some may not be contaminated to levels exceeding the 
GWPS, depending on the nature, extent, and intensity of the plume. Remediation efforts would focus on 
those constituents exceeding their GWPS. 

As noted in Section 7.4.1, the tenuous relationship between ambient background levels, 
contaminant magnitudes, and risk-based health standards implies that most GWPS exceedances are 
likely to be carcinogens, usually representing a small portion of all monitored constituents. Some 
exceedances may also be related compounds, for instance, chlorinated hydrocarbon daughter degradation 
products. 
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Statistically, the fact that some wells are contaminated while others may not be makes it difficult 
to define SWFPRs in corrective action. Instead, the Unified Guidance attempts to limit the individual 
test-wise a at those wells where exceedances have been confirmed and that are undergoing remediation. 
Since the most important consideration is to ensure that the true population parameter ( l ) is actually 
below the clean-up standard before declaring remediation a success, this guidance recommends the use 
of a reasonably low, fixed test-wise false positive rate (e.g., a= .05 or .10). Under this framework, there 
will be a 5% to 10% chance of incorrectly declaring any single well-constituent pair of being in 
compliance when its concentrations are truly above the remedial standard. 

The regulatory position in corrective action concerning statistical power is one of relative 
indifference. Although power under [7.2) represents the probability that the confidence interval test will 
correctly identify concentrations to be below the regulatory standard when in fact they are, the onus of 
proof for demonstrating that remediation has succeeded (e.g., µc < GWPS) falls on the regulated facility. 
As it is the facility's interest to demonstrate compliance, it may wish to develop statistical power criteria 
which would enhance this possibility (including increasing test sample sizes). 
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As noted in Section 7.1, the Unified Guidance recommends the use of confidence intervals in both 
compliance/assessment and corrective action testing. In compliance/assessment, the lower confidence 
limit is the appropriate statistic of interest, while in corrective action it is the upper confidence limit. In 
either case, the confidence limit is compared against a fixed, regulatory standard as a one-sample test. 
These recommendations are consistent with good statistical practice, as well as literature in the field, 
such as Gibbons and Coleman (2001 ). 

The type of confidence interval test will initially be determined by the choice of parameter(s) to 
represent the GWPS (Section 7.2). While this discussion has suggested that the mean may be the most 
appropriate parameter for chronic, health-based limits, other choices are possible. Chapter 21 identifies 
potential test statistical tests of a mean, median or upper percentile as the most appropriate parameters 
for comparison to a GWPS. In turn, data characteristics will determine whether parametric or non­
parametric test versions can be used. Depending on whether normality can be assumed for the original 
data or following transformation, somewhat different approaches may be needed. Finally, the presence 
of data trends affects how confidence interval testing can be applied. 

Some regulatory programs prefer to compare each individual measurement against G, identifying a 
well as out-of-compliance if any of the individual concentrations exceeds the standard. However, the 
false positive rate associated with such strategies tends to be quite high if the parameter choice has not 
been clearly specified. Using this individual comparison approach and assuming a mean as the 
parameter of choice, is of particular concern. If the true mean is less than but close to the standard, 
chances are very high that one or more individual measurements will be greater than the limit even 
though the hypothesis in [7 .1] has not been violated. Corrective action could then be initiated on a false 
premise. To evaluate whether a limited number of sample data exceed a standard, a lower confidence 
interval test would need to be based on a pre-specified upper percentile assumed to be the appropriate 
parameter for comparison to the GWPS. 

Small individual well sample sizes and data uncertainty can rarely be avoided in 
compliance/assessment and corrective action. Given the nature of RCRA permits, sampling frequencies 
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in compliance/assessment or corrective action monitoring are likely to be established in advance. 
Relatively small sample sizes per well-constituent pair each year are likely to be the rule; the Unified 
Guidance assumes that quarterly and semi-annual sampling will be very typical. 

For small and highly variable sample data sets, compliance/assessment monitoring and corrective 
action tests will have low statistical power either to detect exceedances above fixed standards or to 
demonstrate compliance in corrective action. One way to both enhance statistical power and control false 
positive error rates is through incremental or sequential pooling of compliance point data over time. 
Adding more data into a test of non-compliance or compliance will generally result in narrower 
confidence intervals and a clearer decision with respect to a compliance standard. 

The Unified Guidance recommends accumulating compliance data over time at each well, by 
allowing construction of confidence limits on overlapping as opposed to distinct or mutually exclusive 
data sets. If the lower confidence limit [LCL] exceeds the GWPS in compliance/assessment, a clear 
exceedance can be identified. If the upper confidence limit [UCL] is below the GWPS in corrective 
action, remediation at that well can be declared a success. If neither of these respective events occurs, 
further sampling should continue. A confidence interval can be recomputed after each additional I or 2 
measurements and a determination made whether the position of the confidence limit has changed 
relative to the compliance standard. 

Tests constructed in this way at each successive evaluation period will not be statistically 
independent; instead, the proposed testing strategy falls into the realm of sequential analysis. But it 
should help to minimize the possibility that a small group of spurious values will either push a facility 
into needless corrective action or prevent a successful remedial effort from being identified. 

One caveat with this approach is that it must be reasonable to assume that the population parameter 
l is stable over time. If a release has occurred and a contaminant plume is spreading through the aquifer, 
concentration shifts in the form of increasing trends over time may be more likely at contaminated wells. 
Likewise under active remediation, decreasing trends for a period of time may be more likely. Therefore, 
it is recommended that the sequential testing approach be used after aquifer conditions have stabilized to 
some degree. While concentration levels are actively changing with time, use of confidence intervals 
around a trend line should be pursued (see Section 7.4.4 and Chapter 21). 
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While accumulating compliance point data over time and successively re-computing confidence 
limits is appropriate for stable (i.e., stationary) populations, it can give misleading or false results when 
the underlying population is changing. Should a release create an expanding contaminant plume within 
the aquifer, concentration levels at some or all of the compliance wells will tend to shift upward, either 
in discrete jumps (as illustrated in Figure 7-2) or an increasing trend over time. In these cases, a lower 
confidence limit constructed on accumulated data will be overly wide (due to high sample variability 
caused by combining pre- and post-shift data) and not be reflective of the more recent upward shift in the 
contaminant distribution. 
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A similar problem can arise with corrective action data. Aquifer modifications as part of 
contaminant removals are likely to result in observable declines in constituent concentrations during the 
active treatment phase. At some point following cessation of remedial action, a new steady-state 
equilibrium may be established (Figure 7-3). 
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Until then, it is inappropriate to use a confidence interval test around the mean or an upper 
percentile to evaluate remedial success with respect to a clean-up standard. During active treatment 
phases and under non-steady state conditions, other forms of analysis such as confidence bands around a 
trend (see below), are recommended and should be pursued. 
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The Unified Guidance considers two basic types of non-stationary behavior: shifts and (linear) 
trends. A shift refers to a significant mean concentration increase or decrease departing from a roughly 
stable mean level. A trend refers to a series of consecutive measurements that evidence successively 
increasing or decreasing concentration levels. More complicated non-random data patterns are also 
possible, but beyond the scope of this guidance. With these two basic scenarios, the strategy for 
constructing an appropriate confidence interval differs. 

An important preliminary step is to track the individual compliance point measurements on a time 
series plot (Chapter 9 ). If a discrete shift in concentration level is evident, a confidence limit should be 
computed on the most recent stable measurements. Limiting the observations in this fashion to a 
specific time period is often termed a 'moving window.' The reduction in sample size will often be more 
than offset by the gain in statistical power. More recent measurements may exhibit less variation around 
the shifted mean value, resulting in a shorter confidence interval (Figure 7-4). The sample size included 
in the moving window should be sufficient to achieve the desired statistical power 
(compliance/assessment) or false positive rate (corrective action). However, measurements that are 
clearly unrepresentative of the newly shifted distribution should not be included, even if the sample size 
suffers. Once a stable mean can be assumed, the strategy of sequential pooling can be used. 
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If well concentration levels exhibit an increasing or decreasing trend over time (such as the 
example in Figure 7-5) and the pattern is reasonably linear or monotone, the trend can be identified 
using the methods detailed in Chapter 17. To measure compliance or non-compliance, a confidence 
band can be constructed around the estimated trend line, as described in Chapter 21. A confidence band 
is essentially a continuous series of confidence intervals estimated along every point of the trend. Using 
this technique, the appropriate upper or lower confidence limits at one or more points in the most recent 
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portion of the end of the sampling record can be compared against the fixed standard. The lower band is 
used to determine whether or not an exceedance has occurred in compliance/assessment, and an upper 
confidence band to determine if remedial success has been achieved in corrective action. 
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By explicitly accounting for the trend, the confidence interval in Chapter 21 will adjust upward or 
downward with the trend and thus more accurately estimate the current true concentration levels. Trend 
techniques are not just used to track progress towards exceeding or meeting a fixed standard. Confidence 
bands around the trend line can also provide an estimate of confidence in the average concentration as it 
changes over time. This subject is further covered in the Comprehensive Environmental Response, 
Compensation, and Liability Act [CERCLA] guidance Methods for Evaluating the Attainment of 
Cleanup Standards - Volume 2: Groundwater (EPA, 1992a). 

A final determination of remedial success should not solely be a statistical decision. In many 
hydrologic settings, contaminant concentrations tend to rise after groundwater pumping wells are turned 
off due to changes in well drawdown patterns. Concentration levels may exhibit more complicated 
behavior than the two situations considered above. Thus, on balance, it is recommended that determining 
achievement of corrective action goals be done in consultation with the site manager, geologist, and/or 
remedial engineer. 
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Selection of hazardous constituents to be monitored in compliance/assessment or corrective action 
is largely determined by permit decisions. Regulatory requirements (e.g., Part 264, Appendix IX) may 
also dictate the number of constituents. As a practical matter, the most reliable indicators of 
contamination should be favored. Occasionally, constituents subject to degradation and transformation in 
the aquifer (e.g., chlorinated hydrocarbon suites) may result in additional, related constituents of 
concern. 
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Since health-based considerations are paramount in this type of monitoring, the most sensitive 
constituents from a health risk standpoint could be selected. But even with population parameters ( l ), 

sample sizes, and constituents determined, selecting an appropriate confidence interval test from 
Chapter 21 can be problematic. For mildly variable sample data, measured at relatively stable levels, 
tests based on the normal distribution should be favored, whether constructed around a mean or an upper 
percentile. With highly variable sample data, selection of a test is less straightforward. If the observed 
data happen to be lognormal, Land's confidence interval around the arithmetic mean is a valid option; 
however, it has low power to measure compliance as the observations become more variable, and 
upward adjustment of the false positive rate e) may be necessary to maintain sufficient power. 

In addition, the extreme variability of an upper confidence limit using Land's technique can 
severely restrict its usage in tests of compliance during corrective action. Depending on the data pattern 
observed, degree of variability, and how closely the sample mimics the lognormal model, consultation 
with a professional statistician should be considered to resolve unusual cases. When the lognormal 
coefficient of variation is quite high, one alternative is to construct an upper confidence limit around the 
lognormal geometric mean (Chapter 21 ). Although such a confidence limit does not fully account for 
extreme concentration values in the right-hand tail of the lognormal distribution, a bound on the 
geometric mean will account for the bulk of possible measurements. Nonetheless, use of a geometric 
mean as a surrogate for the population arithmetic mean leads to distinctly different statistical test 
characteristics in terms of power and false positive rates. 

In sum, excessive sample variability can severely limit the effectiveness of traditional 
compliance/assessment and corrective action testing. On the other hand, if excessive variability is 
primarily due to trends observable in the data, confidence bands around a linear trend can be constructed 
(Section 7.4.4). 
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For compliance point data sets containing left-censored measurements (i.e., non-detects), 
parametric confidence intervals cannot be computed directly without some adjustment. All of the 
parametric confidence intervals described in Chapter 21 require estimates of the population mean Land 
standard deviation C. A number of adjustment strategies are presented in Chapter 15. If the percentage 
of non-detects is small -no more than 10-15% - simple substitution of half the reporting limit [RL] 
for each non-detect will generally work to give an approximately correct confidence interval. 

For samples of at least 8-10 measurements and up to 50% non-detects, the Kaplan-Meier or robust 
regression on order statistics [ROS] methods can be used. Data should first be assessed via a censored 
probability plot whether the sample can be normalized. If so, these techniques can be used to compute 
estimates of the mean Land standard deviation C adjusted for the presence ofleft-censored values. These 
adjusted estimates can be used in place of the sample mean ( x) and standard deviation (s) listed in the 
confidence interval formulas of Chapter 21 around either a mean or upper percentile. 

If none of these adjustments is appropriate, non-parametric confidence intervals on either the 
median or an upper percentile (Section 21.2) can be calculated. Larger sample sizes are needed than with 
parametric confidence interval counterparts, especially for intervals around an upper percentile, to ensure 
a high level of confidence and a sufficiently narrow interval. The principal advantage of non-parametric 
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intervals is their flexibility. Not only can large fractions of non-detects be accommodated, but non­
parametric confidence intervals can also be applied to data sets which cannot be normalized. 

For heavily censored small data sets of 4-6 observations, the options are limited. One approach is 
to replace each non-detect by half its RL and compute the confidence interval as if the sample were 
normal. Though the resulting interval will be approximate, it can provide a preliminary indication of the 
well's compliance with the standard until further sampling data can be accumulated and the confidence 
interval recomputed. 

Confidence bands around a trend can be constructed with censored data using a bootstrapped 
Theil-Sen non-parametric trend line (Section 21.3.2 ). In this method, the Theil-Sen trend is first 
computed using the sample data, accounting for the non-detects. Then a large number bootstrap 
resamples are drawn from the original sample, and an alternate Theil-Sen trend is conducted on each 
bootstrap sample. Variability in these alternate trend estimates is then used to construct a confidence 
band around the original trend. 
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Lognormal data may require special treatment when building a confidence interval around the 
mean. Land's method (Section 21.1.3) can offer a reasonable way to accommodate the transformation 
bias associated with the logarithm, particularly when computing a lower confidence limit as 
recommended in compliance/assessment monitoring. For data normalized by transformations other than 
the logarithm, one option is to calculate a normal-based confidence interval around the mean using the 
transformed measurements, then back-transform the limits to the original concentration scale. The 
resulting interval will not represent a confidence interval around the arithmetic mean of the original data, 
but rather will estimate the confidence intervals of the median and/or geometric mean. 

If the difference between the arithmetic mean and median is not considered important for a given 
GWPS, this strategy will be the easiest to implement. A wide range of results can occur with Land's 
method on highly skewed lognormal populations especially when computing an upper confidence limit 
around the arithmetic mean (Singh et al., 1997). It may be better to either construct a confidence interval 
around the lognormal geometric mean (Section 21.1.2) or to use the technique of bootstrapping (Efron, 
1979; Davison and Hinkley, 1997) to create a non-parametric interval around the arithmetic mean. 3 

For confidence intervals around an upper percentile, no bias is induced by data that have been 
normalized via a transformation. Whatever the transformation used (e.g., logarithm, square root, cube, 
etc.), a confidence interval can be constructed on the transformed data. The resulting limits can then be 
back-transformed to provide confidence limits around the desired upper percentile in the concentration 
domain. 

3 Bootstrapping is widely available in statistical software, including the open source R computing environment and EPA 's 
free-of-charge ProUCL package. In some cases, setting up the procedure cmrectly may require professional statistical 
consultation. 
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Statistical tests in compliance/assessment and corrective action monitoring will often involve a 
comparison between compliance point measurements and a promulgated fixed health-based limit or a 
risk-based remedial action goal as the GWPS, described earlier. But a number of situations arise where 
a GWPS must be based on a background limit. The Part 264 regulations presume such a standard as one 
of the options under §264.94(a); an ACL may also be determined from background under §264.94(b). 
More recent Part 258 rules specify a background GWPS where a promulgated or risk-based standard is 
not available or if the historical background is greater than an MCL [§258.55(h)(2) & (3)). 

Health-based risk standards bear no necessary relationship to site-specific aquifer concentration 
levels. At many sites this poses no problem, since the observed levels of many constituents may be 
considerably lower than their GWPS. However, either naturally-occurring or pre-existing aquifer 
concentrations of certain analytes can exceed promulgated standards. Two commonly monitored trace 
elements in particular-- arsenic and selenium-- are occasionally found at uncontaminated background 
well concentrations exceeding their respective MCLs. The regulations then provide that a GWPS based 
on background levels is appropriate. 

A number of factors should be considered in designing a background-type GWPS testing program 
for compliance/assessment or corrective action monitoring. The most fundamental decision is whether 
to base such comparisons on two- (or multiple-) sample versus single-sample tests. For the first, many 
of the design factors discussed for detection monitoring in Chapter 6 will be appropriate; for single 
sample comparisons to a fixed background GWPS, a confidence level approach similar to that discussed 
earlier for testing fixed health standards in this Chapter 7 would be applied. This basic decision then 
determines how the GWPS is defined, the appropriate test hypotheses, types of statistical tests, what the 
background GWPS represents in statistical terms, and the relevance of individual test and cumulative 
false positive error rates. Such decisions may also be constrained by State groundwater anti-degradation 
policies. Other design factors to consider are the number of wells and constituents tested, interwell 
versus intrawell options, background sample sizes, and power. Unlike a single fixed standard like an 
MCL, background GWPS's may be uniquely defined for a given monitoring well constituent by a 
number of these factors. 
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One of two fundamental testing approaches can be used with site-specific background GWPSs. 
Either 1) a GWPS is defined as the critical limit from a pre-selected detection-level statistical test (e.g., a 
prediction limit) based on background measurements, or 2) background data are used to generate a fixed 
GWPS somewhat elevated above current background levels. In both cases, the resulting GWPS will be 
constituent- and possibly compliance well- specific. The first represents a two-sample test of two 
distinct populations (or more if a multiple-sample test) similar to those utilized in detection monitoring. 
As such, the individual test false positive rate, historical background sample size, cumulative false 
positive considerations, number of annual tests and desired future sample size will uniquely determine 
the limit. Whatever the critical value for a selected background test, it becomes the GWPS under 
compliance/assessment or corrective action monitoring. 
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The only allowable hypothesis test structure for the two-sample approach follows that of detection 
and compliance monitoring [7.1]. Once exceeded and in corrective action, a return to compliance 1s 
through evidence that future samples lie below the GWPS using the same hypothesis structure. 

The second option uses a fixed statistic from the background data as the GWPS in a single-sample 
confidence interval test. Samples from a single population are compared to the fixed limit. In other 
respects, the strategy follows that outlined in Chapter 7 for fixed health- or risk-based GWPS tests. The 
compliance/assessment test hypothesis structure also follows [7.1), but the hypotheses are reversed as in 
[7.2) for corrective action testing. 

The choice of the single-sample GWPS deserves careful consideration. In the past, many such 
standards were simply computed as multiples of the background sample average (i.e., GWPS = 2 x ). 
However, this approach may not fully account for natural variation in background levels and lead to 
higher than expected false positive rates. If the GWPS were to be set at the historical background 
sample mean, even higher false positive rates would occur during compliance monitoring, and 
demonstrating corrective action compliance becomes almost impossible. 

In the recommendations which follow below, an upper tolerance limit based on both background 
sample size and sample variability is recommended for identifying the background GWPS at a suitably 
high enough level above current background to allow for reversal of the test hypotheses. Although a 
somewhat arbitrary choice, a GWPS based on this method allows for a variety of confidence interval 
tests (e.g., a one-way normal mean confidence interval identified in equations [7.3) and [7.4)). 
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If the testing protocol involves two-sample comparisons, the background GWPS is an upper limit 
statistical interval derived from a given set of background data based on one or another detection 
monitoring tests discussed in Chapter 6 and detailed in Part III. In these cases, the appropriate testing 
parameter is the true mean for the parametric tests, and the true median for non-parametric tests. This 
would include 1-of-m prediction limit detection tests involving future values. If a single-sample 
comparison against a fixed background GWPS is used, the appropriate parameter will also depend upon 
the type of confidence interval test to be used (Part IV). Except for parametric or non-parametric upper 
percentile comparisons, the likely statistical parameter would again be a mean (arithmetic, logarithmic, 
geometric) or the median. A background GWPS could be defined as an upper percentile parameter, 
making use of normal test confidence interval structures found in Section 21.1.4. Non-parametric 
percentile options would likely require test sample sizes too large for most applications. The Unified 
Guidance recommended approaches for defining single-sample GWPSs discussed later in this section 
presume a central tendency test parameter like the mean or median. 
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Compliance/assessment or corrective action monitoring tests against a fixed health- or risk-based 
standard (including single-sample background GWPSs) are not affected in a significant manner by the 
number of annual tests. But this would not be true for two- or multiple-sample background GWPS 
testing. In similar fashion to detection monitoring, the total number of tests is an important 
consideration in defining the appropriate false positive error test rate ( J test). The total number of annual 
tests is determined by how many compliance wells, constituents and evaluations occur per year. 
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Regulatory agency interpretations will determine the number and location of compliance 
monitoring wells. These can differ depending on whether the wells are unit-specific, and if a reasonable 
subset can be shown to be affected by a release. Perhaps only those compliance wells containing 
detectable levels of a compliance monitoring constituent need be included. Formal annual tests are 
generally required semi-annually, but other approaches may be applied. 

The number of constituents subject to two-sample background GWPS testing will also depend on 
several factors. Only hazardous constituents not having a health- or risk-based standard are considered 
here. The basic criterion in interpreting required Part 264 Appendix IX or Part 25 8 Appendix II 
analyses is to identify those hazardous constituents found in downgradient compliance wells. Some 
initially detected common laboratory or sampling contaminants might be eliminated following a repeat 
scan. The remainder of the qualifying constituents will then require some form of background GWPS's. 
Along with the number of wells and annual evaluations, the total annual number of background tests will 
then be used in addressing an overall design cumulative design false positive rate. 

In corrective action testing (for either the one- or two-sample approaches), the number of 
compliance wells and constituents may differ. Only those wells and constituents showing a significant 
compliance test exceedance might be used. However, from a standpoint of eventually demonstrating 
compliance under corrective action, it might be appropriate to still use the compliance/assessment 
GWPS for two-sample tests. With single-sample tests, the GWPS is compared individually by well and 
constituent as described. 
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Some potential constituents may already have been monitored during the detection phase, and have 
a reasonable background size. Others identified under Part 264 Appendix IX or part 258 Appendix II 
testing may have no historical background data bases and require a period of background sampling. 

Historical constituent well data patterns and the results of this testing may help determine if an 
interwell or intrawell approach should be used for a given constituent. For example, if arsenic and 
selenium were historical constituents in detection monitoring, they might also be identified as candidates 
for compliance background GWPS testing. There may already be indications that individual well spatial 
differences will need to be taken into account and an intrawell approach followed. In this case, 
individual compliance well background GWPSs need to be established and tested. On the other hand, 
certain hazardous trace elements and organics may only be detected and confirmed in one or more 
compliance wells with non-detects in background upgradient wells and possibly historical compliance 
well data. Under the latter conditions, the simpler Double Quantification Rule (Section 6.2.2.) might be 
used with the GWPS set at a quantification limit. However, this could pose some interpretation 
problems. Subsequent testing against the background GWPS at the same compliance well concentration 
levels causing the initial detection monitoring exceedance, might very likely result in further excursions 
above the background GWPS. The more realistic option would be to collect and use additional 
compliance well data to establish a specific minimum intrawell background, and only apply the Double 
Quantification Rule at other wells not exhibiting detections. Even this approach might be unnecessarily 
stringent if a contaminant plume were to expand in size and gradually affect other compliance wells 
(now subject to GWPS testing). 
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Each of the independent two-sample tests against background standards will have a roughly equal 
probability of being exceeded by chance alone. Since an exceedance in the compliance monitoring 
mode based on background can result in a need for corrective action, it is recommended that the 
individual test false positive rate be set sufficiently low. Much of the discussion in Chapter 6, Section 
6.2.2 is relevant here. An a priori, cumulative error design rate must first be identified. To allow for 
application of the Unified Guidance detection monitoring strategies and Appendix D tables, it is 
suggested that the . I SWFPR value also be applied to two-sample background GWPS testing. In similar 
fashion to Chapter 6 and Part III, this can be translated into individual test configurations. 

If the single-sample confidence interval option will be used with an elevated GWPS, the 
compliance level test will have a very low probability of being exceeded by truly background data. 
Cumulative false positive error considerations are generally negligible. For testing 
compliance/assessment or corrective action hypotheses, there is still a need to identify an appropriately 
low single test false positive rate which meets the regulatory goals. Generally, a single test false 
positive error rate of . I to .05 will be suitable with the recommended approach for defining the 
background GWPS. 
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As indicated above, any of the detection monitoring tests described in Chapter 6 might be selected 
for two- or multiple- sample background compliance testing. One highly recommended statistical test 
approach is a prediction limit. Either a parametric prediction limit for a future mean (Section 18.2.2) or 
a non-parametric prediction limit for a future median (Section 18.3.2) can be used, depending on the 
constituent being tested and its statistical and distributional characteristics (e.g., detection rate, 
normality, etc.). It would be equally possible to utilize one of the I-of- m future value prediction limit 
tests, on an interwell or intrawell basis. Use of repeat samples as part of the selected test is appropriate, 
although the expected number of annual compliance/corrective action samples may dictate which tests 
can apply. 

One parametric example is the I-of-I future mean test. If the background data can be normalized, 
background observations are used to construct a parametric prediction limit with (I-a) confidence 
around a mean of order p, using the equation: 

- +-:t.flfrl-1 s R I 
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[7.5) 

The next p measurements from each compliance well are averaged and the future mean compared 
to the background prediction limit, PL (considered the background GWPS). In compliance/assessment 
monitoring, if any of the means exceeds the limit, those well-constituent pairs are deemed to be out of 
compliance. In corrective action, if the future mean is no greater than PL, it can be concluded that the 
well-constituent pair is sufficiently similar to background to be within the remediation goal. In both 
monitoring phases, the prediction limit is constructed to represent a reasonable upper limit on the 
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background distribution. Compliance point means above this limit are statistically different from 
background; means below it are similar to background. 

If the background sample cannot be normalized perhaps due to a large fraction of non-detects, two­
sample non-parametric upper prediction limit detection monitoring tests (Chapters 18 & 19) can be 
used. As an example, a maximal order statistic (often the highest or second-highest value) can be 
selected from background as a non-parametric 1-of-l upper prediction limit test of the median. Table 
18-2 is used to guide the choice based on background sample size ( n) and the achievable confidence 
level (a). The median of the next 3 measurements from each compliance well is compared to the upper 
prediction limit. As with the parametric case in compliance/assessment, if any of the medians exceeds 
the limit, those well-constituent pairs would be considered out of compliance. In corrective action, well­
constituent pairs with medians no greater than the background prediction limit would be considered as 
having met the standard. 

If background measurements for a particular constituent are all non-detect, the GWPS should be 
set equal to the highest RL. In similar fashion to detection monitoring, l-of-2 or l-of-3 future value 
prediction limit tests can be applied (Section 6.2.2 Double Quantification rule). 
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For single-sample testing, the Unified Guidance recommendation is to define a fixed GWPS or 
ACL based on a background upper tolerance limit with 95% confidence and 95% coverage (Chapter 
17). For normal background, the appropriate formula for the GWPS would be the same as that given in 
Section 17.2.1, namely: 

GWPS - +~ (nx 95}85., [7.6) 

where n =number of background measurements, x and s represent the background sample mean and 
standard deviation, and is a tolerance factor selected from Table 17-3. If the background sample is a 
mixture of detects and non-detects, but the non-detect fraction is no more than 50%, a censored 
estimation method such as Kaplan-Meier or robust regression on order statistics [ROS] (Chapter 15) 
can be attempted to compute adjusted estimates of the background mean L and standard deviation C in 
equation [7 .5). 

For larger fractions of non-detects, a non-parametric tolerance limit can be constructed, as 
explained in Section 17.2.2. In this case, the GWPS median will often be set to the largest or second­
largest observed value in background. Table 17-4 can be used to determine the achieved confidence 
level (1-J) associated with a 95% coverage GWPS constructed in this way. Ideally, enough background 
measurements should be used to set the tolerance limit as close to the target of 95% coverage, 95% 
confidence as possible. However, this could require very large background sample sizes (n ::::_ 60). 

Multiple independent measurements are used to form either a mean or median confidence interval 
for comparison with the background GWPS. Preferably at least 4 distinct compliance point 
measurements should be used to define the mean confidence interval in the parametric case, and 3-7 
values should be used with a non-parametric median test. The guidance does not recommend retesting in 
single-sample background GWPS compliance/assessment monitoring. An implicit kind ofretesting is 
built in to any test of a sample mean or median as explained in Section 19.3.2. 
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In essence, the background tolerance limit is used to set a somewhat higher mean target GWPS 
which can accommodate both compliance and corrective action testing under background conditions. 
The GWPS in equation [7.6] can be interpreted as an approximation to the upper 95th percentile of the 
background distribution. It is designed to be a reasonable maximum on the likely range of background 
concentrations. It is high enough that compliance wells exceeding the GWPS via a confidence interval 
test (i.e., LCL > GWPS) are probably impacted and not mere false positives. At the same time, 
successful remedial efforts must show that concentrations at contaminated wells have decreased to levels 
similar to background. The GWPS above represents an upper bound on background but is not so low as 
to make proof ofremediation via an upper confidence limit [GWPS] impossible. 

To ensure that the GWPS in equation [7.6] sets a reasonable target, the Unified Guidance 
recommends that at least 8 to 10 background measurements ( n) be utilized, and more if available. If the 
background sample is not normal, but can be normalized via a transformation, the tolerance limit should 
be computed on the transformed measurements and the result back-transformed to obtain a limit in the 
concentration scale (see Chapter 17 for further details). 
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A two-sample GWPS approach offers a stricter test of background exceedances. There is also 
greater flexibility in designing tests for a variety of future comparison values (single with repeat, small 
sample means, etc.). The true test parameter is explicitly defined by the type of test chosen. Non­
parametric upper prediction limit tests also allow for greater flexibility when data sets include significant 
non-detect values or are not transformable to a normal distribution assumption. The approach suggested 
in this section accounts for the cumulative false positive error rate. 

One negative feature of two-sample GWPS testing is that the test hypotheses cannot be reversed 
for correction action monitoring. The trigger for compliance/assessment testing may also be quite small, 
resulting in important consequences (the need to move to corrective action). It may also be difficult to 
demonstrate longer-term compliance following remedial activities, if the actual background is somewhat 
elevated. 

Single-sample GWPS testing, by contrast, does allow for the reversal of test hypotheses. Using a 
suitable definition of the somewhat elevated GWPS takes into account background sample variability 
and size. Cumulative false positive error rates for compliance or corrective action testing are not 
considered, and standardized alpha error levels (.1 or .05) can be used. Exceedances under compliance 
monitoring also offer clear evidence of a considerable increase above background. 

But applying an arbitrary increase above background recommended for single-sample testing may 
conflict with State anti-degradation policy. Defining the GWPS as a specific population parameter is 
also somewhat arbitrary. Using the suggested guidance approach for defining the GWPS in equation 
[7.6] above, may result in very high values if the data are not normal (including logarithmic or non­
parametric applications). There is also less flexibility in identifying testing options, especially with data 
sets containing significant non-detect values. Annual testing with quarterly sampling may be the only 
realistic choice. 

A possible compromise might utilize both approaches. That is, initially apply the two-sample 
approach for compliance/assessment testing. Then evaluate the single-sample approach with reversed 
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hypotheses. Some of the initially significant increases under the two-sample approach may also meet the 
upper confidence level limit when tested against the higher GWPS. Those well constituents that cannot 
meet this limit can then be subjected to corrective action remediation and full post-treatment testing. 
This implies that the background GWPS would be a range based on the two testing methods rather than 
a single value. 

A facility has triggered a significant increase under detection monitoring. One hazardous 
constituent (arsenic) was identified which must be tested against a background GWPS at six different 
compliance wells, since background well levels were above the appropriate arsenic MCL of 10 ug/1. 
Two semi-annual tests are required for compliance/assessment monitoring. Assume that arsenic had 
been detected in both background and downgradient wells, but was significantly higher in one of the 
compliance wells. It must be determined whether any of the compliance wells have exceeded their 
background GWPS, and might require corrective action. 

Design a background GWPS monitoring system for the following arsenic data from the elevated 
Well # 1, consisting of eight hypothetical historical intrawell background samples and four future annual 
values for two different simulated data distribution cases shown in the table below. Sample means and 
standard deviations are provided in the bottom row: 
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Background values were randomly generated from a normal distribution with a true mean of 
40 and a population standard deviation of l = 16. Case 1 future data were from a normal distribution 
with a mean 1.5 times higher, while Case 2 data were from a normal distribution twice as high as the 
background true mean. Both cases used the same background population standard deviation. The intent 
of these simulated values is to allow exploration of both of the Unified Guidance recommended 
background GWPS methods when background increases are relatively modest and sample sizes small. 

The two-sample background GWPS approach is first evaluated. Assume that the background 
data are normal and stationary (no evidence of spatial or temporal variation and other forms of statistical 
dependence). Given a likely limit of future quarterly sampling and required semi-annual evaluations, 
two guidance prediction limit options would seem appropriate--either a 1-of-2 future values or a l-of-1 
future mean size 2 test conducted twice a year. The l-of-2 future values option is chosen. 

Since there are a total of 6 compliance wells, one background constituent and two annual 
evaluations, there are a total of 12 annual background tests to be conducted. Either the Unified 
Guidance tables in Appendix D or R-script can be used to identify the appropriate prediction limit L_ 
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factor. For the l-of-2 future values test, L = 1.83 (found by interpolation from the second table on page 
D-118), based on w = 6, COC = 1, and two tests per year. The calculated prediction limit using the 
background data set statistics and Gfactor is 70.2 Lg/I, serving as the background GWPS. 

When the future values from the table above are tested against the GWPS, the following results 
are obtained. A "Pass" indicates that the compliance/assessment null hypothesis was achieved, while a 
"Fail" indicates that the alternative hypothesis (the GWPS has been exceeded) is accepted. 
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Both cases indicate at least one GWPS exceedance using the l-of-2 future values tests. These 
may be indications of a statistically significant increase above background, but the outcome for Case 1 is 
somewhat troubling. While a 50% increase above background (based on the simulated population 
parameters) is potentially significant, more detailed power evaluations indicate that such a detected 
exceedance would only be expected about 24% of the time (using R-script power calculations with a Z­
value of 1.25 standard deviations above background for the l-of-2 future values test). In contrast, the 
2.5 Z-value for Case 2 would be expected to be exceeded about 76% of the time. In order to further 
evaluate the extent of significance of these results, the single-sample GWPS method is also considered. 

Following the guidance above, define the single-sample mean GWPS using equation [7.6) for the 
upper 95% confidence, 95% proportion tolerance limit. Then apply upper and lower normal mean 
confidence intervals tests of the Case 1 and 2 n = 4 sample data using equations [7.3) and [7.4). 

From Table 21-9 on page D-246, a J_factor of 3.187 is used with the background mean and 
standard deviation to generate the GWPS = 94.9. One-way upper and lower mean confidence levels are 
evaluated at 90 or 95% confidence for the tests and compared to the fixed background GWPS. 

LCL test Pass/Fail results are the same as above for the two-sample compliance test. However, a 
"Pass" for the UCL test implies that the alternative hypothesis (less than the standard) is accepted while 
a "Fail" implies greater than or equal to the GWPS under corrective action monitoring hypotheses: 
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For either chosen significance level, the Case 1 90% and 95% UCLs of78.7 and 82.7 are below 
the GWPS and the alternative corrective action hypothesis (the mean is less than the standard) can be 
accepted. For Case 2, the 90% UCL of 92.1 is below the GWPS, but the 95% UCL of96.2 is above. If 
a higher level of test confidence is appropriate, the Case 2 arsenic values can be considered indicative of 
the need for corrective action. 

If only the single-sample background GWPS approach were applied to the same data as above in 
compliance/assessment monitoring tests, neither case mean LCLs would exceed the standard, and no 
corrective action monitoring would be necessary. However, it should be noted from the example that 
this approach does allow for a significant increase above the reference background level before any 
action would be indicated. 

The approaches provided above presume that well constituent data subject to background GWPS 
testing are stationary over time. If sampling data show evidence of a trend, the situation becomes more 
complicated in making compliance or corrective action test decisions. Two- and single-sample stationary 
scenarios for identifying standards may not be appropriate. Trend behavior can be determined by 
applying one of the methods provided in Chapter 17 (e.g., linear regression or Mann-Kendall trend 
tests) to historical data. A significant increasing slope can be indicative of a background exceedance, 
although it should be clear that the increase is not due to natural conditions. A decreasing or non­
significant slope can be considered evidence for compliance with historical background. The most 
problematic standard would be setting an eventual background target for compliance testing under 
corrective action. To a great extent, it will depend on site-specific conditions including the behavior of 
specific constituent subject to remediation. A background GWPS might be determined following the 
period of remediation and monitoring when aquifer conditions have hopefully stabilized. 

Setting and applying background GWPSs have not received a great deal of attention in previous 
guidance. The discussions and example above help illustrate the somewhat difficult regulatory choices 
that need to be made. A regulatory agency needs to determine what levels, if any, above background can 
be considered acceptable. A further consideration is the degree of importance placed on background 
GWPS exceedances, particularly when tested along with constituents having health-based limits. 
Existing regulatory programs may have already developed procedures to deal with many of the issues 
discussed in this section. 
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This chapter provides a quick guide to the statistical procedures discussed within the Unified 
Guidance. The first section is a basic road map designed to encourage the user to ask a series of key 
questions. The other sections offer thumbnail sketches of each method and a matrix of options to help in 
selecting the right procedure, depending on site-specific characteristics and constraints. 

Choosing appropriate statistical methods is important in developing a sound groundwater 
monitoring statistical program. The statistical test(s) should be selected to match basic site-specific 
characteristics such as number and configuration of wells, the water quality constituents being measured, 
and general hydrology. Statistical methods should also be selected with reference to the statistical 
characteristics of the monitored parameters - proportion of non-detects, type of concentration 
distribution (e.g., normal, lognormal), presence or absence of spatial variability, etc. 

Because site conditions and permit requirements vary considerably, no single "cookbook" 
approach is readily available to select the right statistical method. The best strategy is to consider site­
specific conditions and ask a series of questions. A table of recommended options (Table 8-1) and 
summary descriptions is presented in Section 8.2 to help select an appropriate basic approach. 

The first question is: what stage of monitoring is required? Detection monitoring is the first stage 
of any groundwater monitoring program and typically involves comparisons between measurements of 
background and compliance point groundwater. Most of the methods described in this document (e.g., 
prediction limits, control charts, tests for trend, etc.) are designed for facilities engaged in detection 
monitoring. However, it must be determined whether an interwell (e.g., upgradient-to-downgradient) or 
an intrawell test is warranted. This entails consideration of the site hydrology, constituent detection rates, 
and deciding whether separate ( upgradient) wells or past intrawell data serves as the most appropriate 
and representative background. 

Compliance/assessment monitoring is required for facilities that no longer meet the requirements 
of a detection monitoring program by exhibiting statistically significant indications of a release to 
groundwater. Once in compliance/assessment, compliance point measurements are typically tested 
against a fixed GWPS. Examples of fixed standards include Maximum Concentration Limits [MCL], 
risk-derived limits or a single limit derived from background data. The most appropriate statistical 
method for tests against GWPS is a lower confidence limit. The type of confidence limit will depend on 
whether the regulatory standard represents an average concentration; an absolute maximum, ceiling, or 
upper percentile; or whether the compliance data exhibit a trend over time. 

In cases where no fixed GWPS is specified for a particular constituent, compliance point data may 
be directly compared against background data. In this situation, the most appropriate statistical method is 
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one or another detection monitoring two- or multiple-sample tests using the critical design limit as the 
GWPS (discussed in Section 7.5). 

Corrective action is reserved for facilities where evidence of a groundwater release is confirmed 
above a GWPS. In these situations, the facility is required to submit an appropriate remediation plan to 
the Regional Administrator and to institute steps to insure adequate containment and/or clean-up of the 
release. Remediation of groundwater can be very costly and also difficult to measure. EPA has not 
adopted a uniform approach in the setting of clean-up standards or how one should determine whether 
those clean-up standards have been attained. Some guidance on this issue is given in the EPA document, 
Methods for Evaluating the Attainment of Cleanup Standards, Volume II: Groundwater (EPA, 1992). 

The null hypothesis in corrective action testing is reversed from that of detection and 
compliance/assessment monitoring. Not only is it assumed that contamination is above the compliance 
or clean-up standard, but corrective action should continue until the average concentration level is below 
the clean-up limit for periods specified in the regulations. For any fixed-value standard (e.g., the GWPS 
or a remediation goal) a reasonable and consistent statistical test for corrective action is an upper 
confidence limit. The type of confidence limit will depend on whether the data have a stable mean 
concentration or exhibit a trend over time. For those well constituents requiring remediation, there will 
be a period of activity before formal testing can take place. A number of statistical techniques (e.g. trend 
testing) can be applied to the data collected in this interim period to gauge prospects for eventual GWPS 
compliance. Section 7.5 describes corrective action testing limitations involving a two-sample GWPS. 

Another major question involves the statistical distribution most appropriate to the observed 
measurements. Parametric tests are those which assume the underlying population follows a known and 
identifiable distribution, the most common examples in groundwater monitoring being the normal and 
the lognormal. If a specific distribution cannot be determined, non-parametric test methods can be used. 
Non-parametric tests do not require a known statistical distribution and can be helpful when the data 
contain a substantial proportion of non-detects. All of the parametric tests described in the Unified 
Guidance, except for control charts, have non-parametric counterparts that can be used when the 
underlying distribution is uncertain or difficult to test. 

A special consideration in fitting distributions is the presence of non-detects, also known as left­
censored measurements. As long as a sample contains a small fraction of non-detects (i.e., no more than 
10-15%), simple substitution ofhalf the reporting limit [RL] is generally adequate. If the proportion of 
non-detects is substantial, it may be difficult or impossible to determine whether a specific parametric 
distributional model provides a good fit to the data. For some tests, such as the I-test, one can switch to a 
non-parametric test with little loss of power or accuracy. Non-parametric interval tests, however, such as 
prediction and tolerance limits, require substantially more data before providing statistical power 
equivalent to parametric intervals. Partly because of this drawback, the Unified Guidance discusses 
methods to adjust datasets with significant fractions of non-detects so that parametric distributional 
models may still be used (Chapter 15). 

The Unified Guidance now recommends a single, consistent Double Quantification rule approach 
for handling constituents that have either never been detected or have not been recently detected. Such 
constituents are not included in cumulative annual site-wide false positive error rate [SWFPR] 
computations; and no special adjustment for non-detects is necessary. Any confirmed quantification (i.e., 
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two consecutive detections above the RL) at a compliance point provides sufficient evidence of 
groundwater contamination by that parameter. 

A key question when picking a test for detection monitoring is whether traditional background-to­
downgradient interwell or single-well intrawell tests are appropriate. If intrawell testing is appropriate, 
historical measurements form the individual compliance well's own background while future values are 
tested against these data. Intrawell tests eliminate any natural spatial differences among monitoring 
wells. They can also be used when the groundwater flow gradient is uncertain or unstable, since all 
samples being tested are collected from the same well. 

Possible disadvantages to intrawell tests also need to be considered. First, if the compliance well 
has already been impacted, intrawell background will also be impacted. Such contaminated background 
may provide a skewed comparison to later data from the same well, making it difficult to identify 
contaminated groundwater in the future. Secondly, if intrawell background is constructed from only a 
few early measurements, considerable time may be needed to accumulate a sufficient number of 
background observations (via periodic updating) to run a statistically powerful test. 

If a compliance well has already been impacted by previous contamination, trend testing can still 
indicate whether conditions have deteriorated since intrawell background was collected. For sites 
historically contaminated above background, the only way to effectively monitor compliance wells may 
be to establish an historical intrawell baseline and measure increases above this baseline. 

Besides trend tests, techniques recommended for intrawell comparisons include intrawell 
prediction limits, control charts, and sometimes the Wilcoxon rank-sum test. The best choice between 
these methods is not always clear. Since there is no non-parametric counterpart to control charts, the 
choice will depend on whether the data is normal or can be normalized via a transformation. New 
guidance for control charts shows they also can be designed to incorporate retesting. For sites with a 
large number of well-constituent pairs, intrawell prediction limits can incorporate retesting to meet 
specific site-wide false positive rate and statistical power characteristics. Parametric intrawell prediction 
limits can be used with background that is normal or transformable to normality; non-parametric 
versions can also be applied for many other data sets. 

If interwell, upgradient-to-downgradient tests are appropriate, the choice of statistical method 
depends primarily on the number of compliance wells and constituents being monitored, the number of 
observations available from each of these wells, and the detection rates and distributional properties of 
these parameters. If a very small number of comparisons must be tested (i.e., two or three compliance 
wells versus background, for one or two constituents), a !-test or Wilcoxon rank-sum test may be 
appropriate ifthere are a sufficient number of compliance measurements (i.e., at least two per well). 

For other cases, the Unified Guidance recommends a prediction limit or control chart constructed 
from background. Whenever more than a few statistical tests must be run, retesting should be 
incorporated into the procedure. If multiple observations per compliance well can be collected during a 
given evaluation period, either a prediction limit for 'future' observations, a prediction limit for means 
or medians, or a control chart can be considered, depending on which option best achieves statistical 
power and SWFPR targets, while balancing the site-specific costs and feasibility of sampling. If only one 
observation per compliance well can be collected per evaluation, the only practical choices are a 
prediction limit for individual observations or a control chart. 

l L 

EPAPAV0117051 



!! 91 l_ Tl_ -Q +l_ L<Jl i -CJ 

1 lJ 1--C~ °' ~ J o•Llo•!C DO JlC 

JL#- #§%#$C - §( )' # - *'#' ' r%' 

... $+' JL. • $' % t&(# ~ c t&(# (, -t-' - o/o-• • -t-' . #&' I • &% (/. • #$+' OT%' '%-:&' ( 
)- #- $. c (. %$%#' . c $' %2' #C 91 

• - %%' 

! (3 t&(# ~ c • - *$C - & %-++- • 4 (, %- +*"&' )$%#• $5-#$(. OT%' -& ' (• 
%#- #$%#$C-t&-t:D #' • $%#$C % $. +-&#$*"&' 7' &&% 

Jl $ %#( 1 • - -t- ~ ! c • - *$C - & %-++- • 4 (, %- +*"&' )$%#• $5-#$(. OT%' 
...... ( 5- 5$&$#4 ")' %$#4 (, %$. 1&' ")- #- %' # 

-& ' (• 

JLc - ##' • t&(# ~ ··c ~$- 1. (%#$C #(( &O t&(# (, (. . I - • $-e ~%Y ?lo~&, (~ 
. 3 *"&(• $ . 

%#- #$%#$C - & - %%(C $- #$(. % 
+· (5- 5$&$#4 t&(# ~ #C • - *$C - & , $# #(. (• +- &$#40 T %' -&, (• • - 7 (• #• %, (• -+ 

l lJ 1--C $c>loJL I IJL 91 &C JL Jl 1 •JL < + IJL 091 JlC 

JL#- #$%#§C - §( )' # - *'#' ' 
JL5• 7. . %% (' $C $' . $··c 

(' $C $' . # (, .. _ • $- #§(~c 

JL - *"$• ( Lg$&6 .,., %# $#C 
JL - *"$• ( L~e - . c <- .... 

o/$# c 

~$&&$5' . >% +• (5- 5$&§~ 
t&(# (• •• &- #$(. 
(' $C $' . # 
JL - *"$• (L9$&6 I -&#$*"~'-c 

• (-*"..-'Co/o# 

To/o' 

I. - %-•. % %4++' #• 48- %4++' #• 4 $. )$%#• $5-#$(. o JLc • • • 
' (• *"&- -%$5$&$#4 (, . (• -t-- & ' $# 
I. - %-•. % %4++' #• 48- %4++' #• 4 $. )$%#• $5-#$(. o JLc • • • 
*"&- -%$5$&$#4 (, . (• -t-- & ' $#0 I. &4' (• . (. L . 1- # $!. )- ; 
---+ --+-' • $C - & . (. -t-- &$#4 #' %# (, - %$.: 1;~· %- +*"&' 0, 

---+ --+-' • $C - & #' %# (, (. -t-- &$#4 ' (• - %$. 1&' %- -t-*" s.· 
JL - *"$• ( Lg$&60 T %=; 77$# 
---+ --+-' • $C - & #' %# (, (• -t-- &$#4 ' (• - %$. -1 &1' %-&&- rg;;j' 
JL - *"$• (L9$&60T%' Ji7$IO (() %-*"*"&' -t-' . # #( ...... (5- 5 

13#' %$(. (-;- *$• ( Lg$&6 #' %#' (• +-&#$*"&*"(%%$5&..l'.:I % 
)$, . •' . # -t-' - %- . )8(• I - • '$- 6 I(' -9,.o/0 ~{l>~Jql 
#' %# 
c 

(• 
0 JL_.,,.. . 

$J . #' 
$&$#4 

7$# 

l LJ 1--C Q> +t L JL l!CJTC, LeJL L91 I -C 

JL#- #§o/o#§C - §( )' # - *"#' ' 
! (3 t&(#o/o ?%$ )' L54L c 
%$)'@ . I • . >% .... %# c 

I. - u~ JLc - ##' • t&(# ! c 

l LJ 1--C 0-+1 JL -•flt c 

JL#- #§%#§C - §() • # - *'#' ' 
+· (5- 5$&$#4 t&(# c 

! (3 t&(# c 

~$3(. >% .... %# ! c 

II(%. . • >% .... %# ··c 

r%' 

• - *$C - & #' %# (, )$, . .. . c. %$. *"(*"-&- #$(. I - • $-. c . 
#((&' (• . A-- & I - • $-. c· - %%-+*"#$(. $ . l)~ I "l) 
---+ --+-' • $C - &2 • (5-%# l)~ I "l) L#4*"' #' %# (, . A-- &$#4 (, I 
*"(*"-&- #$(. %OT%' -& ' (• #' %#$. 1 - %%-+*"#$(. % $. 

- • $-. 
l)~ I "l) 
I• &% 

• $-. c 
"$%-- & #' %# (, - %%(C $- #$(. 5' #7' . JL~ - ) +'-"*. &' 
(, 7' &&%0 T %' C'I~, (• -. (*"(• #$(. - & • . c # (• $, I -
#• - . %, (• -t-- #$(. $% . . . )' ) 

c 

To/o' 

• - *$C - & , $# (, )$%#• $5-#$(. #( . (• +- &$#40 T %' . 3#•. -t-' *"($. #%. (# C ($. C'$)$)$[17$} #- $& (, )$%#• 
• - *$C - & %C •' . $. 1 #((&' (• (-#&$' • %0 A-- %$L. 

•' A-$•• % lt'o fl-=t-1+-• #• 4 $. )$%#• $5-#$(. 
---+ --+-' • $C - & #' %#' (• %$. 1 &' $1:7 (--#&$'. "1a'T%' ;7 

---+ --+-' • $C - & #' %#' (• -- #(; (-#&$' • % $. %$. 1 &' ))-
7 . Bc!OT%' • +-%# $)' . #$, 4- %*"' c $, $C -+5' 
(-#&$' • % 5' (• . ·- $. 1 

l L 

- & ' (• ! 
5-#$(. $ 

(. 

#-

• 

L.,,.._ • -

%' #0 fl 

(, *"(~ 

EPAPAV0117052 



l LJ 1-eC ! C/J L 1.l L Q L•.l L J.l D<Jl C 

.i#- #~%#~C - §( j)' # - *'#' I r%' 

! (3 t&(#% ?%$ )' L54L ! c D-$C 6 %C •' ' (• %"*- #$- & I - • $- 5$&$#40• '((J>, • . (#$CI 
%$)'@ 5(3' % 
I . ' Lg_ 4 l). - &4%$% (,I c.,.. %# #( c (+"*-.' -t-' 

(.; 
- % (, %' I I • - & "*("*-&-#$(.-GA&,~ ~· #( $)' 

#' "*(( .. _. $-. C' El)~i "l)F, I - • $- 5$&$#4 - C • (%% - 1•(-"*(, 7' &&%-. ) 11(•' (%#$ '.)@-
.i ..... _ #$- & .. _. $-#$(. %#-. )- . ) )' I $- #$(. (• -%' $. $. #• - 7' &&#' &~O ~- #- +-' 

(• +- &$C' )0 l/%%-+"*#$(. (, I A-- & I - • $-. C' % - c. (%% "*( 

l LJ 1-eC ··c _.,.. J D•L Q L•.l L{.l .l 11 c 

.l#- #$%#$C - §( :J> I # - *"#' I 

... $+' .l • • $' % t&(# .. c 
?"*-. - &&' &@ 

I. I L 7- 4 l)~ i "l) , (• .. c .... +"*(• - & 1, I c #% 

.l_ +"*&' .. !C 
l/-#(C (• • I &- #$(. 
~-. c #$(. 
11- 61 (. ~· -+- .. • 'C 
11- #$( 

~- • C 4 1A-- #$(. .. ~ c 

.l • - %(. - & l) )G-%#+' ~., !C 
?%$. 1&' 7' &&@ 

.... +"*(• - &&4 4) )G-%#' ~! !C 
~- #- r%$. 1 l) ~ i "l) 
.l • - %(. - & I - . LH' )~~Sei .... %# 

l LJ 1-eC #Cf L<JJ L&.l <fl &C D<Jl /' 

.l#- #$%#$C - §( :J> I # - *'#' I 

.1$+"*&' .l -5%#$#-#$(. #C 

I %(•I ) +· ( 5- 5$&$#"'W! c 
t&(# 
H- "*&- . LI I $' • #! c 

II (5-%# 11 1 1•' %%$(. (. #··c 
I • )' • .i #- #$ %#$C % 

( I >I' # () - . ) ##C +- • - -t-' #• $C 11 1 1•' %%$(. 
(. I• )' • .i#- #$%#$C % 

r%' 

D-$C 6 %C. I I (• #' +"*(• - & ?- . )8(• %"*- #$--&@-f & 
-t-(1 I -t-' # $.' #1 • - ,. - c I % - #%' I I • - & 7' &&% (! I • .... %# #( c (-t-"*-. I +' - % (, )$%#$. c # %- +"* &$. 1 I I I 
- %%' %% %4%#' +- #$C #' +"*(• - & )' 

.,,.., 
)' C' - c • (<}: 

5' ##' • I %#$+- #' (, ?5- c 61• (-. )@I - • $- . C' - .$) 
)- #- 7$1# +"*(• - & .,,.._ ##' • %0 II' %$)-- &% ' • ( + l) ~ I "\ 
c. I - #' %#- #$(. - • 42 - )G-%#' ) )- #-

t&(# (, - -#(C (• • I &- #$(. 54 &- 1 5' #7' I %- +"*&$. 
- ........... (3$+- #' &4. (• +- & )- #- 0 r%' #( #' %#' (• #' -t-.,,.. ~ 
- )8(• #( - )G-%# %- +"*&$. 1 •' A-I C4 
~ (. L'*" - • - -+-' #• $C -+' • $C - & #' %# (, )' 

.,,.., 
)' C' 

%' • $' %Or%' #( #' %#' (• $• %#L(e )' • - -#(C (~of!>' . a& 
7' && (• "*("*-&- #$(. 

I' # () #( - ........... (3$+- #' 1 • (-. )7- #' • &(71 I &(C $#-' 

~· $&#$(. 
$ -t-' 

#0 Yo2 $. 
7' &&( 
1 • I I Op 

% 
I 

- &%( _q 

1 I . -
$. 
$( 

~o 

I I . #~ 

& c (• 

#$+' I 

. $. : 

r%' #( 
%- +"*&$. 1 $. #' • I - & 1 --4"/u$C #' & $_ ')'"*"*"' )' C' c c (. %' 

&$.) 
I &- #$ 

1 • (-. )7- #' • %- +"*&' %0~(' % . (#I o/o-• I %#- #$%#$ :l -

I' # () #( - )G-%# %$. 1&' )- #-$5>$~'10;8/o" 3 %(. - & c (• t • 

? L J ~ !!l 4C &$C - & ' &-C #-- #$(. %@0 l/# &' - %# %' - %J'. ~I& C 4C &' 
(. #$+' %' • $' % "*&(# 
I' # () #( - )G-%# +-&#$"*&' 7' &&%, (• - c ( -t--t-(. #' -t-

r%' - )G-%#' ) )- #- $. %-5%' A-I # #' %#% 
13#' %$(. (, I - . LH' )- && #• '. .%) i' 0;8/(# 7 &$#4 $% .... 
&' - %# %' - %(. - & C 4C &' % +-%# 5' I I $)' # 

-1-i Jc LI Le 

r%' 

.1$+"*&' %# $+"* -#- fl$f'. o/o~· (. L )' #' C #%0 'r %' : , J-e'&u71 
(, )- #- %' # $%. (. Ly #' c # 
+· ( 5- 5$&$#4 .,,.. &(# ' (• -t-$3#-• I (, (. L)' #' C #!Jo-'. C)f 
. (• +- &$#4 (, &' #Le I %(•I ) %- +"* &' 

I' # ()#(I %#$+- #' +' - - ) %#-. )- . ) )' I 
%- +"*&' Or%'. 7 ; ci' I (, )- #- %' #$%. (. L)' #' 
- ). (. Ly #' c #% +-%# (• $1 $. - #' • (-t- %- -t-' 

I' # ()#(I %#$+- #' -t-' - - ) %#-. )- . ) )' I 
%- +"*&' 
- ). (. 

I# I • -t-' 
C' %(•I 
- ). (. 
+-%# 5' 

c 

Or%'. 7 ; ci' I (, )- #- %' #$%. (. L)' #' 
Ly #' c #% +-%# (• $1 $. 
~)%#(I %#$+- #' -t-' -

) %- +"*&' 'Or%'; d7I (, 
L )' #' 
- %$. 

L. 
l ' 

c #% +-%# (• $1 $. 
1&' C' %(• $. 

- #' • (-t- e'o- +' 
- ) %#-. )- . 
)- #- %' #$%. 

- #' • ( + %- -t-' 
1 &$+$# 

$- #$(. 
c #O I -~ 

)$%#• 
$- #$(. 
c #O I -~ 

)$%#• 
) )' I $ 
(. L)' #' 
I)'$%#• 

"*( • - & )' 

•' %' . #( 

>)' #' c #o/oi 

i<#$ 
&' '#Le. 
"*&' ) 
-#$(. 

&' '#tr. 
"*&' ) 
-#$(. 

$5 

.. #$ 
$5 

# 
:l# 

$(. (, 
0 ~· #' t 
-#$(. $5 

EPAPAV0117053 



l LJ 1-eC )C OiJ/JlL.._ J -c -Jl IJlC 

JL#- #$%#$C - §{ .1> I # - *"#' t 

t((&' ) .. _ • $r-4' c>/cl# ) c 

g• &C>%~' %# ) c 

g$&C (3(. 11- 5U_+ 
) c .... %# 

,.._ . (. ' Lg_•' .... %# )! c 

!! 91 J_ T J_ -Q +J_ L<Jl i -Cl 

r%' 
.... %# #( c (+*"-. ' -t-' - % (, #7( *"(*"-&- #$(. %0 ~- #- +- o/c 

(• +- &$C' ).2(7¥~1. $, $C - . # %*"- #$- & I - • $- 5$&!l># 
o# 5' . ( 
40r%' 

%$#' %$. -*"1• - )$' #~(L)(7. 1 • - )$' # c (+*"- • $% 
-*")- #$. 1 5- c 61 • (-. )0 t<*" -&- #$(. I - • $- . C' % -+ -
.... %# #( c (+*"-. ' -t-' - % (, #7( *"(*"-&- #$(. %0 ~- #- +- o/c 

(• +- &$C' ).2(7¥~1. $, $C - . # %*"- #$- & I - • $- 5$&!l># 

%0 l)&q 
%#5' ' 

o# 5' . ( 
40r%' 
(• -*") %$#' %$. $. #' • 7' &&C (+*"- • $%(. %0 l/&%( -%!.._, -)©' 

t<*"-&- #$(. I - • $- . C' % c - . )$, ' • 
~ (. L'*" - • - -+-' #• $C #' %# #( c ( -t-.,,.. - • ' -t-' )$-. % (, #7( *"( *" -&- #$( 

' ' ). (# 5' (• +- &O JL ( +' (. L)' I( -Cat~ II HO .JL ( 
%$1. $, $C - . # %*"- #$- & I - • $- 5$&$#40 I%'. ;#' _.g;p- ii& 
c (+*"-. $%(. %- . ), (• Cl I • #- $. $. #• - 7' && Cl (t-*"- I 

_.,,.. )- #$. 1 5- c 61 • (-. ) 

& • 4 %+ 
$%(. %0 

13#' %$(. (, g$&C (3(. . - 6L%-+0. (. L-"*"_ • - -+-' #• ~ c #' %# #( 
+- &O ~' 
# %*"- #$ 
#' • 7' 8 
(• -*")-

-t-' )$-. % (, #7( *"(*"-&- #$(. %0 ~- #- ' ' ). (# 5' (• 
- c c ( ++( )- #' &' #Le ' %(• '(~&))-lf-'O.JL( %$1. $, $C -
I - • $- 5$&$#40 I%' -& - #I ' • 4 %+- && %$#' %.$) ,$ • 
C' • #- $. $. #• - 7' &&C (+*"- • $%(. %0 l/&%( -%' ,. --)& ' 

l LJ 1-eC *"C1. - 12C -•L91 i -C3JL ... JL IJl2C4C •-91 c -Jl IJlC 

JL#- #~%#~C - §{ )' # - *"#' • 
I . ' Lg_ 4 i:i~ I "l) .,,.. c 

H• -%6- & Lg_ &&$% .._, o/oJ/.. c 

... (&' . - C' $+$# .,,.. c 

~ (. L'*" - • - -+-' #• $C .,,.. c 
... (&' . - C' $+$# 

$. ' - . II• 1•' %%$(. *"! c 

I - . lH' )- && .... ' )*"! c .... %# 

... . $&U• .... ' ) $. ' *"! !C 

r%' 
.... %# #( c (+*"-.' -t-' - % - c • (%% +-&#$*"&' *"(*"-&- #!l (. 

(• +- & (• (• +- &$G& >G JL ( %$1. $, $C - . # %*"- #$-
%0~­

&/ - • !i 
• %0 1--%' )- % $. #' • 7' &&#' %#0 l/%%-+' %' A-- & I - • '$-. c 

.,,.., 
• +$#%2 5-# 1' ' • - &&4 %- ....... e#tl %#)]0)- ~!£1., (#-& ' (• 

$)' #$, 4$. 1 % .,,.. - #$- & I - • $- #$ (. 0 II I JL 1 ' • ( + l) ~ I "¢ c 5' 
$+*"• (I ' $. #• - 7' &&5-C61•(-. ) &$+$#% 
.... %# #( c (+*"-.' -t-' )$-. % - c • (%% +-&#$*" &' *"(*"f#& 
5' (• +- &O %(+' (. L)' #' C{ 419& 1)HO •JL ( %$1. $, $C - . 

#$(. %0 
# %*"- #$ 
- &#' •. I - • $- 5$&$#4 $, -%' ) - % $. #' • 7' &&#' %#C1l/r ?/o~•, -& 

$")' #$, 4$. 1 %*"- #$- & I - • $- #$(. 
.... %# #( c (+*"-.' 5- c 61 • (-. ) I %91 gJ c (+*"&$- . C' 7' 

(• +- & (• ( • +- &$G& >G JL ( %$1. $, $C - . # %*"- #$-
&&o~ 

&/-•!! 
#&4 %-"' -%' )- % $. #' • 7' &&#' %#0 l)&#' • - #$/ ' #( <i ~ I "l'.Hl»I (% ...... ' )$C #$(. &$+$#%0 I%' -&, (• c (. %#• -C t$. )I- -e ~ ~· •. - #' 

$. c (• • ' c #$/ ' - c #$(. 
.... %# #( c (+*"-.' 5- c 61 • (-. ) I %91 gJ c (+*"&$-. C'I' 7' 
5' (• +- &O ~ (. ~· #' c #C)(>-tcHtQ-11 ' ( %$1. $, $C - . # % *" 

&&o~ 

- #$- & 
#$/ ' #( I - • $- 5$&$#4 $, -%' ) - % $. #' • 7' &&#' %#08,!&$o/,O -

I (%#&4 %-*"' • c' y ) 54 ...... ' )$C #$(. &$+$#% 
+- • - -t-' #• $C ' %#$+- #' (, &$. ' - . #• ' )0 .... ' )--e & 
(• (• +- &$C' )Or%' -&, (• #' %#$. 1 #• ' )%'$-. )§ 
c (. #- +$. - #' ) 7' &&%0 - . 5' -%' ) #(' %#$+- #' &$. 
5' #7' ' #7(. - . )(-t- / - • $- 5&' % 
~ (. L'*" - • - -+-' #• $C #' %#' (• &$. ' - . #• ' )O~(. L )' #' ~ 

)(C -+' #$. 1 -*"7-. ) #•' ) - #- &•' - )4 c (. #-'- +$ . 
#• ' ) - &•' - )4' 3$%#% $. 5- c 61 • (-. ) 

% $)-- & 
C61•(­
-. - Ofoq ' 

# 
-

% I HO T 1 

#' ) 7' ' 

~ (. L-"*"_ • - -+-' #• $C ' %#$+- #' (, &$ . ' - . #• ' )0 ~,({•L)' #' c #% I 
C (. G· ' %#$+- #$. 1 +- 1 . $#-)' (, - $. c • ' - %$. 1 #• ' ) $. 

I - . LH' )- && #' %# 

EPAPAV0117054 



!! <Jl J_ T J_ -Q +J_ L<Jl i -CJ 

l LJ 1--C CE•-JL i jJl 091 03JL .. JL IC5•JL .. -•C 

JL#- #§%#§C - §( )' # - *'#' ' 
+·. )$C #$(. $+$#' (• -t- c 
~-#-•. .. - &-. % 

+·. )$C #$(. $+$#' (• c 
~-#-•. I. -

~ (. Y-- • - -t-' #• $C ! c +·. )$C #$(. $+$#' (• -t-

~-#-•. .. - &-. % 

~ (. L'*" - • - -+-' #• $C ! c +·. )$C #$(. $+$#' (• 
~-#-•. I. )$-. 

r%' 
... %# #( c (+*"- •• -t- -t-' - o/o-• ' -t-' . #%' • (+ c (+*"&$- . c 7' &&-
5- c 61 • (-. )0 ~- #- +-%# 5' (• -t-- & . (• +- &$C' )0 To Yo' , -& 
%C . -t-' %0-. 5' - )- *"#" '~-· -/$#- 7' && (• $. #' • 7' ·~ & #' %#%~ 

%' ) - Cl; 

5- c 5· 
I ' #( #• 

$. #' • 7 

%$1. $, $C - . # %*"- #$- & I - • $- 5$&$#4 - &&t-7' ) $, -... %# #( c (+*"- •• -t-' - (, c (+*"&$- . c. 7' &&- 1- $. Yo# 
+-%# 5' (• -t-- & (• (• +- &$C' )OT%' -&- &#' . . - #$ 
<i~ I "l'.l o - . 5' -%' -&$. .. !f.' -i1'o#$.011 'fcl!a# - % ' -&, (• 
?I J 2J-*"1 • - )$' . # #( )(7. 1 • - )$' . #@ c (+*"-. $%(. %0 ~ ( %$1 . 

7' && #' %*"- #$- & I - • $- 5$&$#4 - &&(7' ") $, -%' ") - % $. #' • 
~ (. L'*" - • - -+-' #• $C #' %##( c (+*"- •• -t- -t-' - %-•. -t-' #%' • (+ c (-+ 
7' && - 1- $. %# (• )' • %#- #$%#$C % (, 5- C 61• (-.8:tO ~( . L_ (• -l 

(. L )' #' c #%I HOT%' -&$. ( . L.,,.._ • - -t-' '#.+$0'/oi>(JL-#'&~I# $. 1 %C 
- I ' . ( %$1. $, $C - . # %*"- #$- & I - • $- 5$&1;$#4 $, -% • )- % ... %# #( c (+*"- •• -t-' )$-. (, c (+*"&$- . c. 7' && il 'Yo-( $ . %# (• ) 

I HO r%' 
& ?I J - J 

5- c 61 • (-. )O~(. L (• +- & )- #- - )8(• (. L)' #' rJ #Yo 
"*"- • - -+-' #• $C •' #' %11$. o/61CY/dC(%# -%' -&, (• $2#' • 7' & 
-*"1•-)$' . # #( )(7. 1 • - )$' #@C (+*"- • $%(. %0 ~ ( % :s 1. $, $~ 
I - • $- 5$&$#4 - &&(7' ) $, -%' ) - % $. #' • 7' && #' %# 

l LJ 1--C ~ 05•-JL I jJl Gil 03JL .. JL IC) I• L 1-&JL - flCDJl h 03- /-Jl jJl 91 &C 

JL#- #§%#§C - §()' # - *'#' t 

+·. )$C #$(. $+$#%' (f ! c 
)$/ $)-- & 

I 5%' •/-#$(. % 9$# 11 • #' %#$. 1 

+·. )$C #$(. $+$#%' (f ! c 
I. - % 9$1# #' %#$. 1 

~ (. Y-- • - -t-' #• $C ~ •• c 
+·. )$C #$(. $+$#%' (• 

)$/ $)-- & 
I 5%' •/-#$(. % 9$# 11 • #' %#$. 1 
~ (. Y-- • - -t-' #• $C ~ •• c 
+·. )$C #$(. $+$#%' (• 
I. )$-. % 9$# 11 • #' %#$. 1 

r%' 
... %#% $ . )$/ $)-- & c (+*"&$-. c. *"($. # -t-' - %-•. :)<: . #% - 1-

+(. *"(* 
B;)I - • !3 
<i~ I "l'.l2' 

~- #- +-%# 5' (• +- & (• (• +- &$C' )0 l)%%-+' % c ( t-
I - • $- . C' - c • (%% 7' &&%0 ~( %$1. $, $C - . ~~--#$a' 
- % $. #' • 7' &&#' %#0 11• *"&- c. -t-' . #' (• #• - )$#$(. - g. 
~-

. ##>% +-&#$*"&' C ( + *" - Ot ($ ~ .( &7?$@ *" • (C ' )-•. 0 :i &&(7% 
.,,.._ $• ~ C(.#•(&(, JL9 ~+11 - c • (%% +-&#$*"&' 7' &&Le(. %#$#1--' . 3*"&$C $#&4 $. C (• *"(• - #' )OT%' -& - # - . 4 %$C' ... %#% c (+*"&$-. c . *"($. # -t-' - % - 1- $. %# 5- c 61 • ( 

(• -t-- & (• (• +- &$C' )0 l)%%-+' % c ( ++(. *"(*"-&- ~ 

7' &&%0 ~( %$1. $, $C - . # %*"- #$- & I - • $- 5$~#&& 
#' %#0 II• *"&- c. -t-' . #' (• #• - )$#$(. - & i:i~ I "l'.l2. 3#''*:&) 
c (+*"- • $%(. C7($##• (&?I@*"• (C' )-•' o I (•' -; .&'- 3$!:9. 

# 
>/o $#' 
-. )0 ~­

(. I - • 
&(7' ) : 

$ 
& 
% . 
~ 

(, $. #• - 7' && #L#' %#% $, -%' ) - % $. #• - 7' ~&!ii ~fAl#O l) 
' !Pio 
&&(7% ~ 

- c. (%% +-&#$*"&' 7' &&Le(. %#$#-' # .,,.._ $• %0 IC-#'B'I 5' 

•' %- +*"&' %*"' • . I - &-- #$(. ...... •$()#($. C(•*"(•-#' 
'. - % 

• • #' o/c 
%C . -t-' )(' % . (# •• A-$•' . 3*"&$C $# •' #' %#$ . 1 
~ (. L'*" - • - -+-' #• $C #' %# (, $. )$/ $)-- & c (+*"&$-. c. *"($. # u: 
- 1- $. %# 5- c 61 • (-. )0 ~(. L (• +- & )- #- - )8(• . I. L )' #' C 

%' ) - Cl; 

1 • (-. : 
%$1. $, $C - . # %*"- #$- & I - • $- 5$&$#4 - &&@CZJ' ) $, -
11 • #' %#$. 1 • 3*"&$C $#&4 $. C(•*"(•-#' . &*", -& 
~ (. L-"*"_ • - -+-' #• $C #' %# (, c (+*"&$- . c. 
5- c 61 • (-. )O~(. L (• -t-- & - . )8(• 
%*"- #$- & I - • $- 5$&$#4 - &&(7' ) $, 

)0 - • 1' 5- c 6 

*"($. # -t-' )$-. o/c 0 - 1- $ 
( %$1. 

y· &&#' 
(. L )' #' C #% I HO~ 
-%' ) - 6'$. (#!-.• 

%- +*"&' %$&'*", -&O I-%# 5' . - %$5&' #( c (&&' C # E •• %- .. . I - &-- #$(. ...... •$()#($ . C(•*"(•-#' • • • #' -t-% #!:I).(' 1 ~ _J ~(, u %C 

•' A-$•' . 3*"&$C $# •' #' %#$. 1 

EPAPAV0117055 



l LJ 1-eC $C C9l J•C C l LeJJlC 

-1#- #~o/o#~C - §( )' # - *"#' • 
_l . 7-. #~_lT I $ c 
(. #• (& - • # 

Io/o' 

• - *$C - & #' %# (, %$1. $, $C - . # $ . c •. - %' - 5(1 . fo- c 61 • ( 
&' ' #Le. 
$(. % 
&$+$#' 

5' (• +- & (• (• +- &$C' )0 _l ( +' (. L)' #' C #%I H $, 
- )G-%#+' # -t-- )' Ol;i#&' - %# l 5- c 61 • (-. ) (5%' • I # 

•' c (++' )' )0 "$- 5&' - &#' • - #$/ • #( """• • )$9 #$( 
5' . 3*"&$C $#&4 $. C(•*"(•-#' )0 (. #• ( & &$+$#% ~ - . 5' %' #1 
&$#' • - #-•. (• I c. #' - • &( %$+-&- #$(. 

1 LJ 1-eC C C<Jl T -1 -<JI I -C79l l-•8L JlC 

-1#- #$%#$C - §( )' # - *'#' • 
(. $)' c· #' • I -& c 
l:i• (-. ) ~ < • +- & I . -

(. $)' c· #' •I - & c 
l:i• (-. ) (1. (• -t-- & . ( +' #• $C I. -

(. $)' c· #' •I - & !C 
l:i• (-. ) (1. (• -t-- & 
l:i• $#+' #$C I. -

(. $)' c· #' •I - & "C 
l:i• (-. )T ........... • 
+· • c. #$&' 

~ (. Lt- • - -t-' #• $C c 
(. $)' c· #' • I -& 

- . (-. ) 1 · )$-. 

~ (. Lt- • - -t-' #• $C c 
(. $)' c· #' • I -& 
l:i• (-. )T ........... • 
+· • c. #$&' 
(. $)' c· !- ) ! c 
l;i• (-. ) $. . - . 
II• 1•' %%$(. 

~ (. L'*" - • - -+-' #• $C ! c 
(. $)' c· !- ) 
l:i• (-. ) ~ $&U• $. . 

Io/o' 

~- #- +-%# 5' ( • +- &O -1 ( +' (. L)' #' C #%I H $, &' #I~ ' . %(•. 
- )G-%#+' # +- )' 0T%' ) $. c (+*"&$-. c· 8- %%' %% f-t-
- c #$(. #( c (+*"- •• c (+*"&$- . c· 7' && - 1- $. %#' $3' 

• . # (• ~ 

)2 -t-' -

1 • (-. )7- #' • %#-. ]~&)Cboj_ ( %$1. $, $C(• .-tlf.Qie" )b 
(5%' •/-#$(. o/o • ' c (++' )' ) 
~- #- +-%# 5' &(1. (• +- &O -1 ( +' (. L)' #' C #%I H $, &' 
- )G-%#+' # -t-- )' OT%' ) $. c (+*"&$-. c· 8- %%' %% f-t-
- c #$(. #( c ( +*"- •• c (+*"&$- . c· 7' && - 1- $. %#' $3' 

#Le • . 
•. # (• 
)2 -t-' -

1 • (-. )7- #' • %#-. ]~&)Cboj_ ( %$1. $, $C(• .-tlf.Qie" )b 
(5%' •/-#$(. % •• c (++' )' )0 . ( +' #• $C -t-' - . A,_ $! - &' 
&(1. (•+-&+' ")$-. 2 -%.+-&&&' tte II+-- & -t-' -

~- #- +-%# 5' &(1. (• +- &O -1 ( +' (. L)' #' C #%I H $, &' 
- )G-%#+' # -t-- )' OT%' ) $. c (+*"&$-. c· 8- %%' %% f-t-
- c #$(. #( c ( +*"- •• c (+*"&$-. c· 7' && - 1- $. %#' $3' 

#Le • . 
•. # (• 
)2 -t-' -

1 • (-. )7- #' • %#-. ]~&)Cboj_ ( %$1. $, $C(• .-tlf.Qie" )b 
(5%' •/-#$(. % •• c (++' )' )0 (-fl'. ~C++'&-.• &# ... 1' • # 
&( 1 . (. +- & 1 • ( +' #• $C +' -

~- #- +-%# 5' (• +- & (• (• +- &$C' )0 -1(+' (. L )' f C#o/olH! 
8- %%' 

5- o/o' ) I 

c· %(•. ) - )G-%#+' # -t-- )' OT%' ) $. c (+*"&$-. c 
c (+*"- •• c (+*"&$- . c· 7' &&- 1- $. %# ...... • c. #$&' 
1 • (-. ")7- #' • %#- . "}~& ")Cboj_ . ( %$1. $, $C - . # #• • ") 

~<· (. L (• +- &2. (. L&(1. <· +- & )- #- o ~c L)' #' c #% r HOT%' 
c (+*"- • 
#- . )- • 

c (+*"&$- . c· 8- %%' %%+' # (• c (• •. c #$/ • - c #$(. # 
7' &&- 1- $. %#' $3' )2 -t-' - L5_ o/o' ) 1• (-(-~m· •. ~ 
%$1. $, $C - . # #• • ")0 K (• +(• • (5%' • I - #$(. % •• c -+--+-' . )' 

~<· (. L (• -t-- &2. (. L&(1. (• -t-- & )- #- 0 ~(. L )' #' c #% r 
c (+*"&$- . c· 8- %%' %%+' # (• c (• •. c #$/ • - c #$(. # 
7' &&- 1- $. %# ...... • c. #$&' L5_ o/o' ) (• -t-- 3$+-+ 1. ( 

HOT%' 
c (+*"-. 
-. )7-1 

'----& ) %­
&% +-%1 
• c (• • ' 
)7- #' • 

_l (-&") 5' ( %$1. $, $C - . # #• • . ")0 - . 1' 5- c f&'T'"~ 
To/o' (. )- #- r$1>1. $, $C - . # #• • )0 ..... ) .. %$)--

(• +- &$C' )OT%' ) $. c (+*"&$-. C' 8- %%' %%-t' # ( 
c (+*"- •• c (+*"&$- . c· 7' &&- 1- $. %#' $3' ) 1 • (-. 
(5%' •/-#$(. % •• c (++' )' ) 

To/o' (. )- #- r$1>1. $, $C - . # #• • )0 ~ (. L (• -t-- & )- #-
)' #' C #%I HO To/o' ) $. c (+*"&$-. c· 8- %%' %%+' .(# (• c 

- . )8(• 
(• •. c; 

)7- #' • c (+*"- •• c (+*"&$- . c· 7' &&- 1- $. %#' $3' ) 1 • (- . 
! ((#%#• - *"*"$. 1'($au· #• • ) &$. . -%' ) #( c (. %#• - c # c (. ' 
5-. ") 

l ~ 

EPAPAV0117056 



!! 91 l_ Tl_ -Q +l_ L<Jl i -CJ 

l 11 I 1 <111n r +-- J_T I I u '' 1 J_ 

~ I 1 1- 1 !! 1 J_ t i ._ ?1- 1 ._ i ~ J_ =111 Ji:i ~ .- J <n <n J @ 

Basic purpose: Diagnostic and exploratory tool. It is a graphical technique to display changes m 
concentrations at one or more wells over a specified period of time or series of sampling events. 

Hypothesis tested: Not a formal statistical test. Time series plots can be used to informally gauge the 
presence of temporal and/or spatial variability in a collection of distinct wells sampled during the 
same time frame. 

Underlying assumptions: None. 

When to use: Given a collection of wells with several sampling events recorded at each well, a time 
series plot can provide information not only on whether the mean concentration level changes from 
well to well (an indication of possible spatial variation), but also on whether there exists time-related 
or temporal dependence in the data. Such temporal dependence can be seen in parallel movement on 
the time series plot, that is, when several wells exhibit the same pattern of up-and-down fluctuations 
over time. 

Steps involved: 1) For each well, make a plot of concentration against time or date of sampling for the 
sampling events that occurred during the specified time period; 2) Make sure each well is identified 
on the plot with a distinct symbol and/or connected line pattern (or trace); 3) To observe possible 
spatial variation, look for well traces that are substantially separated from one another in 
concentration level; 4) To look for temporal dependence, look for well traces that rise and fall 
together in roughly the same (parallel) pattern; 5) To ensure that artificial trends due to changing 
reporting limits are not reported, plot any non-detects with a distinct symbol, color, and/or fill. 

Advantages/Disadvantages: Time series plots are an excellent tool for examining the behavior of one 
or more samples over time. Although, they do not offer the compact summary of distributional 
characteristics that, say, box plots do, time series plots display each and every data point and provide 
an excellent initial indication of temporal dependence. Since temporal dependence affects the 
underlying variability in the data, its identification is important so adjustments can be made to the 
estimated standard deviation. 

~ i Lt i ._ ?1- 1 ._ i ~ 1- =1f1 2 q] 2 l/ ~ .- J q] q] J @ 

Basic purpose: Diagnostic and exploratory tool. Graphical summary of data distribution; gives compact 
picture of central tendency and dispersion. 

Hypothesis tested: Although not a formal statistical test, a side-by-side box plot of multiple datasets can 
be used as a rough indicator of either unequal variances or spatial variation (via unequal 
means/medians). Also serves as a quasi-non-parametric screening tool for outliers in a symmetric 
population. 

Underlying assumptions: When used to screen outliers, underlying population should be approximately 
symmetric. 

L-
1 -
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When to use: Can be used as a quick screen in testing for unequal variances across multiple 
populations. Box lengths indicate the range of the central 50% of sample data values. Substantially 
different box lengths suggest possibly different population variances. It is useful as a rough 
indication of spatial variability across multiple well locations. Since the median (and often the mean) 
are graphed on each box, significantly staggered medians and/or means on a multiple side-by-side 
box plot can suggest possibly different population means at distinct well locations. Can also be used 
to screen for outliers: values falling beyond the 'whiskers' on the box plot are labeled as potential 
outliers. 

Steps involved: 1) Compute the median, mean, lower and upper quartiles (i.e., 25th and 75th 
percentiles) of each dataset; 2) Graph each set of summary statistics side-by-side on the same set of 
axes. Connect the lower and upper quartiles as the ends of a box, cut the box in two with a line at the 
median, and use an 'X' or other symbol to represent the mean. 3) Compute the 'whiskers' by 
extending lines below and above the box by an amount equal to 1.5 times the interquartile range 
[IQR]. 

Advantages/Disadvantages: The box plot is an excellent screening tool and visual aid in diagnosing 
either unequal variances for testing the assumptions of ANOVA, the possible presence of spatial 
variability, or potential outliers. It is not a formal statistical test, however, and should generally be 
used in conjunction with numerical test procedures. 

fl J_ ~ i !! v I ?1- 1 ~ i ~ =m @ 

Basic purpose: Diagnostic and exploratory tool. It is a graphical summary of an entire data distribution. 

Hypothesis tested: Not a formal statistical test. 

Underlying assumptions: None. 

When to use: Can be used as a rough estimate of the probability density of a single sample. Shape of 
histogram helps determine whether the distribution is symmetric or skewed. For larger data sets, 
histogram can be visually compared to a normal distribution or other known model to assess whether 
the shapes are similar. 

Steps involved: 1) Sort and bin the data set into non-overlapping concentration segments that span the 
range of measurement values; 2) Create a bar chart of the bins created in Step 1: put the height of 
each bar equal to the number or fraction of values falling into each bin. 

Advantages/Disadvantages: The histogram is a good visual aid in exploring possible distributional 
models that might be appropriate. Since it is not a formal test, there is no way to judge possible 
models solely on the basis of the histogram; however, it provides a visual 'feel' for a data set. 

J_i:i~~111 + r~ ?1-1~ r~ =m @ 

Basic purpose: Diagnostic tool. It is a graphical method to explore the association between two random 
variables or two paired statistical samples. 

Hypothesis tested: None. 

EPAPAV0117058 
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Underlying Assumptions: None. 

When to use: Useful as an exploratory tool for discovering or identifying statistical relationships 
between pairs of variables. Graphically illustrates the degree of correlation or association between 
two quantities. 

Steps involved: Using Cartesian pairs of the variables of interest, graph each pair on the scatter plot, 
using one symbol per pair. 

Advantages/Disadvantages: A scatter plot is not a formal test, but rather an excellent exploratory tool. 
Helps identify statistical relationships. 

t !! I !V ! ~~ t H ?1- I~ I -+ J_ ~ ;l/-+ ,_ J 91 J @ 

Basic purpose: Diagnostic tool. A graphical method to compare a dataset against a particular statistical 
distribution, usually the normal. Designed to show how well the data match up to or 'fit' the 
hypothesized distribution. An absolutely straight line fit indicates perfect consistency with the 
hypothesized model. 

Hypothesis tested: Although not a formal test, the probability plot can be used to graphically indicate 
whether a dataset is normal. The straighter the plot, the more consistent the dataset with a null 
hypothesis of normality; significant curves, bends, or other non-linear patterns suggest a rejection of 
the normal model as a poor fit. 

Underlying Assumptions: All observations come from a single statistical population. 

When to use: Can be used as a graphical indication of normality on a set ofraw measurements or, by 
first making a transformation, as an indication of normality on the transformed scale. It should 
generally be supplemented by a formal numerical test of normality. It can be used on the residuals 
from a one-way ANOVA to test the joint normality of the groups being compared. The test can also 
be used to help identify potential outliers (i.e., individual values not part of the same basic 
underlying population). 

Steps involved: 1) Order the dataset and determine matching percentiles (or quantiles) from the 
hypothesized distribution (typically the standard normal); 2) Plot the ordered data values against the 
matching percentiles; 3) Examine the plot for a straight line fit. 

Advantages/Disadvantages: Not a formal test of normality; however, the probability plot is an 
excellent graphical supplement to any goodness-of-fit test. Because each data value is depicted, 
specific departures from normality can be identified (e.g., excessive skewness, possible outliers, 
etc.). 

1- H 1 9-+ 1 u I 1 ~ ~ 1-+ ~ ?1- 1 ~ I -+ J r1 91@ 

Basic purpose: Diagnostic tool. Sample statistic designed to measure the degree of symmetry in a 
sample. Because the normal distribution is perfectly symmetric, the skewness coefficient can provide 
a quick indication of whether a given dataset is symmetric enough to be consistent with the normal 
model. Skewness coefficients close to zero are consistent with normality; skewness values large in 
absolute value suggest the underlying population is asymmetric and non-normal. 

l LJ J 
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Hypothesis tested: The skewness coefficient is used in groundwater monitoring as a screening tool 
rather than a formal hypothesis test. Still, it can be used to roughly test whether a given sample is 
normal by using the following rule of thumb: if the skewness coefficient is no greater than one in 
absolute value, accept a null hypothesis of normality; if not, reject the normal model as ill-fitting. 

Underlying Assumptions: None 

Steps involved: 1) Compute skewness coefficient; 2) Compare to cutoff of 1; 3) If skewness is greater 
than 1, considering running a formal test of normality. 

Advantages/Disadvantages: Fairly simple calculation, good screening tool. Skewness coefficient can 
be positive or negative, indicating positive or negative skewness in the dataset, respectively. 
Measures symmetry rather than normality, per se; since other non-normal distributions can also be 
symmetric, might give a misleading result. Not as powerful or accurate a test of normality as either 
the Shapiro-Wilk or Filliben tests, but a more accurate indicator than the coefficient of variation, 
particularly for data on a transformed scale. 

i 1 ~~ 1~._ i ~ "v!! v._ i ~ E"F?1- 1._ i ~ J r1 91@ 

Basic purpose: Diagnostic tool. Sample statistic used to measure skewness in a sample of positively­
valued measurements. Because the CV of positively-valued normal measurements must be close to 
zero, the CV provides an easy indication of whether a given sample is symmetric enough to be 
normal. Coefficients of variation close to zero are consistent with normality; large CVs indicate a 
skewed, non-normal population. 

Hypothesis tested: The coefficient of variation is not a formal hypothesis test. Still, it can be used to 
provide a 'quick and easy' gauge of non-normality: if the CV exceeds 0.5, the population is probably 
not normal. 

Underlying Assumptions: Sample must be positively-valued for CV to have meaningful interpretation. 

Steps involved: 1) Compute sample mean and standard deviation; 2) Divide standard deviation by mean 
to get coefficient of variation. 

Advantages/Disadvantages: Simple calculation, good screening tool. It measures skewness and 
variability in positively-valued data. Not an accurate a test of normality, especially if data have been 
transformed. 

1-fll/t !!i Lg H(l~.- 1-fll/t !!i L~!!(l~M(l ~11-._1- ?1-1._ i~ Jr] 91 ;@ 

Basic purpose: Diagnostic tool and a formal numerical goodness-of-fit test of normality. Shapiro­
Francia test is a close variant of the Shapiro-Wilk useful when the sample size is larger than 50. 

Hypothesis tested: H 0 -the dataset being tested comes from an underlying normal population. HA­
the underlying population is non-normal (note that the form of this alternative population is not 
specified). 

Underlying assumptions: All observations come from a single normal population. 

l LJ 
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When to use: To test normality on a set of raw measurements or following transformation of the data. It 
can also be used with the residuals from a one-way ANOV A to test the joint normality of the groups 
being compared. 

Steps involved (for Shapiro-Wilk): 1) Order the dataset and compute successive differences between 
pairs of extreme values (i.e., most extreme pair =maximum - minimum, next most extreme pair = 
2nd largest - 2nd smallest, etc.); 2) Multiply the pair differences by the Shapiro-Wilk coefficients 
and compute the Shapiro-Wilk test statistic; 3) Compare the test statistic against an a-level critical 
point; 4) Values higher than the critical point are consistent with the null hypothesis of normality, 
while values lower than the critical point suggest a non-normal fit. 

Advantages/Disadvantages: The Shapiro-Wilk procedure is considered one of the very best tests of 
normality. It is much more powerful than the skewness coefficient or chi-square goodness-of-fit test. 
The Shapiro-Wilk and Shapiro-Francia test statistics will tend to be large (and more indicative of 
normality) when a probability plot of the same data exhibits a close-to-linear pattern. Special 
Shapiro-Wilk coefficients are available for sample sizes up to 50. For larger sample sizes, the 
Shapiro-Francia test does not require a table of special coefficients, just the ability to compute 
inverse normal probabilities. 

~ !l~>J_ t!!r !V! ~~ t H r 11111 i:i~ r~ r n~ 1~~ ~lJ_~ ?1-1~ r~ Jcr <n J@ 
Basic purpose: Diagnostic tool and a formal numerical goodness-of-fit procedure to test for normality. 

Hypothesis tested: Ho -the dataset being tested comes from an underlying normal population. HA­
the underlying population is non-normal (note that the form of this alternative population is not 
specified). 

Underlying assumptions: All observations come from a single normal population. 

When to use: To test normality on a set ofraw measurements or following transformation of the data on 
the transformed scale. It can also be used on the residuals from a one-way ANOVA to test the joint 
normality of the groups being compared. 

Steps involved: 1) Construct a normal probability plot of the dataset; 2) Calculate the correlation 
between the pairs on the probability plot; 3) Compare the test statistic against an a-level critical 
point; 4) Values higher than the critical point are consistent with the null hypothesis of normality, 
while values lower than the critical point suggest a non-normal fit. 

Advantages/Disadvantages: Filliben's procedure is an excellent test of normality, with very similar 
characteristics to the Shapiro-Wilk test. As a correlation on a probability plot, the Filliben's test 
statistic will tend to be close to one (and more indicative of normality) when a probability plot of the 
same data exhibits a close-to-linear pattern. Critical points for Filliben's test are available for sample 
sizes up to 100. A table of special coefficients is not needed to run Filliben's test, only the ability to 
compute inverse normal probabilities. 

J_ fl i:i + 11 r Lg H I T ~ + 1 11 r T + ~ 1 J_ ~ ?1- 1 ~ r ~ J er <n K@ 

Basic purpose: Diagnostic tool and a formal normality goodness-of-fit test for multiple groups. 
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Hypothesis tested: Ho -datasets being tested all come from underlying normal populations, possibly 
with different means and/or variances. HA - at least one underlying population is non-normal (note 
that the form of this alternative population is not specified). 

Underlying assumptions: The observations in each group all come from, possibly different, normal 
populations. 

When to use: Can be used to test normality on multiple sets of raw measurements or, by first making a 
transformation, to test normality of the data groups on the transformed scale. It is particularly 
helpful when used in conjunction with Welch's t-test. 

Steps involved: I) Compute Shapiro-Wilk statistic (Section 10.5) on each group separately; 2) 
Transform the Shapiro-Wilk statistics into z-scores and combine into an omnibus z-score; 3) 
Compare the test statistic against an a-level critical point; 4) Values higher than the critical point are 
consistent with the null hypothesis of normality for all the populations, while values lower than the 
critical point suggest a non-normal fit of one or more groups. 

Advantages/Disadvantages: As an extension of the Shapiro-Wilk test, the multiple group test shares 
many of its desirable properties. Users should be careful, however, not to assume that a result 
consistent with the hypothesis of normality implies that all groups follow the same normal 
distribution. The multiple group test does not assume that all groups have the same means or 
variances. Special coefficients are needed to convert Shapiro-Wilk statistics into z-scores, but once 
converted, no other special tables needed to run test besides a standard normal table. 

1 "1 ~ l>J_ ~ 1 J_ .. ?1- 1.. i ~ J J 91 @ 

Basic purpose: Diagnostic tool. Levene's test is a formal numerical test of equality of variances across 
multiple populations. 

Hypothesis tested: H0 -The population variances across all the datasets being tested are equal. HA -
One or more pairs of population variances are unequal. 

Underlying assumptions: The data set from each population is assumed to be roughly normal in 
distribution. Since Levene's test is designed to work well even with somewhat non-normal data (i.e., 
it is fairly robust to non-normality), precise normality is not an overriding concern. 

When to use: Levene's method can be used to test the equal variance assumption underlying one-way 
ANOVA for a group of wells. Used in this way, the test is run on the absolute values of the residuals 
after first subtracting the mean of each group being compared. IfLevene's test is significant, the 
original data may need to be transformed to stabilize the variances before running an ANOV A. 

Steps involved: I) Compute the residuals of each group by subtracting the group mean; 2) conduct a 
one-way ANOVA on the absolute values of the residuals; and 3) if the ANOV A F-statistic is 
significant at the 5% a-level, conclude the underlying population variances are unequal. If not, 
conclude the data are consistent with the null hypothesis of equal variances. 

Advantages/Disadvantages: As a test of equal variances, Levene's test is reasonably robust to non­
normality. It is much more so than for Bartlett's test (recommended within the 1989 Interim Final 
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Guidance [IFG]). In addition, Levene's method uses the same basic equations as those needed to run 
a one-way ANOV A. 

I ll:l ~ u .. i;i ~ <- v !! <- +-- 1 .. v.. i ~ J_ v .... 1 !! + H ?1- 1.. i ~ J J 91 @ 

Basic purpose: Diagnostic tool. It is a graphical method to examine degree of association between mean 
levels and standard deviations at a series of wells. Positive correlation or association between these 
quantities is known as a 'proportional effect' and is characteristic of skewed distributions such as the 
lognormal. 

Hypothesis tested: Though not a formal test, the mean-standard deviation scatter plot provides a visual 
indication of whether variances are roughly equal from well to well, or whether the variance depends 
on the well mean. 

Underlying Assumptions: None. 

When to use: Useful as a graphical indication of 1) equal variances or 2) proportional effects between 
the standard deviation and mean levels. A positive correlation between well means and standard 
deviations may signify that a transformation is needed to stabilize the variances. 

Steps involved: 1) Compute the sample mean and standard deviation for each well; 2) plot the mean­
standard deviation pairs on a scatter plot; and 3) examine the plot for any association between the 
two quantities. 

Advantages/Disadvantages: Not a formal test ofhomoscedasticity (i.e., equal variances). It is helpful in 
assessing whether a transformation might be warranted to stabilize unequal variances . 

.-- Li ~>J_ ~F._ ?1- H i ~ J 91 @ 

Basic purpose: Diagnostic tool. It is used to identify (single) outliers within smaller datasets. 

Hypothesis tested: H 0 -Outlier(s) comes from same normal distribution as rest of the dataset. HA­
Outlier(s) comes from different distribution than rest of the dataset. 

Underlying assumptions: Data without the suspected outlier(s) are normally distributed. Test 
recommended only for sample sizes up to 25. 

When to use: Try Dixon's test when one value in a dataset appears anomalously low or anomalously 
high when compared to the other data values. Be cautious about screening apparent high outliers in 
compliance point wells. Even if found to be statistical outliers, such extreme concentrations may 
represent contamination events. A safer application of outlier tests is with background or baseline 
samples. Even then, always try to establish a physical reason for the outlier if possible (e.g., 
analytical error, transcription mistake, etc.). 

Steps involved: 1) Remove the suspected outlier and test remaining data for normality. If non-normal, 
try a transformation to achieve normality; 2) Once remaining data are normal, calculate Dixon's 
statistic, depending on the sample size n; 3) Compare Dixon's statistic against an a-level critical 
point; and 4) If Dixon's statistic exceeds the critical point, conclude the suspected value is a 
statistical outlier. Investigate this measurement further. 
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Advantages/Disadvantages: Dixon's test is only recommended for sample sizes up to 25. Furthermore, 
ifthere is more than one outlier, Dixon's test may lead to masking (i.e., a non-significant result) 
where two or more outliers close in value 'hide' one another. If more than one outlier is suspected, 
always test the least extreme value first. 

!! i J_ ~ 1 !! >1- ~ 1 J_.. ?1- 1.. i ~ J 91 @ 

Basic purpose: Diagnostic tool. It is used to identify multiple outliers within larger datasets. 

Hypothesis tested: Ho -Outliers come from same normal distribution as the rest of the dataset. HA­
Outliers come from different distribution than the rest of the dataset. 

Underlying assumptions: Data without the suspected outliers are normally distributed. Test 
recommended for sample sizes of at least 20. 

When to use: Try Rosners's test when multiple values in a dataset appear anomalously low or 
anomalously high when compared to the other data values. As Dixon's test, be cautious about 
screening apparent high outliers in compliance point wells. Always try to establish a physical reason 
for an outlier if possible (e.g., analytical error, transcription mistake, etc.). 

Steps involved: I) Identify the maximum number of possible outliers (r0 5) and the number of 
suspected outliers (r r0). Remove the suspected outliers and test the remaining data for normality. 
If non-normal, try a transformation to achieve normality; 2) Once remaining data are normal, 
successively compute the mean and standard deviation, removing the next most extreme value each 
time until r0 possible outliers have been removed; 3) Compute Rosner's statistic based on the 
number (r) of suspected outliers; and 4) If Rosner's statistic exceeds an a-level critical point, 
conclude there are r statistical outliers. Investigate these measurements further. If Rosner's statistic 
does not exceed the critical point, recompute the test for (r-1) possible outliers, successively 
reducing r until either the critical point is exceeded or r = 0. 

Advantages/Disadvantages: Rosner's test is only recommended for sample sizes of 20 or more, but can 
be used to identify up to 5 outliers per use. It is more complicated to use than some other outlier 
tests, but does not require special tables other than to determine a-level critical points. 
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Basic purpose: Diagnostic tool. Test to compare population means at multiple wells, in order to gauge 
the presence of spatial variability. 

Hypothesis tested: Ho - Population means across all tested wells are equal. HA - One or more pairs 
of population means are unequal. 

Underlying assumptions: I) ANO VA residuals at each well or group must be normally distributed 
using the original data or after transformation. Residuals should be tested for normality using a 
goodness-of-fit procedure; 2) population variances across all wells must be equal. This assumption 
can be tested with box plots and Levene's test; and 3) each tested well should have at least 3 to 4 
separate observations. 

l LJ J 

EPAPAV0117064 



!! 91 J_ T J_ -Q t_j_ L<Jl i -CJ 

When to use: The one-way ANOVA procedure can be used to identify significant spatial variation 
across a group of distinct well locations. The method is particularly useful for a group of multiple 
upgradient wells, to determine whether or not there are large average concentration differences from 
one location to the next due to natural groundwater fluctuations and/or differences in geochemistry. 
If downgradient wells are included in an ANOV A, the downgradient groundwater should not be 
contaminated, at least if a test of natural spatial variation is desired. Otherwise, a significant 
difference in population means could reflect the presence of either recent or historical contamination. 

Steps involved: 1) Form the ANOV A residuals by subtracting from each measurement its sample well 
mean; 2) test the ANOV A residuals for normality and equal variance. If either of these assumptions 
is violated, try a transformation of the data and retest the assumptions; 3) compute the one-way 
ANOVA F-statistic; 4) if the F-statistic exceeds an a-level critical point, conclude the null 
hypothesis of equal population means has been violated and that there is some (perhaps substantial) 
degree of spatial variation; 5) if the F-statistic does not exceed the critical point, conclude that the 
well averages are close enough to treat the combined data as coming from the same statistical 
population. 

Advantages/Disadvantages: One-way ANOVA is an excellent technique for identifying differences in 
separate well populations, as long as the assumptions are generally met. However, a finding of 
significant spatial variability does not specify the reason for the well-to-well differences. Additional 
information or investigation may be necessary to determine why the spatial differences exist. Be 
especially careful when (1) testing a combination of upgradient and downgradient wells that 
downgradient contamination is not the source of the difference found with ANOVA; and 2) when 
ANOV A identifies significant spatial variation and intrawell tests are called for. In the latter case, the 
ANOVA results can sometimes be used to estimate more powerful intrawell prediction and control 
limits. Such an adjustment comes directly from the ANOV A computations, requiring no additional 
calculation. 

P~i:i~J__j_U"v!!v~l EP .... l"Plfi!!~llti!!v H~HJ_ ?1-1._r~J_ J 9191 NJ 91 91@ 
Basic purpose: Diagnostic tool. It is a test to compare population means at multiple sampling events, 

after pooling the event data across wells. The test can also used to adjust data across multiple wells 
for common temporal dependence. 

Hypothesis tested: H0 - Population means across all sampling events are equal. HA - One or more 
pairs of population means are unequal. 

Underlying assumptions: 1) ANOVA residuals from the population at each sampling event must be 
normal or normalized. These should be tested for normality using a goodness-of-fit procedure; 2) the 
population variances across all sampling events must be equal. Test this assumption with box plots 
and Levene's test; and 3) each tested well should have at least 3 to 4 observations per sampling 
event. 

When to use: 1) The ANOV A procedure for temporal effects should be used to identify significant 
temporal variation over a series of distinct sampling events. The method assumes that spatial 
variation by well location is not a significant factor (this should have already been tested). ANOVA 
for temporal effects should be used when a time series plot of a group of wells exhibits roughly 
parallel traces over time, indicating a time-related phenomenon affecting all the wells in a similar 
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way on any given sampling event. If a significant temporal effect is found, the results of the ANOV A 
can be employed to adjust the standard deviation estimate and the degrees of freedom quantities 
needed for further upgradient-to-downgradient comparisons; 2) compliance wells can be included in 
ANOV A for temporal effects, since the temporal pattern is assumed to affect all the wells on-site, 
regardless of gradient; and 3) residuals from ANOVA for temporal effects can be used to create 
adjusted, temporally-stationary measurements in order to eliminate the temporal dependence. 

Steps involved: 1) Compute the mean (across wells) from data collected on each separate sampling 
event; 2) form the ANOV A residuals by subtracting from each measurement its sampling event 
mean; 3) test the ANOV A residuals for normality and equal variance. If either of these assumptions 
is violated, try a transformation of the data and retest the assumptions; 4) compute the one-way 
ANOVA F-statistic; 5) if the F-statistic exceeds an a-level critical point, conclude the null 
hypothesis of equal population means has been violated and that there is some (perhaps substantial) 
degree of temporal dependence; 6) compute the degrees of freedom adjustment factor and the 
adjusted standard deviation for use in interwell comparisons; 7) if the F-statistic does not exceed the 
critical point, conclude that the sampling event averages are close enough to treat the combined data 
as if there were no temporal dependence; and use the residuals, if necessary, to create adjusted, 
temporally-stationary measurements, regardless of the significance of the F-test (Section 14.3.3 ). 

Advantages/Disadvantages: 1) One-way ANOVA for temporal effects is a good technique for 
identifying time-related effects among a group of wells. The procedure should be employed when a 
strong temporal dependence is indicated by parallel traces in time series plots; 2) if there is both 
temporal dependence and strong spatial variability, the ANOV A for temporal effects may be non­
significant due to the added spatial variation. A two-way ANOV A for temporal and spatial effects 
might be considered instead; and 3) even if the ANOVA is non-significant, the ANOVA residuals 
can still be used to adjust data for apparent temporal dependence. 

J_ v I + 1 p T .. i i !! !! 1 v.. i ~ h ~ .. i ~ ?1- 1 .. i ~ J <n <n @ 

Basic purpose: Diagnostic tool. This is a parametric estimate and test of autocorrelation (i.e., time­
related dependence) in a data series from a single population. 

Hypothesis tested: H0 -Measurements from the population are independent of sampling events (i.e., 
they are not influenced by the time when the data were collected). HA - The distribution of 
measurements is impacted by the time of data collection. 

Underlying assumptions: Data should be approximately normal, with few non-detects. Sampling 
events represented in the sample should be fairly regular and evenly spaced in time. 

When to use: When testing a data series from a single population (e.g., a single well), the sample 
autocorrelation function (also known as the correlogram) can determine whether there is a significant 
temporal dependence in the data. 

Steps involved: 1) Form overlapping ordered pairs from the data series by pairing measurements 
'lagged' by a certain number of sampling events (e.g., all pairs with measurements spaced by k = 2 
sampling events); 2) for each distinct lag (k), compute the sample autocorrelation; 3) plot the 
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autocorrelations from Step 2 by lag (k) on a scatter plot; and 4) count any autocorrelation as 

significantly different from zero if its absolute magnitude exceeds 2/ J;;, where n is the sample size. 

Advantages/Disadvantages: 1) The sample autocorrelation function provides a graphical test of 
temporal dependence. It can be used not only to identify autocorrelation, but also as a planning tool 
for adjusting the sampling interval between events. The smallest lag (k) at which the autocorrelation 
is insignificantly different from zero is the minimum sampling interval ensuring temporally 
uncorrelated data; 2) the test only applies to a single population at a time and cannot be used to 
identify temporal effects that span across groups of wells simultaneously. In that scenario, use a one­
way ANOV A for temporal effects; and 3) tests for significant autocorrelation depend on the data 
being approximately normal; use the rank von Neumann ratio for non-normal samples. 

!! i:i~ H "i ~ .... h I i:i~ ~ !! v._ i ?1- 1._ i ~ ~ @ 

Basic purpose: Diagnostic tool. It is a non-parametric test of first-order autocorrelation (i.e., time­
related dependence) in a data series from a single population. 

Hypothesis tested: H0 -Measurements from the population are independent of sampling events (i.e., 
they are not influenced by the time when the data were collected). HA - The distribution of 
measurements is impacted by the time of data collection. 

Underlying assumptions: Data need not be normally distributed. However, it is assumed that the data 
series can be uniquely ranked according to concentration level. Ties in the data (e.g., non-detects) are 
not technically allowed. Although a mid-rank procedure (as used in the Wilcoxon rank-sum test) to 
rank tied values might be considered, the available critical points for the rank von Neumann ratio 
statistic only directly apply to cases where a unique ranking is possible. 

When to use: When testing a data series from a single population (e.g., a single well) for use in, 
perhaps, an intrawell prediction limit, control chart, or test of trend, the rank von Neumann ratio can 
determine whether there is a significant temporal dependence in the data. If the dependence is 
seasonal, the data may be adjusted using a seasonal correction (Section 14.3.3 ). If the dependence is 
a linear trend, remove the estimated trend and re-run the rank von Neumann ratio on the trend 
residuals before concluding there are additional time-related effects. Complex dependence may 
require consultation with a professional statistician. 

Steps involved: 1) Rank the measurements by concentration level, but then list the ranks in the order the 
samples were collected; 2) using the ranks, compute the von Neumann ratio; 3) if the rank von 
Neumann ratio exceeds an a-level critical point, conclude the data exhibit no significant temporal 
correlation. Otherwise, conclude that a time-related pattern does exist. Check for seasonal cycles or 
linear trends using time series plots. Consult a professional statistician regarding possible statistical 
adjustments if the pattern is more complex. 

Advantages/Disadvantages: The rank von Neumann ratio, as opposed to other common time series 
methods for determining autocorrelation, is a non-parametric test based on using the ranks of the 
data instead of the actual concentration measurements. The test is simple to compute and can be used 
as a formal confirmation of temporal dependence, even if the autocorrelation appears fairly obvious 
on a time series plot. As a limiting feature, the test only applies to a single population at a time and 
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cannot be used to identify temporal effects that span across groups of wells simultaneously. In that 
scenario, a one-way ANOV A for temporal effects is a better diagnostic tool. Because critical points 
for the rank von Neumann ratio have not been developed for the presence of ties, the test will not be 
useful for datasets with substantial portions of non-detects . 

.-i:i11~ loTi:i .. r~?J_Hr~ J 91 91@ 

Basic purpose: Method to determine a sampling interval ensuring that distinct physical volumes of 
groundwater are sampled on any pair of consecutive events. 

Hypothesis tested: Not a statistical test or formal procedure. 

Underlying assumptions: Flow regime is one in which Darcy's equation is approximately valid. 

When to use: Use Darcy's equation to gauge the minimum travel time necessary for distinct volumes of 
groundwater to pass through each well screen. Physical independence of samples does not guarantee 
statistical independence, but it increases the likelihood of statistical independence. Use to design or 
plan for a site-specific sampling frequency, as well as what formal statistical tests and retesting 
strategies are possible given the amount of temporally-independent data that can be collected each 
evaluation period. 

Steps involved: 1) Using knowledge of the site hydro geology, calculate the horizontal and vertical 
components of average groundwater velocity with Darcy's equation; 2) Determine the minimum 
travel time needed between field samples to ensure physical independence; 3) Specify a sampling 
interval during monitoring no less than the travel time obtained via the Darcy computation. 

Advantages/Disadvantages: Darcy's equation is relatively straightforward, but is not a statistical 
procedure. It is not applicable to certain hydrologic environments. Further, it is not a substitute for a 
direct estimate of autocorrelation. Statistical independence is not assured using Darcy's equation, so 
caution is advised. 

i !! !! 1 .. i ~ ?1- 1 .. i ~ J 91 91 @ 

Basic purpose: Method to adjust a longer data series from a single population for an obvious seasonal 
cycle or fluctuation pattern. By removing the seasonal pattern, the remaining residuals can be used in 
further statistical procedures (e.g., prediction limits, control charts) and treated as independent of the 
seasonal correlation. 

Hypothesis tested: The seasonal correction is not a formal statistical test. Rather, it 1s a statistical 
adjustment to data for which a definite seasonal pattern has been identified. 

Underlying assumptions: There should be enough data so that at least 3 full seasonal cycles are 
displayed on a time series plot. It is also assumed that the seasonal component has a stationary (i.e., 
stable) mean and variance during the period of data collection. 

When to use: Use the seasonal correction when a longer series of data must be examined, but a time 
series plot indicates a clearly recurring, seasonal fluctuation of concentration levels. If not removed, 
the seasonal dependence will tend to upwardly bias the estimated variability and could lead to 
inaccurate or insufficiently powerful tests. 
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Steps involved: 1) Using a time series plot of the data series, separate the values into common sampling 
events for each year (e.g., all January measurements, all third quarter values, etc.); 2) compute the 
average of each subgroup and the overall mean of the dataset; and 3) adjust the data by removing the 
seasonal pattern. 

Advantages/Disadvantages: The seasonal correction described in the Unified Guidance is relatively 
simple to perform and offers a more accurate standard deviation estimates compared to using 
unadjusted data. Removal of the seasonal component may reveal other previously unnoticed features 
of the data, such as a slow-moving trend. A fairly long data series is required to confirm the 
presence of a recurring seasonal cycle. Furthermore, many complex time-related patterns cannot be 
handled by this simple correction. In such cases, consultation with a professional statistician may be 
necessary. 
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Basic purpose: Method for detection monitoring. It is used to identify the presence of a significant 
(upward) trend at a compliance point when data also exhibit seasonal fluctuations. It may also be 
used in compliance/assessment and corrective action monitoring to track upward or downward 
trends. 

Hypothesis tested: H0 -No discernible linear trend exists in the concentration data over time. HA -A 
non-zero, (upward) linear component to the trend does exist. 

Underlying assumptions: Since the seasonal Mann-Kendall trend test is a non-parametric method, the 
underlying data need not be normal or follow a particular distribution. No special adjustment for ties 
is needed. 

When to use: Use when I) upgradient-to-downgradient comparisons are inappropriate so that intrawell 
tests are called for; 2) a control chart or intrawell prediction limit cannot be used because of possible 
trends in the intrawell background, and 3) the data also exhibit seasonality. A trend test can be 
particularly helpful at sites with recent or historical contamination where it is uncertain if 
background is already contaminated. An upward trend in these cases will document the changing 
concentration levels more accurately than either a control chart or intrawell prediction limit, both of 
which assume a stationary background mean concentration. 

Steps involved: 1) Divide the data into separate groups representing common sampling events from 
each year; 2) compute the Mann-Kendall test statistic (S) and its standard deviation (SD[S]) on each 
group; 3) sum the separate Mann-Kendall statistics into an overall test statistic; 4) compare this 
statistic against an a-level critical point; and 5) if the statistic exceeds the critical point, conclude 
that a significant upward trend exists. If not, conclude there is insufficient evidence for identifying a 
significant, non-zero trend. 

Advantages/Disadvantages: I) The seasonal Mann-Kendall test does not require any special treatment 
for non-detects, only that all non-detects be set to a common value lower than any of the detected 
values; and 2) the test is easy to compute and reasonably efficient for detecting (upward) trends in 
the presence of seasonality. Approximate critical points are derived from the standard normal 
distribution. 
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Basic purpose: A simple adjustment for non-detects in a dataset. One-half the reporting limit [RL] is 
substituted for each non-detect to provide a numerical approximation to the unknown true 
concentration. 

Hypothesis tested: None. 

Underlying assumptions: The true non-detect concentration is assumed to lie somewhere between zero 
and the reporting limit. Furthermore, that the probability of the true concentration being less than 
half the RL is about the same as the probability of it being greater than half the RL. 

When to use: In general, simple substitution should be used when the dataset contains a relatively small 
proportion of non-detects, say no more than 10-15%. Use with larger non-detect proportions can 
result in biased estimates, especially if most of the detected concentrations are recorded at low levels 
(e.g., at or near RL). 

Steps involved: 1) Determine the reporting limit; and 2) replace each non-detect with one-half RL as a 
numerical approximation. 

Advantages/Disadvantages: Simple substitution of half the RL is the easiest adjustment available for 
non-detect data. However, it can lead to biased estimates of the mean and particularly the variance if 
employed when more than 10-15% of the data are non-detects. 
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Basic purpose: Diagnostic tool. It is a graphical fit to normality of a mixture of detected and non-detect 
measurements. Adjustments are made to the plotting positions of the detected data under the 
assumption that all measurements come from a common distributional model. 

Hypothesis tested: As a graphical tool, the censored probability plot is not a formal statistical test. 
However, it can provide an indication as to whether a dataset is consistent with the hypothesis that 
the mixture of detects and non-detects come from the same distribution and that the non-detects 
make up the lower tail of that distribution. 

Underlying assumptions: Dataset consists of a mixture of detects and non-detects, all arising from a 
common distribution. Data must be normal or normalized. 

When to use: Use the censored probability plot to check the viability of the Kaplan-Meier or robust 
regression on order statistics [ROS] adjustments for non-detect measurements. If the plot is linear, 
the data are consistent with a model in which the unobserved non-detect concentrations comprise the 
lower tail of the underlying distribution. 

Steps involved: 1) Using either Kaplan-Meier or ROS, construct a partial ranking of the detected values 
to account for the presence of non-detects; 2) determine standard normal quantiles that match the 
ranking of the detects; and 3) graph the detected values against their matched normal quantiles on a 
probability plot and examine for a linear fit. 
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Advantages/Disadvantages: The censored probability plot offers a visual indication of whether a 
mixture of detects and non-detects come from the same (normal) distribution. There are, however, no 
formal critical points to aid in deciding when the fit is 'linear enough.' Correlation coefficients can 
be computed to informally aid the assessment. Censored probability plots can also be constructed on 
transformed data to help select a normalizing transformation. 

Hv+ i:i~ LI 1111 p.-0TJ_~11~~?1-1~ r~ J; 91 @ 

Basic purpose: Diagnostic tool. It is used to adjust a mixture of detected and non-detect data for the 
unknown concentrations of non-detect values. The Kaplan-Meier procedure leads to adjusted 
estimates for the mean and standard deviation of the underlying population. 

Hypothesis tested: As a statistical adjustment procedure, the Kaplan-Meier method is not a formal 
statistical test. Rather, it allows estimation of characteristics of the population by assuming the 
combined group of detects and non-detects come from a common distribution. 

Underlying assumptions: Dataset consists of a mixture of detects and non-detects, all arising from the 
same distribution. Data must be normal or normalized in the context of the Unified Guidance. 
Kaplan-Meier should not be used when more than 50% of the data are non-detects. 

When to use: Since the Kaplan-Meier adjustment assumes all the measurements arise from the same 
statistical process, but that some of these measurements (i.e., the non-detects) are unobservable due 
to limitations in analytical technology, Kaplan-Meier should be used when this model is the most 
realistic or reasonable choice. In particular, when constructing prediction limits, confidence limits, or 
control charts, the mean and standard deviation of the underlying population must be estimated. If 
non-detects occur in the dataset (but do not account for more than half of the observations), the 
Kaplan-Meier adjustment can be used to determine these estimates, which in turn can be utilized in 
constructing the desired statistical test. 

Steps involved: 1) Sort the detected values and compute the 'risk set' associated with each detect; 2) 
using the risk set, compute the Kaplan-Meier cumulative distribution function [CDF] estimate 
associated with each detect; 3) calculate adjusted estimates of the population mean and standard 
deviation using the Kaplan-Meier CDF values; and 4) use these adjusted population estimates in 
place of the sample mean and standard deviation in prediction limits, confidence limits, and control 
charts. 

Advantages/Disadvantages: Kaplan-Meier offers a way to adjust for significant fractions of non-detects 
without having to know the actual non-detect concentration values. It is more difficult to use than 
simple substitution, but avoids the biases inherent in that method. 

!!rhJ_~ !!1 111u r~ r~ I 11.-n J_~i:i~J_~J_ E!!11-fP-H r~ J;91@ 
Basic purpose: Diagnostic tool. It is a method to adjust mixture of detects and non-detects for the 

unknown concentrations of non-detect values. Robust ROS leads to adjusted estimates for the mean 
and standard deviation of the underlying population by imputing a distinct estimated value for each 
non-detect. 
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Hypothesis tested: As a statistical adjustment procedure, robust ROS is not a formal statistical test. 
Rather, it allows estimation of characteristics of the population by assuming the combined group of 
detects and non-detects come from a common distribution. 

Underlying assumptions: Dataset consists of a mixture of detects and non-detects, all arising from the 
same distribution. Data must be normal or normalized in the context of the Unified Guidance. 
Robust ROS should not be used when more than 50% of the data are non-detects. 

When to use: Since robust regression on order statistics assumes all the measurements arise from the 
same statistical process, robust ROS should be used when this model is reasonable. In particular, 
when constructing prediction limits, confidence limits, or control charts, the mean and standard 
deviation of the underlying population must be estimated. If non-detects occur in the dataset (but do 
not account for more than half of the observations), robust ROS can be used to determine these 
estimates, which in turn can be utilized to construct the desired statistical test. 

Steps involved: I) Sort the distinct reporting limits [RL] for non-detect values and compute 'exceedance 
probabilities' associated with each RL; 2) using the exceedance probabilities, compute 'plotting 
positions' for the non-detects, essentially representing CDF estimates associated with each RL; 3) 
impute values for individual non-detects based on their RLs and plotting positions; 4) compute 
adjusted mean and standard deviation estimates via the sample mean and standard deviation of the 
combined set of detects and imputed non-detects; and 5) use these adjusted population estimates in 
place of the (unadjusted) sample mean and standard deviation in prediction limits, confidence limits, 
and control charts. 

Advantages/Disadvantages: Robust ROS offers an alternative to Kaplan-Meier to adjust for significant 
fractions of non-detects without having to know the actual non-detect concentration values. It is 
more difficult to use than simple substitution, but avoids the biases inherent in that method. 

!! I J_ ?1- 1._ r ~ J ; 91 ; @ 

Basic purpose: Diagnostic tools. These are other methods to adjust mixture of detects and non-detects 
to obtain the unknown mean and standard deviation for the entire data set 

Hypothesis tested: Neither technique is a formal statistical test. Rather, they allow estimation of 
characteristics of the population by assuming the combined group of detects and non-detects come 
from a common distribution. 

Underlying assumptions: Dataset consists of a mixture of detects and non-detects, all arising from the 
same distribution. Data must be normal or normalized in the context of the Unified Guidance. 
Neither should be used when more than 50% of the data are non-detects nor when data contain 
multiple non-detect levels. 

When to use: Since these methods assume that all the measurements arise from the same statistical 
process, they should be used when this model is reasonable. In particular, when constructing 
prediction limits, confidence limits, or control charts, the mean and standard deviation of the 
underlying population must be estimated. If non-detects occur in the dataset (but do not account for 
more than half of the observations), they can be used to determine these estimates, which in turn can 
be utilized to construct the desired statistical test. 
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Steps involved: Cohen's Method: 1) data are sorted into non-detect and detected portions; 2) detect 
mean and standard deviation estimates are calculated; 3) intermediate quantities of the ND% and a 
factor l are calculated and used to locate the appropriate L value from a table; and 4) full data set 
mean and standard deviation estimates are then obtained using formulas based on the detected mean, 
standard deviation, the detection limit and L_ Parametric ROS: 1) detected data are sorted in 
ascending order; 2) standardized normal distribution Z-values are generated from the full set of 
ranked values. Those corresponding to the sorted detected values are retained; 3) the detected 
values are then regressed against the Z-values; and 4) the resulting regression intercept and slope are 
the estimates of the mean and standard deviation for the full data set. 

Advantages/Disadvantages: These two methods offer alternatives to Kaplan-Meier and robust ROS. 
The key limitation is that only data containing a single censoring limit can be used. In some 
situations using logarithmic data, their application can lead to biased estimates of the mean and 
standard deviation. Where appropriate, these methods are less computationally intensive that either 
Kaplan-Meier or robust ROS. 
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Basic purpose: Method for detection monitoring. This test compares the means of two populations. 

Hypothesis tested: H0 -Means of the two populations are equal; HA-Means of the two populations 
are unequal (for the usual one-sided alternative, the hypothesis would state that the mean of the 
second population is greater than the mean of the first population). 

Underlying assumptions: 1) The data from each population must be normal or normalized; 2) when 
used for interwell tests, there should be no significant spatial variability; 3) at least 4 observations 
per well should be available before applying the test; and 4) the two group variances are equal. 

When to use: The pooled variance t-test can be used to test for groundwater contamination at very small 
sites, those consisting of maybe 3 or 4 wells and monitoring for 1 or 2 constituents. Site 
configurations with larger combinations of wells and constituents should employ a retesting scheme 
using either prediction limits or control charts. The pooled variance !-test can also be used to test 
proposed updates to intrawell background. A non-significant t-test in this latter case suggests the two 
sets of data are sufficiently similar to allow the initial background to be updated by augmenting with 
more recent measurements. 

Steps involved: 1) Test the combined residuals from each population for normality. Make a data 
transformation if necessary; 2) test for equal variances, and if equal, compute a pooled variance 
estimate; 3) compute the pooled variance !-statistic and the degrees of freedom; 3) compare the !­

statistic against a critical point based on both the a-level and the degrees of freedom; and 4) if the !­

statistic exceeds the critical point, conclude the null hypothesis of equal means has been violated. 

Advantages/Disadvantages: 1) The pooled variance !-test is one of the easiest to compute t-test 
procedures, but requires an assumption of equal variances across both populations; 2) because the t­
test is a well-understood statistical procedure, the Unified Guidance recommends its use at very 
small groundwater monitoring facilities. For larger sites, however, repeated use of the t-test at a 
given a-level will lead to an unacceptably high risk of false positive error; and 3) if substantial 
spatial variability exists, the use of any t-test for upgradient-to-downgradient comparisons may lead 
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to inaccurate conclusions. A significant difference in the population averages could also indicate the 
presence of natural geochemical factors differentially affecting the concentration levels at different 
wells. In these situations, consider an intrawell test instead. 
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Basic purpose: Method for detection monitoring. This test compares the means of two populations. 

Hypothesis tested: Ho -Means of the two populations are equal; HA-Means of the two populations 
are unequal (for the usual one-sided alternative, the hypothesis would state that the mean of the 
second population is greater than the mean of the first population). 

Underlying assumptions: 1) The data from each population must be normal or normalized; 2) when 
used for interwell tests, there should be no significant spatial variability; and 3) At least 4 
observations per well should be available before applying the test. 

When to use: Welch's !-test can be used to test for groundwater contamination at very small sites, those 
consisting of maybe 3 or 4 wells and monitoring for 1 or 2 constituents. Site configurations with 
larger combinations of wells and constituents should employ a retesting scheme using either 
prediction limits or control charts. Welch's t-test can also be used to test proposed updates to 
intrawell background data. A non-significant !-test in this latter case suggests the two sets of data are 
sufficiently similar to allow the initial background to be updated by augmenting with the more recent 
measurements. 

Steps involved: 1) Test the combined residuals from each population for normality. Make a data 
transformation if necessary; 2) compute Welch's !-statistic and approximate degrees of freedom; 3) 
compare the !-statistic against a critical point based on both the a-level and the estimated degrees of 
freedom; and 4) if the !-statistic exceeds the critical point, conclude the null hypothesis of equal 
means has been violated. 

Advantages/Disadvantages: 1) Welch's t-test is slightly more difficult to compute than other common 
t-test procedures, but has the advantage of not requiring equal variances across both populations. 
Furthermore, it has been shown to perform statistically as well or better than other !-tests; 2) it can be 
used at very small groundwater monitoring facilities, but should be avoided at larger sites. Repeated 
use of the t-test at a given a-level will lead to an unacceptably high risk of false positive error; and 3) 
if there is substantial spatial variability, use of Welch's t-test for interwell tests may lead to 
inaccurate conclusions. A significant difference in the population averages may reflect the presence 
of natural geochemical factors differentially affecting the concentration levels at different wells. In 
these situations, consider an intrawell test instead. 
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Basic purpose: Method for detection monitoring. This test compares the medians of two populations. 

Hypothesis tested: H0 - Both populations have equal medians (and, in fact, are identical in 
distribution). HA-The two population medians are unequal (in the usual one-sided alternative, the 
hypothesis would state that the median of the second population is larger than the median of the 
first). 
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Underlying assumptions: 1) While the Wilcoxon rank-sum test does not require normal data, it does 
assume both populations have the same distributional form and that the variances are equal. If the 
data are non-normal but there at most a few non-detects, the equal variance assumption may be 
tested through the use of box plots and/or Levene's test. If non-detects make-up a large fraction of 
the observations, equal variances may have to be assumed rather than formally verified; 2) use of the 
Wilcoxon rank-sum procedure for interwell tests assumes there is no significant spatial variability. 
This is more likely to be the case in precisely those circumstances where the Wilcoxon procedure 
might be used: when there are high fractions of non-detects, so that most of the concentration 
measurements at any location are at low levels; and 3) there should be at least 4 background 
measurements and at least 2-4 compliance point values. 

When to use: The Wilcoxon rank-sum test can be used to test for groundwater contamination at very 
small sites, those consisting of maybe 3 or 4 wells and monitoring for 1 or 2 constituents. Site 
configurations with larger combinations of wells and constituents should employ a retesting scheme 
using non-parametric prediction limits. Note, however, that non-parametric prediction limits often 
require large background sample sizes to be effective. The Wilcoxon rank-sum can be useful when a 
high percentage of the data is non-detect, but the amount of available background data is limited. 
Indeed, an intrawell Wilcoxon procedure may be helpful in some situations where the false positive 
rate would otherwise be too high to run intrawell prediction limits. 

Steps involved: 1) Rank the combined set of values from the two datasets, breaking ties if necessary by 
using midranks; 2) compute the sum of the ranks from the compliance point well and calculate the 
Wilcoxon test statistic; 3) compare the Wilcoxon test statistic against an a-level critical point; and 4) 
if the test statistic exceeds the critical point, conclude that the null hypothesis of equal medians has 
been violated. 

Advantages/Disadvantages: 1) The Wilcoxon rank-sum test is an excellent technique for small sites 
with constituent non-detect data. Compared to other possible methods such as the test of proportions 
or exact binomial prediction limits, the Wilcoxon rank-sum does a better job overall of correctly 
identifying elevated groundwater concentrations while limiting false positive error; 2) because the 
Wilcoxon rank-sum is easy to compute and understand, the Unified Guidance recommends its use at 
very small groundwater monitoring facilities. For larger sites, repeated use of the Wilcoxon rank­
sum at a given a-level will lead to an unacceptably high risk of false positive error; and 3) if 
substantial spatial variability exists, the use of the Wilcoxon rank-sum for interwell tests may lead to 
inaccurate conclusions. A significant difference in the population medians may signal the presence 
of natural geochemical differences rather than contaminated groundwater. In these situations, 
consider an intrawell test instead. 
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Basic purpose: Non-parametric method for detection monitoring. This is an extension of Wilcoxon 
rank-sum, an alternative test to compare the medians in two populations when non-detects are 
prevalent. 

Hypothesis tested: H0 - Both populations have equal medians (and, in fact, are identical in 
distribution). HA-The two population medians are unequal (in the usual one-sided alternative, the 
hypothesis would state that the median of the second population is larger than the median of the 
first). 
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Underlying assumptions: 1) The Tarone-Ware test does not require normal data, but does assume both 
populations have the same distributional form and that the variances are equal; and 2) use of the 
Tarone-Ware procedure for interwell tests assumes there is no significant spatial variability. This is 
more likely to be the case when there are high fractions of data non-detects, so that most of the 
concentration measurements at any location are at low and similar levels. 

When to use: The Tarone-Ware test can be used to test for groundwater contamination at very small 
sites, those consisting of perhaps 3 or 4 wells and monitoring for I or 2 constituents. Site 
configurations with larger combinations of wells and constituents should employ a retesting scheme 
using non-parametric prediction limits. Note, however, that non-parametric prediction limits often 
require large background sample sizes to be effective. The Tarone-Ware test can be useful when a 
high percentage of the data is non-detect, but the amount of available background data is limited. 
The Tarone-Ware test is also an alternative to the Wilcoxon rank-sum when there are multiple 
reporting limits and/or it is unclear how to fully rank the data as required by the Wilcoxon. 

Steps involved: I) Sort the distinct detected values in the combined data set; 2) count the 'risk set' 
associated with each distinct value from Step 1 and compute the expected number of compliance 
point detections within each risk set; 3) form the Tarone-Ware test statistic from the expected counts 
in Step 2; 4) compare the test statistic against a standard normal a-level critical point; and 5) if the 
test statistic exceeds the critical point, conclude that the null hypothesis of equal medians has been 
violated. 

Advantages/Disadvantages: The Tarone-Ware test is an excellent technique for small sites with 
constituent non-detect data having multiple reporting limits. If substantial spatial variability exists, 
use of the Tarone-Ware test for interwell tests may lead to inaccurate conclusions. A significant 
difference in the population medians may signal the presence of natural geochemical differences 
rather than contaminated groundwater. In these situations, consider an intrawell test instead. 
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Basic purpose: Formal interwell detection monitoring test and diagnostic tool. It compares population 
means at multiple wells, in order to detect contaminated groundwater when tested against 
background. 

Hypothesis tested: H0 - Population means across all tested wells are equal. HA - One or more pairs 
of population means are unequal. 

Underlying assumptions: I) ANOV A residuals at each well or population must be normally distributed 
or transformable to normality. These should be tested for normality using a goodness-of-fit 
procedure; 2) the population variances across all wells must be equal. This assumption can be tested 
with box plots and Levene's test; and 3) each tested well should have at least 3 to 4 separate 
observations. 

When to use: The one-way ANOVA can sometimes be used to identify to simultaneously test for 
contaminated groundwater across a group of distinct well locations. As an inherently interwell test, 
ANOV A should be utilized only on constituents exhibiting little to no spatial variation. Most uses of 
ANOV A have been superseded by prediction limits and control charts, although it is commonly 
employed to identify spatial variability or temporal dependence across a group of wells. 
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Steps involved: I) Form the ANOV A residuals by subtracting from each measurement its sample well 
mean; 2) test the ANOV A residuals for normality and equal variance. If either of these assumptions 
is violated, try a transformation of the data and retest the assumptions; 3) compute the one-way 
ANOVA F-statistic; 4) if the F-statistic exceeds an a-level critical point, conclude the null 
hypothesis of equal population means has been violated and that at least one pair of wells shows a 
significant difference in concentration levels; and 5) test each compliance well individually to 
determine which one or more exceeds background. 

Advantages/Disadvantages: ANOVA is only likely to be infrequently used to make upgradient-to­
downgradient comparisons in formal detection monitoring testing. The regulatory restrictions for 
per-constituent J -levels using ANOVA make it difficult to adequately control site-wide false positive 
rates [SWFPR]. Even if spatial variability is not a significant problem, users are advised to consider 
interwell prediction limits or control charts, and to incorporate some form of retesting 

H !! rj_ Hv Lg v J_ ~ 1 J_ ._ ?JL H i ~ J K9l J 91 @ 

Basic purpose: Formal interwell detection monitoring test and diagnostic tool. It compares population 
medians at multiple wells, in order to detect contaminated groundwater when tested against 
background. It is also useful as a non-parametric alternative to ANOV A for identifying spatial 
variability in constituents with non-detects or for data that cannot be normalized. 

Hypothesis tested: H0 -Population medians across all tested wells are equal. HA - One or more pairs 
of population medians are unequal. 

Underlying assumptions: 1) As a non-parametric alternative to ANOVA, data need not be normal; 2) 
the population variances across all wells must be equal. This assumption can be tested with box plots 
and Levene's test if the non-detect proportion is not too high; and 3) each tested well should have at 
least 3 to 4 separate observations. 

When to use: The Kruskal-Wallis test can sometimes be used to identify to simultaneously test for 
contaminated groundwater across a group of distinct well locations. As an inherently interwell test, 
Kruskal-Wallis should be utilized for this purpose only with constituents exhibiting little to no 
spatial variation. Most uses of the Kruskal-Wallis (similar to ANOVA) have been superseded by 
prediction limits, although it can be used to identify spatial variability and/or temporal dependence 
across a group of wells when the sample data are non-normal or have higher proportions of non­
detects. 

Steps involved: 1) Sort and form the ranks of the combined measurements; 2) compute the rank-based 
Kruskal-Wallis test statistic ( H); 3) if the H-statistic exceeds an a-level critical point, conclude the 
null hypothesis of equal population medians has been violated and that at least one pair of wells 
shows a significant difference in concentration levels; and 5) test each compliance well individually 
to determine which one or more exceeds background. 

Advantages/Disadvantages: I) The Kruskal-Wallis test is only likely to be infrequently used to make 
upgradient-to-downgradient comparisons in formal detection monitoring testing. The regulatory 
restrictions for per-constituent J -levels using ANOVA make it difficult to adequately control the 
SWFPR. Even if spatial variability is not a significant problem, users are advised to consider 
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interwell prediction limits, and to incorporate some form ofretesting; and 2) the Kruskal-Wallis test 
can be used to test for spatial variability in constituents with significant fractions of non-detects. 
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Basic purpose: Formal interwell detection monitoring test of background versus one or more 
compliance wells. Tolerance limits can be used as an alternative to one-way ANOV A. These can 
also be used in corrective action as an alternative clean-up limit. 

Hypothesis tested: H0 - Population means across all tested wells are equal. HA - One or more pairs 
of population means are unequal. 

Underlying assumptions: 1) Data should be normal or normalized; 2) the population variances across 
all wells are assumed to be equal. This assumption can be difficult to test when comparing a single 
new observation from each compliance well against a tolerance limit based on background; and 3) 
there should be a minimum of 4 background measurements, preferably 8-10 or more. 

When to use: A tolerance limit can be used in place of ANOV A for detecting contaminated 
groundwater. It is more flexible than ANOV A since 1) as few as one new measurement per 
compliance well is needed to run a tolerance limit test, and 2) no post-hoc testing is necessary to 
identify which compliance wells are elevated over background. Most uses of tolerance limits (similar 
to ANOVA) have been superseded by prediction limits, due to difficulty of incorporating retesting 
into tolerance limit schemes. If a hazardous constituent requires a background-type standard in 
compliance/assessment or corrective action, a tolerance limit can be computed on background and 
used as a fixed GWPS. 

Steps involved: 1) Compute background sample mean and standard deviation; 2) calculate upper 
tolerance limit on background with high confidence and high coverage; 3) collect one or more 
observations from each compliance well and test each against the tolerance limit; and 4) identify a 
well as contaminated if any of its observations exceed the tolerance limit. 

Advantages/Disadvantages: Tolerance limits are likely to be used only infrequently to be used as either 
interwell or intrawell tests. Prediction limits or control charts offer better control of false positive 
rates, and less is known about the impact of retesting on tolerance limit performance. 

Basic purpose: Formal interwell detection monitoring test of background versus one or more 
compliance wells. Non-parametric tolerance limits can be used as an alternative to the Kruskal­
Wallis test. They may also be used in compliance/assessment or corrective action to define a 
background GWPS. 

Hypothesis tested: H0 -Population medians across all tested wells are equal. HA - One or more pairs 
of population medians are unequal. 

Underlying assumptions: 1) As a non-parametric test, non-normal data with non-detects can be used; 
and 2) there should be a minimum of8-10 background measurements and preferably more. 
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When to use: A non-parametric tolerance limit can be used in place of the Kruskal-Wallis test for 
detecting contaminated groundwater. It is more flexible than Kruskal-Wallis since 1) as few as one 
new measurement per compliance well is needed to run a tolerance limit test, and 2) no post-hoc 
testing is necessary to identify which compliance wells are elevated over background. Most uses of 
tolerance limits have been superseded by prediction limits, due to difficulty of incorporating retesting 
into tolerance limit schemes. However, when a clean-up limit cannot or has not been specified in 
corrective action, a tolerance limit can be computed on background and used as a site-specific 
alternate concentration limit [ACL]. 

Steps involved: 1) Compute a large order statistic from background and set this value as the upper 
tolerance limit; 2) calculate the confidence and coverage associated with the tolerance limit; 3) 
collect one or more observations from each compliance well and test each against the tolerance limit; 
and 4) identify a well as contaminated if any of its observations exceed the tolerance limit. 

Advantages/Disadvantages: 1) Tolerance limits are likely to be used only infrequently to be used as 
either interwell or intrawell tests. Prediction limits or control charts offer better control of false 
positive rates, and less is known about the impact ofretesting on tolerance limit performance; and 2) 
non-parametric tolerance limits have the added disadvantage of generally requiring large background 
samples to ensure adequate confidence and/or coverage. For this reason, it is strongly recommended 
that a parametric tolerance limit be constructed whenever possible. 
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Basic purpose: Method for detection monitoring and diagnostic tool. It is used to identify the presence 
of a significantly increasing trend at a compliance point or any trend in background data sets. 

Hypothesis tested: H0 -No discernible linear trend exists in the concentration data over time. HA -A 
non-zero, (upward) linear component to the trend does exist. 

Underlying assumptions: Trend residuals should be normal or normalized, equal in variance, and 
statistically independent. If a small fraction of non-detects exists ( 10-15% ), use simple substitution 
to replace each non-detect by half the reporting limit [RL]. Test homoscedasticity ofresiduals with a 
scatter plot (Section 9.1 ). 

When to use: Use a test for trend when 1) upgradient-to-downgradient comparisons are inappropriate so 
that intrawell tests are called for, and 2) a control chart or intrawell prediction limit cannot be used 
because of possible trends in the intrawell background. A trend test can be particularly helpful at 
sites with recent or historical contamination where it is uncertain to what degree intrawell 
background is already contaminated. The presence of an upward trend in these cases will document 
the changing nature of the concentration data much more accurately than either a control chart or 
intrawell prediction limit, both of which assume a stable baseline concentration. 

Steps involved: 1) If a linear trend is evident on a time series plot, construct the linear regression 
equation; 2) subtract the estimated trend line from each observation to form residuals; 3) test 
residuals for assumptions listed above; and 4) test regression slope to determine whether It IS 
significantly different from zero. If so and the slope is positive, conclude there is evidence of a 
significant upward trend. 
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Advantages/Disadvantages: Linear regression is a standard statistical method for identifying trends and 
other linear associations between pairs of random variables. However, it requires approximate 
normality of the trend residuals. Confidence bands around regression trends can be used in 
compliance/assessment and corrective action to determine compliance with fixed standards even 
when concentration levels are actively changing (i.e., when a trend is apparent). 
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Basic purpose: Method for detection monitoring and diagnostic tool. It is used to identify the presence 
of a significant (upward) trend at a compliance point or any trend in background data. 

Hypothesis tested: Ho -No discernible linear trend exists in the concentration data over time. HA -A 
non-zero, (upward) linear component to the trend does exist. 

Underlying assumptions: Since the Mann-Kendall trend test is a non-parametric method, the 
underlying data need not be normal or follow any particular distribution. No special adjustment for 
ties is needed. 

When to use: Use a test for trend when 1) interwell tests are inappropriate so that intrawell tests are 
called for, and 2) a control chart or intrawell prediction limit cannot be used because of possible 
trends in intrawell background. A trend test can be particularly helpful at sites with recent or 
historical contamination where it is uncertain if intrawell background is already contaminated. An 
upward trend in these cases documents changing concentration levels more accurately than either a 
control chart or intrawell prediction limit, both of which assume a stationary background mean 
concentration. 

Steps involved: 1) Sort the data values by time of sampling/collection; 2) consider all possible pairs of 
measurements from different sampling events; 3) score each pair depending on whether the later data 
point is higher or lower in concentration than the earlier one, and sum the scores to get Mann­
Kendall statistic; 4) compare this statistic against an a-level critical point; and 5) if the statistic 
exceeds the critical point, conclude that a significant upward trend exists. If not, conclude there is 
insufficient evidence for identifying a significant, non-zero trend. 

Advantages/Disadvantages: The Mann-Kendall test does not require any special treatment for non­
detects, only that all non-detects can be set to a common value lower than any of the detects. The 
test is easy to compute and reasonably efficient for detecting (upward) trends. Exact critical points 
are provided in the Unified Guidance for n 20; a normal approximation can be used for n > 20. 3) 
A version of the Mann-Kendall test (the seasonal Mann-Kendall, Section 14.3.4) can be used to test 
for trends in data that exhibit seasonality. 
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Basic purpose: Method for detection monitoring. This 1s a non-parametric alternative to linear 
regression for estimating a linear trend. 

Hypothesis tested: As presented in the Unified Guidance, the Theil-Sen trend line is not a formal 
hypothesis test but rather an estimation procedure. The algorithm can be modified to formally test 
whether the true slope is significantly different from zero, but this question will already be answered 
if used in conjunction with the Mann-Kendall procedure. 

l L 

EPAPAV0117080 



!! 91 l_ Tl_ -Q +l_ L<Jl i -CJ 

Underlying assumptions: Like the Mann-Kendall trend test, the Theil-Sen trend line is non-parametric, 
so the underlying data need not be normal or follow a particular distribution. Furthermore, data ranks 
are not used, so no special adjustment for ties is needed. 

When to use: It is particularly helpful when used in conjunction with the Mann-Kendall test for trend. 
The latter test offers information about whether a trend exists, but does not estimate the trend line 
itself Once a trend is identified, the Theil-Sen procedure indicates how quickly the concentration 
level is changing with time. 

Steps involved: I) Sort the data set by date/time of sampling; 2) for each pair of distinct sampling 
events, compute the simple pairwise slope; 3) sort the list of pairwise slopes and set the overall slope 
estimate (Q) as the median slope in this list; 4) compute the median concentration and the median 
date/time of sampling; and 5) construct the Theil-Sen trend as the line passing through the median 
scatter point from Step 4 with slope Q. 

Advantages/Disadvantages: Although non-parametric, the Theil-Sen slope estimator does not use data 
ranks but rather the concentrations themselves. The method is non-parametric because the median 
pairwise slope is utilized, thus ignoring extreme values that might otherwise skew the slope estimate. 
The Theil-Sen trend line is as easy to compute as the Mann-Kendall test and does not require any 
special adjustment for ties (e.g., non-detects). 

Basic purpose: Method for detection monitoring. This technique estimates numerical bound(s) on a 
series of m independent future values. The prediction limit(s) can be used to test whether the mean of 
one or more compliance well populations are equal to the mean of a background population. 

Hypothesis tested: H0 -The true mean of m future observations arises from the same population as the 
mean of measurements used to construct the prediction limit. HA -The m future observations come 
from a distribution with a different mean than the population of measurements. Since an upper 
prediction limit is of interest in detection monitoring, the alternative hypothesis would state that the 
future observations are distributed with a larger mean than the background population. 

Underlying assumptions: I) Data used to construct the prediction limit must be normal or normalized. 
Adjustments for small to moderate fractions of non-detects can be made, perhaps using Kaplan­
Meier or robust ROS; 2) although the variances of both populations (background and future values) 
are assumed to be equal, rarely will there be enough data from the future population to verify this 
assumption except during periodic updates to background; and 3) if used for upgradient-to­
downgradient comparisons, there should be no significant spatial variability. 

When to use: Prediction limits on individual observations can be used as an alternative in detection 
monitoring to either one-way ANOV A or Dunnett's multiple comparison with control [MCC] 
procedure. Assuming there is insignificant natural spatial variability, an interwell prediction limit can 
be constructed using upgradient or other representative background data. The number of future 
samples ( m) should be chosen to reflect a single new observation collected from each downgradient 
or compliance well prior to the next statistical evaluation, plus a fixed number ( m-1) of possible 
resamples. The initial future observation at each compliance point is then compared against the 
prediction limit. If it exceeds the prediction limit, one or more resamples are collected from the 
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'triggered' well and also tested against the prediction limit. If substantial spatial variability exists, 
prediction limits for individual values can be constructed on a well-specific basis using intrawell 
background. The larger the intrawell background size, the better. To incorporate retesting, it must be 
feasible to collect up to ( m-1) additional, but independent, resamples from each well. 

Steps involved: 1) Compute the estimated mean and standard deviation of the background data; 2) 
considering the type of prediction limit (i.e., interwell or intrawell), the number of future samples m, 
the desired site-wide false positive rate, and the number of wells and monitoring parameters, 
determine the prediction limit multiplier (K); 3) compute the prediction limit as the background mean 
plus K times the background standard deviation; and 4) compare each initial future observation 
against the prediction limit. If both the initial measurement and resample(s) exceed the limit, 
conclude the null hypothesis of equal means has been violated. 

Advantages/Disadvantages: Prediction limits for individual values offer several advantages compared 
to the traditional one-way ANOV A and Dunnett's multiple comparison with control [MCC] 
procedures. Prediction limits are not bound to a minimum 5% per-constituent false positive rate and 
can be constructed to meet a target site-wide false positive rate [SWFPR] while maintaining 
acceptable statistical power. Unlike the one-way ANOV A F-test, only the comparisons of interest 
(i.e., each compliance point against background) are tested. This gives the prediction limit more 
statistical power. Prediction limits can be designed for intrawell as well as interwell comparisons. 

Basic purpose: Method for detection monitoring or compliance monitoring. It is used to estimate 
numerical limit(s) on an independent mean constructed from p future values. The prediction limits(s) 
can be used to test whether the mean of one population is equal to the mean of a separate 
(background) population. 

Hypothesis tested: H0 -The true mean of p future observations arise from the same population as the 
mean of measurements used to construct the prediction limit. HA-The p future observations come 
from a distribution with a different mean than the population of background measurements. Since an 
upper prediction limit is of interest in both detection and compliance monitoring, the alternative 
hypothesis would state that the future observations are distributed with a larger mean than that of the 
background population. 

Underlying assumptions: 1) Data used to construct the prediction limit must be normal or normalized. 
Adjustments for small to moderate fractions of non-detects can be made, perhaps using Kaplan­
Meier or robust ROS; 2) although the variances of both populations (background and future values) 
are assumed to be equal, rarely will there be enough data from the future population to verify this 
assumption; and 3) if used for upgradient-to-downgradient comparisons, there should be no 
significant spatial variability. 

When to use: Prediction limits on means can be used as an alternative in detection monitoring to either 
one-way ANOV A or Dunnett's multiple comparison with control [MCC] procedure. Assuming there 
is insignificant natural spatial variability, an interwell prediction limit can be constructed using 
upgradient or other representative background data. The number of future samples p should be 
chosen to reflect the number of samples that will be collected at each compliance well prior to the 
next statistical evaluation (e.g., 2, 4, etc.). The average of these p observations at each compliance 
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point is then compared against the prediction limit. If it is feasible to collect at least p additional, but 
independent, resamples from each well, retesting can be incorporated into the procedure by using 
independent mean(s) of p samples as confirmation value(s). 

If substantial spatial variability exists, prediction limits for means can be constructed on a well­
specific basis using intrawell background. At least two future values must be available per well. 
Larger intrawell background size are preferable. To incorporate retesting, it must be feasible to 
collect at least p independent resamples from each well, in addition to the initial set of p samples. A 
prediction limit can also be used in some compliance monitoring settings when a fixed compliance 
health based limit cannot be use and the compliance point data must be compared directly to a 
background GWPS. In this case, the compliance point mean concentration is tested against an upper 
prediction limit computed from background. No retesting would be employed for this latter kind of 
test. 

Steps involved: 1) Compute the background sample mean and standard deviation; 2) considering the 
type of prediction limit (i.e., interwell or intrawell), the number of future samples p, use ofretesting, 
the desired site-wide false positive rate, and the number of wells and monitoring parameters, 
determine the prediction limit multiplier (K); 3) compute the prediction limit as the background mean 
plus K times the background standard deviation; 4) compare each future mean of order p (i.e., a mean 
constructed from p values) against the prediction limit; and 5) if the future mean exceeds the limit 
and retesting is not feasible (or if used for compliance monitoring), conclude the null hypothesis of 
equal means has been violated. If retesting is feasible, conclude the null hypothesis has been violated 
only when the resampled mean(s) of order p also exceeds the prediction limit. 

Advantages/Disadvantages: Prediction limits on means offer several advantages compared to the 
traditional one-way ANOV A and Dunnett's multiple comparison with control [MCC] procedure: 
Prediction limits are not bound to a minimum 5% per-constituent false positive rate. As such, 
prediction limits can be constructed to meet a target SWFPR, while maintaining acceptable statistical 
power. Unlike the one-way F-test, only the comparisons of interest (i.e., each compliance point 
against background) are tested, giving the prediction limit more statistical power. Prediction limits 
can be designed for intrawell as well as interwell comparisons. One slight disadvantage is that 
ANOVA combines compliance point data with background to give a somewhat better per-well 
estimate of variability. But even this disadvantage can be overcome when using an interwell 
prediction limit by first running ANOV A on the combined background and compliance point data to 
generate a better variance estimate with a larger degree of freedom. A disadvantage compared to 
prediction limits on individual future values is that two or more new compliance point observations 
per well must be available to run the prediction limit on means. If only one new measurement per 
evaluation period can be collected, the user should instead construct a prediction limit on individual 
values. 

Basic purpose: Method for detection monitoring. It is a non-parametric technique to estimate numerical 
limits(s) on a series of m independent future values. The prediction limit(s) can be used to test 
whether two samples are drawn from the same or different populations. 

Hypothesis tested: H0 - The m future observations come from the same distribution as the 
measurements used to construct the prediction limit. HA -The m future observations come from a 
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different distribution than the population of measurements used to build the prediction limit. Since 
an upper prediction limit is of interest in detection monitoring, the alternative hypothesis is that the 
future observations are distributed with a larger median than the background population. 

Underlying assumptions: 1) The data used to construct the prediction limit need not be normal; 
however, the forms of the both the background distribution and the future distribution are assumed to 
be the same. Since the non-parametric prediction limit is constructed as an order statistic of 
background, high fractions of non-detects are acceptable; 2) although the variances of both 
populations (background and future values) are assumed to be equal, rarely will there be enough data 
from the future population to verify this assumption; and 3) if used for upgradient-to-downgradient 
comparisons, there should be no significant spatial variability. Spatial variation is less likely to be 
significant in many cases where constituent data are primarily non-detect, allowing the use of a non­
parametric interwell prediction limit test. 

When to use: Prediction limits on individual values can be used as a non-parametric alternative in 
detection monitoring to either one-way ANOV A or Dunnett's multiple comparison with control 
[MCC] procedure. Assuming there is insignificant natural spatial variability, an interwell prediction 
limit can be constructed using upgradient or other representative background data. The number of 
future samples m should be chosen to reflect a single new observation collected from each 
compliance well prior to the next statistical evaluation, plus a fixed number (m-1) of possible 
resamples. The initial future observation at each compliance point is then compared against the 
prediction limit. If it exceeds the prediction limit, one or more resamples are collected from the 
'triggered' well and also compared to the prediction limit. 

Steps involved: 1) Determine the maximum, second-largest, or other highly ranked value in background 
and set the non-parametric prediction limit equal to this level; 2) considering the number of future 
samples m, and the number of wells and monitoring parameters, determine the achievable site-wide 
false positive rate [SWFPR]. If the error rate is not acceptable, consider possibly enlarging the pool 
of background data used to construct the limit or increasing the number of future samples m; 3) 
compare each initial future observation against the prediction limit; and 4) if both the initial 
measurement and resample(s) exceed the limit, conclude the null hypothesis of equal distributions 
has been violated. 

Advantages/Disadvantages: Non-parametric prediction limits on individual values offer distinct 
advantages compared to the Kruskal-Wallis non-parametric ANOVA test. Prediction limits are not 
bound to a minimum 5% per-constituent false positive rate. As such, prediction limits can be 
constructed to meet a target SWFPR, while maintaining acceptable statistical power. Unlike the 
Kruskal-Wallis test, only the comparisons of interest (i.e., each compliance point against 
background) are tested, giving the prediction limit more statistical power. Non-parametric prediction 
limits have the disadvantage of generally requiring fairly large background samples to effectively 
control false positive error and ensure adequate power. 

Basic purpose: Method for detection monitoring and compliance monitoring. This is a non-parametric 
technique to estimate numerical limits(s) on the median of p independent future values. The 
prediction limit(s) is used to test whether the median of one or more compliance well populations is 
equal to the median of the background population. 
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Hypothesis tested: Ho -The true median of p future observations arise from the same population as 
the median of measurements used to construct the prediction limit. HA - The p future observations 
come from a distribution with a different median than the background population of measurements. 
Since an upper prediction limit is of interest in both detection monitoring and compliance 
monitoring, the alternative hypothesis is that the future observations are distributed with a larger 
median than the background population. 

Underlying assumptions: 1) The data used to construct the prediction limit need not be normal; 
however, the forms of the both the background distribution and the future distribution are assumed to 
be the same. Since the non-parametric prediction limit is constructed as an order statistic of 
background, high fractions of non-detects are acceptable: 2) although the variances of both 
populations (background and future values) are assumed to be equal, rarely will there be enough data 
from the future population to verify this assumption; and 3) if used for upgradient-to-downgradient 
comparisons, there should be no significant spatial variability. 

When to use: Prediction limits on medians can be used as a non-parametric alternative in detection 
monitoring to either one-way ANOV A or Dunnett's multiple comparison with control [MCC] 
procedure. Assuming there is insignificant natural spatial variability, an interwell prediction limit 
can be constructed using upgradient or other representative background data. The number of future 
samples p should be odd and chosen to reflect the number of samples that will be collected at each 
compliance well prior to the next statistical evaluation (e.g., 3). The median of these p observations 
at each compliance point is then compared against the prediction limit. If it is feasible to collect at 
least p additional, but independent, resamples from each well, retesting can be incorporated into the 
procedure by using independent median(s) of p samples as confirmation value(s). A prediction limit 
for a compliance point median can also be constructed in certain compliance monitoring settings, 
when no fixed health-based compliance limit can be used and the compliance point data must be 
directly compared against a background GWPS. In this case, the compliance point median 
concentration is compared to an upper prediction limit computed from background. No retesting is 
employed for this latter kind of test. 

Steps involved: I) Determine the maximum, second-largest, or other highly ranked value in background 
and set the non-parametric prediction limit equal to this level; 2) considering the number of future 
samples p, whether or not retesting will be incorporated, and the number of wells and monitoring 
parameters, determine the achievable SWFPR. If the error rate is not acceptable, increase the 
background sample size or consider a non-parametric prediction limit on individual future values 
instead; 3) compare each future median of order p (i.e., a median of p values) against the prediction 
limit; and 4) if the future median exceeds the limit and retesting is not feasible (or if the test is used 
for compliance monitoring), conclude the null hypothesis of equal medians has been violated. If 
retesting is feasible, conclude the null hypothesis has been violated only when the resampled 
median(s) of order p also exceeds the prediction limit. 

Advantages/Disadvantages: Non-parametric prediction limits on medians offer distinct advantages 
compared to the Kruskal-Wallis test (a non-parametric one-way ANOVA). Prediction limits are not 
bound to a minimum 5% per-constituent false positive rate. As such, prediction limits can be 
constructed to meet a target SWFPR, while maintaining acceptable statistical power. Unlike the 
Kruskal-Wallis test, only the comparisons of interest (i.e., each compliance point against 
background) are tested, giving the prediction limit more statistical power. A disadvantage in 
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detection monitoring compared to non-parametric prediction limits on individual future values is that 
at least three new compliance point observations per well must be available to run the prediction 
limit on medians. If only one new observation per evaluation period can be collected, construct 
instead a non-parametric prediction limit for individual values. All non-parametric prediction limits 
have the disadvantage of usually requiring fairly large background samples to effectively control 
false positive error and ensure adequate power. 

Basic purpose: Method for detection monitoring. These are used to quantitatively and visually track 
concentrations at a given well over time to determine whether they exceed a critical threshold (i.e., 
control limit), thus implying a significant increase above background conditions. 

Hypothesis tested: H0 - Data plotted on the control chart follow the same distribution as the 
background data used to compute the baseline chart parameters. HA-Data plotted on the chart 
follow a different distribution with higher mean level than the baseline data. 

Underlying assumptions: Data used to construct the control chart must be approximately normal or 
normalized. Adjustments for small to moderate fractions of non-detects, perhaps using Kaplan-Meier 
or ROS, can be acceptable. There should be no discernible trend in the baseline data used to calculate 
the control limit. 

When to use: Use control charts as an alternative to parametric prediction limits, when 1) there are 
enough uncontaminated baseline data to compute an accurate control limit, and 2) there are no trends 
in intrawell background. Retesting can be incorporated into control charts by judicious choice of 
control limit. This may need to be estimated using Monte Carlo simulations. 

Steps involved: 1) Compute the intrawell baseline mean and standard deviation; 2) calculate an 
appropriate control limit from these baseline parameters, the desired retesting strategy and number of 
well-constituent pairs in the network; 3) construct the chart, plotting the control limit, the 
compliance point observations, and the cumulative sums [CUSUM]; and 4) determine that the null 
hypothesis is violated when either an individual concentration measurement or the cumulative sum 
exceeds the control limit. 

Advantages/Disadvantages: Unlike prediction limits, control charts offer an explicit visual tracking of 
compliance point values over time and provide a method to judge whether these concentrations have 
exceeded a critical threshold. The Shewhart portion of the chart is especially good at detecting 
sudden concentration increases, while the CUSUM portion is preferred for detecting slower, steady 
increases over time. No non-parametric version of the combined Shewhart-CUSUM control chart 
exists, so non-parametric prediction limits should be considered if the data cannot be normalized. 

Basic purpose: Method for compliance/assessment monitoring or corrective action. This is a technique 
for estimating a range of concentration values from sample data, in which the true mean of a normal 
population is expected to occur at a certain probability. 

Hypothesis tested: In compliance monitoring, H0 -True mean concentration at the compliance point is 
no greater than the predetermined groundwater protection standard [GWPS]. HA - True mean 
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concentration is greater than the GWPS. In corrective action, Ho -True mean concentration at the 
compliance point is greater than or equal to the fixed GWPS. HA -True mean concentration is less 
than or equal to the fixed standard. 

Underlying assumptions: 1) Compliance point data are approximately normal in distribution. 
Adjustments for small to moderate fractions of non-detects, perhaps using Kaplan-Meier or ROS, are 
encouraged; 2) data do not exhibit any significant trend over time; 3) there are a minimum of 4 
observations for testing. Generally, at least 8 to 10 measurements are recommended; and 4) the fixed 
GWPS is assumed to represent a true mean average concentration, rather than a maximum or upper 
percentile. 

When to use: A mean confidence interval can be used for normal data to determine whether there is 
statistically significant evidence that the average is either above a fixed GWPS (in compliance 
monitoring) or below the fixed standard (in corrective action). In either case, the null hypothesis is 
rejected only when the entire confidence interval lies on one or the other side of the GWPS. The key 
determinant in compliance monitoring is whether the lower confidence limit exceeds the GWPS, 
while in corrective action the upper confidence limit lies below the clean-up standard. Because of 
bias introduced by transformations when estimating a mean, this approach should not be used for 
highly-skewed or non-normal data. Instead consider a confidence interval around a lognormal mean 
or a non-parametric confidence interval. It is also not recommended for use when the data exhibit a 
significant trend. In that case, the estimate of variability will likely be too high, leading to an 
unnecessarily wide interval and possibly little chance of deciding the hypothesis. When a trend is 
present, consider instead a confidence interval around a trend line. 

Steps involved: 1) Compute the sample mean and standard deviation; 2) based on the sample size and 
choice of a confidence level (1-a), calculate either the lower confidence limit (for use in compliance 
monitoring) or the upper confidence limit (for use in corrective action); 3) compare the confidence 
limit against the GWPS or clean-up standard; and 4) if the lower confidence limit exceeds the GWPS 
in compliance monitoring or the upper confidence limit is below the clean-up standard, conclude that 
the null hypothesis should be rejected. 

Advantages/Disadvantages: Use of a confidence interval instead of simply the sample mean for 
comparison to a fixed standard accounts for both the level of statistical variation in the data and the 
desired or targeted confidence level. The same basic test can be used both to document 
contamination above the compliance standard in compliance/assessment and to show a sufficient 
decrease in concentration levels below the clean-up standard in corrective action. 
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Basic purpose: Method for compliance/assessment monitoring or corrective action. It is a technique to 
estimate the range of concentration values from sample data, in which the true geometric mean of a 
lognormal population is expected to occur at a certain probability. 

Hypothesis tested: In compliance monitoring, H0 -True mean concentration at the compliance point is 
no greater than the fixed compliance or groundwater protection standard [GWPS]. HA-True mean 
concentration is greater than the GWPS. In corrective action, Ho -True mean concentration at the 
compliance point is greater than the fixed compliance or clean-up standard. HA - True mean 
concentration is less than or equal to the fixed standard. 
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Underlying assumptions: 1) Compliance point data are approximately lognormal in distribution. 
Adjustments for small to moderate fractions of non-detects, perhaps using Kaplan-Meier or ROS, are 
encouraged; 2) data do not exhibit any significant trend over time; 3) there are a minimum of 4 
observations. Generally, at least 8 to 10 measurements are recommended; and 4) the fixed GWPS is 
assumed to represent a true geometric mean average concentration following a lognormal 
distribution, rather than a maximum or upper percentile. The GWPS also represents the true median. 

When to use: A confidence interval on the geometric mean can be used for lognormal data to determine 
whether there is statistically significant evidence that the geometric average is either above a fixed 
numerical standard (in compliance monitoring) or below a fixed standard (in corrective action). In 
either case, the null hypothesis is rejected only when the entire confidence interval is to one side of 
the compliance or clean-up standard. Because of this fact, the key question in compliance monitoring 
is whether the lower confidence limit exceeds the GWPS, while in corrective action the user must 
determine whether the upper confidence limit is below the clean-up standard. Because of bias 
introduced by transformations when estimating the arithmetic lognormal mean, and the often 
unreasonably high upper confidence limits generated by Land's method for lognormal mean 
confidence intervals (see below), this approach is an alternative approach for lognormal data. One 
could also consider a non-parametric confidence interval. It is also not recommended for use when 
data exhibit a significant trend. In that case, the estimate of variability will likely be too high, leading 
to an unnecessarily wide interval and possibly little chance of deciding the hypothesis. When a trend 
is present, consider instead a confidence interval around a trend line. 

Steps involved: 1) Compute the sample log-mean and log-standard deviation; 2) based on the sample 
size and choice of confidence level (1-a), calculate either the lower confidence limit (for use in 
compliance monitoring) or the upper confidence limit (for use in corrective action) using the logged 
measurements and exponentiate the result; 3) compare the confidence limit against the GWPS or 
clean-up standard; and 4) if the lower confidence limit exceeds the GWPS in compliance monitoring 
or the upper confidence limit is below the clean-up standard, conclude that the null hypothesis 
should be rejected. 

Advantages/Disadvantages: Use of a confidence interval instead of simply the sample geometric mean 
for comparison to a fixed standard accounts for both statistical variation in the data and the targeted 
confidence level. The same basic test can be used both to document contamination above the 
compliance standard in compliance/assessment and to show a sufficient decrease in concentration 
levels below the clean-up standard in corrective action. 

Basic purpose: Test for compliance/assessment monitoring or corrective action. This is a method by 
Land (1971) used to estimate the range of concentration values from sample data, in which the true 
arithmetic mean of a lognormal population is expected to occur at a certain probability. 

Hypothesis tested: In compliance monitoring, H0 -True mean concentration at the compliance point is 
no greater than the fixed compliance or groundwater protection standard [GWPS]. HA-True mean 
concentration is greater than the GWPS. In corrective action, Ho -True mean concentration at the 
compliance point is greater than the fixed compliance or clean-up standard. HA - True mean 
concentration is less than or equal to the fixed standard. 
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Underlying assumptions: I) Compliance point data are approximately lognormal in distribution. 
Adjustments for small to moderate fractions of non-detects, perhaps using Kaplan-Meier or ROS, are 
encouraged; 2) data do not exhibit any significant trend over time; 3) there are a minimum of 4 
observations. Generally, at least 8 to I 0 measurements are strongly recommended; and 4) the fixed 
GWPS is assumed to represent the true arithmetic mean average concentration, rather than a 
maximum or upper percentile. 

When to use: Land's confidence interval procedure can be used for lognormally-distributed data to 
determine whether there is statistically significant evidence that the average is either above a fixed 
numerical standard (in compliance monitoring) or below a fixed standard (in corrective action). In 
either case, the null hypothesis is rejected only when the entire confidence interval is to one side of 
the compliance or clean-up standard. Because of this fact, the key question in compliance monitoring 
is whether the lower confidence limit exceeds the GWPS, while in corrective action the user must 
determine whether the upper confidence limit is below the clean-up standard. Because the 
lognormal distribution can have a highly skewed upper tail, this approach should only be used when 
the data fit the lognormal model rather closely, especially if used in corrective action. Consider 
instead a confidence interval around the lognormal geometric mean or a non-parametric confidence 
interval if this is not the case. It is also not recommended for data that exhibit a significant trend. In 
that situation, the estimate of variability will likely be too high, leading to an unnecessarily wide 
interval and possibly little chance of deciding the hypothesis. When a trend is present, consider 
instead a confidence interval around a trend line. 

Steps involved: I) Compute the sample log-mean and log-standard deviation; 2) based on the sample 
size, magnitude of the log-standard deviation and choice of confidence level (1-a), determine Land's 
adjustment factor; 3) then calculate either the lower confidence limit (for use in compliance 
monitoring) or the upper confidence limit (for use in corrective action); 4) compare the confidence 
limit against the GWPS or clean-up standard; and 5) if the lower confidence limit exceeds the GWPS 
in compliance montoring or the upper confidence limit is below the clean-up standard, conclude that 
the null hypothesis should be rejected. 

Advantages/Disadvantages: Use of a confidence interval instead of simply the sample mean for 
comparison to a fixed standard accounts for both statistical variation in the data and the targeted 
confidence level. The same basic test can be used both to document contamination above the 
compliance standard in compliance/assessment and to show a sufficient decrease in concentration 
levels below the clean-up standard in corrective action. Since the upper confidence limit on a 
lognormal mean can be extremely high for some populations, the user may need to consider a non­
parametric upper confidence limit on the median concentration as an alternative or use a program 
such as Pro-UCL to determine an alternate upper confidence limit. 
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Basic purpose: Method for compliance monitoring. It is used to estimate the range of concentration 
values from sample data in which a pre-specified true proportion of a normal population is expected 
to occur at a certain probability. The test can also be used to identify the range of a true proportion 
or percentile (e.g., the 95th) in population data which can be normalized. 
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Hypothesis tested: Ho -True upper percentile concentration at the compliance point is no greater than 
the fixed compliance or groundwater protection standard [GWPS]. HA - True upper percentile 
concentration is greater than the fixed GWPS. 

Underlying assumptions: 1) Compliance point data are either normal in distribution or can be 
normalized. Adjustments for small to moderate fractions of non-detects, perhaps using Kaplan-Meier 
or ROS, are encouraged; 2) data do not exhibit any significant trend over time; 3) there are a 
minimum of at least 8 to 10 measurements; and 4) the fixed GWPS is assumed to represent a 
maximum or upper percentile, rather than an average concentration. 

When to use: A confidence interval around an upper percentile can be used to determine whether there 
is statistically significant evidence that the percentile is above a fixed numerical standard. The null 
hypothesis is rejected only when the entire confidence interval is greater than the compliance 
standard. Because of this fact, the key question in compliance monitoring is whether the lower 
confidence limit exceeds the GWPS. This approach is not recommended for use when the data 
exhibit a significant trend. The estimate of variability will likely be too high, leading to an 
unnecessarily wide interval and possibly little chance of deciding the hypothesis. 

Steps involved: 1) Compute the sample mean and standard deviation; 2) based on the sample size, pre­
determined true proportion and test confidence level (1-a), calculate the lower confidence limit; 3) 
compare the confidence limit against the GWPS; and 4) if the lower confidence limit exceeds the 
GWPS, conclude that the true upper percentile is larger than the compliance standard. 

Advantages/Disadvantages: If a fixed GWPS is intended to represent a 'not-to-be-exceeded' maximum 
or an upper percentile, statistical comparison requires the prior definition of a true or expected upper 
percentile against which sample data can be compared. Some standards may explicitly identify the 
expected percentile. The appropriate test then must estimate the confidence interval in which this 
true proportion is expected to lie. Either an upper or lower confidence limit can be generated, 
depending on whether compliance or corrective action hypothesis testing is appropriate. Whatever 
the interpretation of a given limit used as a GWPS, it should be determined in advance what a given 
standard represents before choosing which type of confidence interval to construct. 
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Basic purpose: Test for compliance/assessment monitoring or corrective action. It is a non-parametric 
method used to estimate the range of concentration values from sample data in which the true 
median of a population is expected to occur at a certain probability. 

Hypothesis tested: In compliance monitoring, H0 -True median concentration at the compliance point 
is no greater than the fixed compliance or groundwater protection standard [GWPS]. HA -True 
median concentration is greater than the GWPS. In corrective action, Ho - True median 
concentration at the compliance point is greater than the fixed compliance or clean-up standard. HA 
-True median concentration is less than or equal to the fixed standard. 

Underlying assumptions: 1) Compliance data need not be normal in distribution; up to 50% non­
detects are acceptable; 2) data do not exhibit any significant trend over time; 3) there are a minimum 
of at least 7 measurements; and 4) the fixed GWPS is assumed to represent a true median average 
concentration, rather than a maximum or upper percentile. 
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When to use: A confidence interval on the median can be used for non-normal data (e.g., samples with 
non-detects) to determine whether there is statistically significant evidence that the average (i.e., 
median) is either above a fixed numerical standard (in compliance monitoring) or below a fixed 
standard (in corrective action). In either case, the null hypothesis is rejected only when the entire 
confidence interval is to one side of the compliance or clean-up standard. Because of this fact, the 
key question in compliance monitoring is whether the lower confidence limit exceeds the GWPS, 
while in corrective action the user must determine whether the upper confidence limit is below the 
clean-up standard. This approach is not recommended for use when data exhibit a significant trend. 
In that case, the variation in the data will likely be too high, leading to an unnecessarily wide interval 
and possibly little chance of deciding the hypothesis. It is also possible that the apparent trend is an 
artifact of differing detection or reporting limits that have changed over time. The trend may 
disappear if all non-detects are imputed at a common value or RL. If a trend is still present after 
investigating this possibility, but a significant portion of the data are non-detect, consultation with a 
professional statistician is recommended. 

Steps involved: I) Order and rank the data values; 2) pick tentative interval endpoints close to the 
estimated median concentration; 3) using the selected endpoints, compute the achieved confidence 
level of the lower confidence limit for use in compliance monitoring or that of the upper confidence 
limit for corrective action; 4) iteratively expand the interval until either the selected endpoints 
achieve the targeted confidence level or the maximum or minimum data value is chosen as the 
confidence limit; and 5) compare the confidence limit against the GWPS or clean-up standard. If the 
lower confidence limit exceeds the GWPS in compliance monitoring or the upper confidence limit is 
below the clean-up standard, conclude that the null hypothesis should be rejected. 

Advantages/Disadvantages: Use of a confidence interval instead of simply the sample median for 
comparison to a fixed limit accounts for both statistical variation in the data and the targeted 
confidence level. The same basic test can be used both to document contamination above the 
compliance standard in compliance/assessment and to show a sufficient decrease in concentration 
levels below the clean-up standard in corrective action. By not requiring normal or normalized data, 
the non-parametric confidence interval can accommodate a substantial fraction of non-detects. A 
minor disadvantage is that a non-parametric confidence interval estimates the location of the median, 
instead of the mean. For symmetric populations, these quantities will be the same, but for skewed 
distributions they will differ. So if the compliance or clean-up standard is designed to represent a 
mean concentration, the non-parametric interval around the median may not provide a completely 
fair and/or accurate comparison. In some cases, the non-parametric confidence limit will not achieve 
the desired confidence level even if set to the maximum or minimum data value, leading to a higher 
risk of false positive error. 

i ~ ~ .- 1 ~ 1 ~ ._ 1 !! "l/ i ~ T tt 1 !! t 1 !! 1 ~ ._ 1 ?1- 1._ i ~ J 91 @ 

Basic purpose: Non-parametric method for compliance monitoring. It is used to estimate the range of 
concentration values from sample data in which a pre-specified true proportion of a population is 
expected to occur at a certain probability. Exact probabilities will depend upon sample data ranks. 

Hypothesis tested: H0 -True upper percentile concentration at the compliance point is no greater than 
the fixed compliance or groundwater protection standard [GWPS]. HA - True upper percentile 
concentration is greater than the GWPS. 
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Underlying assumptions: 1) Compliance point data need not be normal; large fractions of non-detects 
can be acceptable; 2) data do not exhibit any significant trend over time; 3) there are a minimum of 
at least 8 to 10 measurements; and 4) the fixed GWPS is assumed to represent a true upper percentile 
of the population, rather than an average concentration. 

When to use: A confidence interval on an upper percentile can be used to determine whether there is 
statistically significant evidence that the percentile is above a fixed numerical standard. The null 
hypothesis is rejected only when the entire confidence interval is greater than the compliance 
standard. Because of this fact, the key determinant in compliance/assessment monitoring is whether 
the lower confidence limit exceeds the GWPS. This approach is not recommended for use when data 
exhibit a significant trend. In that case, the estimate of variability will likely be too high, leading to 
an unnecessarily wide interval and possibly little chance of deciding the hypothesis. 

Steps involved: 1) Order and rank the data values; 2) select tentative interval endpoints close to the 
estimated upper percentile concentration; 3) using the selected endpoints, compute the achieved 
confidence level of the lower confidence limit; 4) iteratively expand the interval until either the 
selected lower endpoint achieves the targeted confidence level or the minimum data value is chosen 
as the confidence limit; and 5) compare the confidence limit against the GWPS. If the lower 
confidence limit exceeds the GWPS, conclude that the population upper percentile is larger than the 
compliance standard. 

Advantages/Disadvantages: If a fixed GWPS is intended to represent a 'not-to-be-exceeded' maximum 
or an upper percentile, statistical comparison requires the prior definition of a true or expected upper 
percentile against which sample data can be compared. Some standards may explicitly identify the 
expected percentile. The appropriate test then must estimate the confidence interval in which this 
true proportion is expected to lie. Either an upper or lower confidence limit can be generated, 
depending on whether compliance or corrective action hypothesis testing is appropriate. Whatever 
the interpretation of a given limit used as a GWPS, it should be determined in advance what a given 
standard represents before choosing which type of confidence interval to construct. However, 
precise non-parametric estimation of upper percentiles often requires much larger sample sizes than 
the parametric option (Section 21.1.4 ). For this reason, a parametric confidence interval for upper 
percentile tests is recommended whenever possible, especially if a suitable transformation can be 
found or adjustments made for non-detect values. 

Basic purpose: Method for compliance/assessment monitoring or corrective action when stationarity 
cannot be assumed. It is used to estimate ranges of concentration values from sample data around 
each point of a predicted linear regression line at a specified probability. The prediction line (based 
on regression of concentration values against time) represents the best estimate of gradually changing 
true mean levels over the time period. 

Hypothesis tested: In compliance monitoring, H0 -True mean concentration at the compliance point is 
no greater than the fixed compliance or groundwater protection standard [GWPS]. HA-True mean 
concentration is greater than the GWPS. In corrective action, Ho -True mean concentration at the 
compliance point is greater than the fixed compliance or clean-up standard. HA - True mean 
concentration is less than or equal to the fixed standard. 
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Underlying assumptions: I) Compliance point values exhibit a linear trend with time, with normally 
distributed residuals. Use simple substitution with small ( I 0-15%) fractions of non-detects. Non­
detect adjustment methods are not recommended; 2) there are a minimum of 4 observations. 
Generally, at least 8 to I 0 measurements are recommended; and 3) the fixed GWPS is assumed to 
represent an average concentration, rather than a maximum or upper percentile. 

When to use: A confidence interval around a trend line should be used in cases where a linear trend is 
apparent on a time series plot of the compliance point data. Even if observed well concentrations are 
either increasing under compliance monitoring or decreasing in corrective action, it does not 
necessarily imply that the true mean concentration at the current time is either above or below the 
fixed GWPS. While the trend line properly accounts for the fact that the mean is changing with 
time, the null hypothesis is rejected only when the entire confidence interval is to one side of the 
compliance or clean-up standard at the most recent point(s) in time. The key determinant in 
compliance monitoring is whether the lower confidence limit at a specified point in time exceeds the 
GWPS, while in corrective action the upper confidence limit at a specific time must lie below the 
clean-up standard to be considered in compliance. 

Steps involved: 1) Check for presence of a trend on a time series plot; 2) estimate the coefficients of the 
best-fitting linear regression line; 3) compute the trend line residuals and check for normality; 4) if 
data are non-normal, try re-computing the regression and residuals after transforming the data; 5) 
compute the lower confidence limit band around the trend line for compliance monitoring or the 
upper confidence limit band around the trend line for corrective action; and 6) compare the 
confidence limit at each sampling event against the GWPS or clean-up standard. If the lower 
confidence limit exceeds the GWPS in compliance/assessment or the upper confidence limit is below 
the clean-up standard on one or more recent sampling events, conclude that the null hypothesis 
should be rejected. 

Advantages/Disadvantages: Use of a confidence interval around the trend line instead of simply the 
regression line itself for comparison to a fixed standard accounts for both statistical variation in the 
data and the targeted confidence level. The same basic test can be used both to document 
contamination above the compliance standard in compliance/assessment and to show a sufficient 
decrease in concentration levels below the clean-up standard in corrective action. By estimating the 
trend line first and then using the residuals to construct the confidence interval, variation due to the 
trend itself is removed, providing a more powerful test (via a narrower interval) of whether or not the 
true mean is on one side of the fixed standard. This technique can only be used when the identified 
trend is reasonably linear and the trend residuals are approximately normal. 
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Basic purpose: Non-parametric method for compliance/assessment or corrective action when 
stationarity cannot be assumed. It is used to estimate ranges of concentration values from sample 
data around each point of a predicted Theil-Sen trend line at a specified probability. The prediction 
line represents the best estimate of gradually changing true median levels over the time period. 

Hypothesis tested: In compliance monitoring, H0 -True mean concentration at the compliance point is 
no greater than the fixed compliance or groundwater protection standard [GWPS]. HA-True mean 
concentration is greater than the GWPS. In corrective action, Ho -True mean concentration at the 
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compliance point is greater than the fixed compliance or clean-up standard. HA - True mean 
concentration is less than or equal to the fixed standard. 

Underlying assumptions: 1) Compliance point values exhibit a linear trend with time; 2) non-normal 
data and substantial levels of non-detects up to 50% are acceptable; 3) there are a minimum of 8-10 
observations available to construct the confidence band; and 4) the fixed GWPS is assumed to 
represent a median average concentration, rather than a maximum or upper percentile. 

When to use: A confidence interval around a trend line should be used in cases where a linear trend is 
apparent on a time series plot of the compliance point data. Even if observed well concentrations are 
either increasing under compliance monitoring or decreasing in corrective action, it does not 
necessarily imply that the true mean concentration at the current time is either above or below the 
fixed GWPS. While the trend line properly accounts for the fact that the mean is changing with 
time, the null hypothesis is rejected only when the entire confidence interval is to one side of the 
compliance or clean-up standard at the most recent point(s) in time. The key determinant in 
compliance monitoring is whether the lower confidence limit at a specified point in time exceeds the 
GWPS, while in corrective action the upper confidence limit at a specific time must lie below the 
clean-up standard to be considered in compliance. 

Steps involved: 1) Check for presence of a trend on a time series plot; 2) construct a Theil-Sen trend 
line; 3) use bootstrapping to create a large number of simulated Theil-Sen trends on the sample data; 
4) construct a confidence band by selecting lower and upper percentiles from the set of bootstrapped 
Theil-Sen trend estimates; and 5) compare the confidence band at each sampling event against the 
GWPS or clean-up standard. If the lower confidence band exceeds the GWPS in 
compliance/assessment or the upper confidence band is below the clean-up standard on one or more 
recent sampling events, conclude that the null hypothesis should be rejected. 

Advantages/Disadvantages: Use of a confidence band around the trend line instead of simply the Theil­
Sen trend line itself for comparison to a fixed standard accounts for both statistical variation in the 
data and the targeted confidence level. The same basic test can be used both in 
compliance/assessment and in corrective action. By estimating the trend line first and then using 
bootstrapping to construct the confidence band, variation due to the trend itself is removed, 
providing a more powerful test (via a narrower interval) of whether or not the true mean is on one 
side of the fixed standard. This technique can only be used when the identified trend is reasonably 
linear. The Theil-Sen trend estimates the change in median level rather than the mean. For roughly 
symmetric populations, this will make little difference; for highly skewed populations, the trend in 
the median may not accurately reflect changes in mean concentration levels. 
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Part II covers diagnostic evaluations of historical facility data for checking key assumptions 
implicit in the recommended statistical tests and for making appropriate adjustments to 
the data (e.g., consideration of outliers, seasonal autocorrelation, or non-detects). Also included is a 
discussion of groundwater sampling and how hydro logic factors such as flow and gradient can 
impact the sampling program. 

Chapter 9 provides a number of exploratory data tools and examples, which can generally be 
used in data evaluations. Approaches for fitting data sets to normal and other parametric distributions 
follows in Chapter 10. The importance of the normal distribution and its potential uses is also 
discussed. Chapter 11 provides methods for assessing the equality of variance necessary for some 
formal testing. The subject of outliers and means of testing for them is covered in Chapter 12. 
Chapter 13 addresses spatial variability, with particular emphasis on ANOVA means testing. In 
Chapter 14, a number of topics concerning temporal variation are provided. In addition to providing 
tests for identifying the presence of temporal variation, specific adjustments for certain types of temporal 
dependence are covered. The final Chapter 15 of Part II discusses non-detect data and offers several 
methods for estimating missing data. In particular, methods are provided to deal with data containing 
multiple non-detection limits. 
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Graphs are an important tool for exploring and understanding patterns in any data set. Plotting the 
data visually depicts the structure and helps unmask possible relationships between variables affecting 
the data set. Data plots which accompany quantitative statistical tests can better demonstrate the reasons 
for the results of a formal test. For example, a Shapiro-Wilk test may conclude that data are not normally 
distributed. A probability plot or histogram of the data can confirm this conclusion graphically to show 
why the data are not normally distributed (e.g., heavy skewness, bimodality, a single outlier, etc.). 

Several common exploratory tools are presented in Chapter 9. These graphical techniques are 
discussed in statistical texts, but are presented here in detail for easy reference for the data analyst. An 
example data set is used to demonstrate how each of the following plots is created. 

Time series plots (Section 9.1) 

Box plots (Section 9.2) 

Histograms (Section 9.3) 

Scatter plots (Section 9.4) 

Probability plots (Section 9.5) 
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Data collected over specific time intervals (e.g., monthly, biweekly, or hourly) have a temporal 
component. For example, air monitoring measurements of a pollutant may be collected once a minute or 
once a day. Water quality monitoring measurements may be collected weekly or monthly. Typically, 
groundwater sample data are collected quarterly from the same monitoring wells, either for detection 
monitoring testing or demonstrating compliance to a GWPS. An analyst examining temporal data may 
be interested in the trends over time, correlation among time periods, or cyclical patterns. Some 
graphical techniques specific to temporal data are the time plot, lag plot, correlogram, and variogram. 
The degree to which some of these techniques can be used will depend in part on the frequency and 
number of data collected over time. 

A data sequence collected at regular time intervals is called a time series. More sophisticated time 
series data analyses are beyond the scope of this guidance. If needed, the interested user should consult 
with a statistician or appropriate statistical texts. The graphical representations presented in this section 
are recommended for any data set that includes a temporal component. Techniques described below will 
help identify temporal patterns that need to be accounted for in any analysis of the data. The analyst 
examining temporal environmental data may be interested in seasonal trends, directional trends, serial 
correlation, or stationarity. Seasonal trends are patterns in the data that repeat over time, i.e., the data 
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rise and fall regularly over one or more time periods. Seasonal trends may occur over long periods of 
time (large scale), such as a yearly cycle where the data show the same pattern ofrising and falling from 
year to year, or the trends may be over a relatively short period of time (small scale), such as a daily 
cycle. Examples of seasonal trends are quarterly seasons (winter, spring, summer and fall), monthly 
seasons, or even hourly (e.g., air temperature rising and falling over the course of a day). Directional 
trends are increasing or decreasing patterns over time in monitored constituent data, which may be of 
importance in assessing the levels of contaminants. Serial correlation is a measure of the strength in the 
linear relationship of successive observations. If successive observations are related, statistical quantities 
calculated without accounting for the serial correlation may be biased. A time series is stationary if there 
is no systematic change in the mean (i.e., no trend) and variance across time. Stationary data look the 
same over all time periods except for random behavior. Directional trends or a change in the variability 
in the data imply non-stationarity. 

A time series plot of concentration data versus time makes it easy to identify lack of randomness, 
changes in location, change in scale, small scale trends, or large-scale trends over time. Small-scale 
trends are displayed as fluctuations over smaller time periods. For example, ozone levels over the course 
of one day typically rise until the afternoon, then decrease, and this process is repeated every day. Larger 
scale trends such as seasonal fluctuations appear as regular rises and drops in the graph. Ozone levels 
tend to be higher in the summer than in the winter, so ozone data tend to show both a daily trend and a 
seasonal trend. A time plot can also show directional trends or changing variability over time. 

A time plot is constructed by plotting the measurements on the vertical axis versus the actual 
time of observation or the order of observation on the horizontal axis. The points plotted may be 
connected by lines, but this may create an unfounded sense of continuity. It is important to use the actual 
date, time or number at which the observation was made. This can create discontinuities in the plot but 
are needed as the data that should have been collected now appear as "missing values" but do not disturb 
the integrity of the plot. Plotting the data at equally spaced intervals when in reality there were different 
time periods between observations is not advised. 

For environmental data, it is also important to use a different symbol or color to distinguish non­
detects from detected data. Non-detects are often reported by the analytical laboratory with a "U" or"<" 
analytical qualifier associated with the reporting limit [RL]. In statistical terminology, they are left­
censored data, meaning the actual concentration of the chemical is known only to be below the RL. Non­
detects contrast with detected data, where the laboratory reports the result as a known concentration that 
is statistically higher than the analytical limit of detection. For example, the laboratory may report a 
trichloroethene concentration in groundwater of "5 U" or "< 5" µg/L, meaning the actual trichloroethene 
concentration is unknown, but is bounded between zero and 5 µg/L. This result is different than a 
detected concentration of 5 µg/L which is unqualified by the laboratory or data validator. Non-detects 
are handled differently than detected data when calculating summary statistics. A statistician should be 
consulted on the proper use of non-detects in statistical analysis. For radionuclides negative and zero 
concentrations should be plotted as reported by the laboratory, showing the detection status. 

The scaling of the vertical axis of a time plot is of some importance. A wider scale tends to 
emphasize large-scale trends, whereas a narrower scale tends to emphasize small-scale trends. A wide 
scale would emphasize the seasonal component of the data, whereas a smaller scale would tend to 
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emphasize the daily fluctuations. The scale needs to contain the full range of the data. Directions for 
constructing a time plot are contained in Example 9-1 and Figure 9-1. 

Construct a time series plot using trichloroethene groundwater data in Table 9-1 for each well. 
Examine the time series for seasonality, directional trends and stationarity. 

L 

Well 1 

Date TCE Data 

Collected (m2/L) Qualifier 

1/2/2005 0.005 u 
4/7/2005 0.005 u 
7/13/2005 0.004 J 

10/24/2005 0.006 

1/7/2006 0.004 u 
3/30/2006 0.009 

6/28/2006 0.017 

10/2/2006 0.045 

10/17/2006 0.05 

1/15/2007 0.07 

4/10/2007 0.12 

7/9/2007 0.10 

10/5/2007 NA 

10/29/2007 0.20 

12/30/2007 0.25 

NA= Not available (missing data). 

U denotes a non-detect. 

Well 2 

TCE Data 

(m2/L) Qualifier 

0.10 u 
0.12 

0.125 

0.107 

0.099 u 
0.11 

0.13 

0.109 

NA 

0.10 u 
0.115 

0.14 

0.17 

NA 

0.11 

J denotes an estimated detected concentration. 

91 !! ' fl!! 1 
Step 1. Import the data into data analysis software capable of producing graphics. 

Step 2. Sort the data by date collected. 

Step 3. Determine the range of the data by calculating the minimum and maximum concentrations for 
each well, shown in the table below: 
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Well 1 Well 2 

TCE Data TCE Data 
(m2/L) Qualifier (m2/L) Qualifier 

Min 0.004 u 0.099 u 
Max 0.25 0.17 

Step 4. Plot the data using a scale from 0 to 0.25 if data from both wells are plotted together on the 
same time series plot. Use separate symbols for non-detects and detected concentrations. One 
suggestion is to use "open" symbols (whose centers are white) for non-detects and "closed" 
symbols for detects. 

Step 5. Examine each series for directional trends, seasonality and stationarity. Note that Well 1 
demonstrates a positive directional trend across time, while Well 2 shows seasonality within 
each year. Neither well exhibits stationarity. 

Step 6. Examine each series for missing values. Inquire from the project laboratory why data are 
missing or collected at unequal time intervals. A response from the laboratory for this data set 
noted that on 10/5/2007 the sample was accidentally broken in the laboratory from Well 1, so 
Well l was resampled on 10/29/2007. Well 1 was resampled on 10/17/2006 to confirm the 
historically high concentration collected on 10/2/2006. Well 2 was not sampled on 10/17 /2006 
because the data collected on 10/2/2006 from Well 2 did not merit a resample, as did Well 1. 

Step 7. Examine each series for elevated detection limits. Inquire why the detection limits for Well 2 
are much larger than detection limits for Well 1. A reason may be that different laboratories 
analyzed the samples from the two wells. The laboratory analyzing samples from Well 1 used 
lower detection limits than did the laboratory analyzing samples from Well 2.1 
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0.25 I • Well l 

0.20 

0.15 

0.10 

0.05 

0.00 

Jan 
2005 

• 2J # 1 •C C . l•C C 4_, 

11 Well 2 I 

Jul Jan 
2006 

Jul Jan 
2007 

Open symbols denote non-detects. Closed symbols denote detected concentrations. 
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Box plots (also known as Box and Whisker plots) are useful in situations where a picture of the 
distribution is desired, but it is not necessary or feasible to portray all the details of the data. A box plot 
displays several percentiles of the data set. It is a simple plot, yet provides insight into the location, 
shape, and spread of the data and underlying distribution. A simple box plot contains only the oth 
(minimum data value), 25th' 50 th' 75 th and 100 th (maximum data value) percentiles. A box-plot divides 
the data into 4 sections, each containing 25% of the data. Whiskers are the lines drawn to the minimum 
and maximum data values from the 25th and 75th percentiles. The box shows the interquartile range 
(IQR) which is defined as the difference between the 75 th and the 25th percentiles. The length of the 
central box indicates the spread of the data (the central 50%), while the length of the whiskers shows the 
breadth of the tails of the distribution. The 50th percentile (median) is the line within the box. In 
addition, the mean and the 95% confidence limits around the mean are shown. Potential outliers are 
categorized into two groups: 

data points between 1.5 and 3 times the IQR above the 75th percentile or between 1.5 and 3 
times the IQR below the 25th percentile, and 
data points that exceed 3 times the IQR above the 75th percentile or exceed 3 times the IQR 
below the 25th percentile. 
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The mean is shown as a star, while the lower and upper 95% confidence limits around the mean 
are shown as bars. Individual data points between 1.5 and 3 times the IQR above the 75th percentile or 
below the 25th percentile are shown as circles. Individual data points at least 3 times the IQR above the 
75th percentile or below the 25th percentile are shown as squares. 

Information from box plots can assist in identifying potential data distributions. If the upper box 
and whisker are approximately the same length as the lower box and whisker, with the mean and median 
approximately equal, then the data are distributed symmetrically. The normal distribution is one of a 
number that is symmetric. If the upper box and whisker are longer than the lower box and whisker, with 
the mean greater than the median, then the data are right-skewed (such as lognormal or square root 
normal distributions in original units). Conversely, if the upper box and whisker are shorter than the 
lower box and whisker with the mean less than the median, then the data are left-skewed. 

A box plot showing a normal distribution will have the following characteristics: the mean and 
median will be in the center of the box, whiskers to the minimum and maximum values are the same 
length, and there would be no potential outliers. A box plot showing a lognormal distribution (in original 
units) typical of environmental applications will have the following characteristics: the mean will be 
larger than the median, the whisker above the 75th percentile will be longer than the whisker below the 
25th percentile, and extreme upper values may be indicated as potential outliers. Once the data have been 
logarithmically transformed, the pattern should follow that described for a normal distribution. Other 
right-skewed distributions transformable to normality would indicate similar patterns. 

It is often helpful to show box plots of different sets of data side by side to show differences 
between monitoring stations (see Figure 9-2 ). This allows a simple method to compare the locations, 
spreads and shapes of several data sets or different groups within a single data set. In this situation, the 
width of the box can be proportional to the sample size of each data set. If the data will be compared to a 
standard, such as a preliminary remediation goal (PRG) or maximum contaminant level (MCL), a line on 
the graph can be drawn to show if any results exceed the criteria. 

It is important to plot the data as reported by the laboratory for non-detects or negative 
radionuclide data. Proxy values for non-detects should not be plotted since we want to see the 
distribution of the original data. Different symbols can be used to display non-detects, such as the open 
symbols described in Section 9.1. The mean will be biased high if using the RL of non-detects in the 
calculation, but the purpose of the box plot is to assess the distribution of the data, not quantifying a 
precise estimate of an unbiased mean. Displaying the frequency of detection (number of detected values I 
number of total samples) under the station name is also useful. Unlike time series plots, box plots cannot 
use missing data, so missing data should be removed before producing a box plot. 

Directions for generating a box plot are contained in Example 9-2, and an example is shown in 
Figure 9-2. It is important to remove lab and field duplicates from the data before calculating summary 
statistics such as the mean and UCL since these statistics assume independent data. The box plot 
assumes the data are statistically independent. 
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Construct a box plot using the trichloroethene groundwater data in Table 9-1 for each well. 
Examine the box plot to assess how each well is distributed (normal, lognormal, skewed, symmetric, 
etc.). Identify possible outliers. 

91 !! ' fl!! 1 

Step 1. Import the data into data analysis software capable of producing box plots. 

Step 2. Sort the data from smallest to largest results by well. 

Step 3. Compute the oth (minimum value), 25th' 50th (median), 75th and lOOth (maximum value) 
percentiles by well. 

Step 4. Plot these points vertically. Draw a box around the 25th and 75 th percentiles and add a line 
through the box at the so th percentile. Optionally, make the width of the box proportional to 
the sample size. Narrow boxes reflect smaller sample sizes, while wider boxes reflect larger 
sample sizes. 

Step 5. Compute the mean and the lower and upper 95% confidence limits. Denote the mean with a 
star and the confidence limits as bars. Also, identify potential outliers between l .50IQR and 
30IQR beyond the box with a circle. Identify potential outliers exceeding 30IQR beyond the 
box with a' square. 

Step 6. Draw the whiskers from each end of the box to the furthest data point to show the full range of 
the data. 

The box plots in Figure 9-2 show the similarities and differences in the distributions of 
trichloroethene in Wells 1 and 2. The mean of trichloroethene in Well 1 is significantly lower than the 
mean in Well 2. The variance of the data from Well 1 is significantly larger than the variance from Well 
2. A parametric t-test or nonparametric Wilcoxon Rank Sum test can quantitatively confirm these 
conclusions. Since the mean exceeds the median for both wells and the whiskers at the top of each box 
are much longer than the whiskers at the bottom of each box, we can conclude both distributions are 
skewed to the right, resembling a lognormal distribution. In fact, the Shapiro-Wilk test quantitatively 
confirms that both distributions are lognormally distributed. Both wells have their largest concentrations 
between 1.5 and 3 times the IQR, as denoted by a black circle. No data point lies outside 3 times the 
IQR. Since the data for both wells are lognormally distributed, the maximum concentrations in each well 
should not be removed just because they exceed 1.5 times the IQR. Long tails are expected for the 
lognormal distribution. The width of the 95% confidence limits confirms the large variability in Well 1 
compared to the width of the confidence limits in Well 2. Well 1 has one concentration exceeding the 
PRG of0.23 mg/L, while Well 2 has all concentrations below the PRG. The width of each box is similar 
since the sample size as shown in the frequency of detection (FOD) are nearly the same (11 detects out 
of14 samples for Well 1 and 10 detects out of13 samples for Well 2). l 
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A histogram is a visual representation of the data collected into groups. This graphical technique 
provides a visual method of identifying the underlying distribution of the data. The data range is divided 
into several bins or classes and the data is sorted into the bins. A histogram is a bar graph conveying the 
bins and the frequency of data points in each bin. Other forms of the histogram use a normalization of 
the bin frequencies for the heights of the bars. The two most common normalizations are relative 
frequencies (frequencies divided by sample size) and densities (relative frequency divided by the bin 
width). Figure 9-3 is an example of a histogram using frequencies and Figure 9-4 is a histogram of 
densities. Histograms provide a visual method of accessing location, shape and spread of the data. Also, 
extreme values and multiple modes can be identified. The details of the data are lost, but an overall 
picture of the data is obtained. A stem and leaf plot offers the same insights into the data as a histogram, 
but the data values are retained. 

The visual impression of a histogram is sensitive to the number of bins selected. A large number of 
bins will increase data detail, while fewer bins will increase the smoothness of the histogram. A good 
starting point when choosing the number of bins is the square root of the sample size n. The minimum 
number of bins for any histogram should be at least 4. Another factor in choosing bins is the choice of 
endpoints. When feasible, using simple bin endpoints can improve the readability of the histogram. 
Simple bin endpoints include multiples of 5 k units for some integer k > 0 (e.g., 0 to <5, 5 to <10, etc. or 
1 to <1.5, 1.5 to <2, etc.). Finally, when plotting a histogram for a continuous variable (e.g., 
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concentration), it is necessary to decide on an endpoint convention; that is, what to do with data points 
that fall on the boundary of a bin. Also, use the data as reported by the laboratory for non-detects and 
eliminate any missing values, since histograms cannot include missing data. With discrete variables, 
(e.g., family size) the intervals can be centered in between the variables. For the family size data, the 
intervals can span between 1.5 and 2.5, 2.5 and 3.5, and so on. Then the whole numbers that relate to the 
family size can be centered within the box. Directions for generating a histogram are contained in 
Example 9-3. 

Construct a histogram using the trichloroethene groundwater data in Table 9-1 for each well. 
Examine the histogram to assess how each well is distributed (normal, lognormal, skewed, symmetric, 
etc.). 

91 !! ' fl!! 1 

Step 1. Import the data into data analysis software capable of producing histograms. 

Step 2. Sort the data from smallest to largest results by well. 

Step 3. With n = 14 concentrations for Well 1, a rough estimate of the number of bins is .Jl4 = 3.74 
or 4 bins. Since the data from Well 1 range from 0.004 to 0.25, the suggested bin width is 
calculated as (maximum concentration - minimum concentration) I number of bins = (0.25 -
0.004) I 4 = 0.0615. Therefore, the bins for Well 1 are 0.004 to <0.0655, 0.0655 to <0.127, 
0.127 to <0.1885, and 0.1885 to 0.25 mg/L. 

Similarly, with n = 13 concentrations for Well 2, the number of bins is Jl3 = 3.61 or 4 bins. 
Since the data from Well 2 range from 0.099 to 0.17, the suggested bin width is calculated as 
(maximum concentration - minimum concentration) I number of bins = (0.17 - 0.099) I 4 = 

0.01775. Therefore, the bins for Well 2 are 0.099 to <0.11675, 0.11675 to <0.1345, 0.1345 to 
<0.15225, and 0.15225 to 0.17 mg/L. 

Step 4. Construct a frequency table using the bins defined in Step 3. Table 9-2 shows the frequency or 
number of observations within each bin defined in Step 3 for Wells 1 and 2. The third column 
shows the relative frequency which is the frequency divided by the sample size n. The final 
column of the table gives the densities or the relative frequencies divided by the bin widths 
calculated in Step 3. 

Step 5. The horizontal axis for the data is from 0. 004 to 0 .25 mg/L for Well 1 and 0. 099 to 0 .17 for 
Well 2. The vertical axis for the histogram of frequencies is from 0 to 9 and the vertical axis 
for the histogram ofrelative frequencies is from 0% - 70%. 

Step 6. The histograms of frequencies are shown in Figure 9-3. The histograms of relative 
frequencies or densities are shown in Figure 9-4. Note that frequency, relative frequency and 
density histograms all show the same shape since the scale of the vertical axis is divided by 
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l 

the sample size or the bin width. These histograms confirm the data are not normally 
distributed for either well, but are closer to lognormal. 

L 

Relative 

Bin Frequency Frequency (%) Density 

Well 1 

0.0040 to <0.0655 mg/L 9 64.3 10.5 
0.0655 to <0.1270 mg/L 3 21.4 3.5 

0.1270 to <0.1885 mg/L 0 0 0 
0.1885 to 0.2500 mg/L 2 14.3 2.3 

Well 2 

0.099 to <0.11675 mg/L 8 61.5 34.7 

0.11675 to <0.1345 mg/L 3 23.1 13.0 
0.1345 to <0.15225 mg/L 7.7 4.3 

0.15225 to 0.17 mg/L 7.7 4.3 
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For data sets consisting of multiple observations per sampling point, a scatter plot is one of the 
most powerful graphical tools for analyzing the relationship between two or more variables. Scatter plots 
are easy to construct for two variables, and many software packages can construct 3-dimensional scatter 
plots. A scatter plot can clearly show the relationship between two variables if the data range is 
sufficiently large. Truly linear relationships can always be identified in scatter plots, but truly nonlinear 
relationships may appear linear (or some other form) if the data range is relatively small. Scatter plots of 
linearly correlated variables cluster about a straight line. 

As an example of a nonlinear relationship, consider two variables where one variable is 
approximately equal to the square of the other. With an adequate range in the data, a scatter plot of this 
data would display a partial parabolic curve. Other important modeling relationships that may appear are 
exponential or logarithmic. Two additional uses of scatter plots are the identification of potential outliers 
for a single variable or for the paired variables and the identification of clustering in the data. Directions 
for generating a scatter plot are contained in Example 9-4. 

Construct a scatter plot using the groundwater data in Table 9-3 for arsenic and mercury from a 
single well collected approximately quarterly across time. Examine the scatter plot for linear or quadratic 
relationships between arsenic and mercury, correlation, and for potential outliers. 

L 

Arsenic 

Date Cone. Data 
Collected (mg/L) Qualifier 

1/2/2005 0.01 u 
417 /2005 0.01 u 
7 /13/2005 0.02 

10/24/2005 0.04 

1/7 /2006 0.01 

3/30/2006 0.05 

6/28/2006 0.09 

10/2/2006 0.07 

10/17/2006 0.10 

1/15/2007 0.02 u 
4/10/2007 0.15 

7/9/2007 0.12 

10/5/2007 0.10 

10/29/2007 0.30 

12/30/2007 0.25 

NA= Not available (missing data). 

U denotes a non-detect. 

Mercury Strontium 

Cone. Data Cone. Data 
(mg/L) Qualifier (mg/L) Qualifier 

0.02 u 0.10 

0.03 0.02 u 
0.04 u 0.05 u 
0.06 0.11 

0.02 0.05 

0.07 0.07 

0.10 0.03 

0.08 0.04 

NA 0.02 u 
0.03 u 0.15 

0.11 0.03 

0.08 0.10 

0.07 0.09 

0.29 0.05 

0.23 0.22 
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Step 1. Import the data into data analysis software capable of producing scatter plots. 

Step 2. Sort the data by date collected. 

Step 3. Calculate the range of concentrations for each constituent. If the range of both constituents are 
similar, then scale both the X and Y axes from the minimum to the maximum concentrations 
of both constituents. If the range of concentrations are very different (e.g., two or more orders 
of magnitude), then perhaps the scales for both axes should be logarithmic (log 10). The data 
will be plotted as pairs from (X1, Y 1) to (Xn, Y n) for each sampling date, where n =number of 
samples. 

Step 4. Use separate symbols to distinguish detected from non-detected concentrations. Note that the 
concentration for one constituent may be detected, while the concentration for the other 
constituent may not be detected for the same sampling date. If the concentration for one 
constituent is missing, then the pair (Xi, Yi) cannot be plotted since both concentrations are 
required. Figure 9-5 shows a linear correlation between arsenic and mercury with two 
possible outliers. The Pearson correlation coefficient is 0.97, indicating a significantly high 
correlation. The linear regression line is displayed to show the linear correlation between 
arsenic and mercury.1 

0.30 • both detected • both non-detects 
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0.25 c mercury non-detect only 
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Many software packages can extend the 2-dimensional scatter plot by constructing a 3-dimensional 
scatter plot for 3 constituents. However, with more than 3 variables, it is difficult to construct and 
interpret a scatter plot. Therefore, several graphical representations have been developed that extend the 
idea of a scatter plot for data consisting of more than 2 variables. The simplest of these graphical 
techniques is a coded scatter plot. All possible two-way combinations are given a symbol and the pairs 
of data are plotted on one 2-dimensional scatter plot. The coded scatter plot does not provide 
information on three way or higher interactions between the variables since only two dimensions are 
plotted. If the data ranges for the variables are comparable, then a single set of axes may suffice. If the 
data ranges are too dissimilar (e.g., at least two orders of magnitude), different scales may be required. 

Construct a coded scatter plot using the groundwater data in Table 9-3 for arsenic, mercury, and 
strontium from Well 3 collected approximately quarterly across time. Examine the scatter plot for linear 
or quadratic relationships between the three inorganics, correlation, and for potential outliers. 
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Step 1. Import the data into data analysis software capable of producing scatter plots. 

Step 2. Sort the data by date collected. 

Step 3. Calculate the range of concentrations for each constituent. If the ranges of both constituents 
are similar, then scale both the X and Y axes from the minimum to the maximum 
concentrations of all three constituents. Since the ranges of concentrations are very similar, the 
minimum to the maximum concentrations of all three constituents will be used for both axes. 

Step 4. Let each arsenic concentration be denoted by Xi, each mercury concentration be denoted by 
Y;, and each strontium concentration be denoted by Z i· The arsenic and mercury paired data 
will be plotted as pairs (Xi, Yi) with solid blue circles for 1 L i L n. The arsenic and strontium 
paired data will be plotted as pairs (Xi, Zi) with solid red squares. The mercury and strontium 
paired data will be plotted as pairs (Yi, Z ;) with solid green diamonds. If either concentration 
in each pair is a non-detect, then the non-detects will be displayed similar to Figure 9-5. 

Step 5. Interpret the plot. Figure 9-6 shows the linear correlation between arsenic and mercury with 
two possible outliers. The Pearson correlation coefficient is 0.97, indicating a significantly 
high correlation. The approximate 45° slope of the regression line indicates a strong 
correlation between arsenic and mercury. However, the nearly zero slope of the regression line 
between arsenic and strontium indicates little or no correlation between arsenic and strontium. 
There are two possible outliers for arsenic and strontium. Similarly, the nearly zero slope of 
the regression line between mercury and strontium indicates little or no correlation between 
mercury and strontium. There are also two possible outliers for mercury and strontium. The 
Pearson correlation coefficients for both arsenic with strontium and mercury with strontium 
are 0.23 which are not significantly different from zero.1 
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A simple, but extremely useful visual assessment of normality is to graph the data as a probability 
plot. The y-axis is scaled to represent quantiles or z-scores from a standard normal distribution and the 
concentration measurements are arranged in increasing order along the x-axis. As each observed value is 
plotted on the x-axis, the z-score corresponding to the proportion of observations less than or equal to 
that measurement is plotted as the y-coordinate. Often, the y-coordinate is computed by the following 
formula: 

. J 
-] l 

y = <l> L-T 
' l n + 1 

(9.1] 

where <l>-1 denotes the inverse of the cumulative standard normal distribution, n represents the sample 
size, and i represents the rank position of the /h ordered concentration. The plot is constructed so that, if 
the data are normal, the points when plotted will lie on a straight line. Visually apparent curves or bends 
indicate that the data do not follow a normal distribution. 

Probability plots are particularly useful for spotting irregularities within the data when compared to 
a specific distributional model (usually, but not always, the normal). It is easy to determine whether 
departures from normality are occurring more or less in the middle ranges of the data or in the extreme 
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tails. Probability plots can also indicate the presence of possible outlier values that do not follow the 
basic pattern of the data and can show the presence of significant positive or negative skewness. 

If a (normal) probability plot is constructed on the combined data from several wells and normality 
is accepted, it suggests - but does not prove - that all of the data came from the same normal 
distribution. Consequently, each subgroup of the data set (e.g., observations from distinct wells) 
probably has the same mean and standard deviation. If a probability plot is constructed on the data 
residuals (each value minus its subgroup mean) and is not a straight line, the interpretation is more 
complicated. In this case, either the residuals are not normally-distributed, or there is a subgroup of the 
data with a normal distribution but a different mean or standard deviation than the other subgroups. The 
probability plot will indicate a deviation from the underlying assumption of a common normal 
distribution in either case. It would be prudent to examine normal probability plots by well on the same 
plot if the ranges of the data are similar. This would show how the data are distributed by well to 
determine which wells may depart from normality. 

The same probability plot technique may be used to investigate whether a set of data or residuals 
follows a lognormal distribution. The procedure is generally the same, except that one first replaces each 
observation by its natural logarithm. After the data have been transformed to their natural logarithms, the 
probability plot is constructed as before. The only difference is that the natural logarithms of the 
observations are used on the x-axis. If the data are lognormal, the probability plot of the logged 
observations will approximate a straight line. 

Determine whether the dataset in Table 9-4 is normal by using a probability plot. 

91 !! ' fl!! 1 

Step 1. After combining the data into a single group, list the measured nickel concentrations in order 
from lowest to highest. 

Step 2. The cumulative probabilities, representing for each observation (xi) the proportion of values 
less than or equal to Xi, are given in the third column of the table below. These are computed 
as i I (n + 1) where n is the total number of samples (n = 20). 

Step 3. Determine the quantiles or z-scores from the standard normal distribution corresponding to the 
cumulative probabilities in Step 2. These can be found by successively letting P equal each 
cumulative probability and then looking up the entry in Table 10-1 (Appendix D) 
corresponding to P. Since the standard normal distribution is symmetric about zero, for 
cumulative probabilities P < 0.50, look up the entry for (1-P) and give this value a negative 
sign. 

Step 4. Plot the normal quantile (z-score) versus the ordered concentration for each sample, as in the 
plot below (Figure 9-7). The curvature found in the probability plot indicates that there is 
evidence of non-normality in the data. l 
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Nickel Order Cumulative Normal 
Concentration (1) Probability Quantile 

(ppb) [i/(n+l)] (z-score) 

1.0 0.048 -1.668 
3.1 2 0.095 -1.309 
8.7 3 0.143 -1.068 

10.0 4 0.190 -0.876 
14.0 5 0.238 -0.712 
19.0 6 0.286 -0.566 
21.4 7 0.333 -0.431 
27.0 8 0.381 -0.303 
39.0 9 0.429 -0.180 
56.0 10 0.476 -0.060 
58.8 11 0.524 0.060 
64.4 12 0.571 0.180 
81.5 13 0.619 0.303 
85.6 14 0.667 0.431 

151.0 15 0.714 0.566 
262.0 16 0.762 0.712 
331.0 17 0.810 0.876 
578.0 18 0.857 1.068 
637.0 19 0.905 1.309 
942.0 20 0.952 1.668 

= !! 5o' 5fl fl !! 91 I !! = !! .. = o' 1 91 I !! = l T + o'o' 

Step 1. List the natural logarithms of the measured nickel concentrations in Table 9-4 in order from 
lowest to highest. These are shown in Table 9-5. 

Step 2. The cumulative probabilities representing the proportion of values less than or equal to xi for 
each observation (xi), are given in the third column of Table 9-4. These are computed as i I (n 
+ 1) where n is the total number of samples (n = 20). 

Step 3. Determine the quantiles or z-scores from the standard normal distribution corresponding to the 
cumulative probabilities in Step 2. These can be found by successively letting P equal each 
cumulative probability and then looking up the entry in Table 10-1 Appendix D 
corresponding to P. Since the standard normal distribution is symmetric about zero, for 
cumulative probabilities P < 0.50, look up the entry for (1-P) and give this value a negative 
sign. 

~ J_ I 
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Order Log Nickel Cumulative Normal 
(1) Concentration Probability Quantile 

log(ppb) [i/(n+l)] (z-score) 

0.00 0.048 -1.668 
2 1.13 0.095 -1.309 
3 2.16 0.143 -1.068 
4 2.30 0.190 -0.876 
5 2.64 0.238 -0.712 
6 2.94 0.286 -0.566 
7 3.06 0.333 -0.431 
8 3.30 0.381 -0.303 
9 3.66 0.429 -0.180 
10 4.03 0.476 -0.060 
11 4.07 0.524 0.060 
12 4.17 0.571 0.180 
13 4.40 0.619 0.303 
14 4.45 0.667 0.431 
15 5.02 0.714 0.566 
16 5.57 0.762 0.712 
17 5.80 0.810 0.876 
18 6.36 0.857 1.068 
19 6.46 0.905 1.309 
20 6.85 0.952 1.668 

Step 4. Plot the normal quantile (z-score) versus the ordered logged concentration for each sample, as 
in the plot below (Figure 9-8). The reasonably linear trend found in the probability plot 
indicates that the log-scale data closely follow a normal pattern, further suggesting that the 
original data closely follow a lognormal distribution. 
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Because a statistical or mathematical model is at best an approximation of reality, all statistical 
tests and procedures require certain assumptions for the methods to be used correctly and for the results 
to be properly interpreted. Many tests make an assumption regarding the underlying distribution of the 
observed data; in particular, that the original or transformed sample measurements follow a normal 
distribution. Data transformations are discussed in Section 10.2 while considerations as to whether the 
normal distribution should be used as a 'default' are explored in Section 10.3. Several techniques for 
assessing normality are also examined, including: 

The skewness coefficient (Section 10.4) 

The Shapiro-Wilk test of normality and its close variant, the Shapiro-Francia test (Section 10.5) 

Filliben' s probability plot correlation coefficient test (Section 10.6) 

The Shapiro-Wilk multiple group test of normality (Section 10. 7) 

10. 1 IMPORTANCE OF DI STRI BUTI ONAL MODELS 

As introduced in Chapter 3, all statistical testing relies on the critical assumption that the sample 
data are representative of the population from which they are selected. The statistical distribution of the 
sample is assumed to be similar to the distribution of the mostly unobserved population of possible 
measurements. Many parametric testing methods make a further assumption: that the form or type of the 
underlying population is at least approximately known or can be identified through diagnostic testing. 
Most of these parametric tests assume that the population is normal in distribution; the validity or 
accuracy of the test results may be in question if that assumption is violated. 

Consequently, an important facet of choosing among appropriate test methods is determining 
whether a commonly-used statistical distribution such as the normal, adequately models the observed 
sample data. A large variety of possible distributional models exist in the statistical literature; most are 
not typically applied to groundwater measurements and often introduce additional statistical or 
mathematical complexity in working with them. So groundwater statistical models are usually confined 
to the gamma distribution, the Weibull distribution, or distributions that are normal or can be normalized 
via a transformation (e.g., the logarithmic or square root). 
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Although the Unified Guidance will occasionally reference procedures that assume an underlying 
gamma or Weibull distribution, the presentation in this guidance will focus on distributions that can be 
normalized and diagnostic tools for assessing normality. The principal reasons for limiting the 
discussion in this manner are: 1) the same tools useful for testing normality can be utilized with any 
distribution that can be normalized-- the only change needed is perform the normality test after first 
making a data transformation; 2) if no transformation works to adequately normalize the sample data, a 
non-parametric test can often be used as an alternative statistical approach; and 3) addressing more 
complicated scenarios is outside the scope of the guidance and may require professional statistical 
consultation. 

Understanding the statistical behavior of groundwater measurements can be very challenging. The 
constituents of interest may occur at relatively low concentrations and frequently be left-censored 
because of current analytical method limitations. Sample data are often positively skewed and 
asymmetrical in distributional pattern, perhaps due to the presence of outliers, inhomogeneous mixing of 
contaminants in the subsurface, or spatially variable soils deposition affecting the local groundwater 
geochemistry. For some constituents, the distribution in groundwater is not stationary over time (e.g., 
due to linear or seasonal trends) or not stationary across space (due to spatial variability in mean levels 
from well to well). A set of these measurements pooled over time and/or space may appear highly non­
normal, even if the underlying population at any fixed point in time or space is normal. 

Because of these complexities, fitting a distributional model to a set of sample data cannot be done 
in isolation from checks of other key statistical assumptions. The data must also be evaluated for outliers 
(Chapter 12), since the presence of even one extreme outlier may cause an otherwise recognizable 
distribution from being correctly identified. For data grouped across wells, the possible presence of 
spatial variability must be considered (Chapter 13 ). If identified, the Shapiro-Wilk multiple group test 
of normality may be needed to account for differing means and/or variances at distinct wells. Data 
pooled across sampling events (i.e., over time) must be examined for the presence of trends or seasonal 
patterns (Chapter 14). A clearly identified pattern may need to be removed and the data residuals tested 
for normality, instead of the raw measurements. 

A frequently encountered problem involves testing normality on data sets contammg non-detect 
values. The best goodness-of-fit tests attempt to assess whether the sample data closely resemble the 
tails of the candidate distributional model. Since non-detects represent left-censored observations where 
the exact concentrations are unknown for the lower tail of the sample distribution, standard normality 
tests cannot be run without some estimate or imputation of these unknown values. For a small fraction of 
non-detects in a sample (10-15% or less) censored at a single reporting limit, it may be possible to apply 
a normality test by simply replacing each non-detect with an imputed value of half the RL. However, 
more complicated situations arise when there is a combination of multiple RLs (detected values 
intermingled with different non-detect levels), or the proportion of non-detects is larger. The Unified 
Guidance recommends different strategies in these circumstances. 

Properly ordering the sample observations (i.e., from least to greatest) is critical to any 
distributional goodness-of-fit test. Because the concentration of a non-detect measurement is only known 
to be in the range from zero to the RL, it is generally impossible to construct a full ordering of the 
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sample. 1 There are methods, however, to construct partial orderings of the data that allow the 
assignment of relative rankings to each of the detected measurements and which account for the 
presence of censored values. In turn, a partial ordering enables construction of an approximate normality 
test. This subject is covered in Chapter 15. 

10. 2 TRANSFORMA Tl ONS TO NORMAL! TY 

Guidance users will often encounter data sets indicating significant evidence of non-normality. 
Due to the presumption of most parametric tests that the underlying population is normal, a common 
statistical strategy for apparently non-normal observations is to search for a normalizing mathematical 
transformation. Because of the complexities associated with interpreting statistical results from data that 
have been transformed to another scale, some care must be taken in applying statistical procedures to 
transformed measurements. In questionable or disputable circumstances, it may be wise to analyze the 
same data with an equivalent non-parametric version of the same test (if it exists) to see if the same 
general conclusion is reached. If not, the data transformation and its interpretation may need further 
scrutiny. 

Particularly with prediction limits, control charts, and some of the confidence intervals described in 
Chapters 18, 20, and 21, the parametric versions of these procedures are especially advantageous. Here, 
a transformation may be warranted to approximately normalize the statistical sample. Transformations 
are also often useful when combining or pooling intrawell background from several wells in order to 
increase the degrees of freedom available for intrawell testing (Chapter 13 ). Slight differences in the 
distributional pattern from well to well can skew the resulting pooled dataset, necessitating a 
transformation to bring about approximate normality and to equalize the variances. 

The interpretation of transformed data is straightforward in the case of prediction limits for 
individual observations or when building a confidence interval around an upper percentile. An interval 
with limits constructed from the transformed data and then re-transformed (or back-transformed ) to the 
original measurement domain will retain its original probabilistic interpretation. For instance, if the data 
are approximately normal under a square root transformation and a 95% confidence prediction limit is 
constructed on the square roots of the original measurements, squaring the resulting prediction limit 
allows for a 95% confidence level when applied to the original data. 

The same ease of interpretation does not apply to prediction limits for a future arithmetic mean 
(Chapter 18) or to confidence intervals around an arithmetic mean compared to a fixed GWPS 
(Chapter 21 ). A back-transformed confidence interval constructed around the mean oflog-transformed 
data (i.e., the log-mean) corresponds to a confidence interval around the geometric mean of the raw 
(untransformed) data. For the lognormal distribution, the geometric mean is equal to the median, but it is 
not the same as the arithmetic mean. Using this back-transformation to bracket the location of the true 
arithmetic population mean will result in an incorrect interval. 

For these particular applications, a similar problem of scale bias occurs with other potential 
normality transformations. Care is needed when applying and interpreting transformations to a data set 

1 Even when all the non-detects represent the lowest values in the sample, there is still no way to determine how this subset is 
internally ordered. 
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for which either a confidence interval around the mean or a prediction limit for a future mean is desired. 
The interpretation depends on which statistical parameter is being estimated or predicted. The geometric 
mean or median in some situations may be a satisfactory alternative as a central tendency parameter, 
although that decision must be weighed carefully when making comparisons against a GWPS. 

Common normalizing transformations include the natural logarithm, the square root, the cube root, 
the square, the cube, and the reciprocal functions, as well as a few others. More generally, one might 
consider the "ladder of powers" (Helsel and Hirsch, 2002) technically known as the set of Box-Cox 
transformations (Box and Cox, 1964). The heart of these transformations is a power transformation of 
the original data, expressed by the equations: 

L(xA - 1 )IA. for A. :;t: 0 

y A = 1 log x for A.= 0 
[10.1) 

The goal of a Box-Cox analysis is to find the value A. that best transforms the data to approximate 
normality, using a procedure such as maximum likelihood. Such algorithms are beyond the scope of this 
guidance, although an excellent discussion can be found in Helsel and Hirsch (2002). In practice, 
slightly different equation formulations can be used: 

xA for A. :;t: 0 
r = 
' A l1og x for A. = 0 

[10.2) 

where the parameter can generally be limited to the choices 0, -1, 1/4, 1/3, 1/2, 1, 2, 3, and 4, except 
for unusual cases of more extreme powers. 

As noted in Section 10.1, checking normality with transformed data does not require any 
additional tools. Standard normality tests can be applied using the transformed scale measurements. 
Only the interpretation of the test changes. A goodness-of-fit test can assess the normality of the raw 
measurements. Under a transformation, the same test checks for normality on the transformed scale. The 
data will still follow the non-normal distribution in the original concentration domain. So if a cube root 
transformation is attempted and the transformed data are found to be approximately normal, the original 
data are not normal but rather cube-root normal in distribution. If a log transformation is successfully 
used, the original measurements are not normal but lognormal instead. In sum, a series of non-normal 
distributions can be fitted to data with the goodness-of-fit tests described in this chapter without needing 
specific tests for other potential distributions. 

Finding a reasonable transformation in practice amounts to systematically 'climbing' the "ladder of 
powers" described above. In other words, different choices of the power parameter would be attempted 
- beginning with = 0 and working upward from -1 toward more extreme power transformations -
until a specific normalizes the data or all choices have been attempted. If no transformation seems to 
work, the user should instead consider a non-parametric test alternative. 

10-4 March 2009 

EPAPAV0117120 



Chapter 10. Fitting Distributions Unified Guidance 

10. 3 USING THE NORMAL DI STRI BUTI ON AS A DEFAULT 

Normal and lognormal distributions are frequently applied models in groundwater data because of 
their general utility. One or the other of these models might be chosen as a default distribution when 
designing a statistical approach, particularly when relatively little data has been collected at a site. Since 
the statistical behavior of these two models is very different and can lead to substantially different 
conclusions, the choice is not arbitrary. The type of test involved, the monitoring program, and the 
sample size can all affect the decision. For many data sets and situations, however, the normal 
distribution can be assumed as a default unless and until a better model can be pinpointed through 
specific goodness-of-fit testing provided in this chapter. 

Assumptions of normality are most easily made with regard to naturally-occurring and measurable 
inorganic parameters, particularly under background conditions. Many ionic and other inorganic water 
quality analyte measurements exhibit decent symmetry and low variability within a given well data set, 
making these data amenable to assumptions of normality. Less frequently detected analytes (e.g., certain 
colloidal trace elements) may be better fit either by a site-wide lognormal or another distribution that can 
be normalized, as well as evaluated with non-parametric methods. 

Where contamination in groundwater is known to exist a priori (whether in background or 
compliance wells), default distributional assumptions become more problematic. At a given well, 
organic or inorganic contaminants may exhibit high or low variability, depending on local hydrogeologic 
conditions, the pattern ofrelease from the source, the degree of solid phase absorption, degradability of a 
given constituent, and the variation in groundwater flow direction and depths. Non-steady state releases 
may result in a historical, occasionally non-linear pattern of trend increases or decreases. Such data 
might be fit by an apparent lognormal distribution, although removal of the trend may lead to normally­
distributed residuals. 

Sample size is also a consideration. With fewer than 8 samples in a data set, formal goodness-of-fit 
tests are often oflimited value. Where larger sample sizes are available, goodness-of-fit tests should be 
conducted. The Shapiro-Wilk multiple group well test (Section 10. 7) - even with small sample sizes -
can sometimes be used to identify individual anomalous wells which might otherwise be presumed to 
meet the criterion of normality. Under compliance/assessment or corrective action monitoring, one might 
anticipate only four samples per well in the first year after instituting such monitoring. Under these 
conditions, a default assumption of normality for testing of the mean against a fixed standard is probably 
necessary. Aggregation of multi-year data when conducting compliance tests (see Chapter 7) may allow 
large enough sample sizes to warrant formal goodness-of-fit testing. With 8 (or more) samples, it may be 
possible to determine that a lognormal distribution is an appropriate fit for the data. Even in this latter 
approach, caution may be needed in applying Land's confidence interval for a lognormal mean (Chapter 
21) if the sample variability is large and especially if the upper confidence limit is used in the 
comparison (i.e., in corrective action monitoring). 

The normal distribution may also serve as a reasonable default when it is not critical to ensure that 
sample data closely follow a specific distribution. For example, statistical tests on the mean are generally 
considered more robust with respect to departures from normality than procedures which involve upper 
or lower limits of an assumed distribution. Even if the data are not quite normal, tests on the mean such 
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as a Student's t-test will often still provide a valid result. However, one might need to consider 
transformations of the data for other reasons. Analysis of variance [ANOVA] can be run with small 
individual well samples (e.g., n = 4), and as a comparison of means, it is fairly robust to departures from 
normality. A logarithmic or other transformation may be needed to stabilize or equalize the well-to-well 
variability (i.e., achieve homoscedasticity ), a separate and more critical assumption of the test. 

Given their importance in statistical testing and the risks that sometimes occur in trying to interpret 
tests on other data transformation possibilities, it is useful to briefly consider the logarithmic 
transformation in more detail. As noted in Section 10.1, groundwater data can frequently be normalized 
using a logarithmic distribution model. Despite this, objections are sometimes raised that the log 
transformation is merely used to "make large numbers look smaller." 

To better understand the log transformation, it should be recognized that logarithms are, in fact, 

exponents to some unit base. Given a concentration-scale variable x, re-expressed as x = 1 or or x = er , 

the logarithm y is the exponent of that base (10 or the natural base e ). It is the behavior of the resultant y 
values that is assessed when data are log-transformed. When data relationships are multiplicative in the 
original arithmetic domain ( x

1 
x x

2 
), the relationships between exponents (i.e., logarithms) are additive 

( y 
1 
+ y 

2 
). Since the logarithmic distribution by mathematical definition is normal in a log-transformed 

S3!TI!lpllkn,dWtnibirtgmvitlud:hocllro~gari:thnnrrimtead of the original concentration measurements may offer a 

Similar to a unit scale transformation (ppm to ppb or Fahrenheit to Centigrade), the relative 
ordering oflog-transformed measurements does not change. When non-parametric tests based on ranks 
(e.g., the Wilcoxon rank-sum test) are applied to data transformed either to a different unit scale or by 
logarithms, the outcomes are identical. However, other relationships among the log-transformed data do 
change, so that the log-scale numerical 'spacing' between lower values is more similar to the log-scale 
spacing between higher values. While parametric tests like prediction limits, !-tests, etc., are not affected 
by unit scale transformations, these tests may have different outcomes depending on whether raw 
concentrations or log-transformed measurements are used. The justification for utilizing log-transformed 
data is that the transformation helps to normalize the data so that these tests can be properly applied. 

There is also a plausible physical explanation as to why pollutant concentrations often follow a 
logarithmic pattern (Ott, 1990). In Ott's model, pollutant sources are randomly dispersed through the 
subsurface or atmosphere in a multiplicative fashion through repeated dilutions when mixing with 
volumes of (uncontaminated) water or air, depending on the medium. Such random and repeated 

dilutions can mathematically lead to a lognormal distribution. In particular, if a final concentration ( 
co) 

is the product of several random dilutions ( ci) as suggested by the following equation: 

11 

IT ( 1 c9c Kx:g:r,:~ [10.3) 

the logarithm of this concentration is equivalent to the sum of the logarithms of the individual dilutions: 

[10.4) 
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The Central Limit Theorem (Chapter 3) can be applied to conclude that the logged concentration 
in equation [10.4) should be approximately normal, implying that the original concentration ( c

0
) should 

be approximately lognormal in distribution. Contaminant fate-and-transport models more or less follow 
this same approach, using successive multiplicative dilutions (while accounting for absorption and 
degradation effects) across grids in time and space. 

Despite the mathematical elegance of the Ott model, experience with groundwater monitoring data 
has shown that the lognormal model alone is not adequate to account for observed distribution patterns. 
While contaminant modeling might predict a lognormal contaminant distribution in space (and often in 
time at a fixed point during transient phases), individual well location points fixed in space and at rough 
contaminant equilibrium are more likely to be subject to a variety oflocal hydrologic and other factors, 
and the observed distributions can be almost limitless in form. Since most of the tests within the Unified 
Guidance presume a stationary population over time at a given well location (subject to identification 
and removal of trends), the resultant distributions may be other than lognormal in character. Individual 
constituents may also exhibit varying aquifer-related distributional characteristics. 

A practical issue in selecting a default transformation is ease of use. Distributions like the 
lognormal usually entail more complicated statistical adjustments or calculations than the normal 
distribution. A confidence interval around the arithmetic mean of a lognormal distribution utilizes 
Land's H-factor, which is a function of both log sample data variability and sample size, and is only 
readily available for specific confidence levels. By contrast, a normal confidence interval around the 
sample mean based on the !-statistic can easily be defined for virtually any confidence level. As noted 
earlier, correct use of these confidence intervals depends on selecting the appropriate parameter and 
statistical measure (arithmetic mean versus the geometric mean). 

While a transformation does not always necessitate using a different statistical formula to ensure 
unbiased results, use of a transformation does assume that the underlying population is non-normal. 
Since the true population will almost never be known with certainty, it may not be advantageous to 
simply default to a lognormal assumption for a variety of reasons. Under detection monitoring, the 
presumption is made that a statistically significant increase above background concentrations will trigger 
a monitoring exceedance. But the larger the prediction limit computed from background, the less 
statistical power the test will have for detecting true increases. An important question to answer is what 
the consequences are when incorrectly applying statistical techniques based on one distributional 
assumption (normal or lognormal), when the underlying distribution is in fact the other. More 
specifically, what is the impact on statistical power and accuracy of assuming the wrong underlying 
distribution? The general effects of violating underlying test assumptions can be measured in terms of 
false positive and negative error rates (and therefore power). These questions are particularly pertinent 
for prediction limit and control chart tests in detection monitoring. Similar questions could be raised 
regarding the application of confidence interval tests on the mean when compared against fixed 
standards. 

To answer these questions, a series of Monte Carlo simulations was generated for the Unified 
Guidance to evaluate the impacts on prediction limit false positive error rates and statistical power of 
using normal and lognormal distributions (correctly and incorrectly applied to the underlying 
distributions). Detailed results of this study are provided in Appendix C, Section C.1. 
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The conclusions of the Monte Carlo study are summarized as follows: 

If an underlying population is truly normal, treating the sample data as lognormal m 
constructing a prediction limit can have significant consequences. With no retesting, the 
lognormal prediction limits were in every case considerably larger and thus less powerful than 
the normal prediction limits. Further, the lognormal limits consistently exhibited less than the 
expected (nominal) false positive rate, while the normal prediction limits tended to have slightly 
higher than nominal error rates. 

When retesting was added to the procedure, both types of prediction limits improved. While 
power uniformly improved compared to no retest, the normal limits were still on average about 
13% shorter than the lognormal limits, leading again to a measurable loss of statistical power in 
the lognormal case. 

On balance, misapplication of logarithmic prediction limits to normally-distributed data 
consistently resulted in (often considerably) lower power and false positive rates that were lower 
than expected. The results argue against presuming the underlying data to be lognormal without 
specific goodness-of-fit testing. 

The highest penalties from misapplying lognormal prediction limits occurred for smaller 
background sizes. Since goodness-of-fit tests are least able to distinguish between normal and 
lognormal data with small samples, small background samples should not be presumed to be 
lognormal as a default unless other evidence from the site suggests otherwise. For larger 
samples, goodness-of-fit tests have much better discriminatory power, enabling a better 
indication of which model to use. 

If the underlying population is truly lognormal but the sample data are treated as normal , the 
penalty in overall statistical performance is substantial only if no retesting is conducted. With no 
retesting, the false positive rates of normal-based limits were often substantially higher than the 
expected rate. Under conditions of no retesting, misapplying normal prediction limits to 
lognormal data would result in an excessive site-wide false positive rate (SWFPR). 

If at least one retest was added, the achieved false positive rates for the misapplied normal limits 
tended to be less than the expected rates, especially for moderate to larger sample sizes. Except 
for highly skewed lognormal distributions, the power of the normal limits was comparable or 
greater than the power of the lognormal limits. 

Overall, the Monte Carlo study indicated that adding a retest to the testing procedure significantly 
minimized the penalty of misapplying normal prediction limits to lo gnormal data, as long as the sample 
size was at least 8 and the distribution was not too skewed. Consequently, there is less penalty associated 
with making a default assumption of non11ality than in making a default assumption of lognormality 
under most situations. With highly skewed data, goodness-of-fit tests tend to better discriminate between 
the normal and lognormal models. The Unified Guidance therefore recommends that such diagnostic 
testing be done explicitly rather than simply assuming the data to be normal or lognormal. 

The most problematic cases in the study occurred for very small background sample sizes, where a 
misapplication of prediction limits in either direction often resulted in poorer statistical performance, 
even with retesting. In some situations, compliance testing may need to be conducted on an interim 
basis until enough data has been collected to accurately identify a distributional model. The Unified 
Guidance does not recommend an automatic default assumption oflognormality. 
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In summary, during detection and compliance/assessment monitoring, data sets should be treated 
initially as normal in distribution unless a better model can be pinpointed through specific testing. The 
normal distribution is a fairly safe assumption for background distributions, particularly for naturally 
occurring, measurable constituents and when sample sizes are small. Goodness-of-fit tests provided in 
this chapter can be used to more closely identify the appropriate distributions for larger sample sizes. If 
the initial assumption of normality is not rejected, further statistical analyses should be performed on the 
raw observations. If the normal distribution is rejected by a goodness-of-fit test, one should generally test 
the normality of the logged data, in order to check for lognormality of the original observations. If this 
test also fails, one can either look for an alternate transformation to achieve approximate normality 
(Section 10.2) or use a non-parametric technique. 

Since tests of normality have low power for rejecting the null hypothesis when the data are really 
lognormal but the sample size and degree of skewness are small, it is reassuring that a "wrong" default 
assumption of normality will infrequently lead to an incorrect statistical conclusion. In fact, the statistical 
power for detecting real concentration increases will generally be better than if the data were assumed to 
be lognormal. If the data are truly lognormal, there is a risk of greater-than-expected site-wide false 
positive error rates. 

When the population is more skewed, normality tests in the Unified Guidance have much greater 
power for correctly rejecting the normal model in favor of the lognormal distribution. Consequently, an 
initial assumption of normality will not, in most cases, lead to an incorrect final conclusion, since the 
presumed normal model will tend to be rejected before further testing is conducted. 

These recommendations do not apply to corrective action monitoring or other programs where it 
either known or reasonable to presume that groundwater is already impacted or has a non-normal 
distribution. In such settings, a default presumption of lognormality could be made, or a series of 
normalizing transformations could be attempted until a suitable fit is determined. Furthermore, even in 
detection monitoring, there are situations that often require the use of alternate transformations, for 
instance when pooling intrawell background across several wells to increase the degrees of freedom 
available for intrawell testing (Chapter 13 ). 

Whatever the circumstance, the Unified Guidance recommends whenever possible that site­
specific data be used to test the distributional presumption. If no data are initially available to do this, 
"referencing" may be employed to justify the use of, say, a normal or lognormal assumption in 
developing statistical tests at a particular site. Referencing involves the use of historical data or data 
from sites in similar hydrologic settings to justify the assumptions applied to the proposed statistical 
regimen. These initial assumptions should be checked when data from the site become available, using 
the procedures described in the Unified Guidance. Subsequent changes to the initial assumptions should 
be made if goodness-of-fit testing contradicts the initial hypothesis. 

10.4 COEFFICIENT OF VARIATION AND COEFFICIENT OF SKEWNESS 

PURPOSE AND BACKGROUND 

Because the normal distribution has a symmetric 'bell-shape,' the normal mean and median 
coincide and random observations drawn from a normal population are just as likely to occur below the 
mean as above it. More generally, in any symmetric distribution the distributional pattern below the 
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mean is a mirror-image of the pattern above the mean. By definition, such distributions have no degree 
of skewness or asymmetry. 

Since the normal distribution has zero skewness, one way to look for non-normality is to estimate 
the degree of skewness. Non-zero values of this measure imply that the population is asymmetric and 
therefore something different from normal. Two exploratory screening tools useful for this task are the 
coefficient of variation and the coefficient of skewness. 

The coefficient of variation [CV] is extremely easy to compute, but only indirectly offers an 
estimate of skewness and hence normality/non-normality. A more direct estimate can be determined via 
the coefficient of skewness. Furthermore, better, formal tests can be used instead of either coefficient to 
directly assess normality. Nevertheless, the CV provides a measure of intrinsic variability in positive­
valued data sets. Although approximate, CVs can indicate the relative variability of certain data, 
especially with small sample sizes and in the absence of other formal tests (e.g., see Chapter 22, when 
comparing confidence limits on the mean to a fixed standard in compliance monitoring). 

The CV is also a valid measure of the multiplicative relationship between the population mean and 

the standard deviation for positively-valued random variables. Using sample statistics for the mean ( x) 
and standard deviation (s), the true CV for non-negative normal populations can be reasonably estimated 
as: 

= I xsCV [10.5) 

In lognormal populations, the CV is also used in evaluations of statistical power. In this latter 
case, the population CV works out to be: 

[10.6) 

where cry is the population log-standard deviation. Instead of a ratio between the original scale standard 
deviation and the mean, the lognormal CV is estimated with the equation: 

CV= ~exp~~} 1 [ 10. 7) 

where s is the sample log-standard deviation. The estimate in equation [10.7) is usually more accurate 
) 

than the simple CV ratio of the arithmetic standard deviation-to-mean, especially when the underlying 
population coefficient of variation is high. Similar to using the normal CV as a formal indicator of 
normality, the lognormal coefficient of variation estimator in equation [10.7) will have little relevance as 
a test of lognormality of the data. Using it for that purpose is not recommended in the Unified 
Guidance. But it can provide a sense of how variable a data set is and whether a lognormal assumption 
might need to be tested. 

While others have reported a ratio CV on logged measurements as = . I rsCVfor the 
) . 

transformation y = log x, the result is essentially meaningless. The actual logarithmic CV in equations 
[10.6) and [10.7) is solely determined by the logarithmic variability of lr or s1 . Negative logarithmic 
mean values are always possible, and the log ratio statistic is not invariant under a unit scale 
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transformation (e.g., ppb to ppm or ppt ). Similar problems in interpretation occur when CV estimators 
are applied to any variable which can be negatively valued, such as following a z-transformation to a 
standard normal distribution. This log ratio statistic is not recommended for any application in the 
guidance. 

The coefficient of skewness (y i) directly indicates to what degree a dataset is skewed or 
asymmetric with respect to the mean. Sample data from a normal distribution will have a skewness 
coefficient near zero, while data from an asymmetric distribution will have a positive or negative 
skewness depending on whether the right- or left-hand tail of the distribution is longer and skinnier than 
the opposite tail. 

Since groundwater monitoring concentrations are inherently non-negative, such data often exhibit 
skewness. A small degree of skewness is not likely to affect the results of statistical tests that assume 
normality. However, if the skewness coefficient is larger than 1 (in absolute value) and the sample size is 
small (e.g., n < 25), past research has shown that standard normal theory-based tests are much less 
powerful than when the absolute skewness is less than 1 ( Gayen, 1949). 

Calculating the skewness coefficient is useful and only slightly more difficult than computing the 
CV It provides a quick indication of whether the skewness is minimal enough to assume that the data 
are roughly symmetric and hopefully normal in distribution. If the original data exhibit a high skewness 
coefficient, the normal distribution will provide a poor approximation to the dataset. In that case - and 
unlike the CV - y 1 can be computed on the log-transformed data to test for symmetry of the logged 

measurements, or similarly for other transformations. 

PROCEDURE 

The CV is calculated simply by taking the ratio of the sample standard deviation to the sample 

mean, CV= s/x or its corresponding logarithmic version CV= ~exp~~} 1 . 

The skewness coefficient may be computed using the following equation: 

)
/2 3 

1 s 

where the numerator represents the average cubed residual after subtracting the sample mean. 

l EXAMPLE 10-1 

[10.8) 

Using the following data, compute the CVs and the coefficient of skewness to test for approximate 
symmetry. Assume that the individual well data sets can be shown to arise from a single common 
population distribution: 
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Nickel Concentration (ppb) 

Month Well 1 Well 2 Well 3 Well 4 

Jan 58.8 19 39 3.1 
Mar 1.0 81.5 151 942 
Jun 262 331 27 85.6 
Aug 56 14 21.4 10 
Oct 8.7 64.4 578 637 

SOLUTION 

Step 1. Compute the mean, standard deviation (s), and sum of the cubed residuals for the nickel 
concentrations: 

x = 18.~+++637)= 52.WJ; 

7175.'W)J 

-
52}~9 .97845791 xl0 8 ppb 3 

Step 2. Compute the arithmetic normal coefficient of variation following equation [10.5): 

CV= 259.7175/169.52 = 1.53 

Step 3. Calculate the coefficient of skewness using equation [10.8): 

Both the CV and the coefficient of skewness are much larger than 1, so the data appear to be 
significantly positively skewed. Do not assume that the underlying population is normal. 

Step 4. Since the original data evidence a high degree of skewness, one can instead compute the 
skewness coefficient and corresponding sample CV with equation [10. 7) on the logged nickel 
concentrations. The logarithmic CV equals 4.97, a much more variable data set than 
suggested by the arithmetic CV The skewness coefficient works out to be IY 11= 0.24 < 1, 

indicating that the logged data values are slightly skewed but not enough to clearly reject an 
assumption of normality in the logged data. In other words, the original nickel values may be 
lognormally distributed. L 
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10. 5 SHAPIRO-WILK AND SHAPI RO-FRANCi A NORMAL! TY TESTS 

10.5. 1 SHAPIRO-WILK TEST (N 3 50) 

PURPOSE AND BACKGROUND 

The Shapiro-Wilk test is based on the premise that if a data set is normally distributed, the ordered 
values should be highly correlated with corresponding quantiles (z-scores) taken from a normal 
distribution (Shapiro and Wilk, 1965). In particular, the Shapiro-Wilk test gives substantial weight to 
evidence of non-normality in the tails of a distribution, where the robustness of statistical tests based on 
the normality assumption is most severely affected. A variant of this test, the Shapiro-Francia test, is 
useful for sample sizes greater than 50 (see Section 10.5.2 ). 

The Shapiro-Wilk test statistic (SW) will tend to be large when a probability plot of the data 
indicates a nearly straight line. Only when the plotted data show significant bends or curves will the test 
statistic be small. The Shapiro-Wilk test is considered one of the best tests of normality available 
(Miller, 1986; Madansky, 1988). 

PROCEDURE 

Step 1. Order and rank the dataset from least to greatest, labeling the observations as xi for rank i = 

1 .. . n. Using the notation X(i), let the ith rank statistic from a data set represent the ith smallest 
value. 

Step 2. Compute differences ;f(
11 

i· 
1
)- x0 6 for each i = 1 .. . n. Then determine k as the greatest integer 

less than or equal to (n/2). 

Step 3. Use Table 10-2 in Appendix D to determine the Shapiro-Wilk coefficients, an-i+I , for i = 

1.. .k. Note that while these coefficients depend only on the sample size (n), the order of the 
coefficients must be preserved when used in Step 4. The coefficients can be determined for 
any sample size from n = 3 up to n = 50. 

Step 4. Compute the quantity b given by the following equation: 

k k 

b= I b = I a . (x - x ) 1 n· l· I (11-1+1) (1) 
[10.9) 

ic] ic] 

Note that the values bi are simply intermediate quantities represented by the terms in the sum 
of the right-hand expression in equation [10.9). 

Step 5. Calculate the standard deviation (s) of the dataset. Then compute the Shapiro-Wilk test 
statistic using the equation: 

b 
SW= C rJ' 

•sJ;;l 
[10.10) 
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Step 6. Given the significance level (a) of the test, determine the critical point of the Shapiro-Wilk 
test with n observations using Table 10-3 in Appendix D. To maximize the utility and power 
of the test, choose a= .10 for very small data sets (n < 10), a= .05 for moderately sized data 
sets (10 J n < 20), and a= .01 for larger sized data sets (n I 20). Compare the SW against the 
critical point (swc). If the test statistic exceeds the critical point, accept normality as a 
reasonable model for the underlying population. However, if SW < swc, reject the null 
hypothesis of normality at the a-level and decide that another distributional model might 
provide a better fit. 

l EXAMPLE 10-2 

Use the nickel data of Example 10-1 to compute the Shapiro-Wilk test of normality. 

SOLUTION 

Step 1. Order the data from smallest to largest, rank in ascending order and list, as shown in columns 
I and 2 of the table below. Next list the data in reverse order in a third column. 

x(i) X(n-i+1) X(n-i+1) - X(i) an-i+1 b; 

1 1.0 942.0 941.0 .4734 445.47 
2 3.1 637.0 633.9 .3211 203.55 
3 8.7 578.0 569.3 .2565 146.03 
4 10.0 331.0 321.0 .2085 66.93 
5 14.0 262.0 248.0 .1686 41.81 
6 19.0 151.0 132.0 .1334 17.61 
7 21.4 85.6 64.2 .1013 6.50 
8 27.0 81.5 54.5 .0711 3.87 
9 39.0 64.4 25.4 .0422 1.07 
10 56.0 58.8 2.8 .0140 0.04 
11 58.8 56.0 -2.8 b = 932.88 
12 64.4 39.0 -25.4 
13 81.5 27.0 -54.5 
14 85.6 21.4 -64.2 
15 151.0 19.0 -132.0 
16 262.0 14.0 -248.0 
17 331.0 10.0 -321.0 
18 578.0 8.7 -569.3 
19 637.0 3.1 -633.9 
20 942.0 1.0 -941.0 

Step 2. Compute the differences ;f(n i-
1
)- x0 rJ' in column 4 of the table by subtracting column 2 from 

column 3. Since the total sample size is n = 20, the largest integer less than or equal to (n/2) is 
k= IO. 

Step 3. Look up the coefficients an-i+I from Table 10-2 in Appendix D and list in column 4. 
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Step 4. Multiply the differences in column 3 by the coefficients in column 4 and add the first k 
products (bi) to get quantity b, using equation [10.9). 

b = [ 4734.( )+ 321 l(0.94P.)53B<tt ( 8]0140. 88.932 

Step 5. Compute the standard deviation of the sample, s = 259.72. Then use equation [10.10) to 
calculate the SW: 

2 
- 932.88 

SW= C r;-::6 = 0.679 
•259.72-vl9 

Step 6. Use Table 10-3 in Appendix D to determine the 0.01-level critical point for the Shapiro-Wilk 
test when n = 20. This gives swc = 0.868. Then compare the observed value of SW= 0.679 to 
the I% critical point. Since SW < 0.868, the sample shows significant evidence of non­
normality by the Shapiro-Wilk test. The data should be transformed using logarithms or 
another transformation on the ladder of powers and re-checked using the Shapiro-Wilk test 
before proceeding with further statistical analysis. L 

10.5.2 SHAPIRO-FRANCIA TEST (N > 50) 

The Shapiro-Wilk test of normality can be used for sample sizes up to 50. When n is larger than 
50, a slight modification of the procedure called the Shapiro-Francia test (Shapiro and Francia, 1972) 
can be used instead. Like the Shapiro-Wilk test, the Shapiro-Francia test statistic (SF) will tend to be 
large when a probability plot of the data indicates a nearly straight line. Only when the plotted data show 
significant bends or curves will the test statistic be small. 

To calculate the test statistic SF, one can use the following equation: 

[10.11) 

where X(i) represents the ith ranked value of the sample and where 111 i denotes the approximate expected 
value of the ith rank normal quantile (or z-score). The values for 111 i are approximately equal to 

I i p 
Ill = <I> i:::i-11 

, ;1n+ It 
[10.12) 

where <I> 1 denotes the inverse of the standard normal distribution with zero mean and unit variance. 
These values can be computed by hand using the normal distribution in Table 10-1 of Appendix D or 
via simple commands found in many statistical computer packages. 

Normality of the data should be rejected if the Shapiro-Francia statistic is too low when compared 
to the critical points provided in Table 10-4 of Appendix D. Otherwise one can assume the data are 
approximately normal for purposes of further statistical analysis. 

10-15 March 2009 

EPAPAV0117131 



Chapter 10. Fitting Distributions Unified Guidance 

10. 6 PROBABILITY PLOT CORRELA Tl ON COEFFI Cl ENT 

BACKGROUND AND PURPOSE 

Another test for normality that is essentially equivalent to the Shapiro-Wilk and Shapiro-Francia 
tests is the probability plot correlation coefficient test described by Filliben (1975). This test meshes 
perfectly with the use of probability plots, because the essence of the test is to compute the usual 
correlation coefficient for points on a probability plot. Since the correlation coefficient is a measure of 
the linearity of the points on a scatterplot, the probability plot correlation coefficient, like the SW test 
statistic, will be high when the plotted points fall along a straight line and low when there are significant 
bends and curves in the probability plot. Comparison of the Shapiro-Wilk and probability plot 
correlation coefficient tests has indicated very similar statistical power for detecting non-normality 
(Ryan and Joiner, 1990). 

It should be noted that although some statistical software may not compute Filliben's test directly, 
the usual Pearson's correlation coefficient computed on the data pairs used to construct a probability plot 
will provide a very close approximation to the Filliben statistic. Some users may find this latter 
correlation easier to compute or more accessible in their software. 

PROCEDURE 

Step 1. List the observations in order from smallest to largest, denoting X(i) as the ith smallest rank 
statistic in the data set. Then let n = sample size and compute the sample mean ( x ) and the 
standard deviation (s). 

Step 2. Consider a random sample drawn from a standard normal distribution. The ith rank statistic of 
this sample is fixed once the sample is drawn, but beforehand it can be considered a random 
variable, denoted as X(i)- Likewise, by considering all possible datasets of size n that might be 
drawn from the normal distribution, one can think of the sampling distribution of the statistic 
X(i)- This sampling distribution has its own mean and variance, and, of importance to the 
probability plot correlation coefficient, its own median , which can be denoted II i· 

To compute the median of the ith rank statistic, first compute intermediate probabilities 111 i for 
i = 1 ... n using the equation: 

L 1- (5 f" 
L 

111 i = 1~- .3175)/(n+ .365) 

J- (5 f" 

for i = 1 

for 1 < i < n 

for i = n 

[10.13) 

Then compute the medians II i as the standard normal quantiles or z-scores associated with the 
intermediate probabilities 111 i· These can be determined from Table 10-1 in Appendix D or 

computed according to the following equation, where <l> 1 represents the inverse of the 
standard normal distribution: 

[10.14) 
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Step 3. With the rank statistic medians in hand, calculate the arithmetic mean of the II i's, denoted JI , 
and the intermediate quantity Cn, given by the equation: 

Cn = 111 JI i2 - nf 2 [10.15) 
ic I 

Note that when the dataset is "complete" (meaning it contains no non-detects, ties, or censored 
values), the mean of the order statistic medians reduces to f = 0. This in turn reduces the 
calculation of Cn to: 

C=~n\12 
11 1 

ic] 

[10.16) 

Step 4. Finally compute Filliben's probability plot correlation coefficient: 

1

11 

x011 i - nxr 
r = _ic_l ____ _ 

C-s~ 
11 

[ 10.17) 

When the dataset is complete, the equation for the probability plot correlation coefficient also 
has a simplified form: 

r= 1

11 

x0 11 ./-c -s~ 
I I • 11 

ic I 

[10.18) 

Step 5. Given the level of significance (a), determine the critical point (rep) for Filliben's test with 
sample size n from Table 10-5 in Appendix D. Compare the probability plot correlation 
coefficient (r) against the critical point (rep). If r I rep, conclude that normality is a reasonable 
model for the underlying population at the a-level of significance. If, however, r < rep, reject 
the null hypothesis and conclude that another distributional model would provide a better fit. 

l EXAMPLE 10-3 

Use the data of Example 10-1 to compute Filliben's probability plot correlation coefficient test at 
the a= .01 level of significance. 

SOLUTION 

Step 1. Order and rank the nickel data from smallest to largest and list, as in the table below. The 
sample size is n = 20, with sample mean x = 169.52 and the standard deviations= 259.72. 

Step 2. Compute the intermediate probabilities m Jrom equation [10.13) for each tin column 3 and 
the rank statistic medians, II i, in column 4 by applying the inverse normal transformation to 
column 3 using equation [10.14) and Table 10-1 of Appendix D. 
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Step 3. Since this sample contains no non-detects or ties, the simplified equations for Cn in equation 
[10.16] and for r in equation [10.18] may be used. First compute Cn using the squared order 
statistic medians in column 5: 

en = J[ 926. l 313:8tB 328} = 138.4 

Step 4. Next compute the products x0 x II iin column 6 and sum to get the numerator of the 

correlation coefficient (equal to 3,836.81 in this case). Then compute the final correlation 
coefficient: 

r = 3,836.81/;4.138 x 259.7209 = 0.819 

X(i) m; M; (M;)2 X(i) x:xl\/l; 

1 1.0 .03406 -1.8242 3.328 -1.824 
2 3.1 .08262 -1.3877 1.926 -4.302 
3 8.7 .13172 -1.1183 1.251 -9.729 
4 10.0 .18082 -0.9122 0.832 -9.122 
5 14.0 .22993 -0.7391 0.546 -10.347 
6 19.0 .27903 -0.5857 0.343 -11.129 
7 21.4 .32814 -0.4451 0.198 -9.524 
8 27.0 .37724 -0.3127 0.098 -8.444 
9 39.0 .42634 -0.1857 0.034 -7.242 

10 56.0 .47545 -0.0616 0.004 -3.448 
11 58.8 .52455 0.0616 0.004 3.621 
12 64.4 .57366 0.1857 0.034 11.959 
13 81.5 .62276 0.3127 0.098 25.488 
14 85.6 .67186 0.4451 0.198 38.097 
15 151.0 .72097 0.5857 0.343 88.445 
16 262.0 .77007 0.7391 0.546 193.638 
17 331.0 .81918 0.9122 0.832 301.953 
18 578.0 .86828 1. 1183 1.251 646.376 
19 637.0 .91738 1.3877 1.926 883.941 
20 942.0 .96594 1.8242 3.328 1718.408 

Step 5. Compare Filliben's test statistic of r = 0.819 to the 1% critical point for a sample of size 20 in 
Table 10-5 of Appendix D, namely rep= 925. Since r < 0.925, the sample shows significant 
evidence of non-normality by the probability plot correlation coefficient. The data should be 
transformed and the correlation coefficient re-calculated before proceeding with further 
statistical analysis. L 

10. 7 SHAPIRO-WILK MUL Tl PLE GROUP TEST OF NORMAL! TY 

BACKGROUND AND PURPOSE 

The main purpose for including the multiple group test normality (Wilk and Shapiro, 1968) in the 
Unified Guidance is to serve as a check for normality when using a Student's t-test (Chapter 16) or 
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when assessing the joint normality of multiple intrawell data sets. The multiple group test is an extension 
of the Shapiro-Wilk procedure for assessing the joint normality of several independent samples. Each 
sample may have a different mean and/or variance, but as long as the underlying distribution of each 
group is normal, the multiple group test statistic will tend to be non-significant. Conversely, the multiple 
group test is designed to identify when at least one of the groups being tested is definitely non-normal. 

This test extends the Shapiro-Wilk procedure for a single sample, using individual SW test 
statistics computed separately for each group or sample. Then the individual SW statistics are 
transformed and combined into an overall or "omnibus" statistic ( G). Like the single sample procedure 
- where non-normality is indicated when the test statistic SW is too low - non-normality in one or 
more groups is indicated when G is too low. However, instead of a special table of critical points, G is 
constructed to follow a standard normal distribution under the null hypothesis of normality. The value of 
G can simply be compared to an a-level z-score or normal quantile to decide whether the null or 
alternative hypothesis is better supported. 

Since it may be unclear which one or more of the groups is actually non-normal when the G 
statistic is significant, Wilk and Shapiro recommend that a probability plot (Chapter 9) be examined on 
the intermediate quantities, Gi (at least for the case where several groups are being simultaneously 
tested). One of these statistics is computed for each separate sample/group and is designed to follow a 
standard normal distribution under H 0 . Because of this, the Gi statistics for non-normal groups will tend 
to look like outliers on a normal probability plot (see Chapter 12). 

The multiple group test can also be used to check normality when performing Welch's t-test, a 
two-sample procedure in which the underlying data of both groups are assumed to be normal, but no 
assumption is made that the means or variances are the same. This is different from either the pooled 
variance t-test or the one-way analysis of variance [ANOVA], both of which assume homoscedasticity 
(i.e., equal variances across groups). If the group variances can be shown to be equal, the single sample 
Shapiro-Wilk test can be run on the combined residuals, where the residuals of each group are formed by 
subtracting off the group mean from each of the individual measurements. However, if the group 
variances are possibly different, testing the residuals as a single group using the SW statistic may give an 
inaccurate or misleading result. Consequently, since a test of homoscedasticity is not required for 
Welch's !-test, it is suggested to first use the multiple group test to check normality. 

Although the Shapiro-Wilk multiple group method is an attractive procedure for accommodating 
several groups of data at once, the user is cautioned against indiscriminate use. While many of the 
methods described in the Unified Guidance assume underlying normality, they also assume 
homoscedasticity. Other parametric multi-sample methods recommended for detection monitoring -
prediction limits in Chapter 18 and control charts in Chapter 20 - all assume that each group has the 
same variance. Even if normality of the joint data can be demonstrated using the Shapiro-Wilk multiple 
group test, it says nothing about whether the assumption of equal variances is also satisfied. Generally 
speaking, except for Welch's t-test, a separate test ofhomoscedasticity may also be needed. Such tests 
are described in Chapter 11. 

PROCEDURE 

Step 1. Assuming there are K groups to be tested, let the sample size of the ith group be denoted ni. 

Then compute the S~ test statistic for each of the K groups using equation [I 0.1 O]. 
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Step 2. Transform the S~ statistics to the intermediate quantities ( Gi). If the sample size ( ni) of the ith 
group is at least 7, compute Gi with the equation: 

GSW- 0 P 
G = y + 8 ln i:::i ' 1 

1 JI 1- SW 
1 

[10.19) 

where the quantities y, 8, and £ can be found in Table 10-6 of Appendix D for 7 J ni J 50. If 
the sample size (ni) is less than 7, determine Gi directly from Table 10-7 in Appendix D by 
first computing the intermediate value 

[10.20) 

(obtaining £ from the top of Table 10-7), and then using linear interpolation to find the closest 
value Gi associated with ui. 

Step 3. Once the Gi statistics are derived, compute the Shapiro-Wilk multiple group statistic with the 
equation: 

[10.21) 

Step 4. Under the null hypothesis that all K groups are normally-distributed, G will follow a standard 
normal distribution. Given the significance level (a), determine an a-level critical point from 
Table 10-1 of Appendix D as the lower ax 100 th normal quantile (za). Then compare G to 
Za. If G < Za, there is significant evidence of non-normality at the a level. Otherwise, the 
hypothesis of normality cannot be rejected. 

l EXAMPLE 10-4 

The previous examples in this chapter pooled the data of Example 10-1 into a single group before 
testing for normality. This time, treat each well separately and compute the Shapiro-Wilk multiple group 
test of normality at the a= .05 level. 

SOLUTION 

Step 1. The nickel data in Example 10-1 come from K = 4 wells with ni = 5 observations per well. 
Using equation [ 10 .1 OJ, the S~ individual well test statistics are calculated as: 

Well 1: SW1 =0.7577 

Well 2: SW2 = 0.7396 

Well 3: SW3 = 0.7065 

Well 4: SW4 = 0.8149 
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Step 2. Since lli = 5 for each well, use Table 10-7 of Appendix D to find E = .5521. First calculating 
u1 with equation [10.20]: 

- 5521.~57_7- 1641. 
- 7577.1 ~ 

Then performing this step for each well group and using linear interpolation on u in Table 10-
7, the approximate Gi statistics are: 

Well 1: U1 =-.1641 G1 = -1.783 

Well 2: U2 = -.3280 G2 = -1.932 

Well 3: U3 = -.6425 G3 = -2.200 

Well 4: U4 = .3502 G4 = -1.254 

Step 3. Compute the multiple group test statistic using equation [10.21]: 

1 
G = -J4[(- 783) (-+ 932) (-+ 200) (-+ 254)1 -= 585.3 

Step 4. Since a = 0. 05, the lower a x 100 th critical point from the standard normal distribution in 
Table 10-1 of Appendix D is z.05 = -1.645. Clearly, G < z.05 ; in fact G is equivalent to a Z­
value probability of.0002. Thus, there is significant evidence of non-normality in at least one 
of these wells (and perhaps all of them). L 

l EXAMPLE 10-5 

The data in Example 10-1 showed significant evidence of non-normality. In this example, use the 
same nickel data applying the coefficient of skewness, Shapiro-Wilk and the Probability Plot Correlation 
Coefficient tests to determine whether the combined well measurements better follow a lognormal 
distribution by first log-transforming the measurements. Computing the natural logarithms of the data 
gives the table below: 

Logged Nickel Concentrations log(ppb) 

Month Well 1 Well 2 Well 3 Well 4 

1 4.07 2.94 3.66 1.13 
2 0.00 4.40 5.02 6.85 
3 5.57 5.80 3.30 4.45 
4 4.03 2.64 3.06 2.30 
5 2.16 4.17 6.36 6.46 
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SOLUTION 

METHOD 1. COEFFI Cl ENT OF SKEWNESS 

Step 1. Compute the log-mean ( y ), log-standard deviation (sy), and sum of the cubed residuals for the 

logged nickel concentrations (y i): 

- 1 ( 
y = 20 OO.OCK4+ 46) 918.lbg(ppb) 

918~0f7.~ 918~00.K ++ ( 8014.log(ppb) 

-
918J07Ktt ( 9 l 8J~6.6: 528.fug 3 (ppb) 

Step 2. Calculate the coefficient of skewness using equation [10.8] with Step 1 values as: 

Since the absolute value of the skewness is less than 1, the data do not show evidence of 
significant skewness. Applying a normal distribution to the log-transformed data may 
therefore be appropriate, but this model should be further checked. The logarithmic CV of 
4.97 computed in Example 10-1 was also suggestive of a highly skewed distribution, but can 
be difficult to interpret in determining if measurements, in fact, follow a logarithmic 
distribution. 

METHOD 2. SHAPIRO-WILK TEST 

Step 1. Order and rank the data from smallest to largest and list, as in the table below. List the data in 
reverse order alongside the first column. Denote the ith logged observation by y i =log( xi). 

Step 2. Compute differences ~· (n- i- i) - y 0 6 in column 4 of the table by subtracting column 2 from 

column 3. Since n = 20, the largest integer less than or equal to (n/2) is k = 10. 

Step 3. Look up the coefficients an-i+I from Table 10-2 of Appendix D and list in column 5. 

Step 4. Multiply the differences in column 4 by the coefficients in column 5 and add the first k 
products (bi) to get quantity b, using equation [10.9]. 

b = [ ( )+ ( 33J3N-ilt.85.64{Dtl]l40.77.7 
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Ye;) Y (n-i+1) Y (n-i+1) - Y (i) 8n-i+1 b; 

1 0.00 6.85 6.85 .4734 3.24 
2 1.13 6.46 5.33 .3211 1. 71 
3 2.16 6.36 4.20 .2565 1.08 
4 2.30 5.80 3.50 .2085 0.73 
5 2.64 5.57 2.93 .1686 0.49 
6 2.94 5.02 2.08 .1334 0.28 
7 3.06 4.45 1.39 .1013 0.14 
8 3.30 4.40 1.10 .0711 0.08 
9 3.66 4.17 0.51 .0422 0.02 

10 4.03 4.07 0.04 .0140 0.00 
11 4.07 4.03 -0.04 b = 7.77 
12 4.17 3.66 -0.51 
13 4.40 3.30 -1.10 
14 4.45 3.06 -1.39 
15 5.02 2.94 -2.08 
16 5.57 2.64 -2.93 
17 5.80 2.30 -3.50 
18 6.36 2.16 -4.20 
19 6.46 1.13 -5.33 
20 6.85 0.00 -6.85 

Step 5. Compute the log-standard deviation of the sample, Sy= 1.8014. Then use [10.10) to calculate 
the SW test statistic: 

SW= C r:-;:rl = 0.979 
•1.8014vl9 

7.77 

Step 6. Use Table 10-3 of Appendix D to determine the .01-level critical point for the Shapiro-Wilk 
test when n = 20. This gives swcp = 0.868. Then compare the observed value of SW= 0.979 to 
the 1 % critical point. Since SW> 0.868, the sample shows no significant evidence of non­
normality by the Shapiro-Wilk test. Proceed with further statistical analysis using the log­
transformed data or by assuming the underlying population is lognormal. 

METHOD 3. PROBABILITY PLOT CORRELA Tl ON COEFFI Cl ENT 

Step 1. Order and rank the logged nickel data from smallest to largest and list, as in the table below. 
Again let the ith logged value be denoted by y i =log( Xi). The sample size is n = 20, the log­
mean is y = 3.918, and the log-standard deviation is Sy= 1.8014. 

Step 2. Compute the intermediate probabilities m i from equation [10.13) for each i in column 3 and 
the rank statistic medians, II i , in column 4 by applying the inverse normal transformation to 
column 3 using equation [10.14) and Table 10-1 of Appendix D. 
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Y(i) m; M; (M;)2 Y (i) x>M; 

1 0.00 .03406 -1.8242 3.328 0.000 
2 1.13 .08262 -1.3877 1.926 -1.568 
3 2.16 .13172 -1.1183 1.251 -2.416 
4 2.30 .18082 -0.9122 0.832 -2.098 
5 2.64 .22993 -0.7391 0.546 -1.951 
6 2.94 .27903 -0.5857 0.343 -1.722 
7 3.06 .32814 -0.4451 0.198 -1.362 
8 3.30 .37724 -0.3127 0.098 -1.032 
9 3.66 .42634 -0.1857 0.034 -0.680 

10 4.03 .47545 -0.0616 0.004 -0.248 
11 4.07 .52455 0.0616 0.004 0.251 
12 4.17 .57366 0.1857 0.034 0.774 
13 4.40 .62276 0.3127 0.098 1.376 
14 4.45 .67186 0.4451 0.198 1.981 
15 5.02 .72097 0.5857 0.343 2.940 
16 5.57 .77007 0.7391 0.546 4.117 
17 5.80 .81918 0.9122 0.832 5.291 
18 6.36 .86828 1.1183 1.251 7.112 
19 6.46 .91738 1.3877 1.926 8.965 
20 6.85 .96594 1.8242 3.328 12.496 

Step 3. Since this sample contains no non-detects or ties, the simplified equations for Cn in [10.16) 
and for r in [ 10.18) may be used. First compute Cn using the squared order statistic medians in 
column 5: 

en = ~[ 926. l 313:8tB 328} = 138.4 

Step 4. Next compute the products y 0 x II i in column 6 and sum to get the numerator of the 

correlation coefficient (equal to 32.226 in this case). Then compute the final correlation 
coefficient: 

r = 32.226/;4.138 x l.8014.Ji9 = 0.992 

Step 5. Compare the Filliben' s test statistic of r = 0.992 to the I% critical point for a sample of size 20 
in Table 10-5 in Appendix D, namely rep = 925. Since r > 0.925, the sample shows no 
significant evidence of non-normality by the probability plot correlation coefficient test. 
Therefore, lognormality of the original data can be assumed in subsequent statistical 
procedures. 

Note: the Shapiro-Wilk and Filliben' s Probability Plot Correlation Coefficient tests for 
normality on a single data set perform quite comparably. Only one of these tests need be run in 
routine applications. L 
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Many of the methods described in the Unified Guidance assume that the different groups under 
comparison have the same variance (i.e., are homoscedastic ). This chapter covers procedures for 
assessing homoscedasticity and its counterpart, heteroscedasticity (i.e., unequal variances). Equality of 
variance is assumed, for instance, when using prediction limits to make either upgradient-to­
downgradient or intrawell comparisons. In the former case, the method assumes that the upgradient 
variance is equal to the variance in each downgradient well. In the latter case, the presumption is that the 
well variance is stable over time (i.e., stationary) when comparing intrawell background versus more 
recent measurements. 

If a prediction limit is constructed on a single new measurement at each downgradient well, it isn' t 
feasible to test the variance equality assumption prior to each statistical evaluation. Homoscedasticity 
can be tested after several new rounds of compliance sampling by pooling collected compliance 
measurements within a well. The Unified Guidance recommends periodic testing of the presumption of 
equal variances by comparing newer data to historical background (Chapter 6). 

Equality of variance between different groups (e.g., different wells) is also an important 
assumption for an analysis of variance [ANOVA]. If equality of variance does not hold, the power of the 
F-test (its ability to detect differences among the group means) is reduced. Mild differences in variance 
are generally acceptable. But the effect becomes noticeable when the largest and smallest group 
variances differ by a ratio of about 4, and becomes quite severe when the ratio is I 0 or more (Milliken 
and Johnson, 1984). 

Three procedures for assessing or testing homogeneity of variance are described in the Unified 
Guidance, two of which that are more robust to departures from normality (i.e., less sensitive to non­
normality). These include: 

1. The box plot (Chapter 9 ), a graphical method useful not only for checking equality of variance 
but also as an exploratory tool for visualizing the basic statistical characteristics of data sets. It 
can also provide a rough indication of differences in mean or median concentration levels across 
several wells; 

2. Levene's test (Section 11.2 ), a formal ANOV A-type procedure for testing variance inequality; 
and 

3. The mean-standard deviation scatter plot (Chapter 9 and Section 11.3), a visual tool for 
assessing whether the degree of variability in a set of data groups or wells is correlated with the 
mean levels for those groups. This could potentially indicate whether a variance stabilizing 
transformation might be needed. 

l l ~ J I - • c:r 

EPAPAV0117141 



l l !! l + 11 

•• ~ 1 ~ T ! 

Box plots are described in Chapter 9. In the context of variance testing, one can construct a box 
plot for each well group and compare the boxes to see if the assumption of equal variances is reasonable. 
The comparison is not a formal test procedure, but is easier to perform and is often sufficient for 
checking the group variance assumption. 

Box plots for each data group simultaneously graphed side-by-side provide a direct visual 
comparison of the dispersion in each group. As a rule of thumb, if the box length for each group is less 
than 1.5-2 times the length of the shortest box, the sample variances may be close enough to assume 
equal group variances. If the box length for any group is greater than 1.5-2 times the length of the box 
for another group, the variances may be significantly different. A formal test such as Levene's might be 
needed to more accurately decide. Sample data sets with unequal variances may need a variance 
stabilizing transformation , i.e., one in which the transformed measurements have approximately equal 
vanances. 

Most statistical software packages will calculate the statistics needed to draw a box plot, and many 
will construct side-by-side box plots directly. Usually a box plot will also be shown with two "whiskers" 
extending from the edges of the box. These lines indicate either the positions of extreme minimum or 
maximum values in the data set. In Tukey's original formulation (Tukey, 1977), they indicate the most 
extreme lower and upper data points outside the box but falling within a distance of 1.5 times the 
interquartile range (that is, the length of the box) from either edge. The whiskers should generally not be 
used to approximate the overall variance under either formulation. 

A convenient tactic when using box plots to screen for heteroscedasticity is to plot the residuals of 
each data group rather than the measurements themselves. This will line the boxes up at roughly a 
common level (close to zero), so that a visual comparison of box lengths is easier. 

1 ~ I ~ J_ 1 ~ J ~ T + 91 fl T ! fl 9191 ~ J p + J_ T 91 

The requirements and assumptions for box plots are discussed in Section 9.2. 

Step 1. For each of j wells or data groups, compute the sample mean of that group x . Then compute 
J 

the residuals (rij) for each group by subtracting the group mean from each individual 
measurement: r = x - x . 

lj lj J 

Step 2. Use the procedure outlined in Section 9.2 to create side-by-side box plots of the residuals 
formed in Step 1. Then compare the box lengths to check for possibly unequal variances. 

~ flJp .... ~ll~ 

Construct box plots on the residuals for each of the following well groups to check for 
homoscedasticity. 
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Step 1. Form the residuals for each well by subtracting the sample well mean from each observation, 
as shown in the table below. 

J J c 
J $%&C 

II *# I l #fl -+ _II I #II *+ l l II * I l II cl. 
I l #fl #. I l *II ++ -clll I l II cl+ I l II II + 

# 1 cl II I -11 cl+ I +II l 1 *II + I l II - II + 

I l II #, II + I _II 
l I cl II + l #fl + I l II 

% l ' 
II * 1 +II -+ clll l l II + l #fl + 

Step 2. Follow the procedure in Section 9.2 to compute a box plot of the residuals for each well. Line 
these up side by side on the same graph, as in Figure 11-1. 

Step 3. Compare the box lengths. Since the box length for Well 3 is more than three times the box 
lengths of Wells 4 and 6, there is informal evidence that the population group variances may 
be different. These data should be further checked using a formal test and perhaps a variance 
stabilizing transformation attempted. l 
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Levene's test is a formal procedure for testing homogeneity of variance that is fairly robust (i.e., 
not overly sensitive) to non-normality in the data. It is based on computing the new variables: 

ji I ji-=Xf~ [11.1) 

where Xii represents the jth sample value from the ith group (e.g., well) and xi, is the ith group sample 

mean. The symbol ( • ) in the notation for the group sample mean represents an averaging over subscript 
j. The values z jithen represent the absolute values of the residuals. Levene's test involves running a 

standard one-way ANOVA (Chapter 17) on the variables z ji· If the F-test is significant, reject the 

hypothesis of equal group variances and perhaps seek a variance stabilizing transformation. Otherwise, 
proceed with analysis of the original x ji's. 

Levene's test is based on a one-way ANOV A and contrasts the means of the groups being tested. 
This implies a comparison between averages of the form: 
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[ 11.2) 

Such averages of the z ji's are very similar to the standard deviations of the original data groups, given 

by the formula: 

s. = 
1 

[11.3) 

In both cases, the statistics are akin to an average absolute residual. Therefore, the comparison of 
means in Levene's test is closely related to a direct comparison of the group standard deviations, the 
underlying aim of any test of variance equality. 
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The requirements and assumptions for Levene's test are essentially the same as the one-way 
ANOV A in Section 17.1, but applied to the absolute residuals instead of the raw measurements. 

Step 1. Suppose there are p data groups to be compared. Because there may be different numbers of 
observations per well, denote the sample size of the ith group by ni and the total number of 
data points across all groups by N. 

Denote the observations in the ith group by x ji for i = 1 ... p and j = 1 ... ni. The first subscript 

then designates the well, while the second denotes the jth value in the ith well. After 
computing the sample mean (ii) for each group, calculate the absolute residuals ( z ji) using 

equation [ 11.1]. 

Step 2. Utilizing the absolute residuals - and not the original data - compute the mean of each 
group along with the overall (grand) mean of the combined data set using the formula: 

- 1 p 11; 

z .. = - z ji 

N i=I j=I 

[11.4) 

Step 3. Compute the sum of squares of differences between the group means and the grand mean, 
denoted SSgrps: 

[ 11.5) 

The formula on the far right is usually the most convenient for calculation. This sum of 
squares has (p-1) degrees of freedom associated with it and is a measure of the variability 
between groups. It constitutes the numerator of the F-statistic. 
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Step 4. Compute the corrected total sum of squares, denoted by SStota1: 

p ni p ni 

SS = l'z - z 'i = z 2 
- Nz 2 

total ~ ij " } ij " 
[ 11.6) 

i=l j=I i=l j=I 

Again, the formula on the far right is usually the most computationally convenient. This sum 
of squares has (N-1) associated degrees of freedom. 

Step 5. Compute the sum of squares of differences between the absolute residuals and the group 
means. This is known as the within-groups component of the total sum of squares or, 
equivalently, as the sum of squares due to error. It is easiest to obtain by subtracting SSgrps 

from SStotal and is denoted SSerror: 

p ni p ni p 

SS = {z - z 'i = SS - SS = z 2 
- nz2 

error ~ IJ 1• } total grps IJ 1 1• 
[ 11. 7) 

i=l j=I i=l j=I i=l 

SS error is associated with (N-p) degrees of freedom and is a measure of the variability within 
groups. This quantity goes into the denominator of the F-statistic. 

Step 6. Compute the mean sum of squares for both the between-groups and within-groups 
components of the total sum of squares, denoted by MSgrps and MS error· These quantities are 
obtained by dividing each sum of squares by its corresponding degrees of freedom: 

MS =SS jf p -1) 
grps grps \.: 

[11.8) 

[11.9) 

Step 7. Compute the F-statistic by forming the ratio between the mean sum of squares for wells and 
the mean sum of squares due to error, as in Figure 11-2 below. This layout is known as the 
one-way parametric ANOV A table and illustrates each sum of squares component of the total 
variability, along with the corresponding degrees of freedom, the mean squares components, 
and the final F-statistic calculated as F = MSgrp)MSerror· Note that the first two rows of the 
one-way table sum to the last row. 

Step 8. Figure 11-2 is a generalized ANOV A table for Levene's test. To test the hypothesis of equal 
variances across allp well groups, compare the F-statistic in Figure 11-2 to the a-level critical 
point found from the F-distribution with (p-1) and (N-p) degrees of freedom in Appendix D 
Table 17-1. When testing variance equality, only severe levels of difference typically impact 
test performance in a substantial way. For this reason, the Unified Guidance recommends 
setting a= .01 when screening multiple wells and/or constituents using Levene's test. In that 
case, the needed critical point equals the upper 99th percentage point of the F-distribution. If 
the observed F-statistic exceeds the critical point (F.99,p-I,N-p), reject the hypothesis of equal 
group population variances. Otherwise, conclude that there is insufficient evidence of a 
significant difference between the variances. 
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Use the data from Example 11-1 to conduct Levene's test of equal variances at the L = 0.01 level 
of significance. 

T 

Step 1. Calculate the group arsenic mean for each well (.Xi•): 

Well 1 mean= 16.47 ppm Well 4 mean= 11.26 ppm 

Well 2 mean= 15.76 ppm Well 5 mean= 13.49 ppm 

Well 3 mean= 29.60 ppm Well 6 mean= 2.29 ppm 

Then compute the absolute residuals Zij in each well using equation [ 11.1] as in the table 
below. 
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Step 2. Compute the mean absolute residual ( zi• ) in each well and then the overall grand mean using 

equation [11.4). These results are listed above. 

Step 3. Compute the between-groups sum of squares for the absolute residuals using equation [11.5): 
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SS grps = I ( 83J2-4 ( 12J84 ++ ( 52J~ 90.522,3 

Step 4. Compute the corrected total sum of squares using equation [11.6): 

sstotal = ~ 43.}5 + ( 38J3 +-1( 09J 89.300,6 

Step 5. Compute the within-groups or error sum of squares using equation [ 11. 7): 

sserror = 6,300.89 - 3,522.90 = 2,777.99 

Step 6. Given that the number of groups is p = 6 and the total sample size is N = 24, calculate the 
mean squares for the between-groups and error components using formulas [11.8) and [11.9): 

MS = 3,522.9ojf6 -1)= 704.58 
grps \.: 

MSerror = 2,777.99 /(24 - 6 )= 154.33 

Step 7. Construct an ANOVA table following Figure 11-2 to calculate the F-statistic. The numerator 
degrees of freedom [dj] is computed as (p-1) = 5, while the denominator dfis equal to (N-p) = 
18. 
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Step 8. Determine the .01-level critical point for the F-test with 5 and 18 degrees of freedom from 
Table 17-1. This gives F.99,5,18 =4.25. Since the F-statistic of4.56 exceeds the critical point, 
the assumption of equal variances should be rejected. Since the original concentration data are 
used in this example, a transformation such as the natural logarithm might be tried and the 
transformed data retested. l 
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The mean-standard deviation scatter plot is described in Chapter 9. It is useful as an exploratory 
tool for multiple groups of data (e.g., wells) to aid in identifying relationships between mean levels and 
variability. It is also helpful in providing a visual assessment of variance homogeneity across data 
groups. Like side-by-side box plots, the mean-standard deviation scatter plot graphs a measure of 
variability for each well. In the latter, however, the standard deviation is plotted rather than the 
interquartile range, so a more direct assessment of variance equality can be made. Since standard 
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deviations (and consequently variances) are often positively correlated with sample mean levels in 
skewed populations, the observed pattern on the mean-standard deviation scatter plot can offer valuable 
clues as to what sort of variance stabilizing transformation if any might work. 
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The requirements for the mean-standard deviation scatter plot are listed in Section 9.4. 

See Section 9.4. 

Use the data from Example 11-1 to construct a mean-standard deviation scatter plot. 

T 

Step 1. First compute the sample mean ( x) and standard deviation (s) of each well, as listed below. 

··- rn::i #- L flC $I~ O'/o-&C 
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Step 2. Plot the well means versus the standard deviations as in Figure 11-3 below. Note the roughly 
linear relationship between the magnitude of the standard deviations and their corresponding 
means. The data suggest unequal variances among the wells, as indicated by the large range in 
the standard deviations. 
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11-3. Arsenic Mean-Standard Deviation Plot 
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Step 3. Because lognormal data groups will tend to show a linear assocrnt10n between the sample 
means and standard deviations, apply a log transformation to the original arsenic 
measurements and reconstruct the mean-standard deviation scatter plot on the log scale. 
Computing the log-means and log-standard deviations and then re-plotting gives Figure 11-4. 
Now the apparent trend between the means and standard deviations is gone. Further, on the 
log scale, the standard deviations are much more similar in magnitude, all with values between 
1 and 2. The log transformation thus appears to roughly stabilize the arsenic variances. l 

11·4. LO!J(A11'SEHllc) Mean-Standard Deviation Plot 
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CHAPTER 12. I DENTI FYI NG OUTLIERS 

12.1 SCREENING WITH PROBABILITY PLOTS................................................................ ........................................ 12-1 
12.2 SCREENING WITH Box PLOTS................................................................ ..................................................... 12-5 
12.3 DIXON'S TEST................................................................ ................................................................ . ............ 12-8 
12.4 RosNER's TEST ......................................................................................................................................... 12-10 

This chapter discusses screening tools and formal tests for identifying statistical outliers. Two 
screening tools are first presented: probability plots (Section 12.1) and box plots (Section 12.2 ). These 
are followed by two formal outlier tests: 

Dixon's test (Section 12.3) for a single outlier in smaller data sets, and 

Rosner' s test (Section 12.4) for up to five separate outliers in larger data sets. 

A statistical determination of one or more statistical outliers does not indicate why the 
measurements are discrepant from the rest of the data set. The Unified Guidance does not recommend 
that outliers be removed solely on a statistical basis. The outlier tests can provide supportive 
information, but generally a reasonable rationale needs to be identified for removal of suspect outlier 
values (usually limited to background data). At the same time there must be some level of confidence 
that the data are representative of ground water quality. A number of factors and considerations in 
removing outliers from potential background data are discussed in Section 5.2.3. 

12. 1 SCREEN I NG WI TH PROBABILITY PLOTS 

BACKGROUND AND PURPOSE 

Probability plots (Chapter 9) are helpful in identifying outliers in at least two ways. First, since the 
straightness of the plot indicates how closely the data fit the pattern of a normal distribution, values that 
appear "out ofline" with the remaining data can be visually identified as possible outliers. Secondly, the 
two formal outlier tests presented in the Unified Guidance assume that the underlying population minus 
the suspected outlier(s) is normal. Probability plots can provide visual evidence for this assumption. 
Data that appear non-normal after the suspected outliers have been removed from the probability plot 
may need to be transformed (e.g., via the natural logarithm) and re-examined on the transformed scale to 
see if potential outliers are still apparent. 

As an aid to the interpretation of a given probability plot, the Unified Guidance recommends 
computation of the probability plot correlation coefficient, using either Filliben's procedure (Chapter 
10) or the simple (Pearson) correlation (Chapter 3) between the numerical pairs plotted on the graph. 
The higher the correlation, the more linear the pattern is on the probability plot and therefore a better fit 
to normality. Note that while the Filliben correlation coefficient can be compared to critical points 
derived for that test of normality (Chapter 10 ), a low correlation may be related to other causes of non­
normality besides the presence of outliers. The correlation coefficient is not a substitute for a formal 
outlier test, but can be useful as a screening tool. 
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REQUIREMENTS AND ASSUMPTIONS 

Probability plots are primarily a tool to assess normality, and not to identify outliers per se. It is 
critical that the remaining data without potential outliers is either normal in distribution or can be 
normalized via a transformation. Otherwise, the probability plot may appear non-linear and non-normal 
for reasons unrelated to the presence of outliers. Right-skewed lognormal distributions can appear to 
have one or more outliers on a probability plot unless the original data are first log-transformed. As a 
general rule, probability plots should be constructed on the original (or raw) measurements and one or 
more transformed data sets (e.g., log or square root), in order to avoid mistaking inherent data skewness 
for outliers. 

If the raw and transformed-data probability plots both indicate one or more values inconsistent 
with the pattern of the remaining values, continue with a second level of screening by temporarily 
removing the suspected outlier(s) and re-constructing the probability plots. If the raw-scale plot is 
reasonably linear, consider running a formal outlier test on the original measurements. On the other 
hand, if the raw-scale plot is skewed but the transformed-scale plot is linear, consider conducting a 
formal outlier test on the transformed measurements. 

A related difficulty occurs when sample data includes censored or non-detect values. If simple 
substitution is used to estimate a value for each non-detect prior to plotting, the resulting probability plot 
may appear non-linear simply because the censored observations were not properly handled. In this case, 
a censored probability plot (Chapter 15) should be constructed instead of an uncensored, complete 
sample plot (Chapter 9). The same caveats apply to normalizing the sample data, perhaps by attempting 
at least one transformation. The only difference is that each probability plot constructed must 
appropriately account for the observed censoring in the sample. 

PROCEDURE 

Step 1. After identifying one or more possible outliers (e.g., values much higher in concentration than 
the remaining measurements), construct a probability plot on the entire sample using the 
procedure described in Section 9.5. Construct a censored probability plot from Section 15.3 
if the sample contains non-detects. If the data including the suspected outlier(s) follow a 
reasonably linear pattern, a formal outlier test is probably unnecessary. However, if one or 
more values are out ofline compared to the pattern of the remaining data, construct a similar 
probability plot after applying one or more transformations. If one or more suspected outliers 
is still inconsistent, proceed to Step 2. 

Step 2. Compute a probability plot correlation coefficient for each plot constructed in Step 1. Use 
these correlations as an aid to interpreting the degree oflinearity in each probability plot. 

Step 3. Reconstruct the probability plots from Step 1 after removing the suspected outlier(s). 
Recompute the correlation coefficients from Step 2 on this reduced sample. 

Step 4. If the 'outlier-deleted' probability plot on the raw concentration scale indicates a linear pattern 
with high correlation, consider running a formal outlier test on the original measurements. 
When the pattern is distinctly non-linear but the corresponding probability plot on the 
transformed-scale is fairly linear (and higher in correlation), conduct the outlier test on the 
transformed values. 
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EXAMPLE 12-1 

The table below contains data from five background wells measured over a four month period. The 
value 7,066 is found in the second month at Well 3. Use probability plots on the combined sample to 
determine whether or not a formal outlier test is warranted. 

Carbon Tetrachloride Concentrations (ppb) 

Well 1 Well 2 Well 3 Well 4 Well 5 

1.7 302 16.2 199 275 
3.2 35.1 7066 41.6 6.5 
7.3 15.6 350 75.4 59.7 

12.1 13.7 70.1 57.9 68.4 

SOLUTION 

Step 1. Examine the probability plots of the entire sample first using the raw measurements and then 
log-transformed values (Figures 12-1 and 12-2 ). Both these plots indicate that the suspected 
outlier does not follow the pattern of the remaining observations, but seems 'out ofline.' The 
Pearson correlation coefficients for these probability plots are, respectively, r = 0.502 and 
0.973, indicating that the fit to normality overall is much closer using log-transformed 
measurements. 

Figure 12-1. Probability Plot on Raw Concentrations (r = .502) 

2.50 

1.25 

0.00 

-1.25 

-2.50 

0 2000 4000 6000 8000 

Carbon tetrachloride (ppb) 

Step 2. Next remove the suspected outlier and reconstruct the probability plots on both the original 
and logged observations (Figures 12-3 and 12-4). The plot on the original scale indicates 
heavy positive (or right-) skewness and a non-linear pattern, while the plot on the log-scale 
exhibits a fairly linear pattern. The respective correlation coefficients now become r = 0.854 
and 0.987, again favoring the log-transformed sample. On the basis of these plots, the 
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underlying data should be modeled as lognormal and the observations logged prior to running 
a formal outlier test. l 

Figure 12-2. Probability Plot on Logged Observations (r = . 973) 
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Figure 12-3. Outlier-Deleted Probability Plot on Original Scale (r = .854) 
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Figure 12-4. Outlier-Deleted Probability Plot on Logarithmic Scale (r = . 987) 

• 

-2 

0.00 1.25 2.50 3.75 5.00 6.25 

Log( carbon tetrachloride) log(ppb) 

12. 2 SCREEN I NG WI TH BOX PLOTS 

BACKGROUND AND PURPOSE 

Probability plots as described in Section 12.1 reqmre the remammg observations following 
removal of one or more suspected outliers to be either approximately normal or normalized via 
transformation. Box plots (Chapter 9) provide an alternate method to perform outlier screening, one 
not dependent on normality of the underlying measurement population. Instead of looking for points 
inconsistent with a linear pattern on a probability plot, the box plot flags as possible outliers values that 
are located in either or both of the extreme tails of the sample. 

To define the extreme tails, Tukey (1977) proposed the concept of 'hinges' that would 'swing' off 
either end of a box plot, defining the range of concentrations consistent with the bulk of the data. Data 
points outside this concentration range could then be identified as potential outliers. Tukey defined the 
hinges, i.e., the lower and upper edges of the box plot, essentially as the lower and upper quartiles of the 
data set. Then multiples of the interquartile range [IQR] (i.e., the range represented by the middle half of 
the sample) were added to or subtracted from these hinges as potential outlier boundaries. Any 
observation from 1.5 x IQR to 3 x IQR below the lower edge of the box plot was labeled a 'mild' low 
outlier; any value more than 3 x IQR below the lower edge of the box plot was labeled an 'extreme' low 
outlier. Similarly, values greater than the upper edge of the box plot in the range of 1.5 to 3 times the 
IQR were labeled 'mild' higher outliers, and 'extreme' high outliers if more than 3 times the IQR 
beyond the upper box plot edge. 

REQUIREMENTS AND ASSUMPTIONS 

By using hinges and multiples of the interquartile range, Tukey's box plot method utilizes statistics 
(i.e., the lower and upper quartiles) that are generally not or minimally affected by one or a few outliers 
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in the sample. Consequently, it isn't necessary to first delete possible outliers before constructing the 
box plot. 

Screening for outliers with box plots is a very simple technique. Since no assumption of normality 
is needed, Tukey's procedure can be considered quasi-non-parametric. But note that rough symmetry of 
the underlying distribution is implicitly assumed. Legitimate observations from highly skewed 
distributions could be flagged as potential outliers on a box plot if no transformation of the data is first 
attempted. It may be necessary to first conduct multiple data transformations in order to achieve 
approximate symmetry before applying and evaluating potential outliers with box plots. 

PROCEDURE 

Step 1. Construct a box plot on the sample using the method given in Section 9.2. Using the IQR from 
that calculation, along with the lower and upper quartiles ( x25 and x75 ), compute the first pair 

oflower and upper boundaries as: 

LB1 = x25 - 15 x !QR (12.1) 

UBI : X75 l 15 x !QR (12.2) 

Step 2. Construct the second pair oflower and upper boundaries as: 

(12.3) 

UB 2 = x75 
1 3 x !QR (12.4) 

Step 3. Label any sample measurement lower than the first lower boundary (LB 1) but no less than the 
second lower boundary (LB 2) as a mild low outlier. Label any measurement greater than the 
first upper boundary ( UB 1) but no greater than the second upper boundary ( UB 2) as a mild high 
outlier. 

Step 4. Label any sample measurement lower than the second lower boundary (LB 2) as an extreme 
low outlier. Label any value higher than the second upper boundary ( UB 2) as an extreme high 
outlier. 

EXAMPLE 12-2 

Use the carbon tetrachloride data from Example 12-1 to screen for possible outliers using Tukey's 
box plot. 

SOLUTION 

Step 1. Using the procedure described in Section 9.2, the upper and lower quartiles of carbon 
tetrachloride sample are found to be x25 = 12.9 and x75 = 137.2, leading to an IQR = 124.3. 

Step 2. Compute the two pairs oflower and upper boundaries using equations (12.1), (12.2), (12.3), 
and (12.4): 
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LB
1 

= 12.9 - 1.5 x 124.3 = - 173.55 

UBI= 137.2 + 1.5x124.3 = 323.65 

LB
2 

= 12.9 - 3x124.3 = - 360 

UB
2 

= 137.2 + 3x124.3 = 510.1 

Unified Guidance 

Step 3. Scan the list of carbon tetrachloride measurements and compare against the boundaries of 
Step 2. It can be seen that the value of 350 from Well 3 is greater than UB 1 but lower than 
UB2, thus qualifying as a mild high outlier. Also, the measurement 7,066 from the same well 
is higher than UB2 and so qualifies as an extreme high outlier. 

Step 4. Because the box plot outlier screening method assumes roughly symmetric data, recompute 
the box plot on the log-transformed measurements (as shown in Figure 12-5 alongside a 
similar box plot of the raw concentrations). Transforming the sample to the log-scale does 
result in much greater symmetry compared to the original measurement scale. This can be 
seen in the close similarity between the mean and median on the log-scale box plot. With a 
more symmetric data set, the mild high outlier from Step 3 disappears, but the extreme high 
value is still classified as an outlier. l 

Figure 12-5. Comparative Carbon Tetrachloride Box Plots Indicating Outliers 
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12.3 DIXON'S TEST 

BACKGROUND AND PURPOSE 

Dixon's test is helpful for documenting statistical outliers in smaller data sets (i.e., n L 25). The 
test is particularly designed for cases where there is only a single high or low outlier, although it can also 
be adapted to test for multiple outliers. The test falls in the general class of tests for discordancy (Barnett 
and Lewis, 1994). The test statistic for such procedures is generally a ratio: the numerator is the 
difference between the suspected outlier and some summary statistic of the data set, while the 
denominator is always a measure of spread within the data. In this version of Dixon's test, the summary 
statistic in the numerator is an order statistic nearby to the potential outlier (e.g., the second or third most 
extreme value). The measure of spread is essentially the observed sample range. 

If there is more than one outlier in the data set, Dixon's test can be vulnerable to masking, at least 
for very small samples. Masking in the statistical literature refers to the problem of an extreme outlier 
being missed because one or more additional extreme outliers are also present. For instance, if the data 
consist of the values {2, 4, 10, 12, 15, 18, 19, 22, 200, 202}, identification of the maximum value (202) 
as an outlier might fail since the maximum by itself is not extreme with respect to the next highest value 
(200). However, both of these values are clearly much higher than the rest of the data set and might 
jointly be considered outliers. 

If more than one outlier is suspected, the user is encouraged to consider Rosner' s test (Section 
12.4) as an alternative to Dixon's test, at least ifthe sample size is 20 or more. If the data set is smaller, 
Dixon's test should be modified so that the least extreme of the suspected outliers is tested first. This 
will help avoid the risk of masking. The same equations given below can be used, but the data set and 
sample size should be temporarily reduced to exclude any suspected outliers that are more extreme than 
the one being tested. If a less extreme value is found to be an outlier, then that observation and any more 
extreme values can also be regarded as outliers. Otherwise, add back the next most extreme value and 
test it in the same way. 

REQUIREMENTS AND ASSUMPTIONS 

Dixon's test is only recommended for sample sizes n L 25. It assumes that the data set (minus the 
suspected outlier) is normally-distributed. This assumption should be checked prior to running Dixon's 
test using a goodness-of-fit technique such as the probability plots described in Section 12.2. 

PROCEDURE 

Step 1. Order the data set and label the ordered values, X(i)-

Step 2. If a "low" outlier is suspected (i.e., x(l)), compute the test statistic C using the appropriate 
equation [12.5) depending on the sample size (n): 
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[12.5) 

Step 3. If a "high" outlier is suspected (i.e., X(n)), and again depending on the sample size ( n ), compute 
the test statistic C using the appropriate equation [12.6) as: 

[12.6) 

Step 4. In either case, given the significance level (a), determine a critical point for Dixon's test with 
n observations from Table 12-1 in Appendix D. If C exceeds this critical point, the suspected 
value should be declared a statistical outlier and investigated further (see discussion in 
Chapter 6). 

EXAMPLE 12-3 

Use the data from Example 12-1 in Dixon's test to determine if the anomalous high value is a 
statistical outlier at an a= 0.05 level of significance. 

SOLUTION 

Step 1. In Example 12-1, probability plots of the carbon tetrachloride data indicated that the highest 
value might be an outlier, but that the distribution of the measurements was more nearly 
lognormal than normal. Since the sample size n = 20, Dixon's test can be used on the logged 
observations. Logging the values and ordering them leads to the following table: 
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Con cent ration Logged 
Order (ppb) Con cent ration 

1 1.7 0.531 
2 3.2 1.163 
3 6.5 1.872 
4 7.3 1.988 
5 12.1 2.493 
6 13.7 2.617 
7 15.6 2.747 
8 16.2 2.785 
9 35.1 3.558 

10 41.6 3.728 
11 57.9 4.059 
12 59.7 4.089 
13 68.4 4.225 
14 70.1 4.250 
15 75.4 4.323 
16 199.0 5.293 
17 275.0 5.617 
18 302.0 5.710 
19 350.0 5.878 
20 7066.0 8.863 

Step 2. Because a high outlier is suspected and n = 20, use the last option of equation [12.6) to 
calculate the test statistic C: 

C
-_ 8.863- 5.710 

0.451 
8.863- 1.872 

Step 3. With n = 20 and a= .05, the critical point from Table 12-1 in Appendix D is equal to 0.450. 
Since the test statistic C exceeds this critical point, the extreme high value can be declared a 
statistical outlier. Before excluding this value from further analysis, however, a valid 
explanation for this unusually high value should be sought. Otherwise, the outlier may need to 
be treated as an extreme but valid concentration measurement. l 

12.4 ROSNER'S TEST 

BACKGROUND AND PURPOSE 

Rosner' s test (Rosner, 197 5) is a useful method for identifying multiple outliers in moderate to 
large-sized data sets. The approach developed in Rosner's method is known as a block-style test. Instead 
of testing for outliers one-by-one in a consecutive manner from most extreme to least extreme (i.e., most 
to least suspicious), the data are examined first to identify the total number of possible outliers, k. Once k 
is determined, the set of possible outliers is tested together as a block. If the test is significant, all k 
measurements are regarded as statistical outliers. If not, the set of possible outliers is reduced by one and 
the test repeated on the smaller block. This procedure is iterated until either a set of outliers is identified 

12-10 March 2009 

EPAPAV0117160 



Chapter 12. Identifying Outliers Unified Guidance 

or none of the observations are labeled an outlier. By testing outliers in blocks instead of one-by-one, 
Rosner's test largely avoids the problem of masking of one outlier by another (as discussed in Section 
12.3 regarding Dixon's test). 

Although Rosner's test avoids the problem of masking when multiple outliers are present in the 
same data set, it is not immune to the related problem of swamping. A good discussion is found in 
Barnett and Lewis, 1994, Outliers in Statistical Data (3rd Edition), p. 236. Swamping refers to a block 
of measurements all being labeled as outliers even though only some of the observations are actually 
outliers. This can occur with Rosner' s test especially if all the outliers tend to be at one end of the data 
set (e.g., as upper extremes). The difficulty is in properly identifying the total number of possible outliers 
(k), which can be low outliers, high outliers, or some combination of the two extremes. If k is made too 
large, swamping may occur. Again, the user is reminded to always do a preliminary screening for 
outliers via box plots (Section 12.2) and probability plots (Section 12.1 ). 

REQUIREMENTS AND ASSUMPTIONS 

Rosner's test is recommended when the sample size (n) is 20 or larger. The critical points provided 
in Table 12-2 in Appendix D can be used to identify from 2 to 5 outliers in a given data set. Like 
Dixon's test, Rosner's method assumes the underlying data set (minus any outliers) is normally 
distributed. If a probability plot of the data exhibits significant bends or curves, the data should first be 
transformed (e.g., via a logarithm) and then re-plotted. The formal test for outliers should only be 
performed on (outlier-deleted) data sets that have been approximately normalized. 

A potential drawback ofRosner's test is that the user must first identify the maximum number of 
potential outliers (k) prior to running the test. Therefore, this requirement makes the test ill-advised as an 
automatic outlier screening tool, and somewhat reliant on the user to identify candidate outliers. 

PROCEDURE 

Step 1. Order the data set and denote the ordered values x(i)- Then by simple inspection, identify the 
maximum number of possible outliers, r0 . 

Step 2. Compute the sample mean and standard deviation of all the data; denote these values by x(o) 

and s(
0

). Then determine the measurement furthest from x(o) and denote it / 0
). Note that / 0

) 

could be either a potentially low or a high outlier. 

Step 3. Delete / 0
) from the data set and compute the sample mean and standard deviation from the 

remaining observations. Label these new values x(
1
) and s(l). Again find the value in this 

reduced data set furthest from x(
1
) and label it / 1

). 

Step 4. Delete/!), recompute the mean and standard deviation, and continue this process until all r0 

potential outliers have been removed. At this point, the following set of statistics will be 
available: 

[12.7) 

Step 5. Now test for r outliers (where r L r0) by iteratively computing the test statistic: 
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[12.8) 

First test for r0 outliers. If the test statistic R,. 
1 

in equation [12.8) exceeds the first critical 
0 

point from Table 12-2 in Appendix D based on sample size ( n) and the Type I error (a), 
conclude there are r0 outliers. If not, test for r 0-l outliers in the same fashion using the next 
critical point, continuing until a certain number of outliers have either been identified or 
Rosner' s test finds no outliers at all. 

EXAMPLE 12-4 

Consider the following series of25 background napthalene measurements (in ppb). Use Rosner's 
test to determine whether any of the values should be deemed statistical outliers. 

SOLUTION 

Qtr 
1 
2 
3 
4 
5 

BW-1 
3.34 
5.39 
5.74 
6.88 
5.85 

Naphthalene Concentrations (ppb) 

BW-2 BW-3 BW-4 
5.59 1.91 6.12 
5.96 1.74 6.05 
1.47 23.23 5.18 
2.57 1.82 4.43 
5.39 2.02 1.00 

BW-5 
8.64 
5.34 
5.53 
4.42 

35.45 

Step 1. Screening with probability plots of the combined data indicates a less than linear fit with both 
the raw measurements and log-transformed data (see Figures 12-6 and 12-7); two points 
appear rather discrepant from the rest. Correlation coefficients for these plots are 0. 7 40 on the 
concentration scale and 0.951 on the log-scale. Re-plotting after removing the two possible 
outliers gives a substantially improved correlation on the concentration scale of 0.958 but 
reduces the log-scale correlation to 0.929. Normality appears to be a slightly better default 
distribution for the outlier-deleted data set. Run Rosner' s test on the original data with k = 2 
possible outliers. 

Step 2. Compute the mean and standard deviation of the complete data set. Then identify the 
observation farthest from the mean. These results are listed, along with the ordered data, in the 
table below. After removing the farthest value (35.45), recompute the mean and standard 
deviation on the remaining values and again identify the most discrepant observation (23.23). 
Repeat this process one more time so that both suspected outliers have been removed (see 
table below). 

Step 3. Now test for 2 joint outliers by computing Rosner's statistic on subset SSk-I = SS1 usmg 
equation [12.8): 

R = 23.23 - 5.23 
1 

4.16 
4.326 
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Figure 12-6. Napthalene Probability Plot 

0 

• 
• 

• 

10 20 

Napthalene (ppb) 

30 

Figure 12-7. Log Napthalene Probability Plot 

• 

0 2 3 

Log Napthalene log(ppb) 

12-13 

Unified Guidance 

40 

4 

March 2009 

EPAPAV0117163 



Chapter 12. Identifying Outliers 

Successive Naphthalene Subsets (SS;) 
SS0 

1.00 
1.47 
1.74 
1.82 
1.91 
2.02 
2.57 
3.34 
4.42 
4.43 
5.18 
5.34 
5.39 
5.39 
5.53 
5.59 
5.74 
5.85 
5.96 
6.05 
6.12 
6.88 
8.64 

23.23 
35.45 

XO = 6.44 

So = 7.379 
Yo= 35.45 

1.00 
1.47 
1.74 
1.82 
1.91 
2.02 
2.57 
3.34 
4.42 
4.43 
5.18 
5.34 
5.39 
5.39 
5.53 
5.59 
5.74 
5.85 
5.96 
6.05 
6.12 
6.88 
8.64 

23.23 

XI = 5.23 

S1 = 4.326 
y1 = 23.23 

1.00 
1.47 
1.74 
1.82 
1.91 
2.02 
2.57 
3.34 
4.42 
4.43 
5.18 
5.34 
5.39 
5.39 
5.53 
5.59 
5.74 
5.85 
5.96 
6.05 
6.12 
6.88 
8.64 

x
2 

= 4.45 

S2 = 2.050 
y2 = 8.64 

Unified Guidance 

Step 4. Given a= 0.05, a sample size of n = 25, and k = 2, the first critical point in Table 12-2 in 
Appendix D equals 2.83 for n = 20 and 3.05 for n = 30. The value R1 in Step 3 is larger than 
either of these critical points, so both suspected values may be declared statistical outliers by 
Rosner' s test at the 5% significance level. Before excluding these values from further analysis, 
however, a valid explanation for them should be found. Otherwise, treat the outliers as 
extreme but valid concentration measurements. 

Note: had R1 been less than these values, a test could still be run for a single outlier using the 
second critical point for each sample size (or a critical point interpolated between them). l 

The guidance considers Dixon's and Rosner's outlier evaluation methods preferable for 
groundwater monitoring data situations, when assumptions of normality are reasonable and data are 
quantified. We did not include the older method found in the 1989 guidance based on ASTM paper 
El 78-75, which can still be used as an alternative. Where data do not appear to be fit by a normal or 
transformably normal distribution, other robust outlier evaluation methods can be considered from the 
wider statistical literature. The literature will also need to be consulted when data contains non-detect 
values along with potential outliers. 
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CHAPTER 13. SPATIAL VARIABILITY 

13.1 lNIROmCTION TO SPATIAL VARIATION ................................................................ ....................................... 13-1 
13.2 IDENTIFYING SPATIAL VARIABILITY ................................................................ ............................................. 13-2 

13.2.1 Side-by-Side Box Plots........................................................... ............................................................. 13-2 
13.2.2 One-Way Analysis of Variance for Spatial Variability..................................................... . ................. 13-5 

13.3 USINGANOVA TOl\'PROVE p ARA\IETRIC INTRA.WELL TESTS ................................................................... 13-8 

This chapter discusses a type of statistical dependence in groundwater monitoring data known as 
spatial variability. Spatial variability exists when the distribution or pattern of concentration 
measurements changes from well location to well location (most typically in the form of differing mean 
levels). Such variation may be natural or synthetic, depending on whether it is caused by natural or 
anthropogenic factors. \lethods for identifying spatial variation are detailed via the use of box plots 
(Section 13.2.1) and analysis of variance [ANOVA] (Section 13.2.2). Once identified, ANOVA can 
sometimes be employed to construct more powerful intrawell background limits. This topic is addressed 
in Section 13.3. 

13.1 INTRODUCTION TO SPATIAL VARIATION 

Spatial dependence, spatial variation or variability, and spatial correlation are closely related 
concepts. All refer to the notion of measurement levels that vary in a structured way as a function of the 
location of sampling. Although spatial variation can apply to any statistical characteristic of the 
underlying population (including the population variance or upper percentiles), the usual sense m 
groundwater monitoring is that mean levels of a given constituent vary from one well to the next. 

Standard geostatistical models posit that an area exhibits positive spatial correlation if any two 
sampling locations share a greater similarity in concentration level the closer the distance between them, 
and more dissimilarity the further apart they are. Such models have been applied to both groundwater 
and soil sampling problems, but are not applicable in all geological configurations. It may be, for 
instance, that mean concentration levels differ across wells but vary in a seemingly random way with no 
apparent connection to the distance between the sampling points. In that case, the concentrations 
between pairs of wells are not correlated with distance, yet the measurements within each well are 
strongly associated with the mean level at that particular location, whether due to a change in soil 
composition, hydrological characteristics or some other factor. In other words, spatial variation may 
exist even when spatial correlation does not. 

Spatial variation is important in the guidance context smce substantial differences in mean 
concentration levels between different wells can invalidate interwell, upgradient-to-downgradient 
comparisons and point instead toward intrawell tests (Chapter 6). Not all spatial variability is natural. 
Average concentration levels can vary from well to well for a variety of reasons. 

In this guidance, a distinction is occasionally made between natural versus synthetic spatial 
variation. Natural spatial variability refers to a pattern of changing mean levels in groundwater 
associated with normal geochemical behavior unaffected by human activities. Natural spatial variability 
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is not an indication of groundwater contamination, even if concentrations at one or more compliance 
wells exceed (upgradient) background. In contrast, synthetic spatial variability is related to human 
activity. Sources can include recent releases affecting compliance wells, migration of contaminants from 
off- site;ources, or historic contamination at certain wells due to past industrial activity or pre-RCRA 
waste disposal. Whether natural or synthetic, techniques and test methods for dealing with spatial 
variation will still be identical from a purely statistical standpoint. It is interpreting the testing outcomes 
which will necessitate a consideration of why the spatial variation occurs. 

The goal of groundwater analysis is not simply to identify significant concentration differences 
among monitoring wells at compliance point locations. It is also to determine why those differences 
exist. Especially with prior groundwater contamination, regulatory decisions outside the scope of this 
guidance need to address the problem. In some cases, compliance/assessment monitoring or remedial 
action may be warranted. In other cases, chronic contamination from offsite sources may simply have to 
be considered as the current background condition at a given location. At least the ability to attribute 
certain mean differences to natural spatial variation allows the range of potential concerns to be 
somewhat narrowed. Of course, deciding that an observed pattern of spatial variation is natural and not 
synthetic may not be easy. Ultimately, expert j udgmentand knowledge concerning site hydrology, 
geology and geochemistry are important in providing more definitive answers. 

One statistical approach to use when a site has multiple, non-impactedbackground wells is to 
conduct a one-wayANOVA for inorganic constituents on those wells. Substantial differences among the 
mean levels at a set of uncontaminated sampling locations are suggestive of natural spatial variability. At 
a true 'greenfield' site, ANOVA can be run on all the wells -both background and compliance - after 
a few preliminary sampling rounds have been collected. 

The Unified Guidance offers two basic tools to explore and test for spatial correlation. The first, 
side-by-sidbox plots (Section 13.2.1), provides a quick screen for possible spatial variation. When 
multiple well data are plotted on the same concentration axis, noticeably staggered boxes are often an 
indication of significantly different mean levels. 

A more formal test of spatial variation is the one-way\NOVA (Section 13.3.2). When significant 
spatial variation exists and an intrawell test strategy is pursued, one- wayANOVA can also be used to 
adj ustthe standard deviation estimate used in forming intrawell prediction and control chart limits, and 
to increase the effective sample size of the test, via the degrees of freedom . This is discussed in Section 
13.3. 

13.2 IDENTIFYING SPATIAL VARIABILITY 

13.2.1 SI DE-BY-SI DE BOX PLOTS 

BACKGROUND AND PURPOSE 

Box plots for graphing side- by-sidstatistical summaries of multiple wells were introduced in 
Chapter 9. They are also discussed in Chapter 11 as an initial screen for differences in population 
variances and as a tool to check the assumption of equal variances in ANOVA. They can further be 
employed to screen for possible spatial variation in mean levels. While variability in a sample from a 
given well is roughly indicated by the length of the box, the average concentration level is indicated by 
the position of the box relative to the concentration axis. \!any standard box plot software routines 
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display both the sample median value and the sample mean on each box, so these values may be 
compared from well to well. A high degree of staggering in the box positions is then indicative of 
potentially significant spatial variation. 

Since side-by-sidbox plots provide a picture of the variability at each well, the extent to which 
apparent differences in mean levels seem to be real rather than chance fluctuations can be examined. If 
the boxes are staggered but there is substantial overlap between them, the degree of spatial variability 
may not be significant. A more formal ANOVA might still be warranted as a follow-uptest, but side-by­
side box plots will offer a initial sense of how spatially variable the groundwater data appear. 

REQUIREMENTS, ASSUMPTIONS AND PROCEDURE 

Requirements, assumptions and the procedure for box plots are outlined in Chapter 9, Section 9.2. 

EXAMPLE 13-1 

Quarterly dissolved iron concentrations measured at each of six upgradient wells are listed below. 
Construct side-by-sidrox plots to initially screen for the presence of spatial variability. 

Date 

Jan 1997 
Apr 1997 
Jul 1997 
Oct 1997 

Mean 
Median 

SD 

SOLUTION 

Well 1 Well 2 

57.97 46.06 
54.05 76.71 
29.96 32.14 
46.06 68.03 

47.01 55.74 
50.06 57.04 
12.40 20.34 

Iron Concentrations (ppm) 

Well 3 Well 4 Well 5 

100.48 34.12 60.95 
170.72 93.69 72.97 

39.25 70.81 244.69 
52.98 83.10 202.35 

90.86 70.43 145.24 
76.73 76.96 137.66 
59.35 25.95 92.16 

Well 6 

83.10 
183.09 
198.34 
160.77 

156.32 
171.93 

51.20 

Step 1. Determine the median, mean, lower and upper quartiles of each well. Then plot these against a 
concentration axis to form side-by-b~de box plots (Figure 13-1) using the procedure in 
Section 9.2 . . 

Step 2. From this plot, the means and medians at the last two wells (Wells 5 and 6) appear elevated 
above the rest. This is a possible indication of spatial variation. However, the variances as 
represented by the box lengths also appear to differ, with the highest means associated with 
the largest boxes. A transformation of the data should be attempted and the data re-plotted. 
Spatial variability is only a significant problem if it is apparent on the scale of the data actually 
used for statistical analysis. 

Step 3. Take the logarithm of each measurement as in the table below. Recompute the mean, median, 
lower and upper quartiles, and then re-constructthe box plot as in Figure 13-2. 
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Log Iron Concentrations log(ppm) 

Date Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

Jan 1997 4.06 3.83 4.61 3.53 4.11 4.42 
Apr 1997 3.99 4.34 5.14 4.54 4.29 5.21 
Jul 1997 3.40 3.47 3.67 4.26 5.50 5.29 
Oct 1997 3.83 4.22 3.97 4.42 5.31 5.08 

Mean 3.82 3.96 4.35 4.19 4.80 5.00 
Median 3.91 4.02 4.29 4.34 4.80 5.14 

Figure 13-1. Side-by-Side Iron Box Plots 
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Figure 13-2. Side-by-Side Log(I ron) Box Plots 
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Unified Guidance 

Step 4. While more nearly similar on the log-scale,the means and medians are still elevated in Wells 
5 and 6. Since the differences in box lengths are much less on the log-scale, the log 
transformation has worked to somewhat stabilize the variances. These data should be tested 
formally for significant spatial variation using an ANOVA, probably on the log-scale.1 

13.2.2 ONE-WAY ANALYSIS OF VARIANCE FOR SPATIAL VARIABILITY 

PURPOSE AND BACKGROUND 

Chapter 17 presents Analysis ofVariance [ANOVA] in greater detail. When using ANOVA to 
check for spatial variability, the observations from each well are taken as a single group. Significant 
differences between data groups represent monitoring wells with different mean concentration levels. 
The lack of significant well mean differences may afford an opportunity to pool the data for larger 
background sizes and conduct interwell detection monitoring tests. 

ANOVA used for this purpose should be performed either on a set of multiple non-impacted 
upgradient wells, or on historically uncontaminated compliance and upgradient background wells. If 
significant mean differences exist among naturally occurring constituent data at upgradient wells, natural 
spatial variability is the likely reason. Synthetic consitituents in upgradient wells might also exhibit 
spatial differences if affected by an offsite-plume. Presumably, if the flow gradient has been correctly 
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assessed and no migration of contaminants from off-sitroas occurred, differences in mean levels across 
upgradient wells ought to signal the influence of factors not attributable to a monitored release. A 
similar, but potentially weaker, argument can be made if spatial differences exist between 
uncontaminated historical data at compliance wells. The lack of spatial differences between 
uncontaminated compliance and upgradient background well data, may again allow for even larger 
background sample sizes. 

REQUIREMENTS AND ASSUMPTIONS 

The basic assumptions and data requirements for one-way ANOVA are presented in Section 17.1. 
If the assumption that the observations are statistically independent over time is not met, both identifying 
spatial variability using ANOVA as well as improving intrawell prediction limits and control charts can 
be impacted. It is usually difficult to verify that the measurements are temporally independent with only 
a limited number of observations per well. This potential problem can be somewhat minimized by 
collecting samples far enough apart in time to guard against autocorrelation. Another option is to 
construct a parallel time series plot (Chapter 14) to look for time-relatedeffects or dependencies 
occurring simultaneously across the set of wells. 

If a significant temporal dependence or autocorrelation exists, the one-way AN OVA can still 
identify well- to-welhean level differences. But the power of the test to do so is lessened. If a parallel 
time series plot indicates a potentially strong time-relatedeffect, a two-wayANOVA including temporal 
effects can be performed to test and correct for a significant temporal factor. This slightly more 
complicated procedure is discussed in Davis (1994). 

Another key assumption of parametric ANOVA is that the residuals are normal or can be 
normalized. If a normalizing transformation cannot be found, a test for spatial variability can be made 
using the Kruskal-Wallisnon-parametricANOVA (Chapter 17). As long as the measurements can be 
ranked, average ranks that differ significantly across wells provide evidence of spatial variation. 

PROCEDURE 

Step 1. Assuming there are p distinct wells to test, designate the measurements from each well as a 
separate group for purposes of computing the ANOVA. Then follow Steps 1 through 7 of the 
procedure in Section 17.1.1 to compute the overall F-statistic and the quantities of the 
ANOVA table in Figure 13-3 below. 

Figure 13-3. One-Way Parametric ANOVA Table 

Source of Variation Sums of Degrees of Mean Squares F-Statistic 
Squares Freedom 

Between Wells SSwells p-1 MSwells = SSwells/ (p-1) F = MSwells/ MS error 
Error (within wells) SS error n-p MS error = SS error! ( n-p) 
Total SS total n-1 
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Step 2. To test the hypothesis of equal means for all p wells, compare the F-statisticfrom Step 1 to the 
a-levehitical point found from the F-distributionwith (p-1) and (n-p) degrees of freedom in 
Table 17-1 of Appendix D. Usually ais taken to be 5%, so that the needed comparison value 
equals the upper 95th percentage point ofthe F-distribution.Ifthe observed F-statisticexceeds 
the critical point (F.9s,p-I,n-p ), rej ectthe hypothesis of equal well population means and 
conclude there is significant spatial variability. Otherwise, the evidence is insufficient to 
conclude there are significant differences between the means at the p wells. 

EXAMPLE 13-2 

The iron concentrations in Example 13-1 show evidence of spatial variability in side-by-sidbox 
plots. Tested for equal variances and normality, these same data are best fit by a lognormal distribution. 
The statistics for natural logarithms of the iron measurements are shown below; individual log data are 
provided in the Example 13-1 second table. Compute a one-wayparametric ANOVA to determine 
whether there is significant spatial variation at the a= .05 significance level. 

Date 
N 

Mean 
SD 

SOLUTION 

Well 1 
4 

3.820 
0.296 

Log Iron Concentration Statistics log(ppm) 

Well 2 Well 3 Well 4 Well 5 
4 4 4 4 

3.965 4.348 4.188 4.802 
0.395 0.658 0.453 0. 704 

Grand Mean = 4.354 

Well 6 
4 

5.000 
0.396 

Step 1. With 6 wells and 4 observations per well, ni = 4 for all the wells. The total sample size is n = 
24 and p = 6. Compute the (overall) grand mean and the sample mean concentrations in each 
of the well groups using equations [17.1] and [17.2]. These values are listed (along with each 
group's standard deviation) in the above table. 

Step 2. Compute the sum of squares due to well-to-wellifferences using equation [17.3]: 

SS wells I ( 820.fl4+ ( 965.~~+ K + ( OOOp"!_- ( 354.)f24= 331.4 

This quantity has (6 - 1) = 5 degrees of freedom. 

Step 3. Compute the corrected total sum of squares using equation [ 17.4] with ( n - 1) = 23 df: 

SS total t 06.)f + K + ( 08p - ( 354 .)f24 = 935 .8 

Step 4. Obtain the within-wellor error sum of squares by subtraction using equation [17.5]: 

SS error = 604.4331.4935.8 

This quantity has ( n - p) = 24-6 = 18 degrees of freedom. 
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Step 5. Compute the well and error mean sum of squares using equations [17.6) and [17. 7): 

MSwells = 866.5/331.4 

MS e1rnr = 256.18/604.4 

Step 6. Construct the F-statisticand the one-wayANOVA table, using Figure 13-3 as a guide: 

Source of Variation Sums of Squares Degrees of Mean Squares F-St at ist ic 
Freedom 

Between Wells 4.331 5 0.866 F = 0.866/0.256=3.38 
Error (within wells) 4.604 18 0.256 
Total 8.935 23 

Step 7. Compare the observed F -statistic of 3 .3 8 against the critical point taken as the upper 95th 
percentage point from the F-distributionwith 5 and 18 degrees offreedom. Using Table 17-1 
of Appendix D, this gives a value of F.95,5,18 = 2. 77. Since the F - statisticexceeds the critical 
point, the null hypothesis of equal well means can be rej ected,suggesting the presence of 
significant spatial variation. l 

13.3 USING ANOVA TO IMPROVE PARAMETRIC INTRAWELL TESTS 

BACKGROUND AND PURPOSE 

Constituents that exhibit significant spatial variability usually should be formally tested with 
intrawell procedures such as a prediction limit or control chart. Historical data from each compliance 
well are used as background for these tests instead of from upgradient wells. At an early stage of 
intrawell testing, there may only be a few measurements per well which can be designated as 
background. Depending on the number of statistical tests that need to be performed across the 
monitoring network, available intrawell background at individual compliance wells may not provide 
sufficient statistical power or meet the false positive rate criteria (Chapter 19). 

One remedy first suggested by Davis (1998) can increase the degrees of freedom of the test by 
using one-wayANOVA results (Section 13.2) from a number of wells to provide an alternate estimate 
of the average intrawell variance. In constructing a parametric intrawell prediction limit for a single 
compliance well, the intrawell background of sample size n is used to compute a well-specific sample 
mean ( x ). The intrawell standard deviation (s) is replaced by the root mean squared error [RIISE] 
component from an ANOVA of the intrawell background associated with a series of compliance and/or 
background wells. 1 This raises the degrees of freedom from ( n-1) to ( N-p ), where N is the total sample 
size across the group of wells input to the ANOVA and pis the number of distinct wells. 

1 R'1!SE is another name for the square root ofthe mean error sum of squares (MSerrorl in the ANOVA table of Figure 13-3. 
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As an example of the difference this adj ustmentcan make, consider a site with 6 upgradient wells 
and 15 compliance wells. Assuming n = 6 observations per well that have been collected over the last 
year, a total of 36 potential background measurements are available to construct an interwell test. Ifthere 
is significant natural spatial variation in the mean levels from well to well, an interwell test is probably 
not appropriate. Switching to an intrawell method is the next best solution, but with only six 
observations per compliance well, either the power of an intrawell test to identify contaminated 
groundwater is likely to be quite low (even with retesting) or the site-widefalse positive rate [SWFPR] 
will exceed the recommended target. 

If the six upgradient wells were tested for spatial variability using a one-wayANOVA (presuming 
that the equal variance assumption is met), the degrees of freedom [ dj] associated with the mean error 
sum of squares term is (6 wells x 5 dfper well) = 30 df(see Section 13.2 ). Thus by substituting the 
RIISE in place of each compliance well's intrawell standard deviation (s), the degrees of freedom for 
the modified intrawell prediction or control chart limit is 3 0 instead of 5. 

ANOVA can be usefully employed in this manner since the RIISE is very close to being a 
weighted average of the individual well sample standard deviations. As such, it can be considered a 
measure of average within- wellvariability across the wells input to the ANOVA. Substituting the RIISE 
for sat an individual well consequently provides a better estimate of the typical within-wellvariation, 
since the RIISE is based on levels of fluctuation averaged across several wells. In addition, the number 
of observations used to construct the RIISE is much greater than the n values used to compute the 
intrawell sample standard deviation (s). Since both statistical measures are estimates of within-well 
variation, the RIISE with its larger degrees of freedom is generally a superior estimate if certain 
assumptions are met. 

REQUIREMENTS AND ASSUMPTIONS 

Using ANOVA to bolster parametric intrawell prediction or control chart limits will not work at 
every site or for every constituent. Replacement of the well-specific,intrawell sample standard deviation 
(s) by the RIISE from ANOVA assumes that the true within-wellvariability is approximately the same 
at all the wells for which an intrawell background limit (i.e., prediction or control chart) will be 
constructed, and not j ustthose wells tested in the ANOVA procedure. This last assumption can be 
difficult to verify if the ANOVA includes only background or upgradient wells. But to the extent that 
uncontaminated intrawell background measurements from compliance point wells can be included, the 
ANO VA should be run on all or a substantial fraction of the site's wells (excluding those which might 
already be contaminated). Whatever mix of upgradient and downgradient wells are included in the 
ANOVA, the purpose of the procedure is not to identify groundwater contamination, but rather to 
compute a better and more powerful estimate of the average intrawell standard deviation. 

For the ANOVA to be valid and the RIISE to be a reasonable estimate of average within-well 
variability, a formal check of the equal variance assumption should be conducted using Chapter 11 
methods. A spatially variable constituent will often exhibit well-specific standard deviations that 
increase with the well- specificmean concentration. Equalizing the variances in these cases will require a 
data transformation, with an ANOVA conducted on the transformed data. Ultimately, any transformation 
applied to the wells in the ANOVA also need to be applied to intrawell background before computing 
intrawell prediction or control chart limits. The same transformation has to be appropriate for both sets 
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of data (i.e., wells included in ANOVA and intrawell background at wells for which background limits 
are desired). 

Even when the ANOVA procedure described in this section is utilized, the resulting intrawell 
limits should also be designed to incorporate retesting. When intrawell background is employed to 
estimate both a well-specific background mean ( x) and well-specific standard deviation (s), the 
Appendix D tables associated with Chapters 19 and 20 can be used to look up the intrawell sample size 
(n) and number of wells ( w) in the network in order to find a prediction or control chart multiplier that 
meets the targeted SWFPR and has acceptable statistical power. However, these tables implicitly assume 
that the degrees of freedom [dj] associated with the test is equal to ( n-1). The ANOVA method of this 
section results in a much larger df, and more importantly, in a df that does not 'match' the intrawell 
sample size (n). 

Consequently, the parametric multipliers in the Appendix D tables cannot be directly used when 
constructing prediction or control chart limits with retesting. Instead, a multiplier must be computed for 
the specific combination of n and df computed as a result of the ANOVA. Tabulating all such 
possibilities would be prohibitive. For prediction limits, the Unified Guidance recommends the free-of­
charge, open source R statistical computing environment. A pre- scripted program is included in 
Appendix C that can be run in R to calculate appropriate prediction limit multipliers, once the user has 
supplied an intrawell sample size (n), network size (w), and type ofretesting scheme. 

If guidance users are unable to utilize the R-script approach, the following approximation for the 
well-specificprediction limit L_factor~s suggested based on EPA Region 8 \lonte Carlo evaluations. 
Given a per-test confidence level of I- , r total tests of w ·well-constituents, an individual well size 
ni, a pooled variance sample size of ndf= df + 1, and Lndf,1- obtained from annual intrawell Unified 
Guidance tables, the individual well Lni, 1- factor can be estimated using the following equation: 

where µ = 1 for future I: m observations or µ is the size of a future mean. The value of m * is 
specific to each of the nine parametric prediction limit tests and is a function of the three coefficients A, 
b and c, individual well sample size ni and r tests. For a 1: 1 test of future means or observations, the 
equation is exact; for higher order 1 :m tests, the results are approximate. 2 The equation is also useful in 

2 
For each of the nine prediction limit tests, the following coefficients (A, b & c) are recommended: a 1 :2 future 

values test (1.01, .0524 & .0158); a 1:3 test (1.63, .108 .0407); a 1:4 test (2.41, .157 & .0668); the modified California 
plan (1.36, .103 & .0182); a 1:1 mean size 2 test (.5, 0 & O); a 1:2 mean size 2 test (.898, .0856 & .0172); a 1:3 mean size 2 
test(l.27, .168 &.0363); a 1:1 mean size 3 test (.5, 0 & O); and a 1:2 mean size 3 test (.817, .108 .0158). 11

0. The 
coefficients were obtained from regression analysis; approximation values were compared with R- scriptvalues for L_ factors. 
In 1260 comparisons of the seven tests using repeat values (m > 1), 86°a of the approximations lay within or equal to±. l°a of 
the tme value and 96°a within or equal to ±. 2°a. The 1 :4 test had the greatest variability, but all values lay within ±..._ 411

0. 81°a 
of the values lay within or equal to±. .01 L_ unit~md 93°a less than or equal to±. .02 units. 
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gauging R-script method results. Another virtue of this equation is that it can be readily applied to 
different individual well sample sizes based on the common Lndf,J..1 for pooled variance data. 

A less elegant solution is available for intrawell control charts. Currently, an appropriate multiplier 
needs to be simulated via \lonte Carlo methods. The approach is to simulate separate normally­
distributed data sets for the background mean based on n measurements, and the background standard 
deviation based on df + 1 measurements. Statistical independence of the sample mean ( x) and standard 
deviation (s) for normal populations allows this to work. With the background mean and standard 
deviation available, a series of possible multipliers ( h) can be investigated in simulations of control chart 
performance. The multiplier which meets the targeted SWFPR and provides acceptable power should be 
selected. Further detail is presented in Chapter 20. R can also be used to conduct these simulations. 

EXAMPLE 13-3 

The logged iron concentrations from Example 13-2 showed significant evidence of spatial 
variability. Use the results of the one-wayANOVA to compute adj ustedintrawell prediction limits 
(without retesting) for each of the wells in that example and compare them to the unadj ustedprediction 
limits. 

SOLUTION 

Step 1. Summary statistics by well for the logged iron measurements are listed in the table below. 
With n =4 measurements per well, use equation [13.1] and t1_J,n-I = t.99,3 =4.541 from Table 
16-1 in Appendix D to compute at each well an unadj usted99% intrawell prediction limit for 
the next single measurement, based on lognormal data: 

Well 1 

- RL P L
1 

= exp J y- + s t
1 1 

1 + -
. . n - a ~ v - a n-

l 

Unadjusted 99% Prediction Limits for Iron (ppm) 

Well 2 Well 3 Well 4 Well 5 

[13.1] 

Well 6 

Log-mean 
Log-SD 

3.820 
0.296 

4 
4.541 
204.9 

3.965 4.348 
0.395 0.658 

4.188 
0.453 

4.802 
0.704 

5.000 
0.396 

4 
4.541 
1108.1 

n 
t.99,3 

99% PL 

4 
4.541 
391.6 

4 
4.541 

2183.0 

4 4 
4.541 4.541 
657.0 4341.5 

Step 2. Use the RIISE (i.e., square root of the mean error sum of squares [MSerror] component) ofthe 
ANOVA in Example 13-2 as an estimate of the adj usted,pooled standard deviation, giving 

~MS e1.,.
0

,. = ,/ = 506.2%e degrees of freedom (dj) associated with this pooled standard 

deviation is p(n- 1 )= 60 )= 18, the same as listed in the ANOVA table of Example 13-2. 
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Step 3. Use equation [13.2), along with the adj ustedpooled standard deviation and its associated df, to 
compute an adj usted99% prediction limit for each well, as given in the table below. Note that 
the adj ustedt-valmbased on the larger df is t1_J ,df = t.99,18 = 2.552. 

L 

PL = exp J y- + t 
I- a l I- a,df 

• 
MS l+ 

errorc n{f 
l 

[13.2) 

Adjusted 99% Prediction Limits for Iron (ppm) 

Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

Log-mean 3.820 3.965 4.348 4.188 4.802 5.000 
RMSE 0.5079 0.5079 0.5079 0.5079 0.5079 0.5079 

df 18 18 18 18 18 18 
t.99, 18 2.552 2.552 2.552 2.552 2.552 2.552 

99% PL 193.2 223.3 327.5 279.1 515.8 628.7 

Step 4. Compare the adj ustedand unadj ustedlognormal prediction limits. By estimating the average 
intrawell standard deviation using ANOVA, the adj ustedprediction limits are significantly 
lower and thus more powerful than the unadj ustedlimits, especially at Wells 3, 5, and 6. 

In this example, use of the R-scriptapproach was unnecessary, since the corresponding L_ 

multiple used in I-of-prediction limit tests can be directly derived analytically. l 
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CHAPTER 14. TEMPORAL VARIABILITY 
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This chapter discusses the importance of statistical independence in groundwater monitoring data 
with respect to temporal variability . Temporal variability exists when the distribution of measurements 
varies with the times at which sampling or analytical measurement occurs. This variation can be caused 
by seasonal fluctuations in the groundwater itself, changes in the analytical method used, the re­
calibration of instruments, anomalies in sampling method, etc. 

Methods to identify temporal variability are discussed for both groups of wells (parallel time series 
plots; one-way analysis of variance [ANOVA] for temporal effects) and single data series (sample 
autocorrelation function; rank von Neumann ratio). Procedures are also presented for correcting or 
accommodating temporal effects. These include guidance on adjusting the sampling frequency to avoid 
temporal correlation, choosing a sampling interval using the Darcy equation, removing seasonality or 
other temporal dependence, and finally testing for trends with seasonal data. 

14. 1 TEMPORAL DEPENDENCE 

A key assumption underlying most statistical tests is that the sample data are independent and 
identically distributed [ i. i.d.] (Chapter 3 ). In part, this means that measurements collected over a period 
of time should not exhibit a clear time dependence or significant autocorrelation. Time dependence 
refers to the presence of trends or cyclical patterns when the observations are graphed on a time series 
plot. The closely related concept of autocorrelation is essentially the degree to which measurements 
collected later in a series can be predicted from previous measurements. Strongly autocorrelated data are 
highly predictable from one value to the next. Statistically independent values vary in a random, 
unpredictable fashion. 

While temporal independence is a complex topic, there are several common types of temporal 
dependence. Some of these include: 1) correlation across wells over time in the concentration pattern of 
a single constituent (i.e., concentrations tending to jointly rise or fall at each of the wells on common 
sampling events); 2) correlation across multiple constituents over time in their concentration patterns 
(i.e., a parallel rise or fall in concentration across several parameters on common sampling events); 3) 
seasonal cycles; 4) trends, linear or otherwise; and 5) serial dependence or autocorrelation (i.e., greater 
correlation between sampling events more closely spaced in time). 
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Any of these patterns can invalidate or weaken the results of statistical testing. In some cases, a 
statistical method can be chosen that specifically accounts for temporal dependence (e.g., seasonal 
Mann-Kendall trend test). In other instances, the sample data need to be adjusted for the dependence. 
Future data might also need to be collected in a manner that avoids temporal correlation. The goal of this 
chapter is to present straightforward tools that can be used to first identify temporal dependence and then 
to adjust for this correlation. 

To better understand why most statistical tests depend on the assumption of statistical 
independence, consider a hypothetical series of groundwater measurements exhibiting an obvious pattern 
of seasonal fluctuation (Figure 14-1 ). These data demonstrate regular and repeated cycles of higher and 
lower values. Even though fluctuating predictably and highly dependent, the characteristics of the entire 
groundwater population will be observed over a long period of monitoring. This provides an estimate of 
the full range of concentrations and an accurate gauge of total variability. 

The same is not true for data collected from the same population over a much shorter span, say in 
five to six months. A much narrower range of sample concentrations would be observed due to the 
cyclical pattern. Depending on when the sampling was conducted, the average concentration level would 
either be much higher or much lower than the overall average; no single sampling period is likely to 
accurately estimate either the true population mean or its variance. 

From this example, an important lesson can be drawn about temporally dependent data. Variance 
estimates in a sample of dependent, positively autocorrelated data are likely to be biased low. This is 
important because the guidance methods require and assume that an accurate and unbiased estimate of 
the sample standard deviation be available. A case in point was the practice of using aliquot replicates of 
a single physical sample for comparison with other combined replicate aliquot samples from a number of 
individual physical water quality samples (e.g., in a Student- t test). Aliquot replicate values are much 
more similar to each other than to measurements made on physically discrete groundwater samples. 
Consequently, the estimate of variance was too low and the t-test frequently registered false positives. 

Using physically discrete samples is not always sufficient. If the sampling interval ensures that 
discrete volumes of groundwater are being sampled on consecutive sampling events, the observations 
can be described as physically independent. However, they are not necessarily statistically independent. 
Statistical independence is based not on the physical characteristics of the sample data, but rather on the 
statistical pattern of measurements. 

Temporally dependent and autocorrelated data generally contain both a truly random and non­
random component. The relative strength of the latter effect is a measured by one or more correlation 
techniques. The degree of correlation among dependent sample measurements lies on a continuum. 
Sample pairs can be mildly correlated or strongly correlated. Only strong correlations are likely to 
substantially impact the results of further statistical testing. 
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Figure 14-1. Seasonal Fluctuations 

-D-- ST\TION 1 

DATE 

14. 2 I DENTI FYI NG TEMPORAL EFFECTS AND CORRELA Tl ON 

14.2.1 PARALLEL Tl ME SERI ES PLOTS 

BACKGROUND AND PURPOSE 

Time series plots were introduced in Chapter 9. A time series plot such as Figure 14-1 is a simple 
graph of concentration versus time of sample collection. Such plots are useful for identifying a variety of 
temporal patterns. These include identifying a trend over time, one or more sampling events that may 
signal contaminant releases, measurement outliers resulting in anomalous 'spikes' due to field handling 
or analytical problems, cyclical and seasonal fluctuations, as well as the presence of other time-related 
dependencies. 

Time series plots can be used in two basic ways to identify temporal dependence. By graphing 
single constituent data from multiple wells together on a time series plot, potentially significant temporal 
components of variability can be identified. For example, seasonal fluctuations can cause the mean 
concentration levels at a number of wells to vary with the time of sampling events. This dependency will 
show up in the time series plot as a pattern of parallel traces, in which the individual wells will tend to 
rise and fall together across the sequence of sampling dates. The parallel pattern may be the result of the 
measurement process such as mid-stream changes in field handling or sample collection procedures, 
periodic re-calibration of analytical instrumentation, and changes in laboratory or analytical methods. It 
could also be the result from significant autocorrelation present in the groundwater population itself 
Hydrologic factors such as drought, recharge patterns or regular (e.g., seasonal) water table fluctuations 
may be responsible. In these cases, it may be useful to test for the presence of a significant temporal 
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effect by first constructing a parallel time series plot and then running a formal one-way ANOVA for 
temporal effects (Section 14.2.2). 

The second way time series plots can be helpful is by plotting multiple constituents over time for 
the same well, or averaging values for each constituent across wells on each sampling event and then 
plotting the averages over time. In either case, the plot can signify whether the general concentration 
pattern over time is simultaneously observed for different constituents. If so, it may indicate that a group 
of constituents is highly correlated in groundwater or that the same artifacts of sampling and/or lab 
analysis impacted the results of several monitoring parameters. 

REQUIREMENTS AND ASSUMPTIONS 

The requirements for time series plots were discussed in Chapter 9. Two very useful 
recommendations follow from that discussion. First, a different plot symbol should be used to display 
any non-detect measurements (e.g., solid symbols for detected values, hollow symbols for non-detects). 
This can help prevent mistaking a change over time in reporting limits as a trend, since detected and 
non-detected data are clearly distinguished on the plot. It also allows one to determine whether non­
detects are more prevalent during certain portions of the sample record and less prevalent at other times. 
Secondly, when multiple constituents are plotted on the same graph, it may be necessary to standardize 
each constituent prior to plotting to avoid trying to simultaneously visualize high-valued and low-valued 
traces on the same y-axis (i.e., concentration axis). The goal of such a plot is to identify parallel 
concentration patterns over time. This can be done most readily by subtracting each constituent's sample 
mean ( x) from the measurements for that constituent and dividing by the standard deviation (s), so that 
every constituent is plotted on roughly the same scale. 

PROCEDURE FOR MUL Tl PLE WELLS, ONE CONSTITUENT 

Step 1. For each well to be plotted, form data pairs by matching each concentration value with its 
sampling date. 

Step 2. Graph the data pairs for each well on the same set of axes, the horizontal axis representing 
time and the vertical axis representing concentration. Connect the points for each individual 
well to form a 'trace' for that well. 

Step 3. look for parallel movement in the traces across the wells. Even if all the well concentrations 
tend to rise on a given sampling event, but not to the same magnitude or degree, this is 
evidence of a possible temporal effect. 

PROCEDURE FOR MUL Tl PLE CONS Tl TUENTS, ONE OR MANY WELLS 

Step 1. For each constituent to be plotted, compute the constituent-specific sample mean ( x) and 
standard deviation (s). Form standardized measurements (zi) by subtracting the mean from 
each concentration (xi) and dividing by the standard deviation, using the equation: 

x - x _,_·_ [14.1) 
s 

Form data pairs by matching each standardized concentration with its sampling event. 
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Step 2. If correlation is suspected in a group of wells, average the standardized concentrations for each 
given constituent across wells for each specific sampling event. Otherwise, form a multi­
constituent time series plot separately for each well. 

Step 3. Graph the data pairs for each constituent on the same set of axes, the horizontal axis 
representing time and the vertical axis representing standardized concentrations. Connect the 
points for each constituent to form a trace for that parameter. 

Step 4. look for parallel movement in the traces across the constituents. strong degree of 
parallelism indicates a high degree of correlation among the monitoring parameters. 

EXAMPLE 14-1 

The following well sets of manganese measurements were collected over a two-year period. 
Construct a time series plot of these data to checkfor possible temporal effects. 

Manganese Concentrations (ppm) 

Qtr BW-1 BW-2 BW-3 BW-4 
1 28.14 31.41 27.15 30.46 
2 29.33 30.27 30.24 30.60 
3 30.45 32.57 29.14 30.96 
4 32.42 32.77 30.59 30.70 
5 34.37 33.03 34.88 32.71 
6 33.25 32.18 30.53 31.76 
7 31.02 28.85 30.33 31.85 
8 28.50 32.88 30.42 29.58 

SOLUTION 

Step 1. Graph each well's concentrations versus sampling event on the same set of axes to construct 
the following time series plot (Figure 14-2). 

40 

35 

30 
--BW-1 
------- BW-2 
--BW-3 
--------- BW-4 

25 

0 2 4 6 8 10 

Sampling Event 

Figure 14-2. Manganese Parallel Time Series Plot 
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Step 2. Examining the traces on the plot, there is some degree of parallelism in the pattern over time. 
Particularly for the fifth quarter, there is an across-the-board increase in the manganese level, 
followed by a general decline the next two quarterly events. Note, however, that there is little 
evidence of differences in mean levels by well location. 1 

14.2.2 ONE-WAY ANALYSIS OF VARIANCE FOR TEMPORAL EFFECTS 

PURPOSE AND BACKGROUND 

Parametric ANOVA is a comparison of means among a set of populations. The one-way ANOVA 
for temporal effects is no exception. A one-way ANOVA for spatial variation (Chapter 13) uses well 
data sets to represent locations as the statistical factor of interest. In contrast, a one-way ANOVA for 
temporal effects considers multiple well data sets for individual sampling events or seasons as the 
relevant statistical factor. A significant temporal factor implies that the average concentration depends to 
some degree on when sampling tak:esplace. 

Three common examples of temporal factors include: 1) an irregular, but consistent shift of 
average concentrations over time perhaps due to changes in laboratories or analytical method 
interferences; 2) cyclical seasonal patterns; or 3) parallel upward or downward trends. These can occur 
in both upgradient and downgradient well data. 

If event-specific analytical differences or seasonality appear to be an important temporal factor, the 
one-way ANOVA for temporal effects can be used to formally identify seasonality, parallel trends, or 
changes in lab performance that affect other temporal effects. Results of the ANOVA can also be used to 
create temporally stationary residuals, where the temporal effect has been 'subtracted from' the original 
measurements. These stationary residuals may be used to replace the original data in subsequent 
statistical testing. 

The one-way ANOVA for a temporal factor described below can be used for an additional purpose 
when interwell testing is appropriate. For this situation, there can be no significant spatial variability. If 
a group of upgradient or other background wells indicates a significant temporal effect, an interwell 
prediction limit can be designed which properly accounts for this temporal dependence. A more 
powerful interwell test of upgradient-to-downgradient differences can be developed than otherwise 
would be possible. This can occur because the AN OVA separates or 'decomposes' the overall data 
variation into two sources: a) temporal effects and b) random variation or statistical error. It also 
estimates how the background mean is changing from one sampling event to the next. The final 
prediction limit is formed by computing the backgroundmean, using the separate structural and random 
vanat10n components of the ANOVA to better estimate the standard deviation, and then adjusting the 
effective sample size (via the degrees of freedom) to account for these factors. 

REQUIREMENTS AND ASSUMPTIONS 

like the one-way ANOVA for spatial variation (Chapter 13 ), the one-way ANOVA for temporal 
effects assumes that the data groups are normally-distributed with constant variance. This requirement 
means that the group residuals should be tested for normality (Chapter 10) and also for equality of 

14-6 March 2009 

EPAPAV0117182 



Chapter 14. Temporal Variability Unified Guidance 

variance (Chapter 11 ). It is also assumed that for each of a series of background wells, measurements 
are collected at each well on sampling events or dates common to all the wells. 

Two variations in the basic procedure are described below. For cases of temporal effects excluding 
seasonality, each sampling event is treated as a separate population. The ANOVA residuals are grouped 
and tested by sampling event to test for equality of variance. In cases of apparent seasonality, each 
season is treated as a distinct population. The difference is that seasons contain multiple sampling events 
across a span of multiple years, with sampling events collected at the same time of year assigned to one 
of the seasons (e.g., all January or first quarter measurements). Here, the ANOVA residuals are grouped 
by season to test for homoscedasticity. 

If the assumption of equal variances or normal residuals is violated, a data transformation should 
be considered. This should be followed by testing of the assumptions on the transformed scale. The one­
way ANOVA for a non-seasonal effect should include a minimum of four wells and at least 4 
observations (i.e., distinct sampling dates) per well. In the seasonal case, there should be a minimum of 
3-4 sampling events per distinct season, with the events thus spanning at least three years (i.e., one per 
year per season). larger numbers of both wells and observations are preferable. Sampling dates should 
also be approximately the same for each well if a temporal effect is to be tested. 

If the data cannot be normalized, a similar test for a temporal or seasonal effect can be performed 
using the Kruskal-Wallis test (Chapter 17). The only difference from the procedure outlined in Section 
17.1.2 is that the roles of wells/groups and sampling events have to be reversed. That is, each sampling 
event should be treated as a separate 'well,' while each well is treated as a separate 'sampling event.' 
Then the same equations can be applied to the reversed data set to test for a significant temporal 
dependence. If testing for a seasonal effect, the wells in the notation of Section 17.1.2 become the 
groups of common sampling events from different years, while the sampling events are again the distinct 
wells. 

Even when a temporal effect exists and is apparent on a time series plot, the variation between well 
locations (i.e., spatial variability) may overshadow the temporal variability. This could result in a non­
significant one-way ANOVA finding for the temporal factor. In these cases, a two-way ANOVA can be 
considered where both well location and sampling event/season are treated as statistical factors. This 
procedure is described in Davis (1994). Evidence for a temporal effect can be documented using this 
last technique, although the two-way ANOVA isn't necessary if the goal is simply to construct 
temporally stationary residuals. That can be accomplished with a one-way ANOVA even when 
significant spatial variability exists. 

PROCEDURE 

Step 1. Given a set of W wells and measurements from each of T sampling events at each well on each 
of K years, label the observations as Xijko for i = 1 to W, j = 1 to T, and k = 1 to K. Then Xijk 

represents the measurement from the ith well on the jth sampling event during the kth year. 

Step 2. When testing for a non-seasonal temporal effect, form the set of event means ( x•jk) and the 

grand mean ( x ••• ) using equations [14.2) and [14.3) respectively: 
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1 w 
- xiJk for j = 1 to T and k = 1 to K 
w ii 

[14.2) 

W T K Ii 
X••• icljclkclXijk/WTK 

[14.3) 

Step 2a. If testing for a seasonal effect common to all wells, form the seasonal means ( x.j.) instead of 

the event means of Step 2, using the equation: 

x j .. = 

w 
-

1
- x iJk for j = 1 to T 

WK ii 
[14.4) 

Step 3. Compute the set ofresiduals for each sampling event or season using either equation [14.5) or 
equation [ 14.6) respectively: 

riJk iJk - Xljk for i = 1 to W [14.5) 

riJk iJk - xxj .. for i = 1 to Wand k = 1 to K [14.6) 

Step 4. Test the residuals for normality (Chapter 10). If significant non-normality is evident, consider 
transforming the data and re-doing the computations in Steps 1 through 4 on the transformed 
scale. 

Step 5. Test the sets of residuals grouped either by sampling event or season for equal variance 
(Chapter 11 ). If the variances are significantly different, consider transforming the data and 
re-doing the computations in Steps 1 through 5 on the transformed data. 

Step 6. If testing for a non-seasonal temporal effect, compute the mean error sum of squares term 
(MSE) using equation: 

11' T K I 
MS E = i I j I k I r:k TK (w - 1) [14.7) 

This term is associated with TK( W-l) degrees of freedom. Also compute the mean sum of 
squares for the temporal effect (MST) with degrees of freedom ( TK- l ), using equation: 

T K Ii 
MST= w j 

1 
k 

1 
~·jk - x ••• ) / (rK - 1) [14.8) 

Step 6a. If testing for a seasonal effect, compute the mean error sum of squares (MSE) using equation: 

[14.9) 

14-8 March 2009 

EPAPAV0117184 



Chapter 14. Temporal Variability Unified Guidance 

This term is associated with T( WK-I) degrees of freedom. Also compute the mean sum of 
squares for the seasonal effect (MST) with degrees of freedom (T-1), using equation: 

[14.10) 

Step 7. Test for a significant event-to-event or seasonal effect by computing the ratio of the mean sum 
of squares for time and the mean error sum of squares: 

[14.11) 

Step 8. If testing for a non-seasonal temporal effect, the test statistic FT under the null hypothesis (i.e., 
of no significant time-related variability among the sampling events) will follow an F­
distribution with ( TK- I) and TK( W- I) degrees of freedom. Therefore, using a significance 
level of L = 0.05, compare FT against the critical point F.os, TK-l,TK(W-lJ tak:enfrom the F­
distribution in Table 17-1 in Appendix D. If the critical point is exceeded, conclude there is a 
significant temporal effect. 

Step 8a. If testing for a seasonal effect, the test statistic FT under the null hypothesis (i.e., of no 
seasonal pattern) will follow an F-distribution with ( T-I) and T( WK-I) degrees of freedom. 
Therefore, using a significance level of L = 0.05, compare FT against the critical point F.os, T­

l,T(WK-lJ taken from the F-distribution in Table 17-1 of Appendix D. If the critical point is 
exceeded, conclude there is a significant seasonal pattern. 

Step 9. If there is no spatial variability but a significant temporal effect exists among a set of 
background wells, compute an appropriate interwell prediction or control chart limit as 
follows. First replace the background sample standard deviation (s) with the following 
estimate built from the one-way ANOVA table: 

[14.12) 

Then calculate the effective sample size for the prediction limit as: 

n I* {trK (TK I) ( T WF+·l)~ j ( FfK (TK I) (W -·-±)] [14.13) 

EXAMPLE 14-2 

Some parallelism was found in the time series plot of Example 14-1. Test those same manganese 
data for a significant, non-seasonal temporal effect using a one-way ANOVA at the 5% significance 
level. 
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Manganese Concentrations (ppm) 

Qtr Event BW-1 BW-2 BW-3 BW-4 
Mean 

1 29.290 28.14 31.41 27.15 30.46 
2 30.110 29.33 30.27 30.24 30.60 
3 30.780 30.45 32.57 29.14 30.96 
4 31.620 32.42 32.77 30.59 30.70 
5 33.747 34.37 33.03 34.88 32.71 
6 31.930 33.25 32.18 30.53 31.76 
7 30.513 31.02 28.85 30.33 31.85 
8 30.345 28.50 32.88 30.42 29.58 

Grand mean = 31.042 

SOLUTION 

Step 1. First compute the means for each sampling event and the grand mean of all the data. These 
values are listed in the table above. With four wells and eight quarterly events per well, W = 4, 
T = 4, and K = 2. 

Step 2. Determine the residuals for each sampling event by subtracting off the event mean. These 
values are listed in the table below. 

Qtr 
1 
2 
3 
4 
5 
6 
7 
8 

Manganese Event Residuals (ppm) 

BW-1 BW-2 BW-3 BW-4 
-1.150 
-0.780 
-0.330 
0.800 
0.622 
1.320 
0.508 

-1.845 

2.120 
0.160 
1.790 
1.150 

-0.718 
0.250 

-1.662 
2.535 

-2.140 
0.130 

-1.640 
-1.030 
1.132 

-1.400 
-0.182 
0.075 

1.170 
0.490 
0.180 

-0.920 
-1.038 
-0.170 
1.338 

-0. 765 

Step 3. Test the residuals for normality. A probability plot of these residuals is given in Figure 14-3. 
An adequate fit to normality is suggested by Filliben's probability plot correlation coefficient 
test. 
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Figure 14-3. Probability Plot of Manganese Sampling Event Residuals 
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Step 4. Next, test the groups ofresiduals for equal variance across sampling events. levene's test 
(Chapter 11) gives an F-statistic of 1.30, well below the 5% critical point with 7 and 24 
degrees of freedom of F.95,7,24 = 2.42. Therefore, the group variances test out as adequately 
homogeneous. 

Step 5. Compute the mean error sum of squares term using equation [14.7): 

t-= 150] (-+ 780)2 K ++ ( 338] (-+ 765)
2 j( . X3~4 = 87.1 

Step 6. Compute the mean sum of squares term for the time effect using equation [14.8): 

t 290.n4 042J l+ ( 042Jl 1 ~@f ( 345.30 042J~h = 55.7 

Step 7. Test for a significant temporal effect, computing the F-statistic in equation [14.11): 

FT = 7.55/1.87 = 4.04 

The degrees of freedom associated with the numerator and denominator respectively are ( TK-
1) = 7 and TK( W-1) = 24. Just as with levene's test run earlier, the 5% level critical point for 
the test is F.95 ,7,24 = 2.42. Since FT exceeds this value, there is evidence of a significant 
temporal effect in the manganese backgrounddata. 

Step 8. Assuming a lack of spatial variation, the presence of a temporal effect can be used to compute 
a standard deviation estimate and effective background sample size appropriate for an 
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14.2.3 

interwell prediction limit test, using equations [14.12) and [14.13) respectively. The adjusted 
standard deviation becomes: 

cr$ = J±[7.55 1 3{1.87)]= 1.814 ppm 

while the effective sample size is: 

n -+ )2 YI·( 04}81404J:1Bl* ~1931.1937 

If the background data had simply been pooled together and the sample standard deviation 
computed, s = 1.776 ppm with a sample size of n = 32. So the adjustments based on the 
temporal effect alter the final prediction limit by enlarging it and reducing the effective sample 
size to account for the additional component of variation. l 

SAMPLE AUTOCORRELATION FUNCTION 

BACKGROUND AND PURPOSE 

The sample autocorrelation function enables a test of temporal autocorrelation in a single data 
series (e.g., from a single well over time). When a time-related dependency affects several wells 
simultaneously, parallel time series plots (Section 14.2.1 ) and one-way ANOVA for temporal effects 
(Section 14.2.2) should be considered. But when a longer data series is to be used for an intrawell test 
such as a prediction limit or control chart, the autocorrelation function does an excellent job of 
identifying temporal dependence. 

Given a sequence of consecutively-collected measurements, x1, x2, .• • , Xn, form the set of 
overlapping pairs (xi, xd) for i = 1, ... , n-1. The approximate first-order sample autocorrelation 
coefficient is then computed from these pairs as (Chatfield, 2004): 

n- I 

(xi - xXxi-1 - x) 
r = ~ic~] _____ _ 

I 
[14.14) 

Equation [14.14) estimates the first-order autocorrelation, that is, the correlation between pairs of 
sample measurements collected one event apart (i.e., consecutive events). The number of sampling 
events separating each pair is called the lag, representing the temporal distance between the pair 
measurements. 

Autocorrelation can also be computed at other lags. The general approximate equation for the kth 
lag is given by: 
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[14.15) 

which estimates the kth-order autocorrelation for pairs of measurements separated in time by k sampling 
events. Note that the number of pairs used to compute rkdecreases with increasing k due to the fact that 
fewer and fewer sample pairs can be formed which are separated by that many lags. 

By computing the first few sample autocorrelation coefficients and defining r0 = 1, the sample 
autocorrelation function can be formed by plotting rkagainst k. Since the autocorrelation coefficients are 
approximately normal in distribution with zero mean and variance equal to l/n, a test of significant 
autocorrelation at the 95% significance level can be made by examining the sample autocorrelation 

function to see if any coefficients exceed 2/ Fn in absolute value ( ± 2/ Fn represent approximate upper 

and lower confidence limits). 

The sample autocorrelation function is a valuable visual tool for assessing different types of 
autocorrelation (Chatfield, 2004). For instance, a stationary (i.e., stable, non-trending) but non-random 
series of measurements will often exhibit a large value of r1 followed by perhaps one or two other 
significantly non-zero coefficients. The remaining coefficients will be progressively smaller and smaller, 
tending towards zero. A series with a clear seasonal pattern will exhibit a seasonal (i.e., approximately 
sinusoidal) autocorrelation function. If the series tends to alternate between high and low values, the 
autocorrelation function will also alternate, with r 1 being negative to reflect that consecutive 
measurements tend to be on 'opposite sides' of the sample mean. Finally, if the series contains a trend, 
the sample autocorrelation function will not drop to zero as the lag k increases. Rather, there will a 
persistent autocorrelation even at very large lags. 

REQUIREMENTS AND ASSUMPTIONS 

The approximate distribution of the sample autocorrelation coefficients is predicated on the sample 
measurements following a normal distribution. A test for significant autocorrelation may therefore be 
inaccurate unless the sample measurements are roughly normal. Non-normal data series should be tested 
for temporal autocorrelation using the non-parametric rank:Von Neumann ratio (Section 14.2.4). 

Outliers can drastically affect the sample autocorrelation function (Chatfield, 2004). Before 
assessing autocorrelation, checkthe sample for possible outliers, removing those that are identified. A 
series of at least I 0-12 measurements is minimally recommended to construct the autocorrelation 
function. Otherwise, the number of lagged data pairs will be too small to reliably estimate the 
correlation, especially for larger lags. Sampling events should be regularly spaced so that pairs lagged by 
the same number of events (k) represent the same approximate time interval. 

PROCEDURE 

Step 1. Given a series of n measurements, x1, .. . , Xn, form sets oflagged data pairs (xi, Xi-k), i = 1, ... , 
n-k, for k J [ n/3], where the notation [ c] represents the largest integer no greater than c. For 
longer series, computing lags to a maximum of k = 15 is generally sufficient. 
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Step 2. For each set oflagged pairs from Step 1, compute the sample autocorrelation coefficient, rko 

using equation [14.15). Also define r0 = 1. 

Step 3. Graph the sample autocorrelation function by plotting rkversus k fork= 0, ... , [n/3], generally 

up to a maximum lag of 15. Also plot horizontal lines at levels equal to: ±2/ Fn. 

Step 4. Examine the sample autocorrelation function. If any coefficient rkexceeds 2/ Fn in absolute 

value, conclude that the sample has significant autocorrelation. 

EXAMPLE 14-3 

The following series of monthly total alkalinity measurements were collected from leachate at a 
solid waste landfill during a four and a half year period. Use the sample autocorrelation function to test 
for significant temporal dependence in this series. 

Total Total Total 
Date Alkalinity Date Alkalinity Date Alkalinity 

(ma! L) (ma! L) (ma! L) 

01/26/96 1400 07/01/97 2400 01/15/99 1350 
02120196 1700 08/15/97 3500 02102199 1560 
03/19/96 1900 09/15/97 3100 03/02/99 1220 
04122196 1800 10/15/97 3300 04/15/99 1390 
05/22/96 1300 11/15/97 2100 05/04/99 1940 
06124196 2000 12/15/97 2100 06102199 2160 
07/ 15/96 2300 01/15/98 1500 07107199 1990 
08/21/96 2500 02/ 15/98 710 08/03/99 2540 
09/ 15/96 1700 03/ 15/98 1100 09102199 2250 
10/ 15/96 1600 04/ 15/98 1900 10/07/99 1630 
11/ 11/ 96 1400 05/08/98 2100 11/02/99 1710 
12/ 10/96 1600 06/ 15/98 2000 12/07/99 1210 
01/22/97 1800 07/15/98 2500 01/06/00 1170 
02/11/97 1000 08/ 15/98 2700 02102100 1330 
03/04/97 720 09102198 2400 03/02/00 1540 
04107197 1400 10/06/98 3000 04104100 1670 
05/01/97 1600 11/03/98 2700 05102100 1520 
06109197 990 12/15/98 2680 06106100 2080 

SOLUTION 

Step 1. Create a time series plot of the n = 54 alkalinitymeasurements, as in Figure 14-4. The series 
indicates an apparent seasonal fluctuation. 

Step 2. Form lagged data pairs from the alkalinityseries for each lag k = 1, ... , [n/3) = 18. The first 
two pairs for k = 1 (i.e., first order lag) are (1400, 1700) and (1700, 1900). For k =2, the first 
two pairs are (1400, 1900) and (1700, 1800), etc. 

Step 3. At each lag ( k), compute the sample autocorrelation coefficient using equation [ 14 .15). Note 
that the denominator ofthis equation equals (n-l)s2

. For the alkalinitydata, the sample mean 
and variance are x = 1865.93 and s2 = 392349.1 respectively. The lag-1 autocorrelation is thus: 

r I 
_(14_o_o_-__ 9_3)_~_nro_o_--~93_)~+8_K_+_(_15_2_0_-__ 93_)_~_M_8_o _-__ 93)8?5 64. 

( 1)4192349 1. 
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Other lags are computed similarly. 

Step 4. Plot the sample autocorrelation function as in Figure 14-5. Overlay the plot with 95% 

confidence limits (dotted lines) shown at ±2//;,, = ±2/ J5i = 0.27 . 

Step 5. The autocorrelation function indicates coefficients at several lags that lie outside the 95% 
confidence limits, confirming the presence of temporal dependence. Further, the shape of 
autocorrelation function is sinusoidal, suggesting a strong seasonal fluctuation in the alkalinity 
levels. l 

Figure 14-4. Time Series Plot of Total Alkalinity (mg/L) 

• 

• 
• 
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Figure 14-5. Sample Autocorrelation Function for Total Alkalinity 

0 5 10 15 

14.2.4 RANK VON NEUMANN RATIO TEST 

BACKGROUND AND PURPOSE 

The rankvon Neumann ratio is a non-parametric test of first-order temporal autocorrelation in a 
single data series (e.g., from a single well over time). It can be used as an alternative to the sample 
autocorrelation function (Section 14.2.3) for non-normal data, and is both easily computed and effective. 

The rankvon Neumann ratio is based on the idea that a truly independent series of data will vary in 
an unpredictable fashion as the list is examined sequentially. The first order or lag-1 autocorrelation will 
be approximately zero. By contrast, the first-order autocorrelation in dependent data will tend to be 
positive (or negative), implying that lag-I data pairs in the series will tend to be more similar (or 
dissimilar) in magnitude than would expected by chance. 

Not only will the concentrations of lag-1 data pairs tend to be similar (or dissimilar) when the 
series is autocorrelated, but the ranks of lag-I data pairs will share that similarity or dissimilarity. 
Although the test is non-parametric and rank-based, the ranks of non-independent data still follow a 
discernible pattern. Therefore, the rankvon Neumann ratio is constructed from the sum of differences 
between the ranks of lag-1 data pairs. When these differences are small, the ranks of consecutive data 
measurements need to be fairly similar, implying that the pattern of observations is somewhat 
predictable. Given the relative position and magnitude of one observation, the approximate relative 
position and magnitude of the next sample measurement can be predicted. low values of the rankvon 
Neumann ratio are therefore indicative of temporally dependent data series. 
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Compared to other tests of statistical independence, the rank:von Neumann ratio has been shown to 
be more powerful than non-parametric methods such as the Runs up-and-down test (Madansky, 1988). It 
is also a reasonable test when the data follow a normal distribution. In that case, the efficiency of the test 
is always close to 90 percent when compared to the von Neumann ratio computed on concentrations 
instead of the ranks. Thus, very little effectiveness is lost by using the ranks in place of the original 
measurements. The rankvon Neumann ratio will correctly detect dependent data and do so over a variety 
of underlying data distributions. The rankvon Neumann ratio is also fairly robust to departures from 
normality, such as when the data derive from a skeweddistribution likethe lognormal. 

REQUIREMENTS AND ASSUMPTIONS 

An unresolved problem with the rank von Neumann ratio test is the presence of a substantial 
fraction of tied observations. like the Wilcoxon rank-sum test (Chapter 16), Bartels (1982) 
recommends replacing each tied value by its mid-rank:( i.e., the average of all the ranks that would have 
been assigned to that set of ties). However, no explicit adjustment of the ratio for ties has been 
developed. The rank:von Neumann critical points may not be appropriate (or at best very approximate) 
when a large portion of the data consists of non-detects or other tied values. Especially in the case of 
frequent non-detects, too much information is lost regarding the pattern of variability to use the rank:von 
Neumann ratio as an accurate indication of autocorrelation. In fact, no test is likely to provide a good 
estimate of temporal correlation, whether non-parametric or parametric. 

While the rank:von Neumann ratio test is recommended in the Unified Guidance for its ease of use 
and robustness when applied to either normal or non-normal distributions, the literature on time series 
analysis and temporal correlation is extensive with respect to other potential tests. Many other tests of 
autocorrelation are available, especially when either the original measurements or the residuals of the 
data are normally distributed after a trend has been removed. Chatfield (2004) and (Madansky, 1988) are 
two good references for some of these alternate tests. 

PROCEDURE 

Step 1. Order the sample from least to greatest and assign a unique rank:to each measurement. If some 
data values are tied, replace tied values with their mid-rank:sas in the Wilcoxon rank-sumtest 
(Chapter 16). Then list the observations and their corresponding rank:sin the order that they 
were collected (i.e., by sampling event or time order). 

Step 2. Using the list of ranks, Ri, for the sampling events i = 1 ... n, compute the rank:von Neumann 
ratio with the equation: 

[14.16) 

Step 3. Given sample size ( n) and desired significance level (a), find the lower critical point of the 
rank:von Neumann ratio in Table 14-1 of Appendix D. In most cases, a choice of a= .01 
should be sufficient, since only substantial non-independence is likelyto affect subsequent 
statistical testing. If the computed ratio, v, is smaller than this critical point, conclude that the 
data series is strongly autocorrelated. If not, there is insufficient evidence to reject the 
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hypothesis of independence; treat the data as temporally independent in subsequent statistical 
testing. 

EXAMPLE 14-4 

Use the rank von Neumann ratio test on the following series of 16 quarterly measurements of 
arsenic (ppb) to determine whether or not the data set should be treated as temporally independent m 
subsequent tests. Compute the test at the a= .01 level of significance. 

Sample Date Arsenic (ppb) Rank (R;) 

Jan 1990 4.0 5 
Apr 1990 7.2 15 
Jul 1990 3.1 2 

Oct 1990 3.5 3 
Jan 1991 4.4 8 
Apr 1991 5.1 9 
Jul 1991 2.2 1 

Oct 1991 6.3 13 
Jan 1992 6.5 14 
Apr 1992 7.5 16 
Jul 1992 5.8 11 

Oct 1992 5.9 12 
Jan 1993 5.7 10 
Apr 1993 4.1 6 
Jul 1993 3.8 4 

Oct 1993 4.3 7 

SOLUTION 

Step 1. Assign rank:sto the data values as in the table above. Then list the data in chronological order 
so that each rank:value occurs in the order sampled. 

Step 2. Compute the von Neumann ratio using the set ofrank:s in column 3 using equation [14.16), 
being sure to take squared differences of successive, overlapping pairs ofrankvalues: 

5)7s ( +15f K ( -H4J ]_ 
( 

2 
-· }1211616 -

67.1 

Step 3. look up the lower critical point (vcp) for the rank:von Neumann ratio in Table 14-1 of 
Appendix D. For n = 16 and a= .01, the lower critical point is equal to 0.93. Since the test 
statistic vis larger than Vcp, there is insufficient evidence of autocorrelation at the a= .01 level 
of significance. Therefore, treat these data as statistically independent in subsequent testing. l 
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14. 3 CORRECT! NG FOR TEMPORAL EFFECTS AND CORRELA Tl ON 

14.3.1 ADJUST! NG THE SAMPLING FREQUENCY AND/ OR TEST METHOD 

If a data series is temporally correlated, a simple remedy (if allowable under program rules) is to 
change the sampling frequency and/or statistical method used to analyze the data. In some cases, 
increasing the sampling interval will effectively eliminate the statistical dependence exhibited by the 
series. This may happen because the longer time between sampling events allows more groundwater to 
flow through the well screen, further differentiating measurements of consecutive volumes of 
groundwater and lessening the impact of seasonal fluctuations or other time-dependent patterns in the 
underlying concentration distribution. 

Many authors including Gibbons (l 994a) and ASTM (1994) have recommended that sampling be 
conducted no more often than quarterly to avoid temporal dependence. If the sampling frequency is 
reduced, there are obviously fewer measurements available for statistical analysis during any given 
evaluation period. A t-test or ANOVA cannot realistically be run with fewer than four measurements per 
well. A prediction limit for a future mean requires at least two new observations, and a prediction limit 
for a future median requires at least three measurements, not counting any resamples. Depending on the 
length of the evaluation period (i.e., quarterly, semi-annual, annual), a change of statistical method may 
also be necessary when groundwater measurements are autocorrelated. 

When sufficient background data have been collected over a longer period of time, a prediction 
limit test for future values can be run with as few as one or two new measurements per compliance well. 
The same is true for control charts. Therefore, if a low groundwater flow velocity and/or evidence of 
statistical dependence suggest a reduction in sampling frequency, certain prediction limits and control 
charts should be strongly considered as alternate statistical procedures. 

RUNNING A Pl LOT STUDY 

An optional approach to adjusting the sampling frequency is to run a site-specific pilot study of 
autocorrelation. Such a study can be conducted in several ways, but perhaps the easiest is to picktwo or 
three wells from the network(perhaps one background well and one or two compliance wells) and then 
conduct weeklysampling at these wells over a one year period. For each well in the study, construct the 
sample autocorrelation function (Section 14.2.3) for a variety of constituents, and determine from these 
graphs the smallest lagged interval at which the autocorrelation coefficient becomes insignificantly 
different from zero for most of the study constituents. 

Since an autocorrelation of zero is equivalent to temporal independence for practical purposes, 
finding the smallest lag between sampling events with no correlation indicates the minimum sampling 
frequency needed to approximately ensure statistical independence. If the sample autocorrelation 
function does not drop down to zero with increasing lag ( k), there may be a strong seasonal component 
or a trend involved. In these circumstances, lengthening the sampling frequency may do little to lessen 
the temporal dependence. A seasonal pattern may need to be estimated instead and regularly removed 
from the data prior to statistical testing. likewise, any apparent trends should be investigated to 
determine if there is evidence of increasing concentration levels indicative of a possible release. 
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14.3.2 CHOOSING A SAMPLING INTERVAL VIA DARCY'S EQUATION 

Another strategy for determining an appropriate sampling interval is to use Darcy's equation. The 
goal of this approach is to calculate groundwater flow velocity and the time needed to ensure that 
physically independent or distinct volumes of groundwater are collected on each sampling trip. As noted 
in Chapter 6, physical independence does not guarantee statistical independence. However, statistical 
independence may be more likely if the same general volume of groundwater is not re-sampled on 
multiple occasions. 

This section discusses the important hydrological parameters to consider when choosing a 
sampling interval. The Darcy equation is used to determine the horizontal component of the average 
linear velocity of ground water for confined, semi-confined, and unconfined aquifers. This value 
provides a good estimate of travel time for most soluble constituents in groundwater, and can be used to 
determine a minimal sampling interval. Example calculations are provided to further assist the reader. 
Alternative methods should be employed to determine a sampling interval in groundwater environments 
where Darcy's law is invalid. Karst, cavernous basalt, fractured rocks,and other 'pseudo-karst'terranes 
usually require specialized monitoring approaches. 

Section 264.97(g) of 40 CFR Part 264 Subpart Fallows the owner or operator of a RCRA facility 
to choose a sampling procedure that will reflect site-specific concerns. It specifies that the owner or 
operator shall obtain a sequence of at least four samples from each well collected at least semi-annually. 
The interval is determined after evaluating the uppermost aquifer's effective porosity, hydraulic 
conductivity, and hydraulic gradient, and the fate and transport characteristics of potential contaminants. 
The intent of this provision is to set a sampling frequency that allows sufficient time between sampling 
events to ensure, to the greatest extent technically feasible, that independent groundwater observations 
are takenfrom each well. 

The sampling frequency required in Part 264 Subpart F can be based on estimates usmg the 
average linear velocity of ground water. Two forms of the Darcy equation stated below relate 
groundwater velocity ( V) to effective porosity (Ne), hydraulic gradient ( i), and hydraulic conductivity 
(K): 

Vh = ( K h • i )/Ne 

Vv = ( K v · i )j Ne 

[14.17) 

[14.18) 

where Vii and Vv are the horizontal and vertical components of the average linear velocity of 
groundwater, respectively; K1i and Kv are the horizontal and vertical components of hydraulic 
conductivity, respectively; i is the head gradient; and Ne is the effective porosity. 

In applying these equations to ground-water monitoring, the horizontal component of the average 
linear velocity (Vii) can be used to determine an appropriate sampling interval. Usually, field 
investigations will yield bulk values for hydraulic conductivity. In most cases, the bulk hydraulic 
conductivity determined by a pump test, tracer test, or a slug test will be sufficient for these calculations. 
The vertical component ( Vv), however, should be considered in estimating flow velocities in areas with 
significant components of vertical velocity such as recharge and discharge zones. 
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To apply the Darcy equation to groundwater monitoring, the parameters K, i, and Ne need to be 
determined. The hydraulic conductivity, K, is the volume of water at the existing kinematicviscosity that 
will move in unit time under a unit hydraulic gradient through a unit area measured at right angles to the 
direction of flow. "[E]xisting kinematic viscosity" refers to the fact that hydraulic conductivity is not 
only determined by the media (aquifer), but also by fluid properties (groundwater or potential 
contaminants). Thus, it is possible to have several hydraulic conductivity values for different chemical 
substances present in the same aquifer. The lowest velocity value calculated using the Darcy equation 
should be used to determine sampling intervals, ensuring physical independence of consecutive sample 
measurements. 

Figure 14-6. Hydraulic Conductivity of Selected Rocks 
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Source: Heath, R.C. 1987. Basic Ground-Water Hydrology. U.S. Geological Survey Water Supply Paper, 2220, 13 pp. 
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A range of hydraulic conductivities (the transmitted fluid is water) for various aquifer materials is 
given in Figures 14-6 and 14-7. The conductivities are given in several units. Figure 14-8 lists 
conversion factors to change between various permeability and hydraulic conductivity units. 

The hydraulic gradient, i, is the change in hydraulic head per unit of distance in a given direction. It 
can be determined by dividing the difference in head between two points on a potentiometric surface 
map by the orthogonal distance between those two points (see calculation in Example 14-5). Water level 
measurements are normally used to determine the natural hydraulic gradient at a facility. However, the 
effects of mounding in the event of a release may produce a steeper local hydraulic gradient in the 
vicinity of the monitoring well. These local changes in hydraulic gradient should be accounted for in the 
velocity calculations. 

Figure 14-7. Range of Values of Hydraulic Conductivity and Permeability 
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Figure 14-8. Conversion Factors for Permeability and Hydraulic Conductivity Units 

Permeability, k* Hydraulic conductivity, K 

cm 2 ft2 darcy m/s ft/s gal/ day /ft 2 

cm 2 1.08x10-3 1.01 x108 9.80x102 3.22x103 1.85x109 

ft 2 9.29x102 1 9.42x1010 9.11x105 2.99x106 1.71x10 12 

darcy 9.87x10-9 1.06x10-11 1 9.66x10-6 3.17x10-5 1.82x101 

m/s 1.02x10-3 1.10x10-6 1.04x105 1 3.28 2.12x106 

ft/s 3.11 x10-4 3.35x10-7 3.15x104 3.05x10-1 6.46x105 

gal/day/ft 2 5.42x10-10 5.83x10-13 5.49x10-2 4.72x10-7 1.55x10-6 1 

*To obtain kin ft 2, multiply kin cm 2 by 1.08x10-3 

Source: Freeze, R.A., and J.A. Cherry (1979). Ground Water. Prentice Hall, Inc., Englewood Cliffs, 
New Jersey, p. 29. 

The effective porosity, Ne, is the ratio, usually expressed as a percentage, of the total volume of 
voids available for fluid transmission to the total volume of the porous medium de-watered. It can be 
estimated during a pump test by dividing the volume of water removed from an aquifer by the total 
volume of aquifer dewatered (see calculation in Example 14-5). Figure 14-9 presents approximate 
effective porosity values for a variety of aquifer materials. In cases where the effective porosity is 
unknown, specific yield may be substituted into the equation. Specific yields of selected rockunits are 
given in Figure 14-10. In the absence of measured values, drainable porosity is often used to 
approximate effective porosity. Figure 14-11 illustrates representative values of drainable porosity and 
total porosity as a function of aquifer particle size. If available, field measurements of effective porosity 
are preferred. 
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Figure 14-9. Default Values of Effective Porosity (Ne) For Travel Time Analyses 

Soil textural classes 

Unified soil classification system 

GS, GP, GM, GC, SW, SP, SM, SC 
ML, MH 
CL, OL, CH, OH, PT 

USDA soil textural classes 

Clays, silty clays, sandy clays 
Silts, silt loams, silty clay loams 
All others 

Rock units (all) 

Porous media (non-fractured rocks such as sandstone 
and some carbonates) 
Fractured rocks (most carbonates, shales, granites, etc.) 

Effective porosity of 
saturation a 

0.20 (20%) 
0.15 (15%) 
0.01 (1%)b 

0.01 (1%)b 
0.10 (10%) 
0.20 (20%) 

0.15 (15%) 

0.0001 (0.01 % ) 

Source: Barari, A., and L. S. Hedges (1985). Movement of Water in Glacial Till. Proceedings of 
the 17th International Congress of the International Association of Hydrogeologists, pp. 129-
134. 

aThese values are estimates and there may be differences between similar units. For example, 
recent studies indicate that weathered and unweathered glacial till may have markedly 
different effective porosities (Barari and Hedges, 1985; Bradbury et al., 1985). 

bAssumes de minimus secondary porosity. If fractures or soil structure are present, effective 
porosity should be 0.001 (0.1 % ). 

Figure 14-10. Specific Yield Values for Selected Rock Types 

Clay 
Sand 
Gravel 
Limestone 

Rock Type 

Sandstone (semi-consolidated ) 
Granite 
Basalt (young) 

Specific Yield (%) 

2 
22 
19 
18 
6 

0.09 
8 

Source: Heath, R.C. (1983). Basic Ground-Water Hydrology. U.S. Geological Survey, Water Supply Paper 
2220, 84 pp. 
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Once the values for K, i, and Ne are determined, the horizontal component of average linear 
groundwater velocity can be calculated. Using the Darcy equation [14.17), the time required for 
groundwater to pass through the complete monitoring well diameter can be determined by dividing the 
well diameter by the horizontal component of the average linear groundwater velocity. If considerable 
exchange of water occurs during well purging, the diameter of the filter packmay be used rather than the 
well diameter. This value represents the minimum time interval required between sampling events 
yielding a physically independent (i.e., distinct) ground-water sample. Note that three-dimensional 
mixing of groundwater in the vicinity of the monitoring well is likely to occur when the well is purged 
before sampling. Partly for that reason, this method can only provide an estimated travel time. 

Figure 14-11. Total Porosity and Drainable Porosity for Typical Geologic Materials 
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Source: Todd, D.K. 1980. Ground Water Hydrology. John Wiley and Sons, New York, 534 pp. 

In determining these sampling intervals, many chemical compounds do not travel at the same 
velocity as groundwater. Chemical characteristics such as adsorptive potential, specific gravity, and 
molecular size influence the way chemicals travel in the subsurface. large molecules, for example, tend 
to travel slower than the average linear groundwater velocity because of matrix interactions. Compounds 
that exhibit a strong adsorptive potential undergo a similar fate that dramatically changes time of travel 
predictions using the Darcy equation. In some cases chemical interaction with the matrix material alters 
the matrix structure and its associated hydraulic conductivity and may result in an increase in 
contaminant mobility. This effect has been observed with certain organic solvents in clay units (see 
Brown and Andersen, 1981 ). Contaminant fate and transport models may be useful in determining the 
influence of these effects on movement in the subsurface. 
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EXAMPLE 14-5 

Compute the effective porosity, Ne, expressed as a percent (%), usmg results obtained during a 
pump test. 

SOLUTION 

Step 1. Compute the effective porosity using the following equation: 

Ne= 100% x volume of water removed /volume of aquifer dewatered [14.19) 

Step 2. Based on a pumping rate of 50 gal/min and a pumping duration of 30 mm, compute the 
volume of water removed as: 

volume of water removed = 50 gal/minx 30 min= 1,500 gal 

Step 3. To calculate the volume of aquifer de-watered, use the equation: 

1 2 V = -TI hr 
3 

[14.20) 

where r is the radius (in ft) of the area affected by pumping and h (ft) is the drop in the water 
level. If, for example, h = 3 ft and r = 18 ft, then: 

v = ~0.14x3x182 )= 1,018 ft 3 

Next, converting cubic feet of water to gallons of water, 

V = 1,018 ft 3 x 7.48 gal/ft3 = 7,615 gal 

Step 4. Finally, substitute the two volumes from Step 3 into equation [14.19) to obtain the effective 
porosity: 

Ne= 100% x(l,500gal/7,615gal)= 19.7% l 

EXAMPLE 14-6 

Determine the hydraulic gradient, i, from a potentiometric surface map. 

SOLUTION 

Step 1. Consider the potentiometric surface map in Figure 14-12. The hydraulic gradient can be 
constructed as i = 1h I!, where 1h is the difference measured in the gradient at piezometers Pz 1 

and Pz2,and l is the orthogonal distance between the two piezometers. 
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Figure 14-12. Potentiometric Surface Map for Computation of Hydraulic Gradient 

! 
Step 2. 

Pz1 

.1.h=0.1' 

29.2' 

29.1' 

29.0' 

Using the values given in Figure 14-12, the hydraulic gradient is computed as: 

i= ~h/l= (29.2ft- 29.1ft)/100ft= 0.001 ft/ft 

Step 3. Note that this method provides only a very general estimate of the natural hydraulic gradient 
existing in the vicinity of the two piezometers. Chemical gradients are knownto exist and may 
override the effects of the hydraulic gradient. A detailed study of the effects of multiple 
chemical contaminants may be necessary to determine the actual average linear groundwater 
velocity (horizontal component) in the vicinity of the monitoring wells. l 

EXAMPLE 14-7 

Determine the horizontal component of the average linear groundwater velocity (Vi) at a land 
disposal facility which has monitoring wells screened in an unconfined silty sand aquifer. 

SOLUTION 

Step 1. Slug tests, pump tests, and tracer tests conducted during a hydro logic site investigation have 
revealed that the aquifer has a horizontal hydraulic conductivity (Kh) of 15 ft/day and an 

effective porosity (Ne) of 15%. Using a potentiometric map (as in Example 14-6), the regional 
hydraulic gradient (i) has been determined to be 0.003 ft/ft. 

Step 2. To estimate the minimum time interval between sampling events enabling the collection of 
physically independent samples of ground water, calculate the horizontal component of the 
average linear groundwater velocity ( V,1) using Darcy's equation [14.17). With Kh = 15 ft/day, 
Ne= .15 (15%), and i = 0.003 ft/ft, the velocity becomes: 

dayft Jt}) /3 .15 .fJOOIJy!ft5 /&idyin 

Step 3. Based on these calculations, the horizontal component of the average linear groundwater 
velocity, V,1, is equal to 3.6 in/day. Since monitoring well diameters at this particular facility 
are 4 inches, the minimum time interval between sampling events enabling a physically 
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independent groundwater sample can be computed by dividing the horizontal component into 
the monitoring well diameter: 

Minimum time interval = (4 in)/ 0. 6 in/ day)= 1.1 days 

As a result, the facility could theoretically sample every other day. However, this may be 
unwise because velocity can seasonally vary with recharge rates. It is also emphasized that 
physical independence does not guarantee statistical independence. Figure 14-13 gives results 
for common situations. The overriding point is that it may not be necessary to set the 
minimum sampling frequency to quarterly at every site. Some hydrologic environments may 
allow for more frequent sampling, some less. 1 

Figure 14-13. Typical Darcy Equation Results in Determining a Sampling Interval 

Unit Ne % v in/mo Sam lin Interval 
Gravel 19 9.6x104 Daily 
Sand 22 8.3x102 Daily 
Silty Sand 14 1.3x102 Weekly 
Till 2 9.1x10-2 Monthly 
Silty Sand (semi-consolidated) 6 30 Weekly 
Basalt 8 2.28 Month I 

14.3.3 CREATING ADJUSTED, STATIONARY MEASUREMENTS 

When an existing data set exhibits temporal correlation or other variability, It IS sometimes 
possible to remove the temporal pattern and thereby create a set of adjusted data which are uncorrelated 
and stationary over time in mean level. As long as the same temporal pattern seems to affect both 
background and the compliance point data to be tested, the effect (e.g., regular seasonal fluctuation) can 
be estimated and removed from both data sets prior to statistical testing. Testing the adjusted data 
instead of the raw measurements in this way results in a more powerful and accurate test. An extraneous 
source of variation not related to identifying a contaminant release has been removed from the sample 
data. 

The general topic of stationary, adjusted data is complex, contained within the extensive literature 
on time series. The Unified Guidance discusses two simple cases below: removing a seasonal pattern 
from a single well and creating adjusted data from a one-way ANOVA for temporal effects across 
several wells. More complicated situations may need professional consultation. 

14.3.3.1 CORRECT! NG FOR SEASONAL PATTERN IN A SINGLE WELL 

BACKGROUND AND PURPOSE 

Sometimes an obvious cyclical seasonal pattern can be seen in a time series plot. Such data are not 
statistically independent. They do not fluctuate randomly but rather in a predictable way from one 
sampling event to the next. Data from such patterns can be adjusted to correct for or remove the seasonal 
fluctuation, but only if a longer series of data is available. This is also known as deseasonalizing the 
data. Seasonal correction should be done both to minimize the chance of mistaking a seasonal effect for 
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evidence of contaminated groundwater, and also to build more powerful background-to-compliance 
point tests. 

Problems can arise, for instance, from measurement variations associated with changing recharge 
rates during different seasons. Compliance point concentrations can exceed a groundwater protection 
standard [GWPS] for a portion of the year, but on average lie below. If the long-term average is of 
regulatory concern, the data should first be de-seasonalized before comparing it against a GWPS. 

If point-in-time, interwell comparisons are being made between simultaneously collected 
background and downgradient data, a correction may not be necessary even when seasonal fluctuations 
exist. A temporal cycle may cover a period of several years so that both the background and 
downgradient values are observed on essentially the same parts of the overall cycle. In this case, the 
short-term averages in both data sets will be fairly stable and the seasonal or cyclical effect may 
equivalently impact both sets of data. 

For intrawell tests, the data need to be collected sequentially at each well, with backgroundformed 
from the earliest measurements in the series. The point-in-time argument would not apply and the 
presence of seasonality should be checked and accounted for. 

Even with interwell testing, it is sometimes difficult to verify whether or not a seasonal pattern is 
impacting upgradient and compliance point wells similarly. If the groundwater velocity is low, the lag 
between the time groundwater passes through a background well screen and then travels downgradient 
may create a noticeable shift as to when corresponding portions of the seasonal cycle are observed in 
compliance point locations. It also may be the case that differences in geochemistry from well to well 
may cause the same seasonal pattern to differentially impact concentration levels at distinct wells 
(Figure 14-14). 
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Figure 14-14. Differential Seasonal Effects: Background vs. Compliance Wells 
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If the timing of the cycle and the relative magnitude of the concentration swings are essentially the 
same in upgradient and downgradient wells, both data sets should be deseasonalized prior to statistical 
analysis. If the seasonal effects are ignored, real differences in mean levels between upgradient and 
downgradient well data may not be observed, simply because the short-term seasonal fluctuations add 
variability that can mask the difference being tested. In this case, the non-independent nature of the 
seasonal pattern adds unwanted noise to the observations, obscuring statistical evidence of groundwater 
contamination. 

REQUIREMENTS AND ASSUMPTIONS 

Seasonal correction is only appropriate for wells where a cyclical pattern is clearly present and very 
regular over time. Many approaches to deseasonalizing data exist. If the seasonal pattern is highly 
regular, it may be modeled with a sine or cosine function. Often, moving averages and/or lag-based 
differences (of order 12 for monthly data, for example) are used. General time series models may include 
these and other more complicated methods for deseasonalizing the data. 

The simple method described in the Unified Guidance has the advantage of being easy to 
understand and apply, and of providing natural estimates of the monthly or quarterly seasonal effects via 
the monthly or quarterly means. The method can be applied to any seasonal or recurring cycle-- perhaps 
an annual cycle for monthly or quarterly data or a longer cycle for certain kinds of geologic 
environments. In some cases, recharge rates are linked to drought cycles that may be on the order of 
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several years long. For these situations, the 'seasonal' cycle may not correspond to typical fluctuations 
over the course of a single year. 

Corrections for seasonality should be used cautiously, as they represent extrapolation into the 
future. There should be a good physical explanation for the seasonal fluctuation as well as good 
empirical evidence for seasonality before corrections are made. Higher than average rainfall for two or 
three Augusts in a row does not justify the belief that there will never be a drought in August, and this 
idea extends directly to groundwater quality. At least three complete cycles of the seasonal pattern 
should be observed on a time series plot before attempting the adjustment below. If seasonality 1s 
suspected but the pattern is complicated, the user should seekthe help of a professional statistician. 

PROCEDURE 

Step 1. If a time series plot clearly shows at least 3 full cycles of the seasonal pattern, determine the 
length of time to complete one full cycle. Since the correction presumes a regular sampling 
schedule, determine the number of observations ( k) in each full cycle (this number should be 
the same for each cycle). Then, assuming that N complete cycles of data are available, let Xii 

denote the raw, unadjusted measurement for the ith sampling event during the jth complete 
cycle. Note that this could represent monthly data over an annual cycle, quarterly data over a 
biennial cycle, semi-annual data over a 10-year cycle, etc. 

Step 2. Compute the mean concentration for sampling event i over the N-cycle period: 

( il t X.f:i K ++ iN )/Nx [14.21) 

This is the average of all observations takenin different cycles, but during the same sampling 
event. For instance, with monthly data over an annual cycle, one would calculate the mean 
concentrations for all Januarys, the mean for all Februarys, and so on for each of the 12 
months. 

Step 3. Calculate the grand mean, x , of all N x k observations: 

k N X. 

x = 
lj 

ii j i N x k 

k -x 
1 

i 1 k 

Step 4. Compute seasonally-corrected, adjusted concentrations using the equation: 

z=x-x+x 
lj lj 1 

[14.22) 

[14.23) 

Computing xij - xi removes the average seasonal effect of sampling event i from the data 

series. Adding back the overall mean, x , gives the adjusted Zij values the same mean as the 
raw, unadjusted data. Thus, the overall mean of the corrected values, z, equals the overall 
mean value, x . 
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EXAMPLE 14-8 

Consider the monthly unadjusted concentrations of an analyte over a 3-year period graphed in 
Figure 14-15 and listed in the table below. Given the clear and regular seasonal pattern, use the above 
method to produce a deseasonalized data set. 

Unadjusted Concentrations Adjusted Concentrations 

1983 1984 1985 Monthly 1983 1984 1985 
Avera e 

January 1.99 2.01 2.15 2.05 2.11 2.13 2.27 
February 2.10 2.10 2.17 2.12 2.14 2.14 2.21 
March 2.12 2.17 2.27 2.19 2.10 2.15 2.25 
April 2.12 2.13 2.23 2.16 2.13 2.14 2.24 
May 2.11 2.13 2.24 2.16 2.12 2.14 2.25 
June 2.15 2.18 2.26 2.20 2.12 2.15 2.23 
July 2.19 2.25 2.31 2.25 2.11 2.17 2.23 
August 2.18 2.24 2.32 2.25 2.10 2.16 2.24 
September 2.16 2.22 2.28 2.22 2.11 2.17 2.23 
October 2.08 2.13 2.22 2.14 2.10 2.15 2.24 
November 2.05 2.08 2.19 2.11 2.11 2.14 2.25 
December 2.08 2.16 2.22 2.15 2.09 2.17 2.23 

Overall 3-year average = 2. 17 

SOLUTION 

Step 1. From Figure 14-15, there are N = 3 full cycles represented, each lasting approximately a year. 
With monthly data, the number of sampling events per cycle is k = 12. 

Step 2. Compute the monthly averages across the 3 years for each of the 12 months usmg equation 
[14.21]. These values are shown in the fifth column of the table above. 

Step 3. Calculate the grand mean over the 3-year period using equation [14.22): 

x = 10.215W)-GJ..29ml) = 17.2 

Step 4. Within each month and year, subtract the average monthly concentration for that month and 
add-in the grand mean, using equation [14.23]. As an example, for January 1983, the adjusted 
concentration becomes: 

z
11 

= 1.99 - 2.05 + 2.17 = 2.11 
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Figure 14-15. Seasonal Time Series Over a Three-Year Period 
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The adjusted concentrations are shown in the last three columns of the table above. The 
average of all 36 adjusted concentrations equals 2.17, the same as the mean unadjusted 
concentration. Figure 14-15 shows the adjusted data superimposed on the unadjusted data. 
The raw data exhibit seasonality, as well as an upward trend. The adjusted data, on the other 
hand, no longer exhibit a seasonal pattern, although the upward trend still remains. From a 
statistical standpoint, the trend is much more easily identified by a trend test on the adjusted 
data than with the raw data. l 

14.3.3.2 CORRE CTI NG FOR A TEMPORAL EFFECT ACROSS SEVERAL WELLS 

BACKGROUND AND PURPOSE 

When a significant temporal dependence or correlation is identified across a group of wells using 
one-way ANOVA for temporal effects (Section 14.2.2 ), results of the ANOVA can be used to create 
stationary adjusted data similar to the seasonal correction described in Section 14.3.3.1. The difference 
is that the adjustment is not applied to a data series at a single well, but rather simultaneously to several 
well sets. 
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The adjustment works in the same way as a correction for seasonality. First, the mean for each 
sampling event or season (averaged across wells) is computed along with the grand mean. Then each 
individual measurement is adjusted by subtracting off the event/seasonal mean and adding the overall or 
grand mean. In practice, this process is identical to adding the one-way ANOVA residual to the grand 
mean, so the already-computed results of the ANOVA can be used. By removing or correcting for a 
significant temporal effect, the adjusted data will have a temporally stationary mean and less overall 
variation. This allows for more powerful and accurate detection monitoring tests. 

Temporal dependence (e.g., seasonality) is sometimes observed as parallel traces on a time series 
plot across multiple wells (Section 14.2.1 ), although the one-way ANOVA for temporal effects is non­
significant. This can occur due to the simultaneous presence of strong spatial variability (Chapter 13 ). 
Differences in mean levels from well to well can be large enough to 'swamp' the added variation due to 
the temporal dependence. The one-way ANOVA for temporal effects will not identify the dependence 
because the mean error sum of squares will then include the spatial variation component and not just 
random error. 

Two remedies are possible when the ANOVA for temporal effects is non-significant. First, if a 
strong parallelism is evident on time series plots, the residuals from the ANOVA can still be used to 
create a set of adjusted, temporally-stationary measurements. The adjustment will not eliminate or 
remove any existing spatial variation, but it may not matter. Intrawell tests are needed anyway when 
such spatial variability is evident, and those tests assume temporal independence of the measurements 
collected at each well. 

A second remedy is to perform a two-way ANOVA, testing for both spatial variation and temporal 
effects. This procedure is discussed in Davis (1994). Not only will a two-way ANOVA more readily 
identify a significant temporal effect even when there is simultaneous spatial variability, but the F­
statistic used to test for the temporal dependence can be utilized to further adjust the appropriate degrees 
of freedom in intrawell background limits, such as prediction limits and control charts. 

REQUIREMENTS AND ASSUMPTIONS 

The keyrequirement to correct for a temporal effect using ANOVA is that the same effect must be 
present in all wells to which the adjustment is applied. Otherwise, the adjustment will tend to skew or 
bias measurements at wells with no observable temporal dependence. Parallel time series plots (Section 
14.2.1) should be examined to determine whether all the wells under consideration exhibit a similar 
temporal pattern. 

The parametric one-way ANOVA assumes the data are normal or can be normalized. If the data 
cannot be normalized, a Kruskal-Wallis non-parametric ANOVA can be conducted to test for the 
presence of a temporal dependence. In this case, no residuals can be computed since the Kruskal-Wallis 
test employs ranks of the data rather than the measurements themselves. So the adjustment presented 
below is only applicable for data sets that can be normalized. 

PROCEDURE 

Step 1. Given a set of W wells and measurements from each of T sampling events at each well on each 
of K years, label the observations as Xijki for i = 1 to W, j = 1 to T, and k = 1 to K. Then Xijk 

represents the measurement from the ith well on the jth sampling event during the kth year. 
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Step 2. Using the one-way ANOVA for temporal effects (Section 14.2.2 ), compute the sampling 
event or seasonal means (whichever is appropriate), along with the grand (overall) mean. Also 
construct the ANOVA residuals using either equation [14.5) or [14.6). 

Step 3. Add each residual to the grand mean to form adJ·usted values zk = x + rk. Use these 
I] ••• I] 

adjusted values in subsequent statistical testing instead of the original measurements. 

EXAMPLE 14-9 

The manganese data of Examples 14-1 and 14-2 were found to have a significant temporal 
dependence using ANOVA for temporal effects. Adjust these data to remove the temporal pattern. 

Manganese Residuals (ppm) 

Qtr Event BW-1 BW-2 BW-3 BW-4 
Mean 

1 29.290 -1.15 2.12 -2.14 1.17 
2 30.110 -0.78 0.16 0.13 0.49 
3 30.780 -0.33 1.79 -1.64 0.18 
4 31.620 0.80 1.15 -1.03 -0.92 
5 33.747 0.6225 -0.7175 1.1325 -1.0375 
6 31.930 1.32 0.25 -1.40 -0.17 
7 30.513 0.5075 -1.6625 -0.1825 1.3375 
8 30.345 -1.845 2.535 0.075 -0. 765 

Grand mean = 31.042 

SOLUTION 

Step 1. The mean of each sampling event taken across the four background wells was computed in 
Example 14-2, along with the grand mean. These results are listed in the table above, along 
with the individual residuals which were also computed in that example. 

Step 2. Add the grand mean to each residual to form the adjusted manganese concentrations, as in the 
table below. 

Adjusted Manganese (ppm) 

Qtr Event BW-1 BW-2 BW-3 BW-4 
Mean 

1 29.290 29.89 33.16 28.90 32.21 
2 30.110 30.26 31.20 31.17 31.53 
3 30.780 30.71 32.83 29.40 31.22 
4 31.620 31.84 32.19 30.01 30.12 
5 33.747 31.66 30.32 32.17 30.00 
6 31.930 32.36 31.29 29.64 30.87 
7 30.513 31.55 29.38 30.86 32.38 
8 30.345 29.20 33.58 31.12 30.28 

Grand mean = 31.042 
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Step 3. Plot a time series of the adjusted manganese values, as in Figure 14-16. The 'hump-like' 
temporal pattern evident in Figure 14-2 is no longer apparent. Instead, the overall mean is 
stationary across the 8 quarters. l 

Figure 14-16. Parallel Time Series Plot of Adjusted Manganese Concentrations 

14.3.3.3 CORRE CTI NG FOR LI NEAR TRENDS 

If a data series exhibits a linear trend, the sample will exhibit temporal dependence when tested via 
the sample autocorrelation function (Section 14.2.3 ), the rankvon Neumann ratio (Section 14.2.4 ), or 
similar procedure. These data can be de-trended, much like the data in the previous example were 
deseasonalized. Probably the easiest way to de-trend observations with a linear trend is to compute a 
linear regression on the data (Section 17.3.1) and then use the regression residuals instead of the original 
measurements in subsequent statistical analysis. 

But no matter how tempting it may be to automatically de-trend data of this sort, the user is 
strongly cautioned to consider what a linear trend may represent. Often, an upward trend is indicative of 
changing groundwater conditions at a site, perhaps due to the increasing presence of contaminants 
during a gradual waste release. The trend in this case may itself be statistically significant evidence of 
groundwater contamination, particularly if it occurs at compliance wells but not at upgradient 
background wells. The trend tests of Chapter 17 are useful for such determinations. Trends in 
background may signal other important factors, including migration of contaminants from off-site 
sources, changes in the regional aquifer, or possible groundwater mounding. 
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The overriding point is that data should be deseasonalized when a cyclical pattern might obscure 
the random deviations around an otherwise stable average concentration level, or to more clearly identify 
an existing trend. However, a linear trend is inherently indicative of a changing mean level. Such data 
should not be de-trended before it is determined what the trend likelyrepresents, and whether or not it is 
itself prima facie evidence of possible groundwater contamination. 

A similar trend both in direction and slope may be exhibited by background wells and compliance 
wells, perhaps suggestive of sitewide changes in natural groundwater conditions. Residuals from a one­
way ANOVA for temporal effects (Section 14.2.2) can be used to simultaneously create adjusted values 
across the well network( Section 14.3.3.2 ). linear trends are just as easily identified and adjusted in this 
way as are parallel seasonal fluctuations or other temporal effects. 

14.3.4 IDENTIFYING LINEAR TRENDS AMIDST SEASONALITY: SEASONAL 
MANN-KENDALL TEST 

BACKGROUND AND PURPOSE 

Corrections for seasonality or other cyclical patterns over time in a single well are discussed in 
Section 14.3.3.1 . These adjustments work best when the long-term mean at the well is stationary. In 
cases where a test for trend is desired and there are also seasonal fluctuations, Chapter 17 tests may not 
be sensitive enough to detect a real trend due to the added seasonal variation. 

One possible remedy is to use the seasonal correction in Section 14.3.3.1 and illustrated in 
Example 14-8. The seasonal component of the trend is removed prior to conducting a formal trend test. 
A second option is the seasonal Mann-Kendall test (Gilbert, 19 8 7). 

The seasonal Mann-Kendall is a simple modification to the Mann-Kendall test for trend (Section 
17.3.2) that accounts for apparent seasonal fluctuations. The basic idea is to divide a longer multi-year 
data series into subsets, each subset representing the measurements collected on a common sampling 
event (e.g., all January events or all fourth quarter events). These subsets then represent different points 
along the regular seasonal cycle, some associated with peaksand others with troughs. The usual Mann­
Kendall test is performed on each subset separately and a Mann-Kendall test statistic Si formed for each. 
Then the separate Si statistics are summed to get an overall Mann-Kendall statistic S. 

Assuming that the same basic trend impacts each subset, the combined statistic S will be powerful 
enough to identify a trend despite the seasonal fluctuations. 

REQUIREMENTS AND ASSUMPTIONS 

The basic requirements of the Mann-Kendall trend test are discussed in Section 17.3.2. The only 
differences with the seasonal Mann-Kendall test are that 1) the sample should be a multi-year series with 
an observable seasonal pattern each year; 2) each 'season' or subset of the overall series should include 
at least three measurements in order to compute the Mann-Kendall statistic; and 3) a normal 
approximation to the overall Mann-Kendall test statistic must be tenable. This will generally be the case 
if the series has at least 10-12 measurements. 
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PROCEDURE 

Step 1. Given a series of measurements from each of T sampling events on each of K years, label the 
observations as Xij, for i = 1 to T, and j = 1 to K. Then Xii represents the measurement from the 
ith sampling event during the jth year. 

Step 2. For each distinct sampling event ( i), form a seasonal subset by grouping together observations 
Xii, Xj2, .... , XiK· This results in T separate seasons. 

Step 3. For each seasonal subset, use the procedure in Section 17.3.2 to compute the Mann-Kendall 
statistic Si and its standard deviation SD[Si]. Form the overall seasonal Mann-Kendall statistic 
(S) and its standard deviation with the equations: 

T 

S= s 
1 

[14.24) 

T 

SD-iS1= SD21Sil [14.25) 
ic I 

Step 4. Compute the normal approximation to the seasonal Mann-Kendall statistic using the equation: 

[14.26) 

Step 5. Given significance level, a, determine the critical point Zcp from the standard normal 
distribution in Table 10-1 of Appendix D. Compare Z against this critical point. If Z > Zcp, 

conclude there is statistically significant evidence at the a-level of an increasing trend. If Z < -
Zcp, conclude there is statistically significant evidence of a decreasing trend. If neither, 
conclude that the sample evidence is insufficient to identify a trend. 

EXAMPLE 14-10 

The data set in Example 14-8 replicated below indicated both clear seasonality and an apparent 
increasing trend. Use the seasonal Mann-Kendall procedure to test for a significant trend with L = 0.01 
significance. 
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Analyte Concentrations 
1983 1984 1985 S; SD[S;] 

January 1.99 2.01 2.15 3 1.915 
February 2.10 2.10 2.17 2 1.633 

March 2.12 2.17 2.27 3 1.915 
April 2.12 2.13 2.23 3 1.915 
May 2.11 2.13 2.24 3 1.915 
June 2.15 2.18 2.26 3 1.915 
July 2.19 2.25 2.31 3 1.915 

August 2.18 2.24 2.32 3 1.915 
September 2.16 2.22 2.28 3 1.915 

October 2.08 2.13 2.22 3 1.915 
November 2.05 2.08 2.19 3 1.915 
December 2.08 2.16 2.22 3 1.915 

s = 35 SD[S]= 6.558 

SOLUTION 

Step 1. Form a seasonal subset for each month by grouping all the January measurements, all the 
February measurements, and so on, across the 3 years of sampling. This gives 12 seasonal 
subsets with n = 3 measurements per season. Note there are no tied values in any of the 
seasons except for February. 

Step 2. Use equations [17.30) and [17.31) in Section 17.3.2 to compute the Mann-Kendall statistic 
(Si) for each subset. These values are listed in the table above. Also compute their sum to form 
the overall seasonal Mann-Kendall statistic, giving S = 35. 

Step 3. Use equation [17.28) from Section 17.3.2 for all months but February to compute the standard 
deviation of Si. Since n = 3 for each of these subsets, this gives 

For the month of February, one pair of tied values exists. Use equation [17.27) to compute the 
standard deviation for this subset: 

list all the subset standard deviations m the table above. Then use equation [14.25) to 
compute the overall standard deviation: 

sn+s4= 
12 

sn 2 tsi4= ~11-Q.915)+ Q.633)= 6.558 
ic I 
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Step 4. Compute a normal approximation to S with equation [17.29): 

Z= 05- i)/6.558 = 5.18 

Step 5. Compare Z against the I% critical point from the standard normal distribution in Table 10-1 
of Appendix D, z.01 = 2.33. Since Z is clearly larger than z.01 , the increasing trend evidence m 
Figure 14-15 is highly significant. l 
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This chapter considers strategies for accommodating non-detect measurements in groundwater 
data analysis. Five particular methods are described for incorporating non-detects into parametric 
statistical procedures. These include: 

Simple substitution (Section 15.2 ); 

Kaplan-Meier (Section 15.3 ); 

Robust Regression on Order Statistics (Section 15.4 ); 

Cohen's Method (Section 15.5.1 ); and 

Parametric Regression on Order Statistics (Section 15.5.2 ). 

l L<ni T 1 l_ 1 !! p -+ j l_ +- ~ ~ 1 !! p ~ ~ j l_ +- j !! l_ j l_ J ~ 1 ~ 1 ~ ~ p ~ p 

Non-detects commonly reported in groundwater monitoring are statistically known as "left­
censored" measurements, because the concentration of any non-detect either cannot be estimated or is 
not reported directly. Rather, it is known or assumed only to fall within a certain range of concentration 
values (e.g., between zero and the quantitation limit [QL]). The direct estimate has been censored by 
the limitations of the measurement process or analytical technique, and is deemed too uncertain to be 
considered reliable. Groundwater non-detect data are censored on the low or left end of a sample 
concentration range. Other kinds of threshold data, particularly survival rates in the medical literature, 
are often reported as right-censored values. 

Historically, there has been inconsistent treatment of non-detects in groundwater analysis. Often, 
easily applied techniques have been favored over more sophisticated methods ofhandling non-detects. 
This may primarily be due to the lack of familiarity and difficulties with software that can incorporate 
such methods. Even at present, most statistical packages include analysis routines for right-censored 
values but not left-censored ones (Helsel, 2005). Left-censored data needs to be converted to right­
censored data for analysis and then back again. Despite these limitations, the more sophisticated 
methods are almost always superior to the methods of simple substitution. 

The past twenty years has seen considerable research on statistical aspects of non-detect data 
analysis. Helsel (2005) provides a detailed summary of available methods for non-detects, and 
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concludes that simple substitution usually leads to greater statistical bias and inaccuracy than with better 
technical methods. Gibbons (1994b) and Gibbons & Coleman (2001) offer a broad review of some of 
the same research, not all of it directly relating to groundwater data. Both Gibbons and McNichols & 
Davis (1988) note that most ofthe existing studies focus on an estimation of parameters such as the 
mean and variance of an underlying population from which the censored and detected data originate. 
For these tasks, simple substitution methods tend to perform poorly, especially when the non-detect 
percentages are high (Gilliom & Helsel, 1986). 

Much less attention has been given to how left-censored data impact the results of statisticaltests, 
the actual data-based conclusions that are drawn when using detection, compliance, or corrective action 
monitoring tests. Closely estimating the true mean and variance of the underlying background 
population may be important, but does not directly answer how well a given test performs (in achieving 
the nominal false positive error rate and correctly identifying true significant differences). McNichols & 
Davis (1988) performed a limited study to address these concerns. They found that simple substitution 
methods were among the best performers in simulated prediction limit tests even with fairly high rates of 
censoring, so long as the prediction limit procedure incorporated a verification resample. 

Gibbons (1994b; also Gibbons and Coleman, 2001) conducted a similar limited simulation of 
prediction limit testing performance incorporating a verification resample. They, too, found that a type 
of simple substitution was one of the best performers when either an average of 20% or 50% of the data 
was non-detect. The Gibbons study concluded that substituting zero for each non-detect worked better to 
keep the false positive rate low than by substituting half the method detection limit [MDL]. 

Both studies primarily focused on the achievable false positive rate when censored data are 
present, rather than the statistical power of these tests to identify contaminated groundwater. In addition, 
both only considered parametric prediction limits. For data sets with fairly low detection frequencies 
(e.g., <50% ), parametric prediction limits may not accurately accommodate left-censored measurements, 
with or without retesting. The McNichols & Davis study in particular found that none of the simpler 
methods for handling non-detects did well when the underlying data came from a skewed distribution 
and the non-detect percentage was over 50%. 

On balance, there are four general strategies for handling non-detects: 1) employing a test 
specifically designed to accommodate non-detects, such as the Tarone-Ware two-sample alternative to 
the t-test (Section 16.3 ); 2) using a rank-based, non-parametric test such as the Kruskal-Wallis 
alternative to analysis of variance [ANOVA] (Section 17.1.2 ) when the non-detects and detects can be 
jointly sorted and ordered (except for tied values); 3) estimating the mean and standard deviation of 
samples containing non-detects by means of a censored estimation technique ; and 4) imputing an 
estimated value for each non-detect prior to further statistical manipulation. 

The first two strategies mentioned above are discussed in Chapters 16 and 17 of the Unified 
Guidance as alternative testing procedures for evaluating left-censored data when parametric distribution 
assumptions cannot be made. Tests that can accommodate non-detects are typically non-parametric and 
thus carry both the advantages and disadvantages of non-parametric methods. The third and fourth 
strategies - presented in this chapter - are often employed as an intermediate step in parametric 
analyses. Estimates of the background mean and standard deviation are needed to construct parametric 
prediction and control chart limits, as well as confidence intervals. Imputed values for individual non­
detects can be used as an alternate way to construct mean and standard deviation estimates, which are 
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needed to update the cumulative sum [CUSUM] portion of control charts or to compute the means of 
order p that get compared against prediction limits. 

The guidance generally favors the use of the more sophisticated Kaplan-Meier or Robust ROS 
methods which can address the problem of multiple detection limits. Two older techniques-- Cohen's 
method and parametric ROS-- are also included as somewhat easier methods which can work in some 
circumstances. Applying any of the four estimation techniques as well as simple substitution does rely 
on a fundamental underlying assumption. Both the detectable and non-detect portions of a data set are 
assumed to arise from a single distribution, and in particular this underlying population is expected to be 
stable or stationaryduring the period of the sampling record. 

However, if an underlying distribution is subject to a trend over time, applying any of these 
techniques including simple substitution is more problematic. If data indicating a decreasing trend also 
happen to contain multiple detection limit data (perhaps the result of improved analytical methods), it 
may be very difficult to determine whether there is truly a trend or analytical problems are the apparent 
cause of the observed decreases. None of the techniques provided in this chapter can directly address 
this issue. As discussed in Chapter 5, careful exploratory review of the historical data sets, particularly 
those which might serve as background, need to consider which data including non-detects are most 
representative of present or near-term future conditions. In some cases, removal of the older, less 
reliable data may also resolve multiple detection limit problems. If non-detect values higher than other 
quantified data at reasonable detection limits are included in a data set (especially if dictated by 
reporting policy rather than analytical considerations), these will almost invariably need to be removed. 
Even sophisticated multiple detection limit techniques cannot realistically address these particular 
information-limited data values. But presuming valid and reliable data are selected, the four estimation 
techniques are provided to address the management of non-detects. 

A data set may also not be defined by a single distribution. If observed data are the result of two 
or more different generative processes and indicate one or more separate peaks, it is referred to as a 
mixture distribution. One example might be trace organics data in a release subject to changes in the 
flow direction of the aquifer, which can result in very high to absent values. The subject is a complex 
one and generally beyond the scope of this guidance. Aitchison's method can be used in limited 
situations where detectable data form one discrete distribution, and the remainder are non-detect. The 
following discussion also addresses when Aitchison's method might be appropriate. The non-detect 
data are simply considered as some single value, another form of simple substitution. 

l L91 ~ I + 
The simplest approach in managing non-detects is to substitute an imputed value for each prior to 

subsequent statistical analysis. The imputation is intended to be a 'reasonable estimate' of the true, but 
unknown concentration, usually a fraction (e.g., 0, n, 1) of the reporting limit [RL]. If non-detects 
represent an absence of the contaminant being measured, replacing a reported 'less than' value by zero 
may make sense. If the true concentration is completely unknown, but believed to be between zero and 
the RL, half the RL, or RL/2, may be a reasonable substitution, since this choice is the maximum 
likelihood estimate [MLE] of the mean or median for a population of measurement values uniformly 

l LJ 
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distrib11ted along the interval [O, RL]. 1 In other cases, a conservative choice might be made to maximize 
the possible concentration levels present in non-detects by selecting the RL itself as the imputation. 

Any of these substitution choices is imperfect since they ignore two realities about left-censored 
measurements. First, non-detects are a product of both the underlying distribution of actual 
concentrations and the measurement process used to estimate these concentrations. In particular, the 
measurement technique may impart random or not so random bias to the 'true' concentration levels, 
causing the reported values to be 'shifted away from' the true values. As an example, simple substitution 
of zero for each non-detect ignores the fact that only the meas11rements can be observed and analyzed, 
not the actual concentration levels. Physical groundwater samples that are completely devoid of a given 
chemical may not receive meas11reme11ts of zero, even if the actual amount is zero. Simple substitution 
by zero thereby ignores the meas11reme11t distribution in favor of an a prioriassumption about what non­
detects might represent. 

A second reality is that non-detects must be considered with respect to other, detected 
measurements, as well as the physical process that generated the data. In many cases, the entire sample 
is drawn from a single statistical distribution (representing a common physical process) but some portion 
of the lower tail has been censored during measurement, as illustrated in Figure 15-1. In this situation, 
the overall distribution (and especially the shape of the lower tail) dictates how likely it is that a given 
non-detect would have an 11ncensored measurement close to zero or close to the RL. Substitution by half 
the RL or by the RL itself ignores the larger distributional pattern, especially since this distribution will 
rarely be uniform in the interval [O, RL]. 

Detects 

1 The uniform distribution places equal probability along every point of a finite concentration or measurement range. This 
model implies that a true value close to zero is just as likely as a true value close to RL or any other point along the 
interval. 

l LJ" 
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These realities can lead to severe biases in statistical parameter estimates made from censored data 
when simple substitution methods are used (Helsel, 2005). Even if only 20% of the data are censored, 
Gibbons ( l 994b) found that the false positive rate of a prediction limit test was far above the nominal 
(i.e., expected or targeted) rate of a= .05 when a simple imputation strategy was employed. For that 
reason, the Unified Guidance recommends imputation by simple substitution only in select 
circumstances described below: 

When the sample size is too small to do anything else. 

With only a handful of measurements (e.g., 5 or less), it will be almost impossible to accurately 
apply a censored estimation technique, such as those described in Sections 15-3to 15-5 Instead, simple 
substitution of half the RL is recommended, perhaps until enough data has been collected to allow a 
more sophisticated analysis. Three situations where simple substitution might commonly be needed 
include: 

1. Plotting cumulative sums [CUSUM] on control charts (Chapter 20 ). While there should be 
enough background data to allow for a more sophisticated estimate of the control limit, the 
CUSUM must be updated with each single new compliance observation ( n = I). If the new 
measurement is a non-detect, the value must be imputed for the CUSUM to be calculated. 

2. Constructing future means for prediction limits (Chapter 19 ). Again, if censored data exist in 
background, the prediction limit for a future mean can be computed with the help of a censored 
estimation technique. But with only 2 or 3 new measurements per compliance well (p = 2, 3), 
the same strategy will not work for computing a mean of order p. 

3. Construction of confidence intervals in compliance monitoring or corrective action. Especially 
in the early months or years after the onset of compliance monitoring or a corrective action 
plan, there may be too few compliance point measurements to allow for a statistically refined 
treatment of non-detects. Until more data has been collected that is representative of the 
conditions under which these phases of monitoring have been triggered, simple substitution of 
non-detects will probably be needed. Furthermore, if groundwater conditions are in a state of 
flux, it may be impossible - even with a larger sample size - to postulate a single, stationary 
distributional model (similar to Figure 15-1) on which to base a censored estimation 
technique. 

When non-detects comprise no more than 10-15% of the total sample. 

If the percentage of non-detects is small enough, results of parametric t-tests and ANOV A are 
usually not significantly affected if non-detects are first replaced by half their reporting limits [RLs]. A 
similar statement can be made for parametric prediction limits, tolerance limits, control charts, and 
confidence intervals. However, because t-tests and ANOV A involve a comparison of means utilizing 
multiple data points per mean estimate, 2 while prediction limits for individual observations, tolerance 
limits, and control charts focus on single measurements, it is important that retesting be included in the 
statistical procedure whenever simple substitution is utilized with these latter methods. 

2 Parametric confidence intervals around the mean also involve an estimate of the population average using multiple data 
points. 

l LJ L 
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When non-detects are generated by a different physical process than the detected values, and 
thus represent a distinct statistical distribution . 

One non-detect treatment recommended in past EPA guidance -Aitchison's method (1955), as 
applied to groundwater 3 

- assumed that non-detects were actually free of the contaminant being 
measured, so that all non-detects could be regarded as zero concentrations. In some cases, if an analyte 
has been detected infrequently or not at all in background measurements, and/or all non-detects are 
qualified as "U" (i.e., undetected) values, this assumption may be practical, even if it cannot be directly 
verified. Another example might be seasonal changes in groundwater elevation at wells located on the 
edges of a contaminant plume. Parameters detectable at certain times of the year may be non-detect 
during other seasons, even within the same well. Such non-detects may result from a different data­
generating mechanism, due to seasonal changes in groundwater chemistry, and so may not follow the 
same distribution as detects. 

#$%• & l u911 , -#t #&- ~ &(--- I , -&< 

0 

More generally, Aitchison's original model posited a 'spike' of zero-valued measurements, 
combined with a lognormal distribution governing the detected values. A modification to Aitchison' s 
model known as the modified delta method 4 (USEPA, 1993) has been found to be more practical and 
realistic in many circumstances (Figure 15-2). Instead of assuming that all non-detects represent zero 

3 Aitchison's model was not originally applied to concentration data. More typical applications were in the fields of 
economics and demographics. 

4 The original Aitchison model was termed the delta-lognormal;;ocalled because itpresumed that the data consisted ofa 
mixture of two distinct populations: 1) a lognormal distribution representing the observed continuous measurements, and 
2) a 'spike' of values, known as a delta function, located at zero. 

l LJ. 
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concentrations, the modified delta method assumes that non-detects constitute a separate, discrete 
distribution. When combined with the detected values, a mixture distribution is formed consisting of a 
continuous detected portion (usually the normal or lognormal distribution) and a discrete non-detect 
portion. Rather than assuming that all non-detects are zeros, the modified delta model assigns all non­
detects at half the reporting limit [RL]. (Note: this might be a method detection limit [MDL], a 
quantitation limit [QL], or a contract RL). This method can accommodate multiple reporting limits 
since each non-detect is assigned half of its possibly sample-specific RL. It can also accommodate low­
valued detects intermingled with the non-detects, since the non-detects and detects are modeled by 
distinct distributions. 

l L 91 1 ~<Ill ~ I p <Ill ~ i !1- 3\1 + ~ p J_ J I 1 ~ 1 !! 

p 3T !! I J_ ~ p J_ ~ + !! + I +-1 

When a sample contains both detects and non-detects generated by a common process and 
governed by a single underlying distribution (Figure 15-1), a more reliable strategy is to attempt to fit 
the sample to a known distribution (e.g., normal, lognormal) and then to estimate the mean and standard 
deviation of this distribution via a censored estimation technique . These adjusted estimates can be input 
into standard equations for parametric prediction, tolerance, and control chart limits, as well parametric 
confidence intervals around the mean. 

Two censored estimation methods which can address the multiple detection limit problem are 
discussed in the Unified Guidance: the Kaplan-Meier estimator and robust regression on order statistics 
[ROS] (Section 15.4 ). Both involve initially fitting a left-censored sample to a known distribution. After 
that, the procedures differ. The Kaplan-Meier creates an estimate of the population mean and standard 
deviation adjusted for data censoring, based on the fitted distributional model, whereas the Robust ROS 
uses the fitted model to construct a model-basecfimputation for each non-detect. Once the imputations 
are made, the adjusted mean and standard deviation are estimated using standard equations for the 
sample mean ( x) and standard deviation (s). 

The key to either method is finding a single distributional model that adequately fits the joint 
sample of detects and non-detects. While each procedure does the fitting in a slightly different fashion, 
both utilize the notion of partialranking. As discussed in Section 16.2 on "Handling Non-Detects," the 
presence of left-censored measurements, particularly when there are multiple RLs and/or an 
intermingling of detects and non-detects, prevents a full and complete ranking of the sample. Both 
Kaplan-Meier and ROS construct a partial ranking of the data, accounting for the non-detects and 
assigning explicit ranks to each of the detected values. These detected values can then be graphed on a 
censored probability plot and fitted against a known distribution. 

The Kaplan-Meier technique estimates the approximate proportion of concentrations below each 
observed level by sorting and ordering the distinct sample values, although the exact concentrations of 
non-detects are unknown. In particular, the probability of observing a concentration no greater than a 
given level (xi) depends on the relative proportion of the sample greater than Xj. Any detects larger than 
Xi obviously fall into this latter proportion, while non-detects with RLs of at most Xi do not. On balance, 
the proportion of the sample greater than Xi cannot be precisely calculated for every Xi, but it can be 
estimated. 
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The Kaplan-Meier estimator for left-censored data thus depends on a series of conditional 
probabilities, where the frequency oflower concentrations depends on how many larger concentrations 
have already been observed. The final result is an estimate of the cumulative distribution finction [CDF] 
for each distinct concentration level in the sample. 

In mathematical notation, suppose there are m distinct values in the sample (out of a total of n 
measurements), including distinct reporting limits. Order these values from least to greatest and denote 
them as x0 ), x(2), ... , X(m)· Let n i for i = 1 to m denote the 'risk set' associated with value X(i)· The risk set 
represents the total number of measurements - both detects and non-detects - no greater than x(i)· 

Since a non-detect with a RL larger than X(i) is potentially (but not necessarily) larger than X(i), non­
detects with RL > x(i) are not included in n i· A further term di identifies the number of detected 
measurements exactly equal to X(i)· 

With these definitions in place and letting X denote a random variable concentration from the true 
underlying distribution, the Kaplan-Meier estimator is constructed from the pair of probabilities: 

[15.1) 

~ I , di+! 
Pr,X:::;x(z) X:::;x(z+I) = 1-- for i= 1 tom 

n i+I 

[15.2) 

where X(m+I) = + , dm+I = 0, and nm+!= n all by definition. Equation [15.2) represents the conditional 
probability that the concentration does not exceed x(i) given that it does not exceed x(i+I)· The final 
Kaplan-Meier CDF estimate ( F KM) for each i = 1 to m-1 (each distinct detected value) is given by a 
product of these conditional probabilities and can be expressed as: 

KM ~f})= Pr( 
- d L d L 

) 
J I 1 i+2 xJ) J l -=:i+

1 
J -:x------

1 n i+I l I n i+2 l 

_ d L 111-I- d L 
j1-~ = f]Jl-~ 
I n 111 l =ik I n k +I l 

[15.3) 

Once the CDF is estimated using equation [15.3), two additional steps are made possible. One is to 
use the distinct values (x(i)) and their corresponding CDF values (FKM) to construct censored probability 
plots. The other is to use the Kaplan-Meier CDF to estimate the population mean and standard deviation. 

!! 1 5 ~ !! 1 I 1 JL ... ..- u JL ~ u ..- ..- I t ... ~ I JL ..-

The Kaplan-Meier estimator is a non-parametric procedure originally devised to estimate survival 
probabilities for right-censored samples (Kaplan and Meier, 1958), such as in medical studies of cancer 
treatments. Because it is non-parametric, there is no requirement that the underlying population be 
normal or transformable to normality. However, in adapting the technique to left-censored data (i.e., 
samples containing non-detects), the Unified Guidance recommends that the Kaplan-Meier procedure be 
utilized to estimate the mean and variance of a normal or normalized distribution for use in parametric 
statistical tests. 

The Kaplan-Meier assumes that all detected and non-detect data arise from the same population, 
but that non-detect values have been 'censored' at their RLs. This implies that the contaminant of 
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concern is actually present in non-detect samples, but that the analytical method cannot accurately 
measure, or is not sufficiently sensitive to, concentrations lower than the RL. 

To construct a censored probability plot, a normal quantile or z-score needs to be computed for 
each value of the Kaplan-Meier CDF (FKM). Doing so is straightforward except for the CDF value of the 
sample maximum, which is assigned a value of one. The z-score associated with a cumulative 
probability of one is infinite. To surmount this difficulty, the Unified Guidance recommends 
temporarily setting the CDF value for the sample maximum equal to ( n - .375)/( n + .25). This value is 
the Blom plotting position often utilized in standard probability plots (Helsel, 2005). It is close to one 
for large n, but allows for a finite z-score. 

Estimation of the Kaplan-Meier mean and standard deviation using equations [ 15 .4] and [ 15. 5] 
below will tend to be slightly biased, typically with the mean on the high side and the standard deviation 
on the low side. This occurs because the Kaplan-Meier CDF levels corresponding to distinct RLs are 
treated as if they were known measurements rather than the upper bounds on possible values. As long as 
the total proportion of censored measurements is not too high, the degree of bias will tend to be small. 
Larger biases are more likely whenever the detection rate is less than 50%. 

t !! I 1 ~ !! 1 

Step 1. Given a sample of size n contammg left-censored measurements, identify and sort the m < n 
distinct values, including distinct RLs. Label these as x0 ), x(2), ... , X(m)· 

Step 2. For each i = 1 to m, calculate the risk set (n i) as the total number of detects and non-detects 
no greater than x(i)· Also compute c4 as the number of detected values exactly equal to x(i)· 

Step 3. Using equation [15.3], compute the Kaplan-Meier CDF estimate F KM€~) )for i = 1, ... , m-1. 

Also let F KM €H} 1 . 

Step 4. Construct censored probability plots using the estimated CDF. First temporarily set 

FKM€0n)}~1-.375)/~1 +.25)so that afinite normal quantile (or z-score; see Chapter 9) 

can be associated with X(m)· Then compute normal quantiles (i.e., z-scores) for each value of 

FKM from Step 3 as z~) = <l>-1 {KM€~) 1 where l -I[~ is the inverse of the standard normal 

distribution function as discussed in the construction of probability plots in Chapter 9. Plot 
the values Z(i) against the unique detected concentrations x(i) to form a normal censored 
probability plot. Plot the Z(i)'s against a transformation of the X(i)'s (e.g., log, square root, 
inverse, etc.) to form a normalized censored probability plot. 

Step 5. For each attempted transformation f( ~including the unchanged observations as one option, 
compute the correlation coefficient between the pairs [f(x(i)), Z(i)] (Chapter 3). The 
transformation with the highest correlation coefficient and also a linear appearance on the 
censored probability plot, is one that optimally normalizes the left-censored sample. Estimate 
the mean and standard deviation in Step 6 on the transformed scale and use these estimates in 
subsequent statistical analysis. 

LJ -
l -
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If no transformation results in an adequately linear censored probability plot, conclude that the 
sample cannot be normalized. Mean and standard deviation estimates of the original 
concentrations can still be computed, but they will not correspond to a known probability 
distribution. 

Step 6. If the raw concentration data are approximately normal, compute mean and standard deviation 
estimates adjusted for censoring using the equations: 

111 

[15.4) 
i=l 

CT KM [15.5) 
i=l 

where x(o) = 0 and F KM ~(o)} F KM (o )= 0 by definition. Otherwise, compute the adjusted 

mean and standard deviation after applying the normalizing transformation f( ~ with the 
equations: 

111 

[15.6) 
i=l 

111 

[ 15. 7) 
i=l 

Estimates from equations {15.4) and [15.5) can then be used in place of the sample mean ( x) 
and standard deviation ( s) in parametric equations for prediction and control limits, and for 
can~imtmmhrutH as~ian!mfui1manidriniE~imdtheq~r[n6i6>}:amd [ 15. 7) 

J 1 6P I t .... 1 l u1 

Use the Kaplan-Meier technique on the following manganese concentration data to construct 
estimates of the population mean and standard deviation that are adjusted for censoring. 

= Lfl L_~ -C ..-91-l•L I~~ 0- J J c:c L 91 fl•_. H c 
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<-i~ ... ~ i_j_ 

Step 1. From the combined sample of 11 = 25 measurements, identify and sort the 21 distinct values 
including distinct RLs as in the table below. Compute the risk set ( 11 i) for each distinct level 
(x(i)) as the total number of detects and non-detects no greater than x(i)· Also calculate the exact 
number of detects ( d,) equal to each level. 

Step 2. Compute the Kaplan-Meier estimate of the CDF using equations [15.1) and [15.3), shown in 
column 5 of the table below. Two example calculations are given by: 

- 1 L_ 1 L_ 1 L_ 1 L_ 1 L 
FKM(22.7)=~1-- ~1-- ~1-- ~1-- ~1-- =0.8 

I 211 I 221 I 231 I 241 I 251 

2 
4 

l rl 

l l 
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9b' 
91 
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L 91 
. 91 
2912 
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14 rl912 
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rl<ft. 
l 9b' rl 

Step 3. Compute normal quantiles or z-scores for each value of FKM in the above table. First re-set the 
last entry to ( n - .375)/( 11 + .25) = 0.9752 so that a finite quantile can be associated with the 
sample maximum. 

Step 4. Plot the z-scores against the distinct manganese levels to form a normal censored probability 
plot (Figure 15-3). The probability plot correlation coefficient is r= 0.902. The plot itself 
shows substantial curvature, suggesting that the sample is non-normal. 
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Step 5. Plot the z-scores against one or more transformations of the manganese levels. First attempt a 
log transformation, as shown in Figure 15-4 In this case, the correlation coefficient improves 
tor= 0.989 and the normalized censored probability plot looks fairly linear. Conclude that the 
sample is approximately normal on the log-scale, that is, the manganese concentrations are 
lognormal in distribution. 

Step 6. Compute Kaplan-Meier log-mean ( µy.KM ) and log-standard deviation (cry.KM ) estimates for 

the manganese data using equations [15.6) and [15.7), taking f( ~as the natural logarithm. This 
gives for the log-mean: 

µ y.KM = ( ) [ O~lt.-±-log( ) [ -· 21 ]28.3.3l~og( ) [ -· 96}~.106 logUifib) 

and for the log-standard deviation: 

)2 [ 0~1.31.~( )2 [ -· ] = 18. lt)g(~+)3 .106 

These adjusted mean and standard deviation estimates can then be used in place of the sample 
log-mean and log-standard deviation in parametric prediction and control limits, or in 
parametric confidence intervals. I 
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Robust regression on order statistics [ROS] differs from Kaplan-Meier in that it uses the fitted 
model to construct a model-basecfimputation for each non-detect. Once the imputations are made, the 
adjusted mean and standard deviation are estimated using standard equations for the sample mean ( x) 
and standard deviation (s). 

The first step in using Robust ROS is to find a single distributional model that adequately fits the 
JOmt sample of detects and non-detects. Standard probability plots (Chapter 9) and normality tests 
(Chapter 10) rely on a full ranking or ordering of the sample in order to fit candidate distributions. With 
left-censored data, the true concentrations of non-detects are unknown, so only a partialranking is 
possible. Like Kaplan-Meier, the Robust ROS technique constructs a partial ranking of the data, 
accounting for the non-detects and assigning explicit ranks to each of the detected values. These 
detected values can be graphed on a censored probability plot to check the fit of possible distributional 
models. 

Once an adequate distribution is found, Robust ROS determines the approximate cumulative 
probability associated with each distinct RL. The method then arbitrarily distributes non-detects with a 
common RL so that each one accounts for an equal share of the estimated cumulative probability 
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assigned to that RL. Once non-detects are ranked in this manner, the fitted distributional model is used 
to impute a value for each non-detect. This last task is accomplished by conducting a linear regression 
(Chapter 17) between the detected values and the z-scores from the censored probability plot. The 
parameters of the regression line (i.e., intercept and slope) can be used to estimate the mean and standard 
deviation of the distributional model, which in turn will generate imputed values for the non-detects. 

The mathematics behind Robust ROS can be expressed as follows. First suppose there are k 
distinct RLs in the sample. Order these from least to greatest. Define Ai as the number of detected values 
between the ith and (i+ 1 )th RLs for i = 1 to k-1. Let Ak =number of detects above the highest RL, and 
take Ao= number of detects below the lowest RL. Also define ! i as the total number of observations, 
both detects and non-detects, with values below the ith RL. Define ! 0 = 0. Then the number of non­
detects below the ith RL can be written as: 

= 1 ktoifor [15.8) 

With these definitions in place, exceedance probabilities can be assigned to each of the k RLs, 
representing the proportion of the sample greater than or equal to each distinct RL. These probabilities 
can be written as: 

[15.9) 

where pei denotes the proportion of the sample exceeding the ith RL. Equation [15.9) can be interpreted 
in the following manner. The exceedance probability associated with a given RL is equal to the 
exceedance probability assigned to the next highest RL combined with a fraction of the remaining, non­
exceedance probability (i.e., 1 - pe i+i). The specific fraction depends on the relative occurrence of 
detects between the ith and (i+l)th RLs. When i = k, define pei+I = O; when i = 0, define pe 0 = 1. 

Once the exceedance probabilities are computed, plotting positions for the detects - i.e., 
cumulative probabilities on a probability plot - can be calculated with the equation 

- j L 
(1-::::ne . ) + j - (pe . -·pe ) 

I' 1 I Ai + 11 1 I+I 
A/tjjfor =0 ktoiand [15.10) 

for each set of detected values falling between the ith and ( i+ 1 )th RLs. Note that this equation also 
applies to any detects below the lowest RL [ i = 0) or above the highest RL [ i = k ]). Similarly, plotting 
positions for each group of non-detects can be written as: 

C~aJ!or = 1 ktoiand [15.11) 

With plotting pos1t10ns for the detects, a normal quantile or z-score can be computed for each 
value of pc4i· Then censored probability plots can be constructed using either the detected concentrations 
(xii) or some normalizing transformation of the detected values, say f(Xij). If a linear probability plot can 
be identified, a linear regression (Chapter 17) can be calculated for the pairs (zij, f(xij)) and used to 
impute values for the non-detects in the sample. 
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Robust ROS was originally devised to account for non-detects in water quality data (Helsel, 2005). 
Robust ROS is an extension of a technique termed regression on order statistics [ROS] (Gilliom and 
Helsel, 1986), described in Section 15.5. That procedure assumes the joint sample of detects and non­
detects follows an underlying lognormal distribution. The fitted lognormal is used to estimate the 
population mean and standard deviation as a parametric technique. Robust ROS by contrast only relies 
on a parametric model to impute values for the non-detects. It can be applied to any normal or 
normalized distribution, rather than just the lognormal distribution. It may also be regarded as quasi­
non-parametric since estimates for the sample are computed from the combined group of observed 
detects and imputed non-detects, rather than from the mean and standard deviation of the underlying 
distributional model, as in the original formulation. 

In practice, because Robust ROS is not fully non-parametric, a known distribution must be fitted to 
the entire sample in order to construct imputed values for the non-detects. Closely related to this, Robust 
ROS assumes that both detected and non-detect data arise from the same population, with non-detect 
values censored at their respective RLs. Like Kaplan-Meier, this implies that the contaminant of concern 
is present in non-detect samples, but that the analytical method cannot accurately measure 
concentrations lower than the RL. 

t !! I 1 ~ !! 1 

Step 1. Given a left-censored sample with a total of n measurements, identify and sort the k distinct 
RLs. Following the discussion above, count the number of detected values below the lowest 
RL (Ao), the number of detected values at least as great as the highest RL (Ak), and the number 
of detects between the ith and ( i+ 1 )th RLs (Ai for i = 1 to k-1). Also let ! 0 = 0 and count the 
total number of detects and non-detects below the ith RL (! i for i = 1 to k). Then use equation 
[15.8] to calculate the number of non-detects (Ci for i = 1 to k) below the ith RL. 

Step 2. Let pe 0 = 1 and pek+I = 0. For i = 1 to k, compute the probability of exceeding the ith distinct 
RL(pei)using equation [15.9]. 

Step 3. With the exceedance probabilities from Step 2, sort each group of detects associated with Ai 
and then compute plotting positions (i.e., cumulative probabilities) for these detects -pdii -
using equation [15.10]. 

Step 4. Form normal quantiles (i.e., z-scores) associated with the detected measurements and plotting 

positions pdii by computing z: = <l>-1 (pdiJ ), where <l>-1 
() is the inverse standard normal 

CDF. 

Step 5. Construct censored probability plots using the z-scores from Step 4. Plot the values zd against 
lj 

the detected concentrations xd to form a normal censored probability plot. Plot the zd 's 
lj lj 

against a transformation of the x: 's (e.g., log, square root, inverse, etc.) to form a normalized 

censored probability plot. 
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Step 6. For each attempted transformation f( ~including the unchanged observations as one option, 

compute the correlation coefficient between the pairs cf~: )z: rJ' (Chapter 3). The 

transformation with the highest correlation coefficient and also a linear appearance on the 
censored probability plot, is the one that optimally normalizes the left-censored sample. If no 
transformation results in an adequately linear censored probability plot, conclude that the 
sample cannot be normalized and that the Robust ROS may not provide reasonable 
imputations for the non-detects. 

Step 7. If a normalizing transformation can be identified, compute a linear regression (Chapter 17) of 

the values f ~:)on the z-scores, z:, to form the regression equation ( ) ·-0h.lXije 

slope and intercept can be estimated using the equations 

b= 
A, ( d 

lj 

i=O j=I 

-d )- (: J ~1Xfzzl }-s ~d [15.12) 

d ·-fixa [15.13) 

where zd is the mean of the z-scores associated with the detected values, n d = number of 

detects, sL is the sample variance of the detected z-scores, and xd is the mean of the detected 

measurements. The regression intercept (a) is an estimate of the population mean of the 

normalized distribution, while the slope ( b ) is an estimate of the population standard 
deviation. 

Step 8. Compute plotting pos1t10ns (pc ij) for the non-detects (i.e. , censored observations) associated 
with each distinct RL using equation [ 15 .11]. Then form a second set of z-scores, this time 

associated with the non-detects, by computing z~ = <l>-1 (Pc!i) for j = 1 to Ci; and i = 1 to k. 

Step 9. Form imputed values ( ; J -~aefing the slope and intercept from Step 7 and the 

censored z-scores from Step 8. Combine these (transformed) imputed values for the non­

detects with the (transformed) detected measurements f ~:)to get censored estimates of the 

population mean and standard deviation by computing the overall sample mean ( µ = x) and 

sample standard deviation ( 6 = s ). 

These censored estimates can be used in place of the unadjusted sample mean ( x) and 
standard deviation (s) in parametric equations for prediction and control limits, and for 
confidence intervals. If a normalizing transformation f( ~ is needed, the censored estimates 
should be used to construct statistical limits and intervals on the transformed scale. 

J 1 6P I t .... 1 l u 

In Example 15-1, the Kaplan-Meier technique was used on a sample ofbackground manganese 
concentrations to compute the log-mean and log-standard deviation, adjusted for the presence of non­
detects. Apply Robust ROS to these same data to compare the estimates. 
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Step 1. The n = 25 manganese observations include 2 distinct RLs ( <2 and <5). Count the number of 
detected measurements below the lowest RL, above the highest RL, and between the two RLs, 
denoted by Ai in the table below. Also count the total number of measurements - both 
detected and non-detect - below each RL, denoted below by! i- Use equation [15.8] to count 
the number of non-detects associated with each RL, denoted below by Ci· 

! tP 

2 

Step 2. Compute the probability of exceeding each RL using equation [15.9] and noting that pe 3 = 0: 

A2 fi ) 18 pe 
2 

= pe 
3 
+ V - pe 

3 
= -- = 0. 72 

A
2 
+ ! 2 18 + 7 

Step 3. Sort the detects associated with each Ai and compute plotting positions for these detects using 
equation [15.10], as listed in the table below. For instance, A1 = 1, corresponding to the 
detected value 3.3. The plotting position for this observation equals 

- 1 L 
pd

11 
= Q- pe

1
)+J -- (Pe

1 
- peJ= 0.21+0.5(0.79 -0.72 )= 0.245 

I Al+ 11 

Also form the normal quantiles (i.e., z-scores) associated with the detected observations, as 
listed below: 
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II -1-91 H c . &_.I ll/lC (1~ 91 .... -c 
o/ol&~-0-JJC ' _.~ Pl~C 

91 ci'<j]'' L <ci'<fl =ci' 
L91 ci'91 l 4 <ci'9l''2" 
. 91 ci'91 L . <ci'91 2ci' 
2912 ci'91 =" <ci'912ci' 
491'' ci'9l'' <ci'9li 2 
=<Jll ci'9l''. = <ci'91522 

l ci'915 ci'91LcJ2 ci'9151 4 
11 <fl= ci'91L" L ci'9li l .. 

l 9li ci'91L4 ci'9li ci' 
l <fl ci'<Jl l ci'91 ci'4 
l . <fl= ci'<fl L= ci'9l''1 ci' 
l 211= ci'<Jl =2 ci'91L1 L 

l <fl ci'912 L ci'<Jl 2 
912 ci'9122 ci'912"4 

"91L ci'9l41 l ci'9l44ci' 
" L <fl= ci'9l4"4 l 915 ci' 
L <fl ci'9l44. l 9152 
2291 ci'<ft" l 97' " 

l ci'. 91 ci'<Jl=. l 9122. 

Step 4. Plot the z-scores against the detected manganese levels to form a normal censored probability 
plot (Figure 15-5) The probability plot correlation coefficient is r= 0.901, almost identical to 
the Kaplan-Meier censored probability plot constructed in Example 15-1 The plot also shows 
substantial curvature, suggesting that the sample is non-normal. Also plot the z-scores against 
a log transformation of the detected manganese values (Figure 15-~. Not only does the 
normalized probability plot appear linear, but the correlation coefficient increases tor= 0.994. 
Conclude as in Example 15-1 that the sample is approximately normal on the log-scale, so 
that the manganese concentrations are lognormal in distribution. 

Step 5. Compute a linear regression of the n d = 19 logged manganese detects against their 
corresponding z-scores using equations [15.12) and [15.13). The sample mean and variance of 

the detected z-scores are zd = 0.3802 and sL = 0.4577 . Also, the log-mean of the detected 

observations equals log (x d )= 2.80 . The slope and intercept of the resulting line are: 

b= 
1 r 194.i(-· 

x 4577J8 

d 

- 3802.)90. ++ ( - 3802]16.1~7)1)Jl 

ZQXGE-= - x 3802.~72.Ji~.2 
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Step 6. Compute plotting positions for the non-detects (i.e., censored observations) associated with 
each distinct RL using equation [15.11), listed in the table below. Form a second set of z­
scores, this time associated with the non-detects, also listed below. Note that each non-detect 
is given a distinct plotting position, even though they cannot be ordered. This is done to 'fill 
in' the unknown portion of the underlying distribution, but should not be interpreted as a 
legitimate 'estimate' for any particular non-detect observation. The positions for the first pair 
of the 3 non-detects with RLs of2 (i.e., <2) are 

1 L - 1 L 
pen= J- ~ - pe1 )= ~ - (1-0.79 )= 0.0525 

IC1+l1 13+11 

""$C . &_.I ll/lC (1~ 91 .... -c )"*J ~ H c 
' _.~ l)j~C o/o L&~ -C 

ci'91J L L <1 911 ci'91J L" 
ci''lJi ci' Lei' <1 91L .. ci'91L L4 
ci''lJi L2 L <1 Wei' L ci'9l4 == 
ci'9lr2ci'ci' <1 <fr'2. ci'91L 
ci''Th "ci'ci' <1 9lr4ci' ci'9l2=. 
ci''Th ci'ci' <ci'9l4ci'. l 'Th 2 

Step 7. Form a second set of z-scores associated with the censored plotting pos1t10ns from Step 6. 
These are listed in the table above. Then, using the regression parameters from Step 5, form a 

prediction for each non-detect using the equation log (x; J ~a-f~. Take these predictions 

as the imputed values for the set of non-detects, as listed above. The first two imputed values 
are computed as: 

+ 372.1(2-78.621)1= 054.0 

+ 372.1{2-78254)= 558.0 

Step 8. Combine the logged detected manganese values with the imputed values from Step 7. Then 
compute the sample mean and standard deviation using the adjusted sample. These 
calculations give µ = log(llP-Zl) and a = log(~li) . By comparison, the Kaplan­
Meier method in Example 15-1 gives very similar corresponding estimates of2.31 log(ppb) 
and 1.18 log(ppb ). I 

EPAPAV0117236 



l u 1-•c cm:: L LJil'.flel- ~1!! -1-91 IC! LI Le 

+-- 1 ~ ~ i J_ l L 1JL i ~ " 1 !! I 1 ~ " i ~ +-- i !! p +-- ~ J_ T --+ 1 1 J_ +-- i !! ~ J_ T --+ ~ I ~ 

The two preferred methods using Kaplan-Meier or Robust ROS provided above for multiple 
detection limits are computationally intensive. Helsel (2005) indicates that public software is available 
for the Robust ROS method. Although the more common situation encountered in evaluating data sets 
is the presence of multiple detection limits (hence the UG recommendations), two older techniques are 
still applicable in some situations. The Cohen method and the parametric ROS techniques are both 
simpler to apply, but depend on the use of a single censoring limit. One needs to evaluate the prospects 
before applying them. If detectable data sets are large enough (e.g., n > 50) and detection percentages 
near or greater than 50%, most of these methods will work comparably. 

Cohen's adjustment (Cohen, 1959) can be useful when a significant fraction (up to 50%) of the 
observed measurements in a data set are reported as non-detects. The technique assumes that all the 
measurements, detects and non-detects alike, arise from a common population, but that the lowest 
valued observations have been censored at the QL. Using the censoring point (i.e., QL) and the pattern 
in the detected values, Cohen's method attempts to reconstruct the key features of the original 
population, providing explicit estimates of the population mean and standard deviation. These in turn 
can be used in certain statistical interval estimates, where Cohen's adjusted estimates are used as 
replacements for the sample mean and sample standard deviation. 

!! 1 5 ~ !! 1 I 1 J_ ... ..- u J_ ~ u ..- ..- I t ... ~ I J_ ..-

Cohen's adjustment assumes that the common underlying population has a normal distribution. 
The technique should only be used when the observed sample data approximately fit a normal model 
including transformations to normality. Because the presence of a large fraction of non-detects will 
make explicit normality testing difficult, if not impossible, the most helpful diagnostic aid may be to 
construct a censored probability plot on the detected measurements. If the censored probability plot is 
clearly linear on the original measurement scale but not on the log-scale, assume normality for purposes 
of computing Cohen's adjustment. If, however, the censored probability plot is clearly linear on the log­
scale, but not on the original scale, assume instead that the common underlying population is lognormal. 
Then compute Cohen's adjustment to the estimated mean and standard deviation on the log-scale 
measurements and construct the desired statistical interval using the algorithm for lognormally­
distributed observations. 

When the detection rate is less than 50%, the accuracy of Cohen's method worsens as the 
percentage of non-detects increases. The guidance does not generally recommend the use of Cohen's 
adjustment when more than half the data are non-detect. In such circumstances, one should consider an 
alternate statistical method, for instance a non-parametric interval or perhaps the Wilcoxon rank-sum 
test for small samples. 

One other requirement of Cohen's original method is that there should be just a single censoring 
point. Data sets with multiple RLs will usually require a more sophisticated treatment such as Kaplan­
Meier or Robust ROS methods or via maximum likelihood techniques (Cohen, 1963) or perhaps a 
multiply-censored probability plot technique (Helsel and Cohn, 1988). If only 2 or 3 RLs do not 
substantially differ and few detected intermingled data are lost, the censoring point ( QL) can be set to 
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the highest RL. Cohen's method requires explicit definition of the censormg limit, and is somewhat 
sensitive to variation in this parameter. 

t !! I 1 ~ !! 1 

Step 1. Divide the data set into two groups, detects and non-detects. If the total sample size equals 11, 
let m represent the number of detects and (11-m) represent the number of non-detects. Denote 
the ith detected measurement by Xj. Then compute the mean and sample variance of the set of 
detects using the equations: 

1 /11 

xd = - xi and 
m i=I 

Step 2. Denote the single censoring point by QL. Then compute the two intermediate quantities, hand 
y, necessary to derive Cohen's adjustment via the following equations: 

h 100 ( -·= )/11nm ND% and y = s~/ (xd - QL J 
Step 3. Use the intermediate quantities hand y to determine Cohen's adjustment parameter A, from the 

table below. 

+t !! ' 
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Step 4. Using the adjustment parameter A. found in Step 3, compute adjusted estimates of the 
population mean and standard deviation with the equations: 

µ - ~s2 - d 

Step 5. Once the adjusted estimates for the population mean and standard deviation are derived, these 
values can be substituted for the sample mean and standard deviation in equations for the 
statistical intervals. 

l L <nL 91 + p !! p I 1 ~ !! ~ !! 1 T !! 1 +-- +-- ~ I J_ I J_ I !! ~ 1 !! +-- ~ p ~ ~ +-- ~ ~ +-- ? !! I +--@ 

A second useful method (EPA, 2004) for estimating mean and standard deviation parameters for 
data sets with non-detect values censored at a single limit is a parametric Regression on Order Statistics 
(ROS). The same assumptions apply as with Cohen's method. Both the detected and non-detect 
portions of the data are presumed to arise from a single population. That population should either be 
normal or transformable to a normal distribution. The parametric ROS method performs similarly to 
Cohen's method, and offers two principal advantages. The procedure can easily be implemented on 
almost any statistical software, and the method is not sensitive to the exact censoring limit. 

If variable X originates from a normal distribution with mean and standard deviation 1 

l N;{_ ,a~] and Z is the standard normal distribution [ l Ni._ 1 )}, statistical theory indicates that 

X = µ +a · Z when X and Z are at the same percentiles in their respective distributions. For a given 

observation or sample x above a detection limit, the order statistic (i.e., the proportion of observations 
less than x) can be estimated. This order statistic is an estimate of the percentile. The corresponding Z­
value can be obtained from reference tables or a computer algorithm. For a list of ordered observations 
above the detection limit (x 1, x2, ..... to Xm) of m detectable samples out of a total 11 and a corresponding 
set of Z-values (Z 1, Z2, ••••• to Zm) at the same percentiles, regression analysis of X against Z will 
provide estimates of the mean and standard deviation of distribution X. The intercept is the mean 
estimate and the slope of the regression is the standard deviation estimate. 

When sample data better fit a lognormal or other normal transformable distribution, the regression 
is performed on the transformed data. The mean and standard deviation estimates are also for the 
transformed data (e.g., logarithmic mean and standard deviation). One may also use the regression 
results to "fill in" or quantify the values below the detection limit. When the Z-distribution is developed 
for the full set of total 11 sample values, the Z-values for the detectable portion are separated from those 
for the remaining 11 -m non-detect percentiles. Estimates for the non-detect values are obtained from 
the equation X = µ + 6 · Z , using µ the intercept mean estimate, 6 the slope standard deviation 
estimate and the non-detect Z-values. These can then be aggregated with the sample detectable values 
to obtain the overall mean and standard deviation estimate. 

t !! I 1 ~ !! 1 

Step 1. Determine the appropriate normal transformation and convert the data if necessary. Divide 
the data set into two groups, detects and non-detects. If the total sample size equals 11 , let m 
represent the number of detects and (11 - m) represent the number of non-detects. Denote the 
ith detected measurement by Xi. Order the m detected data from smallest to largest. 

l LJ 
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Step 2. Define the normal percentiles for the total n sample set as follows. For a set of i values from 1 
to 11, (ip-=375)/(11 + 25). Then convert to Z-values using the inverse normal distribution 

Zi <1>=1 (pi). Separate the Zi values into two groups: the larger m detected and 11 -m non­

detected portions. 

Step 3. Use linear regression of the ordered m data values against the corresponding Z-values. Obtain 
the intercept and slope of the regression as the estimated mean and standard deviation 
estimates, µ and a . These can be used directly as the distributional parameter estimates or 

Step 4 can be followed. 

Step 4. Using equation X
11

_
111 

aii~-m with µ the intercept mean estimate, a the slope 

standard deviation estimate and the non-detect Zn-m values, calculate the remaining Xn-m values 
and combine with the Xm detected data. Use the combined direct sample mean and standard 
deviation calculations as the final parameter estimates: 

J 1 6P I t .... 1 l u 

A 1 IJ 

µ = - xi and a = 
11 i=l 

C-x,V 
i=l 

11 -1 

Use Cohen's and the parametric ROS methods for the data in Example 15-1 and compare the 
results to the Kaplan-Meier and Robust ROS Methods. A single overall logarithmic distribution can be 
assumed. In the example, it is possible to utilize the higher detection limit ( <5) as the censoring limit, 
with the loss of only a single detected point of information. The detection frequency is still 72%. 

For Cohen's method, h = .28 and L= .465 for the logarithmic data. The adjustment parameter from 
the above table is interpolated as J = .445. The resulting mean and standard deviation estimates for the 
full data set are µ = 2.32 log(ppb) and a = 1.22 log(ppb). 

Mean and standard deviation estimates for the parametric ROS method are µ = 2.33 log(ppb) and 

a = 1.21 log(ppb) following regression of the ordered detectable log values against the corresponding 
Z- values of the standard normal distribution. With such few non-detects near the lowest end of the 
sample distribution, the results are quite similar to the Robust ROS and Kaplan-Meier methods. For 
higher non-detect percentages and more heavily intermingled non-detect data, the results using these 
methods can differ considerably. I 

l L<fl +-1 i ~ !' 1 l LC p J_ ~ LcJC J_ i J_ J ~ 1 ~ 1 ~ !! -+ 1 

In this chapter and elsewhere in the Unified Guidance, it is recommended that imputing arbitrary 
values be limited to data sets with 10-15% or fewer non-detects and that parametric procedures be 
applied when there are 50% or fewer non-detects. The guidance continues to suggest this basic non­
detects rule for both historical and conservative reasons. The same approach was found in both the 
earlier RCRA 1989 and 1992 RCRA statistical guidance documents, although it was recognized in the 
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first as a guideline "based on judgment". It was also noted that "there is no general procedure that is 
applicable in all cases." The 10-15% rule using direct substitution of arbitrary values is believed 
adequate for many applications, but one of the censoring estimation techniques provided in this chapter 
can be used instead. For a skewed distribution like the lognormal, the latter approach would be 
preferable. We have cited studies above by Davis and others indicating that parameter estimation and 
test performance can suffer when more than 50% of the data are non-detects. Most of the common 
parameters (i.e., mean, median, standard deviation, etc.) can be estimated with tolerable bias and error 
when no more than 50% of the values are originally non-detect and the superior non-detect fitting 
techniques used. Statistical test performance using these limitations appears to be reasonable for most 
applications. However, it should be recognized that they are only "rules of thumb", not absolute criteria. 

Other authors (e.g., Helsel 2005) have suggested that certain tests will perform adequately even 
with higher non-detect rates in data. The criterion of non-detect percentage is not the only factor. For 
example with very large data sets (e.g., 100-300), quite reasonable fits can be made to the detectable 
portion using techniques found in Chapter 15 even with non-detect percentages greater than 50%. 
Having a sufficient number of detectable data is also an important consideration, applying equally to 
small data sets. One should have a fairly good idea that the detect data themselves follow one or another 
parametric distributions. To do so, one should have a sufficiently large number of detected data points 
for comparison. 

A second factor is the potential application for fitted non-detect data. As an example, fits of high 
non-detect percentage larger data sets using the lognormal distribution can provide decent parameter 
estimates (log mean and log standard deviation) for use with upper prediction limit detection monitoring 
tests. Generally, the fits accurately describe the upper portions of the observed data sets. At the same 
time, these estimated logarithmic parameters may result in considerably larger errors when estimating 
the true arithmetic mean and standard deviation (the bias problem in transformations), such as with 
compliance level tests. In this case, the 50% rule is best followed. 

The guidance generally recommends non-parametric options when non-detect data exceed 50%. 
However, even this suggestion comes with caveats. For example, if a number of wells to be compared 
using Kruskal-Wallis non-parametric ANOVA had mostly or all well data sets greater than 50% non­
detects, the outcome would be ambiguous. This is because the test involves comparisons of medians, 
which would lie below the detection limit. At very high non-detect percentages, fewer options are 
available. Upper non-parametric prediction limits can work with very few detectable values, but the 
assumption of any distributional pattern is increasingly tenuous. In some cases, a binomial test of 
proportions (found in the 1989 guidance) may be the only realistic option. As a final suggestion, we 
recommend that users take these factors into account and consider recommendations of other statistical 
literature in the field as well, when considering non-detect limitations to specific test procedures. 
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PART Ill. DETECTION MONITORING 

TESTS 

This third part of the Unified Guidance presents core procedures recommended for formal 
detection monitoring at RCRA-regulated facilities. Chapter 16 describes two-sample tests appropriate 
for some small facilities, facilities in interim status, or for periodic updating of background data. These 
tests include two varieties of the t-test and two non-parametric versions-- the Wilcoxon rank-sum and 
Tarone-Ware procedures. Chapter 17 discusses one-way analysis of variance [ANOVA], tolerance 
limits, and the application of trend tests during detection monitoring. Chapter 18 is a primer on several 
kinds of prediction limits, which are combined with retesting strategies in Chapter 19 to address the 
statistical necessity of performing multiple comparisons during RCRA statistical evaluations. Retesting 
is also discussed in Chapter 20, which presents control charts as an alternative to prediction limits. 

As discussed in Section 7.5, any of these detection-level tests may also be applied to 
compliance/assessment and corrective action monitoring, where a background groundwater protection 
standard [GWPS] is defined as a critical limit using two- or multiple-sample comparison tests. Caveats 
and limitations discussed for detection monitoring tests are also relevant to this situation. To maintain 
continuity of presentation, this additional application is presumed but not repeated in the following 
specific test and procedure discussions. 

Although other users and programs may find these statistical tests of benefit due to their wider 
applicability to other environmental media and types of data, the methods described in Parts III and IV 
are primarily tailored to the RCRA setting and designed to address formal RCRA monitoring 
requirements. In particular, the series of prediction limit tests found in Chapter 18 is designed to 
address the range of interpretations of the sampling rules in P64.97(g), P64.98(d) and P58.54. 
Further, all of the regulatory tests listed in P64.97(i) and P58.53(h) are discussed, as well as the 
Student's t-test requirements oq265.93(b). 

Taken as a whole, the set of detection monitoring methods presented in the Unified Guidance 
should be appropriate for almost all the situations likely to be encountered in practice. Professional 
statistical consultation is recommended for the rest. 
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CHAPTER 16. TWO-SAMPLE TESTS 

16.1 PARAMETRIC I-TESTS ................................................................................................................................. 16-1 
16.1.1 Pooled Variance T-Test ................................................................ ...................................................... 16-4 
16.1.2 Welch's T-Test .................................................................................................................................... 16-7 
16.1.3 Welch's T-Test and Lognormal Data............................................................ . ................................... 16-10 

16.2 WILCOXONRANK-SUMTEST .................................................................................................................... 16-14 
16.3 TARONE-WARE Two-SAMPLE TEST FOR CENSORED DATA................................................................ . ..... 16-20 

This chapter describes statistical tests between two groups of data, known as two-sample tests. 
These tests may be appropriate for the smallest ofRCRA sites performing upgradient-to-downgradient 
comparisons on a very limited number of wells and constituents. They may also be required for certain 
facilities in interim status, and can be more generally used to compare older versus newer data when 
updating background. 

Two versions of the classic Student's t-test are first discussed: the pooled variance t-test and 
Welch's t-test. Since both these tests expect approximately normally-distributed data as input, two non­
parametric alternatives to the !-test are also described: the Wilcoxon rank-sum test (also known as the 
Mann-Whitney) and the Tarone-Ware test. The latter is particularly helpful when the sample data exhibit 
a moderate to larger fraction of non-detects and/or multiple detection/reporting limits. 

16.1 PARAMETRIC T-TESTS 

BACKGROUND AND PURPOSE 

A statistical comparison between two sets of data is known as a two-sample test. While several 
varieties of two-sample tests exist, the most common is the parametric t-test. This test compares two 
distinct statistical populations. The goal of the two-sample t-test is to determine whether there is any 
statistically significant difference between the mean of the first population when compared against the 
mean of the second population, based on the results observed in the two respective samples. 

In groundwater monitoring, the typical hypothesis at issue is whether the average concentration at a 
compliance point is the same as (or less than) the average concentration in background, or whether the 
compliance point mean is larger than the background mean, as represented in equation [16.1) below: 

[16.1) 

A natural statistic for comparing two population means is the difference between the sample 

means, (xc - .XBG). When this difference is small, a real difference between the respective population 

means is considered unlikely. However, when the sample mean difference is large, the null hypothesis is 
oljmvd9 sihfferim~a1b~een rthll difference between the populations seems plausible. Note that an 

sample means does not automatically imply a true population 
difference. Sample means can vary for many reasons even if the two underlying parent populations are 

16-1 March 2009 

EPAPAV0117245 



Chapter 16. Two-Sam pie Tests Unified Guidance 

identical. Indeed, the Student's t-test was invented precisely to determine when an observed sample 
difference should be considered significant (i.e., more than a chance fluctuation), especially when the 
sizes of the two samples tend to be small, as is the usual case in groundwater monitoring. 

Although the null hypothesis (Ho) represented in equation [16.1) allows for a true compliance point 
mean to be less than background, the behavior of the t-test statistic is assessed at the point where Ho is 
most difficult to verify - that is, when Ho is true and the two population means are identical. Under the 
assumption of equal population means, the test statistic in any !-test will tend to follow a Student's !­

distribution. This fact allows the selection of critical points for the t-test based on a pre-specified Type I 
error or false positive rate (a). Unlike the similarly symmetric normal distribution, however, the 
Student's !-distribution also depends on the number of independent sample values used in the test, 
represented by the degrees of freedom [dj]. 

The number of degrees of freedom impacts the shape of the !-distribution, and consequently the 
magnitude of the critical (percentage) points selected from the t-distribution to provide a basis of 
comparison against the !-statistic (see Figure 16-1 ). In general, the larger the sample sizes of the two 
groups being compared, the larger the corresponding degrees of freedom, and the smaller the critical 
points (in absolute value) drawn from the Student's !-distribution. In a one-sided hypothesis test of 
whether compliance point concentrations exceed background concentrations, a smaller critical point 
corresponds to a more powerful test. Therefore, all other things being equal, the larger the sample sizes 
used in the two-sample !-test, the more protective the test will be of human health and the environment. 

Figure 16-1. Student's t-Distribution for Varying Degrees of Freedom 

-1df 
------- 3 df 
- - - - 7 df 

-+-25 df 

-5.0 -2.5 0.0 2.5 5.0 

!-value 

In groundwater monitoring, !-tests can be useful in at least two ways. First, a t-test can be 
employed to compare background data from one or more upgradient wells against a single compliance 
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well. If more than one background well is involved, all the upgradient data would be pooled into a single 
group or sample before applying the test. 

Second, a !-test can be used to assess whether updating of background data is appropriate (see 
Chapter 5 for further discussion). Specifically, the two-sample t-test can be utilized to check whether 
the more recently collected data is consistent with the earlier data assigned initially as the background 
data pool. If the !-test is non-significant, both the initial background and more recent observations may 
be considered part of the same statistical population, allowing the overall background data set to grow 
and to provide more accurate information about the characteristics of the background population. 

The Unified Guidance describes two versions of the parametric t-test, the pooled variance 
Student's t-test and a modification to the Student's t-test known as Welch's t-test. This guidance prefers 
the latter I-test to use of Cochran's Approximation to the Behrens-Fisher (CABF) Student's I-test. 
Initially codified in the 1982 RCRA regulations, the CABF !-test is no longer explicitly cited in the 1988 
revision to those regulations. Both the pooled variance and Welch's !-tests are more standard in 
statistical usage than the CABF t-test. When the parametric assumptions of the two-sample t-test are 
violated, the Wilcoxon rank-sum or the Tarone-Ware tests are recommended as non-parametric 
alternatives. 

REQUIREMENTS AND ASSUMPTIONS 

The two-sample t-test has been widely used and carefully studied as a statistical procedure. Correct 
application of the Student's t-test depends on certain key assumptions. First, every t-test assumes that the 
observations in each data set or group are statistically independent. This assumption can be difficult to 
check in practice (see Chapter 14 for further discussion of statistical independence), especially if only a 
handful of measurements are available for testing. As noted in Chapter 5 in discussing data mixtures, 
lab replicates or field duplicates are not statistically independent and should not be treated as 
independent water quality samples. That section discussed the limited conditions under which certain 
replicate data might be applicable fort- testing. Incorrect usage ofreplicate data was one of the concerns 
that arose in the application of the CABF t-test. 

Second, all !-tests assume that the underlying data are approximately normal in distribution. 
Checks of this assumption can be made using one of the tests of normality described in Chapter 10. The 
t-test is a reasonably robust statistical procedure, meaning that it will usually provide accurate results 
even if the assumption of normality is partially violated. This robustness of the t-test provides some 
insurance against incorrect test results if the underlying populations are non-normal. However, the robust 
assumption is dubious when the parent population is heavily skewed. For data that are lognormal and 
positively skewed, the two-sample t-test can give misleading results unless the data are first log­
transformed. Similarly, a transformation may be needed to first normalize data from other non-normal 
distributions. 

Another assumption particularly relevant to the use of !-tests in groundwater monitoring is that the 
population means need to be stable or stationary over the time of data collection and testing. As 
discussed in Part II of the guidance, many commonly monitored groundwater parameters exhibit mean 
changes in both space and time. Consequently, correct application of the !-test in groundwater requires 
an implicit assumption that the two populations being sampled (e.g., a background well and a 
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compliance point well) have average concentrations that are not trending with time. Time series plots 
and diagnostic trend tests (Chapter 14) can sometimes be used to check this assumption. 

The t-test does an excellent job of identifying a stable mean level difference between two 
populations. However, if one or both populations have trends observable in the sample measurements, 
the t-test may have difficulty correctly identifying a difference between the two groups. For instance, if 
earlier samples in a compliance well were uncontaminated but later samples are increasing with time, the 
t-test may still provide a non-significant result. With compliance point concentrations increasing relative 
to background, the t-test may not be the appropriate method for identifying this change. Some form of 
trend testing will provide a better evaluation. 

Another concern in applying the t-test to upgradient-downgradient interwell comparisons is that the 
null hypothesis is assumed to be true unless the downgradient well becomes contaminated. Absent such 
an impact, the population means are implicitly assumed to be identical. Spatial variability in 
background and compliance well groundwater concentrations for certain monitoring constituents do not 
allow clear conditions for comparisons intended to identify a release at a downgradient compliance well. 
Natural or pre-existing synthetic mean differences among background wells will be confused with a 
potential release. In such cases, neither the two-sample t-test nor any interwell procedure comparing 
upgradient against downgradient measurements is likely to give a correct conclusion. 

One final requirement for running any !-test is that each group should have an adequate sample 
size. The t-test will have minimal statistical power to identify any but the largest of concentration 
differences if the sample size in each group is less than four. Four measurements per group should be 
considered a minimum requirement, and much greater power will accrue from larger sample sizes. Of 
course, the attractiveness of larger data sets must be weighed against the need to have statistically 
independent samples and the practical limitation of semi-annual or annual statistical evaluations. These 
latter requirements often constrain the frequency of sampling so that it may be impractical to secure 
more than 4 to 6 or possibly 8 samples during any annual period. 

16.1.1 POOLED VARIANCE T-TEST 

BACKGROUND AND PURPOSE 

In the case of two independent samples from normal populations with common vanance, the 
Student's t-test statistic is expressed by the following equation: 

[16.2) 

The first bracketed quantity in the denominator is known as the pooled variance, a weighted average of 
the two sample variances. The entire denominator of equation [16.2) is labeled the standard error of the 
difference (SEdif!). It represents the probable chance fluctuation likely to be observed between the 
background and compliance point sample means when the null hypothesis in equation [16.1) is true. 
Note that the formula for SEdiffdepends on both the pooled variance and the sample size of each group. 
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When the null hypothesis (Ho) is satisfied and the two populations are truly identical, the test 
statistic in equation [16.2) behaves according to an exact Student's !-distribution. This fact enables 
critical points for the !-test to be selected based on a pre-specified Type I error rate ( ) and an 
appropriate degrees of freedom. In equation [16.2), the joint degrees of freedom is equal to 

(nBG + nc - 2 ), the sum of the background and compliance point sample sizes less two degrees of 

freedom (one for each mean estimate). 

REQUIREMENTS AND ASSUMPTIONS 

Along with the general requirements for !-tests, the pooled variance version of the test assumes that 
the population variances are equal in both groups. Since only the sample variances will be known, this 
assumption requires a formal statistical test of its own such as Levene's test described in Chapter 11. 
An easier, descriptive method is to construct side-by-side box plots of both data sets. If the population 
variances are equal, the interquartile ranges represented by the box lengths should also be comparable. If 
the population variances are distinctly different, on the other hand, the box lengths should also tend to be 
different, with one box much shorter than the other. 

When variances are unequal, the Unified Guidance recommends Welch's t-test be run instead. 
Welch's t-test does not require the assumption of equal variances across population groups. Furthermore, 
the performance of Welch's !-test is almost always equal or superior to that of the usual Student's t-test. 
Therefore, one may be able to skip the test of equal variances altogether before running Welch's t-test. 

All t-tests require approximately normally-distributed data. If a common variance (1 
2
) exists 

between the background and compliance point data sets, normality in the pooled variance !-test can be 
assessed by examining the combined set ofbackground and compliance point residuals. A residual can 

be defined as the difference between any individual value and its sample group mean (e.g., xi - xBG for 

background values xi). Not only will the combined set of residuals allow for a more powerful test of 
normality than if the two samples are checked separately, but it also avoids a difficulty that can occur if 
the sample measurements are naively evaluated with the Shapiro-Wilk multiple group test. The multiple 
group normality test allows for populations with different means and different variances. If an equal 
variance check has not already been made, the multiple group test could register both populations as 
being normal even though the two population variances are distinctly different. The latter would violate 
a key assumption of the pooled variance t-test. To avoid this potential problem, either always check 
explicitly for equal variances before running the pooled variance t-test, or consider running Welch's t­
test instead. 

PROCEDURE 

Step 1. To conduct the two-sample Student's t-test at an -level of significance, first compute the 
sample mean ( x) and standard deviation (s) of each group. Check for equal variances using a 
test from Chapter 11. If there is no evidence ofheteroscedasticity, check normality in both 
samples, perhaps by calculating the residuals from each group and running a normality test on 
the combined data set. 

16-5 March 2009 

EPAPAV0117249 



Chapter 16. Two-Sam pie Tests Unified Guidance 

Step 2. Once the key assumptions have been checked, calculate the two-sample !-statistic in equation 
[16.2], making use of the sample mean, sample standard deviation, and sample size of each 
group. 

Step 3. Set the degrees of freedom to df = nBG + nc - 2, and look up the (1- a) x lOOth percentage 

point from the !-distribution in TaDle 16-1 in Appendix D. Compare this a-level critical point 
against the !-statistic. If the !-statistic does not exceed the critical point, conclude there is 
insufficient evidence of a significant difference between the two population means. If, 
however, the !-statistic is greater than the critical point, conclude that the compliance point 
population mean is significantly greater than the background mean. 

L EXAMPLE 16-1 

Consider the quarterly sulfate data in the table below collected from one upgradient and one 
downgradient well during 1995-96. Use the Student's !-test to determine if the downgradient sulfate 
measurements are significantly higher than the background values at an = 0.01 significance level. 

Sulfate Concentrations (ppm) 

Background Downgradient 
Quarter Back round Down radient Residuals Residuals 

1/95 560 23.75 
4/95 530 -6.25 
7/95 570 600 33.75 -8.33 
10/95 490 590 -46.25 -18.33 
1/96 510 590 -26.25 -18.33 
4/96 550 630 13.75 21.67 
7196 550 610 13.75 1.67 
10/96 530 630 -6.25 21.67 

Mean 536.25 608.33 
SD 26.6927 18.3485 

SOLUTION 

Step 1. Compute the sample mean and standard deviation in each well, as listed in the table above. 
Then compute the sulfate residuals by subtracting the well mean from each individual value. 
These differences are also listed above. Comparison of the sample variances shows no 
evidence that the population variances are unequal. Further, a probability plot of the combined 
set of residuals (Figure 16-2) indicates that the normal distribution appears to provide a 
reasonable fit to these data. 
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Figure 16-2. Probability Plot of Combined Sulfate Residuals 

• 
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Step 2. Compute the two-sample !-statistic on the raw sulfate measurements using equation [16.2). 
Note that the background sample size is nBG = 8 and the downgradient sample size is nc = 6. _{, - I L7(26.6927J+5(18.3485J~·! !-.. -t - \608.33 536.25 Ji L + . - 5.66 

l 8+6-2 f8 6cf 

Step 3. Compute the degrees of freedom as df = 8 + 6 - 2 = 12. Since a= .01, the critical point for the 
test is the upper 99th percentile of the !-distribution with 12 df. Table 16-1 in Appendix D 
then gives the value for lcp = 2.681. Since the !-statistic is clearly larger than the critical point, 
conclude the downgradient sulfate population mean is significantly larger than the background 
population mean at the 0. 01 level. J 

16.1.2 WELCH'S T-TEST 

BACKGROUND AND PURPOSE 

The pooled variance Student's t-test in Section 16.1.1 makes the explicit assumption that both 
populations have a common variance, cr2

. For many wells and monitoring constituents, local 
geochemical conditions can result in both different well means and variances. A contamination pattern 
at a compliance well can have very different variability than its background counterpart. 

Welch's t-test was designed as a modification to the Student's t-test when the population variances 
might differ between the two groups. The Welch's t-test statistic is defined by the following equation: 
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2 2 
SBG Sc -+- [16.3) 
nBG nc 

The denominator of equation [16.3) is also called the standard error of the difference (SE<liff), similar to 
the pooled variance t-test. But it is a different weighted estimate based on the respective sample 
variances and sample sizes, reflecting the fact that the two population variances may not be the same. 

The most difficult part of Welch's t-test is deriving the correct degrees of freedom. Under the 
assumption of a common variance, the pooled variance estimate incorporated into the usual Student's t-

test has df = (nBG + nc - 2) degrees of freedom, representing the number of independent "bits" of 

sample information included in the variance estimate. In Welch's !-test, the derivation of the degrees of 
freedom is more complicated, but can be approximately computed with the following equation: 

fd= ls BG + ~- L BG nfJG + c nf) -2 2J 2/ (2 I J (2/ 12J 
l n BG n c I + n BG -1 n c -1 t 

[16.4) 

Despite its lengthier calculations, Welch's I-test has several practical advantages. Best and Rayner 
(1987) found that among statistical tests specifically designed to compare two populations with different 
variances, Welch's I-test exhibited comparable statistical power (for df I 5) and was much easier to 
implement in practice than other tests they examined. Moser and Stevens (1992) compared Welch's t­
test against the usual pooled variance t-test and determined that Welch's procedure was the more 
appropriate in almost every case. The only advantage registered by the usual Student's t-test in their 
study was in the case where the sample sizes in the two groups were unequal and the population 
variances were known to be essentially the same. In practice, the population variances will almost never 
be known in advance, so it appears reasonable to use Welch's t-test in the majority of cases where a two­
sample t-test is warranted. 

REQUIREMENTS AND ASSUMPTIONS 

Welch's I-test is also a reasonably robust statistical procedure, and will usually provide accurate 
results even ifthe assumption of normality is partially violated. This robustness of the t-test provides 
some insurance against incorrect test results if the underlying populations are non-normal. But heavily 
skewed distributions do require normalizing transformations. Certain limitations apply when using 
transformed data, discussed in the following section. 

Unlike the pooled variance I-test, Welch's procedure does not require that the population variances 
be equal in both groups. Other general requirements of !-tests, however, such as statistical independence 
of the sample data, lack of spatial variability when conducting an interwell test, and stationarity over 
time, are applicable to Welch's t-test and needs to be checked prior to running the procedure. 

Because the variances of the tested populations may not be equal, an assessment of normality 
cannot be made under Welch's t-test by combining the residuals (as with the pooled variance t-test), 
unless an explicit check for equal variances is first conducted. The reason is that the combined residuals 
from normal populations with different variances may not test as normal, precisely because of the 
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heteroscedasticity. Since this latter variance check is not required for Welch's test, it may be easier to 
input the sample data directly into the multiple group test of normality described in Chapter 10. 

PROCEDURE 

Step 1. To run the two-sample Welch's t-test, first compute the sample mean (x ), standard deviation 

(s), and variance (s2) in each of the background (BG) and compliance point (C) data sets. 

Step 2. Compute Welch's !-statistic with equation [16.3). 

Step 3. Compute the approximate degrees of freedom in equation [16.4) using the sample variance 
and sample size from each group. Since this quantity often results in a fractional amount, 

round the approximate f d to the nearest integer. 

Step 4. Depending on the a significance level of the test, look up an appropriate critical point (tcp) in 

TaDle 16-1 in Appendix D. This entails finding the upper (1-a )x lOOth percentage point of 

the Student's !-distribution with df degrees of freedom. 

Step 5. Compare the !-statistic against the critical point. If t - lcp, conclude there is no statistically 
significant difference between the background and compliance point population means. If, 
however, t > lcp, conclude that the compliance point population mean is significantly greater 
than the background mean at the a level of significance. 

L EXAMPLE 16-2 

Consider the following series of monthly benzene measurements (in ppb) collected over 8 months 
from one upgradient and one downgradient well. What significant difference, if any, does Welch's t-test 
find between these populations at the a= .05 significance level? 

Benzene (ppb) 

Month BG DG 
Jan 0.5 0.5 
Feb 0.8 0.7 
Mar 1.6 4.6 
Apr 1.8 2.0 
May 1.1 16.7 
Jun 16.1 12.5 
Jul 1.6 26.3 

Auq 0.6 186.0 

N 8 8 
Mean 3.0 31.2 

SD 5.31 63.22 
Variance 28.204 3997.131 
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Step 1. Compute the sample mean, standard deviation, and variance of each group as in the table 
above. 

Step 2. Use equation [16.3) to compute Welch's !-statistic: 

Step 3. Compute the approximate degrees of freedom using equation [16.4): 

fd= l:_20_4.~s __ l3_P,
2

9o/?l_( __ ;_sro_~~ ___ ;_s_f3-l.3997 ~ 7i.7 
ls s T/1 7 7 I 

Step 4. Using Table 16-1 in Appendix D and given a = .05, the upper 95% critical point of the 
Student's !-distribution with 7 df is equal to 1.895. 

Step 5. Compare the !-statistic against the critical point, lcp· Since t < lcp, the test on the raw 
concentrations provides insufficient evidence of a true difference in the population means. 
However, given the order of magnitude difference in the sample means and the fact that 
several of the downgradient measurements are substantially larger than almost all the 
background values, we might suspect that one or more of the t-test assumptions was violated, 
possibly invalidating the result. J 

16.1.3 WELCH'S T-TEST AND LOGNORMAL DATA 

Users should recall that if the underlying populations are lognormal instead of normal and Welch's 
t-test is run on the logged data, the procedure is not a comparison of arithmetic means but rather between 
the population geometric means. In the case of a lognormal distribution, the geometric means are 
equivalent to the population medians. In effect, a test of the log-means is equivalent to a test of the 
medians in terms of the raw concentrations. Both the population geometric mean and the lognormal 
median can be estimated from the logged measurements as exp(y), where y =log x represents a logged 

value and y is the log-mean. On the other hand, the (arithmetic) lognormal mean on the concentration 

scale would be estimated as exp (v" + s_~ / 2 ), a quantity larger than the geometric mean or median due to 

the presence of the term involving s2
, the log-variance. 

y 

Although a !-test conducted in the logarithmic domain is not a direct comparison of the arithmetic 
means, there are situations where that comparison can be inferred from the test results. For instance, 
consider using the pooled variance two-sample Student's !-test on logged data with a common (i.e., 

equal) population log-variance (a 2 ) in each group. In that case, finding a larger geometric mean or 
y 

median in a compliance well population when compared to background also implies that the compliance 
point arithmetic mean is larger than the background arithmetic mean. However, when using Welch's t­
test, the assumption of equal variances is not required. Because of this, on rare occasions one might find 
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a larger compliance point geometric mean or median when testing the log-transformed data, even though 
the compliance point population arithmetic mean is smaller than the background arithmetic mean. 

Fortunately, such a reversal can only occur in the unlikely situation that the background population 
log-variance is distinctly larger than the compliance point log-variance. Factors contributing to an 
increase in the log-mean concentration level in lognormal populations often serve, if anything, to also 
increase the log-variance, and almost never to decrease it. Consequently, t-test results indicating a 
compliance point geometric mean higher than background should very rarely imply a less-than­
background compliance point log-variance. This in turn will generally ensure that the compliance point 
arithmetic mean is also larger than the background arithmetic mean, so that a test of the log-transformed 
measurements can be used to infer whether a difference exists in the population concentration means. 

One caution in this discussion is for cases where the Welch's t-test is not significant on the log­

transformed measurements. Because the log-variances (a 2 ) are not required to be equal in the two 
y 

populations when running Welch's t-test, yet the arithmetic lognormal mean depends on both the 

population log-mean (µ_)and the log-variance through the quantity exp~.v +cr_~/2 ), it should not be 

inferred that a non-significant comparison on the log-scale between a compliance point and background 
is equivalent to finding no difference between the lognormal arithmetic means. If the log-variances differ 
but the log-means do not, the lognormal arithmetic means will still be different even though the 
lognormal medians might be identical. 

Therefore, if a comparison of arithmetic means is required, but the statistical populations are 
lognormal, care must be taken in interpreting the results of Welch's t-test. Two possible remedies would 
include: 1) only running a t-test on lognormal data if the log-variances can be shown to be approximately 
equivalent (this would allow use of the pooled variance t-test); and 2) using a non-parametric two­
sample bootstrap procedure on the original (non-logged) measurements to compare the arithmetic means 
directly. Consultation with a professional statistician may be required in this second case. 

L EXAMPLE 16-3 

The benzene data from Example 16-2 indicated no significant upgradient-to-downgradient 
difference in population means when tested on the raw measurement scale. Check to see whether the 
same data more closely approximate a lognormal distribution and conduct Welch's t-test under that 
assumption. 
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Benzene (ppb) Log(Benzene) log(ppb) 

Month BG DG BG DG 
Jan 0.5 0.5 -0.693 -0.693 
Feb 0.8 0.7 -0.223 -0.357 
Mar 1.6 4.6 0.470 1.526 
Apr 1.8 2.0 0.588 0.693 
May 1.1 16.7 0.095 2.815 
Jun 16.1 12.5 2.779 2.526 
Jul 1.6 26.3 0.470 3.270 

Aug 0.6 186.0 -0.511 5.226 

N 8 8 8 8 
Mean 3.0 31.2 0.372 1.876 

SD 5.31 63.22 1.0825 1.9847 
Variance 28.204 3997.131 1.1719 3.9392 

SOLUTION 

Step 1. First check normality of the original measurements. To do this, compute the Shapiro-Wilk 
statistic (SW) separately for each well. SW= 0.505 for the background data, and SW= 0.544 
for the downgradient well. Combining these two values using the equations in Section 10. 7, 
the multiple group Shapiro-Wilk statistic becomes G = -6.671, which is significantly less than 
the 5% critical point of-1.645 from the standard normal distribution. 1 Thus, the assumption of 
normality was violated in Example 16-2 . 

Step 2. Compute the log-mean, log-standard deviation, and log-variance of each group, as listed 
above. Then compute the multiple group Shapiro-Wilk test to check for (joint) normality on 
the log-scale. The respective SW statistics now increase to 0.818 for the background data and 
0.964 for the downgradient well. Combining these into an overall test, the multiple group 
Shapiro-Wilk statistic becomes -0.512 which now exceeds the a = 0.05 standard normal 
critical point. A log transformation adequately normalizes the benzene data - suggesting that 
the underlying populations are lognormal in distribution - so that Welch's t-test can be run 
on the logged data. 

Step 2. Using the logged measurements and equation [16.3), the !-statistic becomes: 

1 Note that a= 5% is used in this example because the total sample size (BG and DG) is n = 16. Nevertheless, the test would 
also fail at a= 1 % or just about any significance level one might choose. 
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Step 3. Again using the log-variances and equation [16.4), the approximate df works out to: 

1.1719 3.9392 J
2
/ L11.1719 /8~ 2 

1 3.9392/8~
2 

J 
df = L + I + I - = 10. 8 ~ 11 

l 8 8 IL 7 7 -
l I 

Note that the approximate df in Welch's t-test is somewhat less than the value that would be 
computed for the two-sample pooled variance Student's t-test. In that case, with 8 samples per 
data set, the df would have been 14 instead of 11. The reduction in degrees of freedom is due 
primarily to the apparent difference in variance between the two groups. 

Step 4. Using Table 16-1 in Appendix D and given a = .05, the upper 95% critical point of the 
Student's !-distribution with 11 df is equal to 1. 796. 

Step 5. Comparing t against fcp, we find that 1.88 exceeds 1.796, suggesting a statistically significant 
difference between the background and downgradient population log-means, at least at the 5% 
level of significance. This means that the downgradient geometric mean concentration - and 
equivalently for lognormal populations, the median concentration - is statistically greater 
than the same statistical measure in background. Further, since the downgradient sample log­
variance is over three times the magnitude of the background log-variance, it is also probable 
that the downgradient arithmetic mean is larger than the background arithmetic mean. 

Figure 16-3. Benzene Time Series Plot 
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A note of caution in this example is that the same test run at the a= 0.01 level would yield a 
non-significant result, since the upper 99% Student's t critical point in that case would be 
2. 718. The fact that the conclusion differs based on a small change to the significance level 
ought to prompt review of other t-test assumptions. A check of the downgradient sample 
measurements indicates an upward (non-stationary) trend over the sample collection period 
(Figure 16-3 ). This reinforces the fact that the t-test can be ill-suited for measuring differences 
between populations when trends over time cause instability in the underlying population 
means. It might be necessary to either perform a formal test of trend at the downgradient well 
or to limit the compliance data included in the evaluation only to those most representative of 
current conditions at the downgradient well (e.g., the last four measurements). J 

16. 2 WILCOXON RANK-SUM TEST 

BACKGROUND AND PURPOSE 

When the underlying distribution of a data set is unknown and cannot be readily identified as 
normal or normalized via a transformation, a non-parametric alternative to the two-sample t-test is 
recommended. Probably the best and most practical substitute is the Wilcoxon rank-sum test (Lehmann, 
1975; also known as the two-sample Mann-Whitney U test), which can be used to compare a single 
compliance well or data group against background. Like many non-parametric methods, the Wilcoxon 
rank-sum test is based on the ranks of the sample measurements rather than the actual concentrations. 
Some statistical information contained in the original data is lost when switching to the Wilcoxon test, 
since it only uses the relative magnitudes of data values. 

The benefit is that the ranks can be used to conduct a statistical test even when the underlying 
population has an unusual form and is non-normal. The parametric I-test depends on the population 
being at least approximately normal; when this is not the case, the critical points of the !-test can be 
highly inaccurate. The Wilcoxon rank-sum test is also a statistically efficient procedure. That is, when 
compared to the t-test using normally-distributed data especially for larger sample sizes, it performs 
nearly as well as the t-test. Because of this fact, some authors (e.g., Helsel and Hirsch, 2002) have 
recommended routine use of the Wilcoxon rank-sum even when the parametric t-test might be 
appropriate. 

Although a reasonable strategy for larger data sets, one should be careful about automatically 
preferring the Wilcoxon over the I-test on samples as small as those often available in groundwater 
monitoring. For instance, a Wilcoxon rank-sum test of four samples in each of a background and 
compliance well and an a= 0.01 level of significance can never identify a significant difference between 
the two populations. This is true no matter what the sample concentrations are, even if all four 
compliance measurements are larger than any of the background measurements. This Wilcoxon test will 
require at least five samples in at least one of the groups, or a higher level of significance (say a= 0.05 
or 0.10) is needed. 

The Wilcoxon test statistic (W) consists of the sum of the ranks of the compliance well 
measurements. The rationale of the test is that if the ranks of the compliance data are quite large relative 
to the background ranks, then the hypothesis that the compliance and background values came from the 
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same population ought to be rejected. Large values of the W statistic give evidence of possible 
contamination in the compliance well. Small values of W, on the other hand, suggest there is little 
difference between the background and compliance well measurements. 

REQUIREMENTS AND ASSUMPTIONS 

The Wilcoxon rank-sum test assumes that both populations being compared follow a common, 
though unknown, parent distribution under the null hypothesis (Hollander and Wolfe, 1999). Such an 
assumption is akin to that used in the two-sample pooled variance Student's t-test, although the form of 
the common distribution need not be normal. The Wilcoxon test assumes that both population variances 
are equal, unlike Welch's t-test. Side-by-side box plots of the two data groups can be compared 
(Chapter 9) to examine whether or not the level of variability appears to be approximately equal in both 
samples. Levene's test (Chapter 11) can also be applied as a formal test ofheteroscedasticity given its 
relative robustness to non-normality. If there is a substantial difference in variance between the 
background and compliance point populations, one remedy is the Fligner-Policello test (Hollander and 
Wolfe, 1999), a more complicated rank-based procedure. 

The Wilcoxon procedure as described in the Unified Guidance is generally used as an interwell 
test, meaning that it should be avoided under conditions of significant natural spatial variability. 
Otherwise, differences between background and compliance point wells identified by the test may be 
mistakenly attributed to possible contamination, instead of natural differences in geochemistry, etc. At 
small sites, the Wilcoxon procedure can be adapted for use as an intrawell test, involving a comparison 
between intrawell background and more recent measurements from the same well. However, the per­
comparison false positive rate in this case should be raised to either a = 0.05 or a = 0.10. More 
generally, a significance level of at least 0.05 should be adopted whenever the sample size of either 
group is no greater than n = 4. 

In addition to spatial stationarity (i.e., lack of natural spatial variability), the Wilcoxon rank-sum 
test assumes that the tested populations are stationary over time , so that mean levels are not trending 
upward or downward. As with the t-test, if trends are evident in time series plots of the sample data, a 
formal trend test might need to be employed instead of the Wilcoxon rank-sum, or the scope of the 
sample may need to be limited to only include data representative of current groundwater conditions. 

HANDLING Tl ES 

When ties are present in a combined data set, adjustments need to be made to the usual Wilcoxon 
test statistic. Ties will occur in two situations: 1) detected measurements reported with the same 
numerical value and 2) non-detect measurements with a common RL. Non-detects are considered ties 
because the actual concentrations are unknown; presumably, every non-detect has a concentration 
somewhere between zero and the quantitation limit [QL]. Since these measurements cannot be ordered 
and ranked explicitly, the approximate remedy in the Wilcoxon rank-sum procedure is to treat such 
values as ties. 

One may be able to partially rank the set of non-detects by making use of laboratory-supplied 
analytical qualifiers. As discussed in Section 6.3, there are probable concentration differences between 
measurements labeled as undetected (i.e., given a "U' qualifier), non-detect (usually reported without a 
qualifier), or as estimated concentrations (usually labeled with "J" or "E"). One reasonable strategy is to 
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group all U values as the lowest set of ties, other non-detects as a higher set of ties, and to rank all J 
and/or E values according to their estimated concentrations. In situations where estimated values for J 
and E samples are not provided, treat these measurements as the highest group of tied non-detects. 
Always give the highest ranks to explicitly quantified or estimated concentration measurements. In this 
way, a more detailed partial ranking of the data will be possible. 

Tied observations in the Wilcoxon rank-sum test are handled as follows. All tied observations in a 
particular group should receive the same rank. This rank called the midrank (Lehmann, 1975) is 
computed as the average of the ranks that would be assigned to a group of ties if the tied values actually 
differed by a tiny amount and could be ranked uniquely. For example, if the first four ordered 
observations are all the same, the midrank given to each of these samples would be equal to (1 + 2 + 3 + 
4)/4 = 2.5. If the next highest measurement is a unique value, its rank would be 5, and so on until all 
observations are appropriately ranked. A more detailed example is illustrated in Figure 16-4. 

Figure 16-4. Computation of Midranks for Groups of Tied Values 

Order Concentration Mid-Rank 

[ 1 <1 1.5 
2 <1 1.5 

3 1.2 3 

[ 4 1.3 5 
5 1.3 5 
6 1.3 5 

~(4+5+6) 

[ 7 1.5 7.5 
8 1.5 7.5 

9 1.6 9 

HANDLING NON-DETECTS 

If either of the samples contains a substantial fraction of non-detect measurements (say more than 
20-30% ), identification of an appropriate distributional model (e.g., normality) may be difficult, 
effectively ruling out the use of parametric tests like the t-test. Even when a normal or other parametric 
model can be fit to such left-censored data, a t-test cannot be run without imputing estimated values for 
each non-detect. Past guidance has recommended the Wilcoxon rank-sum test as an alternative to the t­
test in the presence of non-detects, with all non-detects at a common RL being treated as tied values. 

If the combined data set contains a single, common RL, that limit is smaller than any of the 
detected/quantified values, and the proportion of censored data is small (say no more than 10-15% of the 
total), it may be reasonable to treat the non-detects as a set of tied values and to apply the Wilcoxon 
rank-sum test adjusted for ties (described below). More generally, however, the statistical behavior of 
the Wilcoxon statistic depends on a full and accurate ranking of all the measurements. Groups ofleft­
censored values cannot be ranked with certainty, even if each such measurement possesses a common 
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RL. The problem is compounded in the presence of multiple RLs and/or quantified values less than the 
RL(s). What is the relative ranking, for instance, of the pair of measurements (<1, <5)? A higher RL 
does not guarantee that the second observation is larger in magnitude than the first. A similar uncertainty 
plagues the pair of values (4, <10). And there is no guarantee either that the pair (<2, <2) is actually tied. 
One may be able to partially rank the set of non-detects by making use oflaboratory-supplied analytical 
qualifiers as described in the previous section. 

Because non-detects generally prevent a complete ranking of the measurements, the Wilcoxon 
rank-sum test is not recommended for most censored data sets. Instead, a modified version of the 
Tarone-Ware test (Hollander and Wolfe, 1999) is presented in Section 16.3. The Tarone-Ware test is 
essentially a generalization of the Wilcoxon test specifically designed to accommodate censored values. 

PROCEDURE 

Step 1. To conduct the Wilcoxon rank-sum test, first combine the compliance and background data 
into a single data set. Sort the combined values from smallest to largest, and - if there are no 
tied values or non-detects with a common RL - rank the ordered values from 1 to N. Assume 
there are n compliance well samples and m background samples so that N = m + n. Denote the 
ranks of the compliance samples by C and the ranks of the background samples by Bi. 

Step 2. If there are groups of tied values (including non-detects with a common RL), form the 
midranks of the combined data set by assigning to each set of ties the average of the potential 
ranks the tied members would have been given if they could be uniquely ranked. 

Step 3. Sum the ranks of the compliance samples to get the Wilcoxon statistic W 

[16.5) 

Step 4. Find the a-level critical point of the Wilcoxon test, making use of the fact that the sampling 
distribution of Wunder the null hypothesis, H0 , can be approximated by a normal curve. By 
standardizing the statistic W (i.e., subtracting off its mean or expected value and dividing by 
its standard deviation), the standardized statistic or z-score, Z, can be approximated by a 
standard normal distribution. Then an appropriate critical point (zcp) can be determined as the 
upper (1- a) x 1 OOth percentage point of the standard normal distribution, listed in Table 10-1 
in Appendix D. 

Step 5. To compute Z when there are no ties, first compute the expected value and standard deviation 
of W, given respectively by the following equations: 

E (w )= ~ n ( N + 1) [16.6) 

[ 16. 7) 

Then compute the approximate z-score for the Wilcoxon rank-sum test as: 
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Z=W-E(W)-1/2 
SD(W) 

Unified Guidance 

[16.8) 

The factor of 1/2 in the numerator serves as a continuity correction since the discrete 
distribution of the Wilcoxon statistic W is being approximated by a continuous normal 
distribution. 

Step 6. If there are tied values, compute the expected value of W using [16.6) and the standard 
deviation ofW adjusted for the presence of ties with the equation: 

SD*(W) = 
mn(N+l)•

1
_Lg 1:-ti 

12 C 1
=

1 N 3 -N'r/ 
[16.9) 

where g equals the number of different groups of tied observations and ti represents the 
number of tied values in the ith group. 

Then compute the approximate z-score for the Wilcoxon rank-sum test as: 

z = _w_-_E C~w~)-~1_/ 2 

sn*(w) (16.10) 

Step 7. Compare the approximate z-score against the critical point, Zcp· If Z exceeds Zcp, conclude that 
the compliance well concentrations are significantly greater than background at the a level of 
significance. If not, conclude that the null hypothesis of equivalent background and 
compliance point distributions cannot be rejected. 

L EXAMPLE 16-4 

The table below contains copper concentrations (ppb) found in groundwater samples at a Western 
monitoring facility. Wells 1 and 2 denote background wells while Well 3 is a single downgradient well 
suspected of being contaminated. Calculate the Wilcoxon rank-sum test on these data at the a= .01 level 
of significance. 
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Copper Concentration (ppb) 

Background Compliance 
Month Well 1 Well 2 Well 3 

1 4.2 5.2 9.4 
2 5.8 6.4 10.1 
3 11.3 11.3 14.5 
4 7.0 11.5 16.1 
5 7.0 10.1 21.5 
6 8.2 9.7 17.6 

SOLUTION 

Step 1. Sort the N = 18 observations from least to greatest. Since there are 3 pairs of tied values, 
compute the midranks as in the table below. Note that m = 12 and n = 6. 

Step 2. Compute the Wilcoxon statistic by summing the compliance well ranks, so that W= 84.5. 

Step 3. Using a = .01, find the upper 99th percentage point of the standard normal distribution m 
Table 10-1 of Appendix D. This gives a critical value of Zcp = 2.326. 

Month 

1 
2 
3 
4 
5 
6 

Midranks of Copper Concentrations 

Background 
Well 1 Well 2 

1 
3 

12.5 
5.5 
5.5 

7 

2 
4 

12.5 
14 

10.5 
9 

Compliance 
Well 3 

8 
10.5 
15 
16 
18 
17 

Step 4. Compute the expected value and adjusted standard deviation of Wusing equations [16.6) and 
(16.10), recognizing there are 3 groups of ties with ti= 2 measurements in each group: 

E (w )= l · 6·19 = 57 

1 • 23 2 J sn(w)= -·12·6·Q8+1)L1-3. - .. =~113.647 =l0.661 
12 + ~:H8 3 -l8a'l 
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Then compute the standardized statistic or z-score, Z, using equation (16.10): 

Z 
84.5 - 57 - 0.5 

= = 2.533 
10.661 

Step 5. Compare the observed z-score against the critical point Zcp· Since Z = 2.533 > 2.326 = z.99 , 

there is statistically significant evidence of possible contamination in the compliance well at 
the a = . 01 significance level. J 

16.3 TARONE-WARE TWO-SAMPLE TEST FOR CENSORED DATA 

BACKGROUND 

In statistical terms, non-detect measurements represent left-censored values, in which the 'true' 
magnitude is known only to exist somewhere between zero and the RL, i.e., within the concentration 
interval [O, RL). The uncertainty introduced by non-detects impacts the applicability of other two-sample 
comparisons like the t-test and Wilcoxon rank-sum test. Because the Student's t-test cannot be run 
unless a specific magnitude is assigned to each observation, estimated or imputed values need to be 
assigned to the non-detects. The Wilcoxon procedure requires that every observation be ranked in 
relation to other values in the combined sample, even though non-detects allow at best only a partial 
ranking, as discussed in Section 16.2 . 

The Tarone-Ware two-sample test can be utilized to overcome these limitations for many 
groundwater data with substantial fractions of non-detects along with multiple RLs. Tarone and Ware 
(1977) actually proposed a family of tests to analyze censored data. One variant of this family is the 
logrank test, frequently used in survival analysis for right-censored data. Another variant is known as 
Gehan's generalized Wilcoxon test (Gehan, 1965). The Unified Guidance presents the variant 
recommended by Tarone and Ware, slightly modified to account for left-censored measurements. 

The key benefit of the Tarone-Ware procedure is that it is designed to provide a valid statistical 
test, even with a large fraction of censored data. As a non-parametric test, it does not require normally­
distributed observations. In addition, non-detects do not have to be imputed or even fully ranked. 
Instead, for each detected concentration (c), a simple count needs to be made within each sample of the 
number of detects and non-detects no greater in magnitude than c. These counts are then combined to 
form the Tarone-Ware statistic. 

REQUIREMENTS AND ASSUMPTIONS 

The null hypothesis (Ho) under the Tarone-Ware procedure assumes that the populations in 
background and the compliance well being tested are identical. This implies that the variances in the two 
distributions are the same, thus necessitating a check of equal variances. With many non-detect data sets, 
it can be very difficult to formally test for heteroscedasticity. Often the best remedy is to make an 
informal, visual check of variability using side-by-side box plots (Chapter 9), setting each non-detect to 
half its RL. 
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The Tarone-Ware test will typically be used as an interwell test, meaning that it should be avoided 
under conditions of significant natural spatial variability. In addition, the tested populations should be 
stationary over time, so that mean levels are not trending upward or downward. Both assumptions can be 
more difficult to verify with censored data. Spatial variation can sometimes be checked with a non­
parametric Kruskal-Wallis analysis of variance (Chapter 17). Trends with censored data can be 
identified with the Mann-Kendall test (Chapter 14). 

As with other two-sample tests, if a trend is identified in one or both samples, a formal trend test 
may be needed instead of the Tarone-Ware, or the scope of the sample may need to be limited to only 
include data representative of current groundwater conditions. 

Because the Tarone-Ware test presented in the Unified Guidance depends on counts of 
observations with magnitudes no greater than each detected concentration, and in that sense generalizes 
the ranking process used by the Wilcoxon rank-sum procedure, it is recommended that estimated 
concentrations (i.e., sample measurements assigned unique magnitudes but labeled with qualifiers "J" or 
"E'') be treated as detections for the purpose of computing the Tarone-Ware statistic. Such observations 
provide valuable statistical information about the relative ranking of each censored sample, even if 
estimated concentrations possess larger measurement uncertainty than fully quantified values. 

PROCEDURE 

Step 1. To compare a background data set against a compliance well using the Tarone-Ware test, first 
combine the two samples. Locate and sort the k distinct detected values and label these as: 

i1c wwi2c K w(k- i1.f"1mkJ( 

Note that the set of w's will not include any RLs from non-detects. Also, if two or more 
detects are tied, k will be less than the total number of detected measurements. 

Step 2. For the combined sample, count the number of observations (described by Tarone & Ware as 
'at risk') for each distinct detected concentration. That is, for i = 1,., k, let ni =the number of 
detected values no greater than W(i) plus the number of non-detects with RLs no greater than 
W(iJ- Also let di= the number of detects with concentration equal to W(i). This value will equal 
1 unless there are multiple detected values with the same reported concentration. 

Step 3. For the compliance sample, count the observations 'at risk', much as in Step 2. For i = 1 to k, 
let ni2 =the number of detected compliance values no greater than w(i) plus the number of 
compliance point non-detects with RLs no greater than w(i)- Also let di2 = the number of 
compliance point detects with concentration equal to w(i). Note that di2 = 0 if w(i) represents a 
detected value from background. Also compute ni1, the number 'at risk' in the background 
sample. 

Step 4. For i = 1 to k, compute the expected number of compliance point detections using the formula: 

(16.11) 

Also compute the variance of the number of compliance point detections, using the equation: 
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(16.12) 

Note in equation (16.12) that if ni = 1 for the smallest detected value, the numerator of Vi2 will 
necessarily equal zero (since di= 1 in that case), so compute Vi2 = 0. 

Step 5. Construct the Tarone-Ware statistic (TW) with the equation: 

Pk J;;;~ ) n d -E TW = i=l 1 12 12 

~pk nY 
i=l 1 12 

(16.13) 

Step 6. Find the a-level critical point of the Tarone-Ware test, making use of the fact that the 
sampling distribution of TW under the null hypothesis, H0 , is designed to approximately 
follow a standard normal distribution. An appropriate critical point (zcp) can be determined as 
the upper (1- a) x lOOth percentage point of the standard normal distribution, listed in Table 
10-1 of Appendix D. 

Step 7. Compare TW against the critical point, Zcp· If TW exceeds Zcp, conclude that the compliance 
well concentrations are significantly greater than background at the a level of significance. If 
not, conclude that the null hypothesis of equivalent background and compliance point 
distributions cannot be rejected. 

L EXAMPLE 16-5 

A heavily industrial site has been historically contaminated with tetrachloroethylene [PCE]. Using 
the Tarone-Ware procedure at an = .05 significance level, test the following PCE measurements 
collected from one background and one compliance well. 

SOLUTION 

PCE (ppb) 
Background 

<4 
1.5 
<2 
8.7 
5.1 
<5 

Compliance 
6.4 
10.9 

7 
14.3 
1.9 

10.0 
6.8 
<5 

Step 1. Combine the background and compliance point samples. List and sort the distinct detected 
values (as in the table below), giving k= IO. Note that the 4 non-detects comprise 28% of the 
combined data. 

Step 2. Compute the number of measurements ( ni) in the combined sample 'at risk' for each distinct 
detected value (w(i)), indexed from i = 1, ... , 10, by adding the number of detects and non-
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detects no greater than w(i), as listed in column 6 of the table below. Also list in column 3 the 
number of detected values (di) exactly equal to W(i)· 

Step 3. For the compliance point sample, compute the number (ni2) 'at risk' for each distinct detected 
value, as listed in column 5 below. Also compute the number (ni1) 'at risk' for the background 
sample (column 4) and the number of compliance point measurements exactly equal to w(i) 

(column 2). 

Step 4. Use equations (16.11) and (16.12) to compute the expected value (Ei2) and variance ( Vi2) of 
the number of compliance point detections at each W(i) (columns 7 and 8 below). 

Wr;) d;2 d; n;1 n;2 n; E;2 V;2 

1.5 0 1 1 0 1 0 0 
1.9 1 1 1 1 2 0.5 0.25 
5.1 0 1 5 2 7 0.2857 0.2041 
6.4 1 1 5 3 8 0.375 0.2344 
6.8 1 1 5 4 9 0.4444 0.2469 
7.0 1 1 5 5 10 0.5 0.25 
8.7 0 1 6 5 11 0.4545 0.2479 

10.0 1 1 6 6 12 0.5 0.25 
10.9 1 1 6 7 13 0.5385 0.2485 
14.3 1 1 6 8 14 0.5714 0.2449 

Step 5. Calculate the Tarone-Ware statistic (TW) using equation (16.13): 

TW = _..{_(_0_9_1 --;:::f=( =5=p=llf=(=-=.-Q=:8=*1--:=.~=7K==,/=--(_-_·M_l_4)14 
I 85.1 

'\f +2~41.7K201 +21449.14 

Step 6. Determine the 0.05 level critical point from Table 10-1 in Appendix D as the upper 95th 
percentage point from a standard normal distribution. This gives Zcp = 1.645. 

Step 7. Compare the Tarone-Ware statistic against the critical point. Since TW = 1.85 > 1.645 = Zcp, 

conclude that the PCE concentrations are significantly greater at the compliance well than in 
background at the 5% significance level. J 
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This chapter describes two statistical procedures - analysis of variance [ANOVA] and tolerance 
limits - explicitly allowed within §264.97(h) and §258.53(g) for use in groundwater monitoring. The 
Unified Guidance does not generally recommend either technique for formally making regulatory 
decisions about compliance wells or regulated units, instead focusing on prediction limits, control charts, 
and confidence intervals. But both ANOVA and tolerance tests are standard statistical procedures that 
can be adapted for a variety of uses. ANOVA is particularly helpful in both identifying on-site spatial 
variation and in sometimes aiding the computation of more effective and statistically powerful intrawell 
prediction limits (see Chapters 6 and 13 for further discussion). 

This chapter also presents selected trend tests as an alternative statistical method that can be quite 
useful in groundwater detection monitoring, particularly when groundwater populations are not 
stationary over time. Although trend tests are not explicitly listed within the RCRA regulations, they 
possess advantages in certain situations and can meet the performance requirements of §264.97(i) and 
§258.53(h). They can also be helpful during diagnostic evaluation and establishment of historical 
background (Chapter 5) and in verifying keyz;tatistical assumptions (Chapter 14). 

17.1 ANALYSIS OF VARIANCE [ANOVA] 

17.1.1 ONE-WAY PARAMETRIC F-TEST 

BACKGROUND AND PURPOSE 

The parametric one-way ANOVA is a statistical procedure to determine whether there are 
statistically significant differences in mean concentrations among a set of wells. In groundwater 
applications, the question of interest is whether there is potential contamination at one or more 
compliance wells when compared to background. By finding a significant difference in means and 
specifically higher average concentrations at one or more compliance wells, ANOV A results can 
sometimes be used to identify unacceptably high contaminant levels in the absence of natural spatial 
variability. 

Likethe two-sample t-test, the one-way ANOVA is a comparison of population means. However, 
the one-way parametric ANOVA is a comparison of several populations, not just two: one set of 
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background data versus at least two compliance wells. The F-statistic that forms the heart of the 
ANOVA procedure is actually an extension of the !-statistic; an F-statistic formed in a comparison of 
only two datasets reduces to the square of the usual pooled variance ~tudent' s !-statistic. Likethe !­

statistic, the F-statistic is a ratio of two quantities. The numerator is a measure of the average squared 
difference observed between the pairs of sample means, while the denominator represents the average 
variability found in each well group. 

Under the null hypothesis that all the wells or groups have the same population mean, the F­
statistic follows the F-distribution. Unlike the !-distribution with a single degrees of freedom df, there 
are two df quantities associated with F. One is for the numerator and the other for the denominator. 
When critical points are needed from the F-distribution, one must specify both degrees of freedom 
values. 

Computation of the F-statistic is only the first step of the full ANOVA procedure, when used as a 
formal compliance test. It can onlydetermine whether any significant mean difference exists between the 
possible pairs of wells or data groups, and not whether or what specific compliance wells differ from 
background. To accomplish this latter task when a significant F-test is registered, individual tests 
between each compliance well and background needs to be conducted, known as individual post-hoc 
comparisons or contrasts. These individual tests are a specially constructed series of !-tests, with critical 
points chosen to limit the test-wise or experiment-wise false positive rate. 

REQUIREMENTS AND ASSUMPTIONS 

The parametric ANOVA assumes that the data groups are normally-distributed with constant 
variance. This means that the group residuals should be tested for normality (Chapter 10) and that the 
groups have to be tested for equalityofvariance, perhaps with Levene's test (Chapter 11). ~ince the F­
test used in the one-way ANOV A is reasonably robust to small departures from normality, the first of 
these assumptions turns out to be less critical than the second. Research (Milliken and Johnson, 1984) 
has shown that the statistical power of the F-test is strongly affected by inequality in the population 
variances. A noticeable drop in power is seen whenever the ratio of the largest to smallest group variance 
is at least 4. A severe drop in power is found whenever the ratio of the largest to smallest group variance 
is at least a factor oflO. These ratios implythat the F-test will lose some statistical power ifanyofthe 
group population standard deviations is at least twice the size of any other group's standard deviation, 
and that the power will be greatly curtailed if any standard deviation is at least 3 times as large as any 
other group's. 

If the hypothesis of equal variances is rejected or if the group residuals are found to violate an 
assumption of normality (especially at the .01 significance level or less), one should consider a 
transformation of the data, followed by testing of the ANOV A assumptions on the transformed scale. If 
the residuals from the transformed data still do not satisfynormality or if there are too manynon-detect 
measurements to adequately test the assumptions, a non-parametric ANOV A (called the Kruskal-Wallis 
test) using the ranksofthe observations is recommended instead (see Section 17.1.2). 

~ince ANOV A is inherently an interwell statistical method, a critical point in using ANOV A for 
compliance testing is that the well field should exhibit minimal spatial variability . Interwell tests also 
require the groundwater well populations to be spatially stationary, so that absent a release the 
population well means are stable over time. Because spatial variation is frequently observed in many 
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groundwater constituents, especiallyfor common inorganic constituents and some metals, ANOVA may 
not be usable as compliance testing tool. Yet it can be utilized on the same data sets to help identify the 
presence of spatial variability. In this capacity, the same procedure and formulas are utilized as 
described below (with the exception of the post-hoc contrasts, which are unnecessary for assessing 
spatial variation). The results are then employed to guide the appropriate choice of a compliance test 
(e.g., intrawell or interwell prediction limits). 

For formal ANOVA testing under §264.97(i) and §258.53(h), the experiment-wise or test-wise 
false positive rate ( ) needs to be at least 51

, during anystatistical evaluation for each constituent tested. 
Furthermore, the individual post-hoc contrasts used to test single compliance wells against background 
need to be run at a significance level of at least * = 11

1 per well. Combined, these regulatory constraints 
imply that if there are more than five post-hoc contrasts that need to be tested (i.e., more than 5 
compliance wells are included in the ANOVA test), the overall, maximal false positive rate of the 
procedure will tend to be greater, and perhaps substantially so, than 51

1. Also, since = 51
1 is the 

minimum significance level per monitoring constituent, running multiple ANOV A procedures to 
accommodate a list of constituents will lead to a minimum site-wide false positive rate [~WFPR] greater 
than the Unified Guidance recommended target of 101

1 per statistical evaluation. 

In addition, if a contaminated compliance well exists but too manyuncontaminated wells are also 
included in the same ANOV A, the F-statistic may result in a non-significant outcome. Performing 
ANOV A with more than 10 to 15 well groups can "swamp" the procedure, causing it to lose substantial 
power. It therefore will be necessary to consider one of the retesting strategies described in Chapters 18 
and 20 as an alternative to ANOV A in the event that either the expected false positive rate is too large, 
or if more than a small number of wells need to be tested. 

Another drawback to the one-way ANOVA is that the F-test accounts for all possible paired 
comparisons among the well groups. In some cases, the F-statistic maybe significant even though all of 
the contrasts between compliance wells and background are non-significant. This does not mean that the 
F-test has necessarily registered a false positive. Rather, it may be that two of the compliance wells 
significantly differ from each other, but neither differs from background. This could happen, for 
instance, if a compliance well has a lower mean concentration than background while other compliance 
wells have near background means. The F-test looksfor all possible differences between pairs ofwell 
groups, not just those comparisons against background. 

In order to run a valid one-way F-test, a minimum number of observations are needed. Denoting 
the number of data groups by p, at least p > 2 groups must be compared (e.g., two or more compliance 
wells versus background). Each group should have at least three to four statistically independent 
observations and the total sample size, N, should be large enough so that N-p > 5. As long asp l 3 and 
there are at least 3 observations per well, this last requirement will always be met. But the statistical 
power of an ANOV A to identify differences in population means tends to be minimal unless there are at 
least 4 or more observations per data group. It is also helpful to have at least 8 measurements in 
background for the test. 

~imilarly to the two-sample t-test, it may be very difficult to verify that the measurements are 
statistically independent with only a handful of observations per well. One should additionally ensure 
that the samples are collected far enough apart in time to avoid significant autocorrelation (see Chapter 
14 for further discussion). A periodic check of statistical independence in each maybe possible after a 
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few testing periods, when enough data has been collected to enable a statistical assessment of this 
assumption. 

PROCEDURE 

~tep 1. Combine all the relevant background data collected from multiple wells into one group. These 
wells should have insignificant mean differences under prior ANOV A testing. If the regulated 
unit has (p-1) compliance wells, there will then be a total of p data groups. Because there may 
be different numbers of observations per well, denote the sample size of the ith group by ni 

and the total number of data points across all groups by N. 

~tep 2. Denote the observations in the ith well group by Xii for i = 1 to p and j = 1 to nj. The first 
subscript designates the well, while the second denotes the jth value in the ith well. Then 
compute the mean of each well group along with the overall (grand) mean of the combined 
dataset using the following formulas: 

1 11, 

[17.1) x ,. 

1 p n, 
[17.2) x •• x 

N lj 

i=I j=I 

~tep 3. Compute the sum of squares of differences between the well group means and the grand mean, 
denoted SSwells: 

p p 

SS = n.(x -x \2 = nX2 -Nx2 

wells 1 1• •• } 1 1• •• 
[17.3) 

i=l i=l 

The formula on the far right is usually the most convenient for calculation. This sum of 
squares has (p-1) degrees of freedom associated with it and is a measure of the variability 
between wells. It constitutes the numerator of the F-statistic. 

~tep 4. Compute the corrected total sum of squares, denoted by SSrora( 

p ni p ni 

SS = fx. -x i = x 2 
- Nx 2 

total \:' ij •• } ij •• 
[17.4) 

i=l j=I i=l j=I 

The far right equation is convenient for calculation. This sum of squares has (N-1) degrees of 
freedom associated with it and is a measure of the variability in the entire dataset. In fact, if 
SSroral is divided by (N-1 ), one gets the overall sample variance. 

~tep 5. Compute the sum of squares of differences between the observations and the well group 
means. This is known as the within-wells component of the total sum of squares or, 
equivalently, as the sum of squares due to error. It is easiest to obtain by subtraction using the 
far right side of equation [ 17 .5) and is denoted SS en-or: 
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p ni 

SS = fx - x 't = SS - SS 
error \:' IJ 1• } total wells 

[17.5) 
i=l j=I 

SSerror is associated with (N-p) degrees of freedom and is a measure of the variability within 
well groups. This quantity go es into the denominator of the F-statistic. 

~tep 6. Compute the mean sum of squares for both the between-wells and within-wells components of 
the total sum of squares, denoted by MSwells and MS error· These quantities are simply obtained 
by dividing each sum of squares by its corresponding degrees of freedom: 

MS = SS /(P - 1) wells wells 
[17.6) 

[ 17. 7) 

~tep 7. Compute the F-statistic by forming the ratio between the mean sum of squares for wells and 
the mean sum of squares due to error, as in Figure 17-1. This layoutis known as a one-way 
parametric ANOV A table and illustrates the sum of squares contribution to the total 
variability, along with the corresponding degrees of freedom, the mean squares components, 
and the final F-statistic calculated as F = MSwe11slMSen-or· Note that the first two rows of the 
one-way table sum to the last row. 

Source of Variation 

Between Wells 
Error (within wells) 
Total 

Figure 17-1. One-Way Parametric ANOVA Table 

Sums of Squares 

SSwells 
SS error 
SStotal 

Degrees of Mean Squares F-Statistic 
Freedom 

p-1 MSwells = SSwells/ (p-1) F = MSwells/MSerror 
N-p MSerror = SSerrorf (N-p) 
N-1 

~tep 8. To test the hypothesis of equal means for all p wells, compare the F-statistic in Figure 17-1 to 
the a-level critical point found from the F-distribution with (p-1) and (N-p) degrees of 
freedom in Table 17-1 of Appendix D. a is usuallyset at 51

1, so that the needed comparison 
value equals the upper 95th percentage point of the F-distribution. The numerator (p-1) and 
denominator (N-p) degrees of freedom for the F-statistic are obtained from the above table. If 
the observed F-statistic exceeds the critical point ( F.95 , p-I, N-p), reject the hypothesis of equal 
well group population means. Otherwise, conclude that there is insufficient evidence of a 
significant difference between the concentrations at the p well groups and thus no evidence of 
potential contamination in any of the compliance wells. 

~tep 9. In the case of a significant F-statistic that exceeds the critical point in ~tep 8, determine which 
compliance wells have elevated concentrations compared to background. This is done by 
comparing each compliance well individually against the background measurements. Tests to 
assess concentration differences between a pair of well groups are called contrasts in a 
multiple comparisons ANOVA framework. ~ince the contrasts are a series of individual 
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statistical tests, each run at a fixed significance level a*, the Type! error accumulates across 
the tests as the number of contrasts increases. 

To keep the overall false positive rate close to the targeted rate of 51
1, the individual contrasts 

should be set up as follows: Given (p-1) separate background-compliance contrasts, if (p-1) L 

5, run each contrast at a significance level equal to a*= .05/(p-l). However, if(p-1) > 5, run 
each contrast at a significance level equal to a*= .01. Note that when there are more than 5 
compliance wells, this last provision will tend to raise the overall false positive rate above 51

1. 

~tep 10. Denote the background data set as the first well group, so that the number of background 
samples is equal to nb. Then for each of the remaining (p-1) well groups, compute the standard 
error of the difference between each compliance well and background: 

i 
llj 

E = M -+--S i S error J 
_ b np L 

[17.8) 

Note that MSerror is takenfrom the one-way ANOVA table in Figure 17-1. The standard error 
here is an extension of the standard error of the difference involving the pooled variance in the 
~tudent's t-test of Chapter 16. 

~tep 11. Treat the background data as the first well group with the average background concentration 
equal to xb . Compute the Bonferroni !-statistic for each of the (p-1) compliance wells from i = 

2 to p, dividing the standard error in ~tep 10 into the difference between the average 
concentration at the compliance well and the background average, as shown below: 

[17.9) 

~tep 12. The Bonferroni !-statistic in equation [17.9) is a typeof t-test. ~ince the estimate of variability 
used in equation [17.8) has ( N-p) degrees of freedom, the critical point can be determined 
from the ~tudent's !-distribution in Table 16-1 of Appendix D. Let the Bonferroni critical 
point (tcp) be equal to the upper (1-a*) x lOOth percentage point of the !-distribution with (N­
p) degrees of freedom. 

~tep 13. If any of the Bonferroni t-stat1stics (ti) exceed the critical point lcp, conclude that these 
compliance wells have population mean concentrations significantly greater than background 
and thus exhibit evidence of possible contamination. Compliance wells for which the 
Bonferroni !-statistic does not exceed lcp should be regarded as similar to background in mean 
concentration level. 

J EXAMPLE 17-1 

Lead concentrations in ground water at two background and four compliance wells were tested for 
normalityand homoscedasticity. These data were found to be best fit by a lognormal distribution with 
approximately equal variances. The two background wells also indicated insignificant log mean 
differences. The natural logarithms of these lead values are shown in the table below. Use the one-way 
parametric ANOV A to determine whether there are any significant concentration increases over 
background in anyof the compliance wells. 
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Log(Lead) log(ppb) 
Background Compliance 

Date Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

Jan 1995 4.06 3.83 4.61 3.53 4.11 4.42 
Apr 1995 3.99 4.34 5.14 4.54 4.29 5.21 
Jul 1995 3.40 3.47 3.67 4.26 5.50 5.29 

Oct 1995 3.83 4.22 3.97 4.42 5.31 5.08 

Well Mean 3.82 3.96 4.35 4.19 4.80 5.00 
Well SD 0.296 0.395 0.658 0.453 0.704 0.143 

x = 3.89 s = 0.333 Grand Mean = 4.35 
BG BG 

SOLUTION 

~tep 1. Combine the two background wells into one group, so that the background average becomes 
3.89 log(ppb). Then nb = 8, while ni = 4 for each of the other four well groups. Note that the 
total sample size is N = 24 and p = 5. 

~tep 2. Compute the (overall) grand mean and the sample mean concentrations in each of the well 
groups using equations [17.1) and [17.2). These values are listed (along with each group's 
standard deviation) in the above table. 

~tep 3. Compute the sum of squares due to well-to-well differences using equation [17.3): 

sswells I -~ 89~8 ·{ 35.}i4 K ·{+OOp~ ·{ 35.}i24 289.4 

This quantity has (5-1) = 4 degrees of freedom. 

~tep 4. Compute the corrected total sumofsquares using equation [17.4) with (N-1) =23 df: 

SS101az = ~ 06.}i K +{ 08p ·{ 35.}i24 934.8 

~tep 5. Obtain the within-well or error sum of squares by subtraction using equation [ 17 .5): 

SS = 8.934 - 4.289 = 4.646 
error 

This quantityhas (N-p) = 24-5 = 19 degrees of freedom. 

~tep 6. Compute the mean sums of squares using equations [17.6) and [17.7): 

MSwells = 4.289/4 = 1.072 

MSerror = 4.646/19 = 0.245 
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)tep 7. Construct the F-statistic and the one-way ANOVA table, using Figure 17-1 in Appendix Das 
a guide: 

Source of Variation Sums of Squares Degrees of Mean Squares F-Statistic 
Freedom 

Between Wells 4.289 4 1.072 F = 1.072/0.245 
Error (within wells) 4.646 19 0.245 = 4.39 
Total 8.934 23 

)tep 8. Compare the observed F-statistic of 4.39 against the critical point takenas the upper 95th 
percentage point from the F-distribution with 4 and 19 degrees of freedom. Using Table 17-1, 
this gives a value of F.95,4,19 = 2.90. )ince the F-statistic exceeds the critical point, the 
hypothesis of equal well means is rejected, and post-hoc Bonferroni t-test comparisons should 
be conducted. 

)tep 9. Determine the number of individual contrasts needed. With four compliance wells, (p-1) = 4 
comparisons need to be made against background. Therefore, run each Bonferroni t-test at the 
a*= .05/4 = .0125 level of significance. 

)tep 10. Compute the standard error of the difference between each compliance well average and the 
background mean using equation [17.8). )ince the number of observations is the same in each 
compliance well, the standard error in all four cases will be equal to: 

• 1 1 J 
SEi = 0.245 ls+ "41- = 0.303 

)tep 11. Compute the Bonferroni !-statistic for each compliance well using equation [17.9): 

Well 3: 1
2 

= (4.35 - 3.89 )/o.303 = 1.52 

Well 4: t
3 

= (4.19 - 3.89 )/o.303 = 0.99 

Well 5: t
4 

= (4.80 - 3.89 )/o.303 = 3.00 

Well 6: t
5 

= 0.00 - 3.89 )/o.303 = 3.66 

Note that because Wells 1 and 2 jointly constitute background, the subscripts above 
correspond to the well groups and not the actual well numbers. Thus, subscript 2 in the 
Bonferroni !-statistic corresponds to Well 3, subscript 3 corresponds to Well 4, and so forth. 

)tep 12. Look up the critical point from the !-distribution in Table 16-1 of Appendix D using a 
significance level of a*= .0125 and (N-p) = 19 df This gives lcp = 2.433. 

)tep 13. Compare each Bonferroni !-statistic from )tep 11 against the critical point from )tep 12. 
Because the !-statistics at compliance wells 5 and 6 both exceed 2.433, while those at wells 3 
and 4 do not, conclude that the population averages in compliance wells 5 and 6 are 
significantly higher than background. I 
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17.1.2 KRUSKAL-WALLIS TEST 

BACKGROUND AND PURPOSE 

Unified Guidance 

The parametric one-way ANOV A makes a keyassumption that the data residuals are normally­
distributed. If this assumption is inappropriate or cannot be tested because of a large fraction of non­
detects, a non-parametric ANOVA can be conducted using the ranks of the observations rather than the 
original observations. In Chapter 16, the Wilcoxon rank-sum test is presented as a non-parametric 
alternative to the ~tudent's t-test when comparing two groups. The Kruskal-Wallis test is offered as a 
non-parametric alternative to the one-way F-test when several groups need to be simultaneously 
compared, for instance when assessing patterns of spatial variability. Instead of a test of means, the 
Kruskal-Wallis tests differences among average population ranksequivalent to the medians. 

The Kruskal-Wallis test statistic, H, does not have the intuitive form of the ~tudent's !-test. Under 
the null hypothesis that all the sample measurements come from identical parent populations, the 
Kruskal-Wallis statistic follows the well-known chi-square statistical distribution. Critical points for the 

Kruskal-Wallis test can be found as upper percentage points of the chi-square ( x La ,df) distribution in 

Table 17-2 of Appendix D. 

If H indicates a significant difference between the populations, individual post-hoc comparisons 
between each compliance well and background need to be conducted if the Kruskal-Wallis is being used 
for formal compliance testing. Post-hoc contrasts are not generally necessary for identifying spatial 
variability. Rather than Bonferroni !-statistics, contrasts are based on the data ranksand approximately 
follow a standard normal distribution. The critical points for these contrasts can be obtained from the 
standard normal distribution in Table 10-1 of Appendix D. 

REQUIREMENTS AND ASSUMPTIONS 

While the Kruskal-Wallis test does not require the underlying populations to be normally­
distributed, statistical independence of the data is still assumed. Under the null hypothesis of no 
difference among the groups, the observations are assumed to arise from identical distributions with 
equal population variances (Hollander and Wolfe, 1999). However, the form of the distribution need not 
be specified. 

A non-parametric ANOVA can be used in any situation that the parametric ANOVA can be used. 
The minimum data requirements are similar: the sample size for each group in the Kruskal-Wallis 
procedure should generally be at least four to five observations per group. Despite this similarity, it is 
often true that non-parametric tests require larger sample sizes than their parametric test counterparts to 
ensure a similar level of statistical power or efficiency. Non-parametric tests make fewer assumptions 
concerning the underlying data distribution and so more observations are often needed to makethe same 
judgment that would be rendered by a parametric test. However, the greater efficiency of parametric 
tests is only achieved when the parent population follows certain known statistical distributions. When 
the distribution is unknown, non-parametric tests may have much greater power than their parametric 
counterparts. 
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Even when a known statistical distribution is considered, rank-based non-parametric tests likethe 
Wilcoxon rank-sum and Kruskal-Wallis often perform reasonably well compared to the t-test and 
ANOV A. The relative efficiency of two procedures is defined as the ratio of the sample sizes needed by 
each to achieve a certain level of power against a specified alternative hypothesis. As sample sizes get 
larger, the efficiency of the Kruskal-Wallis test relative to the parametric ANOV A approaches a limit 
that depends on the underlying distribution of the data, but is always at least 86 percent. This means 
roughlythat, in the worst case, if 86 measurements are available for a parametric ANOV A, only 100 
sample values are needed to have an equivalently powerful Kruskal-Wallis test. In many cases, the 
increase in sample size necessary to match the power of a parametric ANOVA is much smaller or not 
needed at all. The efficiencyofthe Kruskal-Wallistest is 951

1 ifthe underlying data are reallynormal, 
and can be much larger than 1001

1 in other cases (e.g., it is 1501
1 if the data residuals follow a 

distribution called the double exponential). When the efficiency exceeds 1001
1, the Kruskal-Wallis 

actuallyneeds fewer observations than the parametric ANOV A to achieve a certain power. 

These results implythat the Kruskal-Wallis test is reasonably powerful for detecting concentration 
differences despite the fact that the original data have been replaced by their ranks. The test can be used 
with fair success even when the data are normally-distributed and the Kruskal-Wallis is not needed. 
When the data are not normal or a normalizing transformation cannot be found, the Kruskal-Wallis 
procedure tends to be more powerful for detecting differences than the usual parametric approach. 

ADJUST! NG FOR Tl ED OBSERVATIONS 

The Kruskal-Wallis procedure will frequently be used when the sample data contain a significant 
fraction of non-detects. However, the presence of non-detects prevents a unique and complete ranking 
of the concentration values since the exact values of non-detects are unknown. 

To address this problem, two steps are necessary. ~ince theycannot be uniquely ranked, all non­
detects are to be treated statistically as 'tied' values. This is an imperfect remedy, since non-detects 
represent left-censored values and are not necessarily tied. Unfortunately, there is no straightforward, 
easilyimplemented alternative to the Kruskal-Wallis for comparing three or more groups containing left­
censored observations, unlike the Tarone-Ware alternative to the Wilcoxon rank-sum test discussed in 
Chapter 16. ~o in the presence of ties (e.g., non-detects or quantified concentrations rounded to the 
same value), all tied observations should receive the same midrank (discussed in Section 16.3 ). This 
rankis computed as the average of the ranksthat would be given to each group of ties if the tied values 
actuallydiffered by a tinyamount and could be ranked. 

To account for multiple reporting limits, all non-detects should be treated as if censored at the 
highest reporting limit [RL] in the overall sample. Thus, a non-detect reported as <5 would be treated as 
'tied' with a non-detect reported as <1, due to the impossibility of knowing which value is actually 
larger. The only exception to this strategy is when laboratory qualifiers can be used to rank some non­
detects as probably greater in magnitude than others. A reasonable strategy discussed in Section 16.3 is 
to group all "U" values as the lowest set of ties, other non-detects as a higher set of ties, and to rank all 
"J" and/or "E" values according to their estimated concentrations. In situations where estimated values 
for J and E samples are not provided, treat these measurements as the highest group of tied non-detects. 
Always give the highest ranksto explicitly quantified or estimated concentration measurements. 
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The second step for handling ties is to compute the Kruskal-Wallis statistic as described below, 
using for each tied value its corresponding midrank. Then an adjustment to the Kruskal-Wallis statistic 
needs to be made to account for the presence of ties. This adjustment requires computation of the 
formula: 

' IC . g t3 - t J rJ' 
H = H 1-1 z z 

- N3 -Nl 
i=l 

[17.10) 

where g equals the number of distinct groups of tied observations, N is the total sample size across all 
groups, and ti is the number of observations in the ith tied group. Unless there are a substantial number 

of ties in the overall dataset, the adjustment in equation [17.10) will tend to be small. ~till, it is important 
to properly account for the presence of tied values. 

PROCEDURE 

~tep 1. To run the Kruskal-Wallis test, denote the total sample size across all well groups by N. 
Temporarilycombine all the data into one group and rankthe observations from smallest to 
largest. Treat all non-detects as tied at the lowest possible concentration value, unless using 
lab qualifiers to distinguish between 'undetected' and other non-detects. Combine all 
background wells into a single group where appropriate. Denote this set ofbackground data as 
group 1. Then let Rii denote the jth rank from the ith well group, and let k equal the total 
number of groups (i.e., one group of background values and (k-1) groups of compliance 
wells). 

~tep 2. Compute the sum of the ranks and the average rank in each well group, letting ni equal the 
sample size in the ith group and using the following formulas: 

n, 

R = R 
i• I] 

[17.11) 
j=I 

R =_!_R 
1• i• n 

[17.12) 
1 

~tep 3. Calculate the Kruskal-Wallis test statistic Hand the adjustment for ties, if necessary, using 
equation [17.10), where His given by: 

C 12 k R rJ' 
H = ( ) ~ -3(N + 1) 

N N +l i=l ni 
[17.13) 

~tep 4. Given the level of significance (a), determine the Kruskal-Wallis critical point ( x 2PJ as the 

upper (1- a) x 1 OOth percentage point from the chi-square distribution with ( k-1) degrees of 
freedom (Table 17-2 in Appendix D ). Usually a is set equal to 0.05, so that the upper 95th 
percentage point of the chi-square distribution is needed. 
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)tep 5. Compare the Kruskal-Wallis test statistic, H, against the critical point x 2P" If His no greater 

than the critical point, conclude there is insufficient evidence of significant differences 

between anyof the well group populations. If H > x 2P"' however, conclude there is a significant 

difference between at least one pair of the well groups. Post-hoc comparisons are then 
necessaryto determine whether anyofthe compliance wells significantlyexceeds background 
(note that post-hoc comparisons are not necessary if using the Kruskal-Wallis test to merely 
identifyspatial variability). 

)tep 6. In the case of a significant H-statistic that exceeds the critical point in )tep 5, determine which 
compliance wells have elevated concentrations compared to background. This is done by 
comparing each compliance well against background, using a set of contrasts (as described for 
the parametric one-way ANOVA in Section 17.1.1). 

To keep the test-wise or experiment-wise false positive rate close to the targeted (i.e., 
nominal) rate of 51

1, the individual contrasts should be set up as follows: Given ( k-1) separate 
background-compliance contrasts, if ( k-1) L 5, run each contrast at a significance level equal 
to a*= .05/(k-l). However, if(k-1) > 5, run each contrast at a significance level equal to a*= 
.01. Note that when there are more than 5 downgradient wells, this last provision will tend to 
raise the overall false positive rate above 51

1. 

)tep 7. )ince the background data is the first well group, the number ofbackground observations is 
equal to n1• For each ofthe remaining (k-1) well groups, compute the approximate rank-based 
standard error of the difference between each compliance well and background using equation 
[17.14): 

SE = 
1 

[17.14) 

)tep 8. Let the average background rankbe identified as Rb. Compute the post-hoc Z-statistic for each 

of the (k-1) compliance wells for i = 2 to k, dividing the standard error in step 7 into the 
difference between the average rankat the compliance well and the background rankaverage, 
as shown below: 

[17.15) 

)tep 9. The Z-statistic in equation [17.15) has an approximate standard normal distribution under the 
null hypothesis that the ith compliance well is identical in distribution to background. The 
critical point ( Zcp) can be found as the upper (1- a) x 1 OOth percentage point of the normal 
distribution in Table 10-1 of Appendix D. 

)tep 10. Compare the post-hoc Z-statistics for each of the ( k-1) compliance wells against the critical 
point ( Zcp). Any Z-statistic that exceeds the critical point provides significant evidence of an 
elevation over background in that compliance well at the a level of significance. 
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J EXAMPLE 17-2 

Use the non-parametric Kruskal-Wallis test on the following data to determine whether there is 
evidence of possible toluene contamination at a significance level of = 0.05. 

Toluene Concentration (ppb) 
Background Wells Compliance Wells 

Month Well 1 Well 2 Well 3 Well 4 Well 5 

1 <5 <5 <5 <5 <5 
2 7.5 <5 12.5 13.7 20.1 
3 <5 <5 8.0 15.3 35.0 
4 <5 <5 <5 20.2 28.2 
5 6.4 <5 11.2 25.1 19.0 

SOLUTION 

~tep 1. ~ince non-detects account for 481
1 of these data, it would be very difficult to verify the 

assumptions of normality and equal variance necessary for a parametric ANOV A. Use the 
Kruskal-Wallis test instead, pooling both background wells into one group and treating each 
compliance well as a separate group. Note that N = 25 and k = 4. 

Compute ranks for all the data including tied observations (e.g., non-detects) as in the 
following table. Note that each non-detect is given the same midrank, equal to the average of 
the first 12 unique ranks. 

Toluene Ranks 
Background Wells Compliance Wells 

Month Well 1 Well 2 Well 3 Well 4 Well 5 

1 6.5 6.5 6.5 6.5 6.5 
2 14 6.5 17 18 21 
3 6.5 6.5 15 19 25 
4 6.5 6.5 6.5 22 24 
5 13 6.5 16 23 20 

Group Size n1 = 10 n2 = 5 n3 = 5 n4 = 5 

Rank Sum R = 79 R = 61 R = 88.5 R = 96.5 
1• 2• 3• 4• 

Rank Mean R = 7.9 R = 12.2 R = 17.7 R = 19.3 
1• 2• 3• 4• 

~tep 2. Calculate the sum and average of the ranksin each group using equations [17.11] and [17.12]. 
These results are given in the above table. 

~tep 3. Compute the Kruskal-Wallis statistic H using equation [ 17.13]: 

12 C79
2 

61
2 

88.5
2 

96.5
2
6 

H = -- - +- +-
5
- +-

5
- _f3.26)= 10.56 

25. 26 10 5 \: 
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Also compute the adjustment for ties with equation [17.1 OJ. There is only one group of distinct 
tied observations - the non-detects - containing 12 samples. Thus, the adjusted Kruskal­
Wallis statistic is given by: 

~tep 4. Determine the critical point of the Kruskal-Wallistest: with a= .05, the upper 95th percentage 
point of the chi-square distribution with ( k-1) = 4-1 = 3 degrees of freedom [ dj] is needed. 

Table 17-2 of Appendix D gives 2
pc =XX 3,95' 81..7 

~tep 5. ~ince the observed Kruskal-Wallis statistic of 11.87 is greater than the chi-square critical 
point, there is evidence of significant differences between the well groups. Therefore, post-hoc 

. . . 
pairwise compansons are necessary. 

~tep 6. To determine the significance level appropriate for post-hoc comparisons, note there are three 
compliance wells that need to be tested against background. Therefore, each of these contrasts 
should be run at the a*= 0.05/3 = 0.0167 significance level. 

~tep 7. Calculate the standard error of the difference for the three contrasts using equation [ 17.14]. 
~ince the sample size at each compliance well is five, the SE will be identical for each 
comparison, namely, 

~tep 8. Form the post-hoc Z-statistic for each contrast using equation [17.15): 

Well 3: z2 = (12.2 - 7.9 )/4.031 = 1.07 

Well 4: Z3 = Q 7.7 -7.9 )/4.031=2.43 

Well 5: Z4 = (19.3 -7.9 )/4.031=2.83 

~tep 9. Find the upper (1-a*) x 1 OOth percentage point from the standard normal distribution in 
Table 10-1 in Appendix D. With a* = .0167, this gives a critical point (by linear 
interpolation) of Zcp = z.9833 = 2.127. 

~tep 10. ~ince the Z-statistics at wells 4 and 5 exceed the critical point, there is significant evidence of 
increased concentration levels at wells 4 and 5, but not at well 3. I 

17.2 TOLERANCE LIMITS 

A tolerance interval is a concentration range designed to contain a pre-specified proportion of the 
underlying population from which the statistical sample is drawn (e.g., 95 percent of all possible 
population measurements). ~ince the interval is constructed from random sample data, a tolerance 
interval is expected to contain the specified population proportion onlywith a certain level of statistical 
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confidence. Two coefficients are thus associated with any tolerance interval. One is the population 
proportion that the interval is supposed to contain, called the coverage ( y). The second is the degree of 
confidence with which the interval reaches the specified coverage. This is sometimes known as the 
tolerance coefficient or more simply, the confidence level (1-a). A tolerance interval with 951

1 coverage 
and a tolerance coefficient of90 percent is constructed to contain, on average, 951

1 of the distribution of 
all possible population measurements with a confidence probability of 901

1. 

A tolerance limit is a one-sided tolerance interval. The upper limit is typicallyof most interest in 
groundwater monitoring. Tolerance limits are a standard statistical method that can be useful in 
groundwater data analysis, especially as an alternative to !-tests or ANOVA for interwell testing. The 
RCRA regulations allow greater flexibility in the choice of when using tolerance and prediction limits 
and control charts, so a larger variety of data configurations may be amenable to one of these 
approaches. The Unified Guidance still recommends prediction limits or control charts over tolerance 
limits for formal compliance testing in detection monitoring, and confidence intervals over tolerance 
limits in compliance/assessment monitoring when a background standard is needed. 

An interwell tolerance limit constructed on background data is designed to cover all but a small 
percentage of the background population measurements. Hence background observations should rarely 
exceed the upper tolerance limit. By the same token, when testing a null hypothesis (Ho) that the 
compliance point population is identical to background, compliance point measurements also should 
rarelyexceed the upper tolerance limit, unless Ho is false. The upper tolerance limit thus gauges whether 
or not concentration measurements sampled from compliance point wells are too extreme relative to 
background. 

17.2.1 PARAMETRIC TOLERANCE LIMITS 

BACKGROUND AND PURPOSE 

To test the null hypothesis (Ho) that a compliance point population is identical to that of 
background, an upper tolerance limit with high coverage (-) can be constructed on the sample 
background data. Coverage of951

1 is usually recommended. In this case, random observations from a 
distribution identical to background should exceed the upper tolerance limit less than 51

1 of the time. 
~imilarly, a tolerance coefficient or confidence level of at least 951

1 is recommended. This gives 951
1 

confidence that the (upper) tolerance limit will contain at least 9 51
1 of the distribution of observations in 

background or in any distribution similar to background. Note that a tolerance coefficient of 951
1 

corresponds to choosing a significance level (a) equal to 51
1. Hence, as with a one-way ANOVA, the 

overall false positive rate for a tolerance interval is set to approximately 51
1. 

Once the limit is constructed on background, each compliance point observation (perhaps from 
several different wells) is compared to the upper tolerance limit. This is different from the comparison of 
sample means in an ANOV A test. If anycompliance point measurement exceeds the limit, the well from 
which it was drawn is flagged as showing a significant increase over background. Note that the factors K 

used to adjust the width of the tolerance interval (Table 17-3 in Appendix D) are designed to provide at 
least 951

1 coverage of the parent population. Applied over manydata sets, the average coverage of these 
intervals will often be close to 981

1 or more (see Guttman, 1970). Therefore, it would be unusual to find 
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more than 2 or 3 samples out of every I 00 exceeding the tolerance limit under the null hypothesis. This 
fits with the purpose behind the use of a tolerance interval, which is to establish an upper limit on 
background that will rarelybe exceeded, unless some change in the groundwater causes concentration 
levels to rise significantly at one or more compliance points. 

Testing a large number of compliance point samples against such a background tolerance limit 
even under conditions of no releases practically ensures a few measurements will occasionally exceed 
the limit. The Unified Guidance therefore recommends that tolerance limits be used in conjunction with 
verification resampling of those wells suspected of possible contamination, in order to either verify or 
disconfirm the initial round of sampling and to avoid false positive results. 

REQUIREMENTS AND ASSUMPTIONS 

~tandard parametric tolerance limits assume normality of the sample background data used to 
construct the limit. This assumption is critical to the statistical validity of the method, since a tolerance 
limit with high coverage can be viewed as an estimate of a quantile or percentile associated with the tail 
probability of the underlying distribution. If the background sample is non-normal, a normalizing 
transformation should be sought. If a suitable transformation is found, the limit should be constructed on 
the transformed measurements and can then be back-transformed to the raw concentration scale prior to 
comparison against individual compliance point values. 

If no transformation will work, a non-parametric tolerance limit should be considered instead. 
Unfortunately, non-parametric tolerance limits generally require a much larger number of observations 
to provide the same levels of coverage and confidence as a parametric limit. It is recommended that a 
parametric model be fit to the data if at all possible. 

A tolerance limit can be computed with as few as three observations from background. However, 
doing so results in a high upper tolerance limit with limited statistical power for detecting increases over 
background. Usually, a background sample size of at least eight measurements will be needed to 
generate an adequate tolerance limit. If multiple background wells are screened in equivalent 
hydrostratigraphicpositions and the data can reasonably be combined (Chapter 5), one should consider 
using pooled background data from multiple wells to increase the background sample size. 

Like many tests described in the Unified Guidance, tolerance limits as applied to groundwater 
monitoring assume stationarity of the well field populations both temporally (i.e., over time) and 
spatially. The data also needs to be statistically independent. ~ince an adequately-sized background 
sample will have to be amassed over time (in part to maintain enough temporal spacing between 
observations so that independence can be assumed), the background data should be checked for apparent 
trends or seasonal effects. As long the background mean is stable over time, the amassed data from a 
longer span of sampling will provide a better statistical description of the underlying background 
population. 

As a primarilyinterwell technique, tolerance limits should onlybe utilized when there is minimal 
spatial variability. Explicit checks for spatial variation should be conducted using box plots and/or 
ANOVA. 

In the usual test setting, one new compliance point observation from each distinct well is compared 
against the tolerance limit during each statistical evaluation. Under the null hypothesis of identical 
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populations, the compliance point measurements are assumed to follow the same distribution as 
background. Further, the compliance data are assumed to be mutually statistically independent. Such 
assumptions are almost impossible to check with only one new value per compliance well. However, 
periodic checksof the ke)llssumptions are recommended after accumulating several sampling rounds of 
compliance data. 

PROCEDURE 

Step 1. Calculate the mean x , and the standard deviation s, from the background sample. 

Step 2. Construct the one-sided upper tolerance limit as 

TL=x+K(n,y,1-a}s [17.16) 

where K(n, y,1-a) is the one-sided normal tolerance factor found in Table 17-3 of Appendix D 
associated with a sample size of n, coverage coefficient of y, and confidence level of (1-a). 

Equation [ 17 .16) applies to normal data. If a transformation is needed to normalize the sample, 
~tcrrfudisr~inhalon~ihilEQ>ctlthetift:tmfohimrtiwnremmtJrmwtllt$1, afut tlumlpmt 

y and Sy are the log-mean and log­

standard deviation, the tolerance limit can be back-transformed to the concentration scale by 
exponentiating the limit. The tolerance limit is computed as: 

TL = exp l-+ (ny 1,, a~-s.v J [ 17.17) 

Step 3. Compare each observation from the compliance well(s) to the upper tolerance limit found in 
Step 2. If anyobservation exceeds the tolerance limit, there is statistically significant evidence 
that the compliance well concentrations are elevated above background. Verification 
resampling should be conducted to verifyor disconfirm the initial result. 

J EXAMPLE 17-3 

The table below consists of chrysene concentration data (ppb) found in water samples obtained 
from two background wells (Wells 1 and 2) and three compliance wells (Wells 3, 4, and 5). Compute the 
upper tolerance limit on background for coverage of 951

1 with 951
1 confidence and determine whether 

there is evidence of possible contamination at anyof the compliance wells. 

Chrysene Concentration (ppb) 
Month Well 1 Well 2 Well 3 Well 4 Well 5 

1 19.7 10.2 68.0 26.8 47.0 
2 39.2 7.2 48.9 17.7 30.5 
3 7.8 16.1 30.1 31.9 15.0 
4 12.8 5.7 38.1 22.2 23.4 

Mean 19.88 9.80 46.28 24.65 28.98 
SD 13.78 4.60 16.40 6.10 13.58 
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SOLUTION 

~tep 1. A ~hapiro-Wilk test of normality on the pooled set of eight background measurements gives 
W= 0.7978 on the original scale and W= 0.9560 after log-transforming the data, suggesting 
that the data are better fit by a lognormal distribution. Therefore, construct the tolerance limit 
on the logged observations, listed below along with the log-means and log-standard 
deviations. 

Log Chrysene log(ppb) 
Month Well 1 Well 2 Well 3 Well 4 Well 5 

1 2.981 2.322 4.220 3.288 3.850 
2 3.669 1.974 3.890 2.874 3.418 
3 2.054 2.779 3.405 3.463 2.708 
4 2.549 1.740 3.640 3.100 3.153 

Mean 2.813 2.204 3.789 3.181 3.282 
SD 0.685 0.452 0.349 0.253 0.479 

BG Mean 2.509 
BG SD 0.628 

~tep 2. Compute the upper tolerance limit on the pooled background data using the logged chrysene 
concentration data. The tolerance factor for a one-sided upper normal tolerance limit with 951

, 

coverage and 951
1 probability and n = 8 observations is equal to (from Table 17-3 of 

Appendix D) K = 3.187. Therefore, the upper tolerance limit is computed using equation 
[17.17) as: 

TL= expC2.509 + 3.187 x 0.6286= 90.96 ppb 

~tep 3. Compare the measurements at each compliance well to the upper tolerance limit, that is TL = 

90.96 ppb. ~ince none of the original chryseneconcentrations exceeds the upper TL, there is 
insufficient evidence of chrysenecontamination in these data. I 

17.2.2 NON-PARAMETRIC TOLERANCE INTERVALS 

BACKGROUND AND PURPOSE 

When an assumption of normality cannot be justified especially with a significant portion of non­
detect observations, the use of non-parametric tolerance intervals should be considered. The upper 
tolerance limit in a non-parametric setting is usually chosen as an order statistic of the sample data 
(Guttman, 1970), commonlythe maximum value or maybe the second or third largest value observed. 

Because the maximum observed background value is often takenas the upper tolerance limit, non­
parametric tolerance intervals are easyto construct and use. The sample data needs to be ordered, but no 
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rank:sneed be assigned to the concentration values other than to determine the largest measurements. 
This also means that non-detects do not have to be uniquely ordered or handled in anyspecial manner. 

One advantage to using a maximum concentration instead of assigning rank:sto the data (Wilcoxon 
rank-sum or Kruskal-Wallis tests) is that non-parametric tolerance intervals are reflective of actual 
concentration magnitudes. Another advantage is that unless all the background data are non-detect, the 
maximum value will be a detected concentration leading to a well-defined upper tolerance limit. If all 
the sample data are non-detect, an RL (e.g., the lowest achievable quantitation limit [QL]) mayserve as 
an approximate upper tolerance limit. 

REQUIREMENTS AND ASSUMPTIONS 

Unlikeparametric tolerance intervals, the desired coverage (-) or confidence level (1- ) cannot be 
pre-specified using a non-parametric limit. Instead, the achieved coverage and/or confidence level 
depends entirely on the background sample size ( n) and the order statistic chosen as the upper tolerance 
limit (e.g., the maximum value). Guttman (1970) has shown that the coverage of the limit follows a beta 
probability density with cumulative distribution: 

{ ) t r(n+l) n-mfi )m-1 
11 \n - m + l ,m = Jj { )r { Ju v -u du 

u=O r \n - m +} \m 
[17.18) 

where n = sample size and m = [( n+I) -(rank of upper tolerance limit value)]. If the background 
maximum is selected as the tolerance limit, its rank:is equal to n and so m = 1. If the second largest value 
is chosen as the limit, its rank:would be equal to ( n-1) giving m = 2. 

As a non-parametric procedure, no distributional model must be fit to the background 
~iMyiUldtmi&tiiiiiJiJS;c1~dnrJJli1k3cwiljWl:tdfmlhi}ijipalfiai11iifiMt~i&ij1t111611miHliadri:i1ii111il1\Dt11tiB 

order to construct a non-parametric tolerance interval with at least y coverage and (1-a) confidence 
probability, the number of (background) samples should be chosen such that: 

[17.19) 

If the background maximum 1s selected as the upper tolerance limit, so that m = 1, this inequality 
reduces to the simpler form 

1-y"zl-a. [17.20) 

Table 17-4 in Appendix D provides minimum coverage levels with 951
1 confidence for various 

choices of n, using either the maximum sample value or the second largest measurement as the tolerance 
limit. As an example, with n = 16 background measurements, the minimum coverage is y = 831

1 if the 
background maximum is designated as the upper tolerance limit and y = 741

1 if the tolerance limit is 
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takenas the second largest background value. In general, Table 17-4 of Appendix D illustrates that if 
the underlying distribution is unknown, more background samples are needed compared to the 
parametric setting in order to construct a tolerance interval with sufficiently high coverage. Parametric 
tolerance intervals do not require as many background samples precisely because the form of the 
underlying distribution is assumed to be known. 

An alternate way to construct an appropriate tolerance limit is to calculate the maximum 
confidence level for various choices of n guaranteeing at least 951

1 coverage. With n = 8 background 
measurements, the approximate confidence level is at most 341

1 when the largest value is taken as the 
tolerance limit and only 61

1 if the second largest value is taken as the tolerance limit. Clearly, it is 
advantageous to fit a parametric distributional model to the data if at all possible unless n is fairlylarge. 

Although non-parametric tolerance limits do not require an assumption of normality, other 
assumptions of tolerance limits apply equally to the parametric and non-parametric versions. 
~pecifically, the sample data should be statistically independent and show no evidence of 
autocorrelation , trends, or seasonal effects in background. Applied as an interwell test, there should also 
be minimal to no natural on-site spatial variation. 

By construction, outliers in background can be a particular problem for non-parametric tolerance 
limits, especially if the background maximum is chosen as the upper limit. A limit based on a large, 
extreme outlier will result in a test having little power to detect increases in compliance wells. 
Consequently, the background sample should be screened ahead of time for possible outliers (Chapter 
12). Confirmed outliers should be removed from the data set before setting the tolerance limit. 

An important caveat to this advice is that almost all statistical outlier tests depend crucially on the 
ability to fit the remaining data (minus the suspected outlier(s)) to a known statistical distribution. In 
those cases where a non-parametric tolerance limit is selected because of a large fraction of non-detects, 
fitting the data to a distributional model maybe difficult or impossible, negating formal outlier tests. As 
an alternative, the non-parametric upper tolerance limit could be set to a different order statistic in 
background (i.e., other than the maximum), to provide some insurance against possible large outliers. 
This strategy will work provided there are enough background measurements to allow for adequately 
high coverage and confidence in the resulting limit. 

PROCEDURE 

~tep 1. ~ort the set ofbackground data into ascending order and choose either the largest or second 
largest measurement as the upper TL. Use Table 17-4 in Appendix D to determine the 
coverage y associated with 951

1 or 991
1 confidence. Note also that if the largest or second 

largest measurement is a non-detect, the upper tolerance limit should be set to the RL most 
appropriate to the data (e.g., the lowest achievable practicable quantification limit [PQL ]). 

~tep 2. Compare each compliance point measurement against the upper tolerance limit. Identify 
significant evidence of possible contamination at any compliance well in which one or more 
measurements exceed the upper tolerance limit. If the upper tolerance limit equals the RL, a 
violation should be flagged anytime a detected value is quantified above the RL. 

~tep 3. Because the risk of false positive errors is greatly increased if either the confidence level or 
coverage drop substantially below 951

1, both of these parameters should be routinely reported 
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and noted as being below the target levels. One should also strongly consider comparing one 
or more verification resamples against the upper tolerance limit before identifying a clear 
violation. 

J EXAMPLE 17-4 

Use the following copper background data to establish a non-parametric upper tolerance limit and 
determine if either compliance well shows evidence of copper contamination. 

Copper Concentration (ppb) 
Backqround Wells Compliance Wells 

Month Well 1 Well 2 Well 3 Well 4 Well 5 

1 <5 9.2 <5 
2 <5 <5 5.4 
3 7.5 <5 6.7 
4 <5 6.1 <5 
5 <5 8.0 <5 6.2 <5 
6 <5 5.9 <5 <5 <5 
7 6.4 <5 <5 7.8 5.6 
8 6.0 <5 <5 10.4 <5 

SOLUTION 

~tep 1. The pooled background data in Wells 1, 2, and 3 have a maximum observed value of 9.2 ppb. 
~et the 951

1 confidence upper tolerance limit equal to this value. Because 24 background 
samples are available, Table 17-4 in Appendix D indicates that the minimum coverage is 
equal to 881

1. To increase either the coverage, more background samples would have to be 
collected. 

~tep 2. Compare each sample in compliance Wells 4 and 5 to the upper tolerance limit. ~ince none of 
the measurements at Well 5 is above 9.2 ppb, while one sample from Well 4 is above the 
limit, conclude that there maybe significant evidence of copper contamination at Well 4 but 
not Well 5. 

~tep 3. Note that with only881
1 coverage and 24 background samples, the riskofa false positive 

result is more than 101
1. Well 4 should be resampled to determine whether the exceedance is 

replicated. I 

17.3 TREND TESTS 

The Unified Guidance recommends trend testing as an intrawell alternative to prediction limits or 
control charts when those methods are not suitable. Prediction limits and control charts (as well as !-tests 
and ANOV A) all involve a comparison of compliance and background populations under the key 
assumption that the underlying concentration distributions are stationary over time. That is, the 
populations are presumed to have stable (i.e., roughly constant) means over the period of sampling prior 
to statistical evaluation. 
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Unfortunately, there is no guarantee that groundwater populations will remain stable during long­
term monitoring. Because sampling at many sites is generally done on a quarterly, semi-annual, or 
annual basis, it will generallytak:eone to two yearsor more to collect enough background data to run the 
statistical tests discussed in the Unified Guidance. Over this length of time, the statistical characteristics 
of groundwater mayor maynot change in significant ways. 

If background groundwater conditions are in a state of flux, trend tests provide a significant 
advantage over both intrawell prediction limits and control charts. Both of the latter methods involve a 
designation of some portion of the historical sampling record as the intrawell background for a given 
compliance well. Ideally, this intrawell background should consist of measurements known to be 
uncontaminated and which represent a random sample from a stable underlying population, just as with 
!-tests and ANOV A. If the mean and/or standard deviation of the underlying population changes while 
intrawell background is being compiled, results of either prediction limit or control chart tests against 
more recentlycollected data can be severely biased or altogether inaccurate. 

One drawback to the ~hewhart-CrnUM control charts presented in Chapter 20 is that they are 
somewhat sensitive to the parametric assumption of underlying normality. If the measurements are 
lognormal rather than normal, for instance, the nominal performance characteristics (i.e., Type I error 
rate and statistical power) of control charts are significantly affected. By the same token, control charts 
are impacted if the intrawell background contains a large fraction of non-detects. Non-detect adjustments 
can sometimes be made to the baseline data via methods discussed in Chapter 15, but if a normalizing 
transformation or adjustment is not successful, no straightforward non-parametric control chart exists. 

Consequently, neither prediction limits nor control charts are appropriate for every circumstance 
where an intrawell comparison may be warranted or necessary. Thus, the Cnified Guillance 
recommen1/s that users consiller trend testing as an alternative to prediction limits or control charts 
when those methods are not suitable as intrawell techniques . Tests for trend are specifically designed 
to identify those groundwater populations whose mean concentrations are not stationary over time, but 
rather are increasing (or decreasing) by measurable amounts. Ultimately, the goal of any reasonable 
detection or compliance/assessment monitoring program is to determine whether or not the 
concentration levels of ke)Contaminants or indicator parameters have significantly increased during the 
period of monitoring and, if so, whether the increase is attributable to facility waste management 
practices. 

The detection of trends is a complex subject. Whole textbooks are devoted to the more general 
topic of time series analysis, including the identification and modeling of time trends - step functions, 
linear and quadratic trends, exponential growth, etc. The Unified Guidance only attempts to identify the 
simplest kindoflinear increases, not the specification or testing of more complex models. The methods 
described below are all designed to effectively test for (increasing) linear trends, though theywill also 
identifysimple increases over time when a trend is present but does not follow a strictly linear pattern. 

The Unified Guidance recommends using trend tests in detection monitoring to measure the extent 
and nature of an apparent concentration increase, especially to determine whether or not the increase 
occurs consistently over time. Two questions are of particular interest: 1) is there a statistically 
significant, (positive) trend over the period of monitoring? and 2) what is the nature (i.e., slope and 
intercept) of the trend? By identifyingi positive trend, one can show that contaminant levels have gotten 
worse compared to earlymeasurements from the well being tested. Furthermore, by measuring the nature 
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of the trend, including the average rate of increase per unit of time, one can estimate how rapidly 
concentration levels are increasing and the current mean- or median-level magnitude of contamination. 
~uch information can provide an invaluable portrait of the changes occurring on-site and probably offers 
the most compelling evidence - under these conditions - for demonstrating that the basic null 
hypothesis of detection monitoring has been violated. 

17.3.1 LINEAR REGRESSION 

BACKGROUND AND PURPOSE 

The most common way to measure a linear trend is to compute a linear regression of concentration 
data when plotted against the time or date of sample collection. By way of interpretation, each point 
along a linear regression trend line is an estimate of the true mean concentration at that point in time. 
Thus, a linear regression can be used to assess whether or not the population mean at a compliance well 
has significantly increased or decreased. 

Linear regression is a standard technique in statistics textbooks and many data analysis software 
packages.It is more generally applicable to linear relationships between any pair of random variables 
and not simply to time trends. Good references for performing linear regression and for checking and 
verifyingits assumptions include Draper and ~mith (1998) and Cookand Weisberg (1999). 

Unlikeprediction limits or control charts which are constructed using only the background data, 
trend tests including linear regression are computed with all available earlier and more recent data at the 
compliance well of interest. One then might incorrectly assume that a comparison against intrawell 
background is not being conducted. But an intrawell comparison does occur with a trend test. ~tatistical 

identification of a structured pattern of increase from the first portion of the sampling record to more 
recent data indicates that concentration levels are no longer similar to intrawell background, but have 
risen more than expected by chance. 

~tatistical identification of a positive trend involves testing the estimated slope coefficient from the 
linear regression trend line. A specially constructed t-test is used to make this determination, as 
described below. If this test is significant, the slope is judged to be different from zero, indicating that a 
change in concentration levels has occurred over the period of sampling represented by the data set. 

REQUIREMENTS AND ASSUMPTIONS 

Linear regression as a parametric statistical technique makes a number of underlying assumptions. 
Among the most important of these are that the regression residuals (i.e., the difference between each 
concentration measurement and its predicted value from the regression equation) are approximately 
normal in distribution, homoscedastic (i.e., equal in variance at different times and for different mean 
concentration levels), and statistically independent. ~ignificant skewness or the presence of outliers can 
bias or invalidate the results of a trend test based on linear regression. Furthermore, standard linear 
regression methods do not account for non-detects or missing data values at selected sampling events. 

Because the keyassumptions for linear regression depend not on the original measurements but 
rather on the regression residuals, a tentative trend line needs to first be constructed before its 
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assumptions can be checked. Once a linear regression on time is fitted to the data, the residuals around 
the trend line need to be computed and then tested for normality, apparent skewness, and equal variance 
over time. This last assumption is particularly important to testing whether the slope of an apparent trend 
is statistically different from zero (a zero slope indicating that well concentrations have not changed over 
time). 

Inferences around a linear regression are generally appropriate when three conditions hold: 1) the 
residuals from the regression are approximately normal or at least reasonably symmetricin distribution; 
2) a scatter plot of residuals versus concentrations indicates a scatter cloud of essentially uniform 
vertical thickness or width (i.e., the scatter cloud does not tend to increase in width with the level of 
concentration which would suggest a proportional effect between the underlying population mean and 
variance); and 3) a scatter plot ofresiduals versus time also exhibits a uniformly thick scatter cloud. If 
the thickness or width is substantially different at distinct time points, the assumption of equal variances 
over time maynot be true. 

If anyof these conditions is substantially violated, it mayindicate that the basic trend is either non­
linear or the magnitude of the variance is not independent of the mean concentration level and/or the 
time of sampling. One possible remedy is to try a transformation of the concentration data and re­
estimate the linear regression. This will change the interpretation of the estimated regression from a 
linear trend of the form y = a+ bt, where y and t represent concentration and time respectively, to a 

non-linear pattern. As an example, if the concentration data are log-transformed, the regression equation 
will have the form logy= a+ bt. Back-transformed to the original concentration scale, the trend 

function will then have the form y = exp (a + bt). 

In transforming the regression data this way, the estimated trend in the concentration domain (after 
back-transforming) no longer represents the original mean. Rather, the transformation induces a bias 
when converted back to the raw-scale data. If a log transformation is used, for instance, the back­
transformed trend line will represent the raw-scale geometric mean and not the arithmetic mean. As with 
~tudent's t-tests on lognormal data (Chapter 16), demonstrating that the geometric mean is increasing 
also implies that the arithmetic mean has risen so long as the regression residuals are homoscedastic. 

A minimum of 8 to 10 measurements is generally necessary to compute a linear regression, 
especiallyto estimate the variance around the trend line (known as the mean squared error or M~E). 
The regression residuals should be statistically independent, an assumption that can be approximately 
verified via one of the autocorrelation tests of Chapter 14. 

One last assumption is that there should be few if any non-detects when computing a linear 
regression. As a matter of common sense, a significant increasing or decreasing trend should be based on 
reliably quantified measurements. If this is not the case, the user should checkto see whether the "trend" 
may be an artifact induced by changes in detection and/or quantitation limits over time. The 
concentration levels of a series of non-detects mayappear to be decreasing, for instance, simplybecause 
analytical methods have improved over the years leading to lower RLs. ~uch artifacts of plotting and 
data reporting should not be considered real trends. 

When the assumptions of linear regression cannot be verified at least approximately, a non­
parametric trend method should be considered instead. Sections 17.3.2 and 17.3.3 discuss the Mann-
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Kendall test for trend and the Theil-Sen trend line. These methods can be particularly valuable when 
constructing trends on data sets containing non-detects. 

PROCEDURE 

~tep 1. Construct a time series plot of the compliance point measurements. If a discernible trend is 
evident, compute a linear regression of concentration against sampling date (time), letting Xi 

denote the ith concentration value and ti denote the ith sampling date. Estimate the linear slope 

b with the formula: 

b = i=l ( i -}- i /c 1 }-sfixtt [17.21) 

This estimate then leads to the regression equation, given by: 

A ( -•li?xx [17.22) 

where T denotes the mean sampling date, s: is the variance of sampling dates, x is the mean 

concentration level, and i\ represents the estimated mean concentration at time t. 

Note: though the variable t above represents time, it could just as easily signify another 
variable, perhaps a second constituent for which an association with x is estimated. 

~tep 2. Compute the regression residual at each sampling event i with equation [17.23): 

--:::xxr 
1 

[17.23) 

Checkthe set of residuals for lackof normality and significant skewness using the techniques 
in Chapter 10. Also, plot the residuals against the estimated regression values ( xi) to check 

for non-uniform vertical thickness in the scatter cloud. Makea similar check by plotting the 
residuals against the sampling dates (ti). 

If the residuals are non-normal and substantially skewed and/or the scatter clouds appear to 
have a definite pattern (e.g., funnel-shaped; "U"-shaped; or, residuals mostly positive on one 
end of graph and mostly negative on the other end, instead ofrandomly scattered around the 
horizontal line r = 0), repeat Steps 1 and 2 after first attempting a normalizing transformation. 

~tep 3. Calculate the estimated variance around the regression line (also known as the mean squared 
error [M~E]) with equation [17.24): 

1 
s2 = -- r1 

e n-2 i 
1=] 

[17.24) 

~tep 4. Compute the standard error of the linear regression slope coefficient using the s2 e result from 
~tep 3 in equation [ 1 7 .25): 
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[17.25) 

~tep 5. Test whether the trend is significantly different from zero by forming the !-statistic ratio in 
equation [17.26): 

[17.26) 

This I-statistic (th) has n-2 degrees of freedom [ dj]. Given a level of significance ), choose 
the critical point ( lcp) for the test as the (1- ) x I OOth percentage point of the ~tudent' s !­

distribution with (n-2) df or lcp = !1- ,n-2· Compare tb against the critical point. If lb > lcp, 

conclude that the slope of the trend is both positive and significantly different from zero at the 
-level of significance. If tb < - lcp, conclude there is a significant decreasing trend. If neither 

exists, there is insufficient evidence of an increasing or decreasing trend. 

J EXAMPLE 17-5 

The following groundwater chloride measurements ( n = 19) were collected over a five-yearperiod 
at a solid waste landfill. Test for a significant trend at the = 0.01 level using linear regression. 

Sample Date Chloride (ppm) Elapsed Days Residuals 

2002-03-18 11.5 76 -0.25 
2002-05-14 12.6 133 0.67 
2002-08-22 13.8 233 1.56 
2003-02-12 12.3 407 -0.48 
2003-05-29 12.8 513 -0.30 
2003-08-18 13.2 594 -0.15 
2003-11-20 14.1 688 0.45 
2004-02-19 13.3 779 -0.63 
2004-04-26 13.1 846 -1.04 
2004-07-29 13.2 940 -1.23 
2004-11-09 15.3 1043 0.56 
2005-02-24 15.0 1150 -0.08 
2005-06-14 15.2 1260 -0.22 
2005-08-23 15.8 1330 0.17 
2005-10-17 16.1 1385 0.30 
2006-02-08 15.1 1499 -1.06 
2006-04-27 16.4 1577 0.00 
2006-08-10 17.7 1682 0.98 
2006-10-26 17.7 1759 0.74 

SOLUTION 

~tep 1. Checkfor an apparent trend on a time series plot (Figure 17-2 ). ~ince the chloride values are 
increasing in reasonably linear fashion, compute the tentative regression line using equations 
[17.21) and [17.22). To compute the slope estimate, first convert the sample dates to elapsed 
daysusing a starting date prior to the first event. In this case, choose an arbitrary starting date 
of 2002-01-0 I as zero and compute the elapsed daysas listed in the table above. 

Using elapsed daysas the time variable, compute the sample mean and variance to get: 
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T = 941.79 days 

s: = 279374.3 days 

Then compute the tentative slope as: 

b = [(76- ) 5.1 m>:9{1I759 - } )![( 

and the regression line itself as: 

A ( lt}xx-+= + 0031.(H-:14 79.}>41 

where the mean chloride value 1s x = 14.432 ppm. The regression line is overlaid on the 

scatter plot in Figure 17-2. 

Figure 17-2. Time Series Plot of Chloride (ppm) Overlaid With Linear Regression 

• • 

• • 
• • • 

• 
• ••• 

• • • 

~tep 2. Calculate the regression residual at each sampling event using equation [17.23]. This involves 
computing an estimated concentration along the regression line for each sampled time ( t) and 
then subtracting from the observed concentration. For example, the residual at t = 407 is 

Xf=- 78 .12-371 ~ 8. 0 

All the residuals are listed in the table above. Then check the residuals for normality, 
homoscedasticity, and lack of association with the predicted values from the regression line. 
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Figure 17-3 is a probability plot of the residuals, indicating good agreement with normality. 
Figure 17-4 is a scatter plot of the residuals versus sampling date and Figure 17-5 is a scatter 
plot of the residuals versus predicted values from the trend line. Both of these last plots do not 
exhibit anyparticular trends or patterns with sampling date or the trend line predicted values; 
the residuals are fairlyrandomlyscattered. 

~tep 3. Compute the M~E of the regression using the squared residuals in equation [17.24) to get 

1 s2 = --· y_2 
e n-2 i=l l 

-
1 k-·=25.)2 + ( 67.} 

17 

-
K +( 74.} = 5628.0 

~tep 4. Calculate the standard error of the regression slope coefficient using equation [17.25): 

79 )41 K +-(1759 - 79 )'~ 0003 3. 

~tep 5. Form the !-statistic ratio with formula [17.26) to get: 

A/ 't' 
b = VJ~<dJt I 00033.0003H>..(9) 

~ince = 0.01, compare this value to a critical point equal to the 99th percentile of a ~tudent's 
!-distribution with (n-2) = 17 degrees of freedom, that is, lcp = t_99,17 = 2.567. ~ince the !­

statistic is substantially larger than the critical point, conclude the upward trend is significant 
at the 11

1 -level. I 
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Figure 17-3. Probability Plot of Chloride Regression Residuals 
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Figure 17-4. Scatter Plot of Chloride Residuals vs. Sampling Date 
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Figure 17-5. Scatter Plot of Chloride Residuals vs. Predicted Regression Fits 
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17.3.2 MANN-KENDALL TREND TEST 

BACKGROUND AND PURPOSE 

The Mann-Kendall test (Gilbert, 1987) is a non-parametric test for linear trend, based on the idea 
that a lack of trend should correspond to a time series plot fluctuating randomly about a constant mean 
level, with no visually apparent upward or downward pattern. If an increasing trend really exists, the 
sample taken first from any randomly selected pair of measurements should on average have a lower 
concentration than the measurement collected at a later point. The Mann-Kendall statistic is computed 
by examining all possible pairs of measurements in the data set and scoring each pair as follows. An 
earlier measurement less in magnitude than a later one is assigned a value of 1. If an earlier value is 
greater in magnitude than a later sample, the pair is tallied as -1; two identical measurement values are 
assigned 0. 

After scoring each pair in this way and adding up the total to get the Mann-Kendall statistic ( S), a 
positive value of S implies that a majority of the differences between earlier and later measurements are 
positive, suggestive of an upward trend over time. Likewise, a negative value for S implies that a 
majority of the differences between earlier and later values are negative, suggestive of a decreasing 
trend. A value near zero indicates a roughly equal number of positive and negative differences. This 
would be expected if the measurements were randomly fluctuating about a constant mean with no 
apparent trend. 

To account for randomness and inherent variability in the sample, the Mann-Kendall test is based 
on the critical ranges of the statistic S likel)to occur under stationary conditions. The larger the absolute 
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value of S, the stronger the evidence for a real increasing or decreasing trend. The critical points for 
identifying a trend get larger as the level of significance (a) drops. Onlyif the absolute value of the test 
statistic (S) is larger than the critical point is a statistically significant increasing or decreasing trend 
indicated. 

REQUIREMENTS AND ASSUMPTIONS 

As a non-parametric procedure, the Mann-Kendall test does not require the underlying data to 
follow a specific distribution. Ranks of the data are not explicitly used in forming the test statistic as 
with the Wilcoxon rank-sum. Only the relative magnitudes of the concentration values are needed to 
compute S, not the actual concentrations themselves. Non-detects can be treated by assigning them a 
common value lower than anyof the detected measurements. Anypair of tied values or anypair of non­
detects is simply given a score of 0 in the calculation of the Mann-Kendall statistic S. 

This treatment of non-detects is an imperfect remedy since it is usually impossible to know 
whether censored values are actuallytied in magnitude. Further complications are introduced when there 
are multiple RLs and/or an intermingling of detected values and RLs. Lab qualifiers maybe used to aid 
the scoring of pairs that involve non-detects or estimated concentrations. Instead of treating all non­
detects as tied, consider 'undetected or U' values as the lowest in magnitude, other non-detects as higher 
in magnitude than U's but lower than estimated concentrations ('J' or 'E' values). In this way, a richer 
scoring of the sample pairs maybe possible. 

When the sample size n becomes large, exact critical values for the statistic S are not readily 
available. However, as a sum of identically-distributed random quantities, the behavior of S for larger n 
tends to approximate the normal distribution by the Central Limit Theorem. Therefore a normal 
approximation to Scan be used for n > 10 1

. In this case, a standardized Z-statistic is formed by first 
computing the expected mean value and standard deviation of S. From the discussion above, when no 
trend is present, positive differences in randomly selected pairs of measurements should balance 
negative differences, so the expected mean value of Sunder the null hypothesis of no trend is simply 
zero. The standard deviation of Scan be computed using equation [17.27): 

[17.27) 

where n is the sample size, g represents the number of groups of ties in the data set (if any), and ti is the 
number of ties in the jth group of ties. If no ties or non-detects are present, equation [17.27) reduces to 
the simpler form: 

[17.28) 

Guidance Table 17-5 contains exact confidence levels up to n = 10. Exact confidence levels for n ::::_ 20 have been 
developed in (Hollander & Wolfe, 1999), Table A.30. These might be preferentially used if sample sizes are fairlysmall 
and the data contain non-detect values. 
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Once the standard deviation of S has been derived, the standardized Z-statistic for an increasing (or 
decreasing) trend is formed using the equation: 

[17.29) 

Note that although the expected mean value of Sis zero, applyingthe continuous normal to the discrete S 
distribution is an approximation. Therefore, a continuity correction is made to Z by first subtracting 1 
from the absolute value of S. The final Z-statistic can then be compared to an a-level critical point taken 
from Table 10-1 in Appendix D to complete the test. 

PROCEDURE 

~tep 1. Order the data set by sampling event or time of collection, x 1, x2, to Xn. Then consider all 
possible differences between distinct pairs of measurements, ( x1 - xi) for j > i. For each pair, 
compute the sign of the difference, defined by: 

if~j-xi)>o 
if ~j -xi)= 0 

if~j-xi)<o 

[17.30) 

Pairs of tied values including non-detects, will receive scores of zero using equation [17.30). 

~tep 2. Compute the Mann-Kendall statistic S using equation [ 17 .31]: 

[17.31) 

In equation [ 17 .31] the summation starts with a comparison of the very first sampling event 
against each of the subsequent measurements. Then the second event is compared with each of 
the samples takenafter it (i.e., the third, fourth, fifth, etc.). Following this pattern is probably 
the most convenient way to ensure that all distinct pairs are tallied in forming S. For a sample 
of size n, there will be n·(n-l)/2 distinct pairs. 

~tep 3. If n L 10, and given the level of significance (a), determine the critical point Sep from Table 

17-5 of Appendix D. If S > 0 and ISi > sep, conclude there is statistically significant evidence 

of an increasing trend at the a significance level. If S < 0 and Isl> sep, conclude there is 

statistically significant evidence of a decreasing trend. IflSI::::; sep, conclude there is insufficient 

evidence to identify a significant trend. 

~tep 4. If n > 10, determine the number of groups of ties (g) and the number of tied values in each 
group of ties ( tj). Then use equation [17.27) to compute the standard deviation of S and 
equation [ 17 .29) in turn to compute the standardized Z-statistic. 
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)tep 5. Given the significance level (a), determine the critical point Zcp from the standard normal 
distribution in Table 10-1 in Appendix D. Compare Z against this critical point. If Z > Zcp, 

conclude there is statistically significant evidence at the a-level of an increasing trend. If Z < -
Zcp, conclude there is statistically significant evidence of a decreasing trend. If neither exists, 
conclude that the sample evidence is insufficient to identify a trend. 

J EXAMPLE 17-6 

Test for a significant upward trend using the Mann-Kendall procedure in the following set of 
sulfate measurements (ppm) collected over several years. 

Sample No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

SOLUTION 

Sampling Date 
(yr.men) 

89.6 
89.8 
90.1 
90.3 
90.6 
90.8 
91.1 
91.3 
91.6 
91.8 
92.1 
92.6 

Sulfate Cone. Sample No. 
(ppm) 

480 13 
450 14 
490 15 
520 16 
485 17 
510 18 
510 19 
530 20 
510 21 
560 22 
560 23 
540 

Sampling Date 
(yr.men) 

93.1 
93.6 
94.1 
94.6 
95.1 
95.6 
95.8 
96.1 
96.3 
96.6 
96.8 

Sulfate Cone. 
(ppm) 

590 
550 
600 
700 
570 
610 
650 
620 
830 
720 
590 

)tep 1. Construct a time series plot of the sulfate observations to check for a possible trend as in 
Figure 17-6. A clearly rising concentration pattern is seen, although the variability in the 
measurements appears greater toward the end of the sampling record than at the beginning. 

)tep 2. Compute the difference between each distinct pair of measurements and determine the sign of 
the difference, using equation [17.30). Then sum up the signs with equation [17.31). Note that 
to make sure all the distinct pairs have been summed, begin with the first listed observation 
and compare it to each of values below it. Then takethe second listed value and compare it to 
each of the remaining ones below it, etc. The Mann-Kendall statistic becomes: 

S = sgn(450-480 )+ sgn(490-480) K -Hsgn(590-720)=194 

)tep 3. )ince the sample size n = 23 > 10, form the normal approximation to the Mann-Kendall 
statistic. Because there are some ties in the data, use equation [17.27] to compute the 
approximate standard deviation. Among the sulfate measurements, there are three groups of 
ties with 3, 2, and 2 tied values in each set respectively (at values 510, 560, and 590). The 
ad justed standard deviation is then: 

)( ) { ( )( 5)2ID523~)232)( 

Finally,using equation [17.29], the normalized Mann-Kendall statistic is: 
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z = ~ I- ) = 11.579.37/1194 

~tep 4. The Z statistic can be compared to a critical point from the standard normal distribution in 
Table 10-1 in Appendix D. As large as it is, the test statistic is bigger than the critical point 
for anyusual significance level, suggesting that the trend appears to be real and not just a 
chance artifact of the sample. I 

Figure 17-6. Time Series Plot of Sulfate Concentrations (ppm) 
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The Mann-Kendall procedure is a non-parametric test for a significant slope in a linear regression 
of the concentration values plotted against time of sampling. But the Mann-Kendall statistic S does not 
indicate the magnitude of the slope or estimate the trend line itself even when a trend is present. This is 
slightlydifferent from parametric linear regression, where a test for a significant slope follows naturally 
from the estimate of the trend line. Even a relatively modest slope can be statistically distinguished from 
zero with a large enough sample. It is best to first identify whether or not a trend exists, and then 
determine how steeply the concentration levels are increasing over time for a significant trend. The 
Theil-Sen trend line (Helsel, 2005) is a non-parametric alternative to linear regression which can be used 
in conjunction with the Mann-Kendall test. 

The Theil-~en method handles non-detects in almost exactly the same manner as the Mann­
Kendall test. It assigns each non-detect a common value less than anyother detected measurement (e.g., 
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half the RL). Unlike the Mann-Kendall test, however, the actual concentration values are important in 
computing the slope estimate in the Theil-~en procedure. The essential idea is that if a simple slope 
estimate is computed for everypair of distinct measurements in the sample (known as the set of pairwise 
slopes), the average of this series of slope values should approximate the true slope. The Theil-~en 
method is non-parametric because instead of taking an arithmetic average of the pairwise slopes, the 
median slope value is determined. By takingthe median pairwise slope instead of the mean, extreme 
pairwise slopes - perhaps due to one or more outliers or other errors - are ignored and have little if 
anyimpact on the final slope estimator. 

The Theil-~en trend line is also non-parametric because the median pairwise slope is combined 
with the median concentration value and the median sample date to construct the final trend line. As a 
consequence of this construction, the Theil-~en line estimates the change in median concentration over 
time and not the mean as in linear regression. 

REQUIREMENTS AND ASSUMPTIONS 

The Theil-~en procedure does not require normally-distributed trend residuals as in a linear 
regression. It is also not critical that the residuals be homoscedastic (i.e., having equal variance over 
time and with increasing average concentration level). It is important to have at least 4 and preferably at 
least 8 or more observation on which to construct the trend. But trend residuals are assumed to be 
statistically independent. Approximate checks of this assumption can be made using the techniques of 
Chapter 14, once the estimated trend has been removed and the number of non-detect data is limited. 
~ampling events should also be spaced far enough apart relative to the site-specific groundwater velocity 
so that an assumption of physical independence of consecutive sample volumes is reasonable. 

A more difficult problem is encountered when a large fraction of the data is non-detect. As long as 
less than half the measurements are non-detects occurring in the lower part of the observed concentration 
range, the median concentration value will be quantified and the median pairwise slope will generallybe 
associated with a pair of detects. Larger proportions of non-detect data makecomputation of the Theil­
~en trend line more difficult and uncertain. The reason is that each time a non-detect is paired with a 
quantified measurement, the pairwise slope is known onlywithin a range of values. One end of the range 
results from supposing the true non-detect concentration is equal to zero; the other when the non-detect 
concentration is equal to the RL. 

PROCEDURE 

~tep 1. Order the data set by sampling event or time of collection, x 1, x2, to Xn. Then consider all 
possible distinct pairs of measurements, (Xi, Xj) for j > i. For each pair, compute the simple 
pairwise slope estimate: 

[17.32) 

With a sample size of n, there should be a total of N = n( n-1 )/2 such pairwise estimates mii· If 
a given observation is a non-detect, use half the RL as its estimated concentration. 

~tep 2. Order the N pairwise slope estimates ( mij) from least to greatest and rename them as moi, m(2l, 

... , mCNl. Then determine the Theil-~en estimate of slope ( Q) as the median value of this list. 
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Finding this value will depend on whether N is even or odd, but the following equation can be 
used: 

[17.33) 

~tep 3. Order the sample by concentration magnitude from least to greatest, x0 i, x(2l, to X(nJ. Determine 
the median concentration with the formula: 

~ y x(n+ )/21 

X =I( n/2 + Xfi+2)/2 )2 
oddisnif 

evenisnif 
[17.34) 

Again replace each non-detect by half its RL during this calculation. Also find the median 
sampling date ( t) using the ordered times t1, t2, to tn by a similar computation. 

~tep 4. Compute the Theil-~en trend line with the equation: 

( ~) (~ [17.35) 

Using equation [17.35), an estimate can be made at any time (t) of the expected median 
concentration (x). 

J EXAMPLE 17-7 

Use the following sodium measurements to compute a Theil-~en trend line. Note that the sample 
dates are recorded as the yearof collection (2-digit format) plus a fractional part indicating when during 
the yearthe sample was collected. This allows an annual slope estimate, since 1 unit = 1 year. 

SOLUTION 

Sample 
Date (yr) 

89.6 
90.1 
90.8 
91.1 
92.1 
93.1 
94.1 
95.6 
96.1 
96.3 

Sodium Cone. 
(ppm) 

56 
53 
51 
55 
52 
60 
62 
59 
61 
63 

~tep 1. Compute the pairwise slopes for each distinct pair of measurements using equation [17.32). 
With n = 10 observations, there will be a total of 10(9)/2 = 45 such pairs. The first few are 
listed below: 
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m12 = 03-56 )/~o.1- 89.6 )= -6 

m13 = 01- 56 )/~o.8 - 89.6 )= -4.17 

m14 = 05-56 )/~1.1- 89.6 )= -.667 

Unified Guidance 

~tep 2. ~ince the total number of distinct pairs is odd, sort the list of pairwise slopes as in the table 
below and let ~en's estimated slope equal the middle or 23rd largest value in this list. This 
gives an estimate of Q = 1.33 ppm increase per year, an estimate in line with the time series 
plot of Figure 17-7. 

~tep 3. Compute the median concentration value x = 5.ind the median sample date t = 6.<lfum 

the table above. Then calculate the Theil-~en trend line using the slope estimate from ~tep 2: 

x = 57.5+1.333 ~ - 92.6 )= -65.97 + 1.333! 

This trend line can be used to estimate the predicted median concentration ( x) at any desired 
time in years( t). For example, at the beginning of 1998 ( t = 98), the trend line would predict a 
median sodium concentration of approximatelyx = 64.7 ppm. I 

Rank Pairwise Rank Pairwise 
Slo e Slo e 

1 -6 24 1.538 
2 -4.167 25 1.613 
3 -3 26 1.667 
4 -2.857 27 1.887 
5 -2 28 2 
6 -1.6 29 2 
7 -0.667 30 2 
8 -0.5 31 2.182 
9 -0.5 32 2.25 

10 -0.4 33 2.25 
11 0.333 34 2.333 
12 0.455 35 2.333 
13 0.5 36 2.5 
14 0.769 37 2.619 
15 0.769 38 3.333 
16 0.889 39 3.913 
17 0.938 40 4 
18 1.045 41 5 
19 1.091 42 5.714 
20 1.143 43 8 
21 1.2 44 10 
22 1.333 45 13.333 
23 1.333 

17-37 March 2009 

EPAPAV0117305 



Chapter 17. ANOVA, Tolerance Limits & Trend Tests Unified Guidance 

Figure 17-7. Time Series Plot of Sodium Concentrations (ppm) 

• • 
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This chapter introduces the concept of statistical intervals and focuses on several types of 
prediction limits useful for detection monitoring. The requirements and common assumptions of such 
limits are explained, as well as specific descriptions of: 

Prediction limits for m future values (Section 18.2.1 

Prediction limits for future means (Section 18.2.2 ) 

Non-parametric prediction limits for m future values (Section 18.3.1 

Non-parametric prediction limits for a future median (Section 18.3.2 ) 

18.1 INTRODUCTION TO PREDICTION LIMITS 

First discussed in Cha~ter 6, prediction limits belong to a class of methods known as s ta tis tical 
intervals. Statistical intervals represent concentration or measurement ranges computed from a sample 
that are designed to estimate one or more characteristics of the parent population. In groundwater 
monitoring, statistical intervals offer a convenient and statistically valid way to test for significant 
differences between background versus compliance point groundwater measurements. 

The statistical interval accounts for variability inherent not only in future measurements, but also 
additional uncertainty in the prediction limit itself The latter is derived from a relatively small 
background sample with an associated level of variability in estimating the true characteristics of the 
underlying groundwater population. 

Prediction limits are generally easy to construct and have a straightforward interpretation. 
Background data are used to construct a concentration limit PL, which is then compared to one or more 
observations from a compliance point population. The acceptable range of concentrations includes all 
values no greater than the prediction limit. The appropriate prediction interval will generally have the 
form [O, PL], with the upper limit PL as the comparison of importance. Unless pH or a similar 
parameter is being monitored, a one-sided upper prediction limit is used in detection monitoring. 

A significant advantage to prediction limits is their flexibility; which can accommodate a wide 
variety of groundwater monitoring networks. Prediction limits can be constructed so that as few as one 
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new measurement per compliance well may suffice for a test. Prediction limits may be based on a 
comparison of means, medians, or individual compliance point measurements, depending on the 
characteristics of the monitoring network and the constituents being tested. 

Prediction limits can also be designed to accommodate a wide range of multiple statistical 
comparisons or tests Each periodic statistical evaluation (e.g., semi-annually) under RCRA and other 
regulations involves separate tests at all compliance well locations for each monitoring constituent. 
Often, the number of separate statistical tests can be quite sizeable. Prediction limits can be constructed 
to precisely account for the number of tests to be conducted, so as to limit the site-wide false positive 
rate [SWFPR] and ensure an adequate level of s ta tis ticqioll'er (see discussion in Cha~ter 6 ). 

This and the following chapter present basic concepts and procedures for using prediction limits as 
detection monitoring tests. The intent is to provide a relatively simple framework for using prediction 
limits in RCRA or CERCLA groundwater monitoring. Cha~ter 18 describes the construction of 
prediction limits for tests involving a single constituent at one well. It describes the basic mechanics of 
each type of prediction limit and how they differ from one another. 

Cha~ter 19 expands this discussion to cover multiple simultaneousprediction limit tests (i.e., all 
occurring during a single statistical evaluation or during a single year of monitoring). Cumulative 
SWFPRs and statistical power are considered, including how these criteria impact the expected 
performance of a given prediction limit strategy. Examples are provided to illustrate these procedures, as 
well as explanations of associated tables and software. 

Specific strategies in Cha~ter 19 apply the concept of retesting. Generally speaking, almost any 
prediction limit procedure in 1/etection monitoring shoulil he combined with an appropriate retesting 
strategy . The reason is that when testing a large number of compliance point samples, it is almost 
guaranteed that one or more measurements will exceed an upper prediction limit. Resampling of those 
wells where an exceedance has occurred can either verify the initial evidence of a release or disconfirm 
it, while avoiding unnecessary false positives. 

Cha~ter 6 introduced a number of key terms used in the Unified Guidance, especially for 
prediction limit and control chart tests. The guidance applies the term comparison to individual future 
measurements or sample statistics evaluated against a prediction limit (or contra/chart limit), and the 
term tes lto represent a series of future data comparisons that ultimately result in a statistical decision. A 
1-of-m retesting procedure (described below), for instance, might involve comparison of up to m distinct 
sample measurements against the prediction limit. Each of these individual samples involves a 
comparison, but only after all the necessary individual comparisons have been made is the testcomplete. 
This distinction becomes particularly important when properly determining SWFPRs, a subject 
discussed both in Cha~ter 6 and Cha~ter 19 . 

One or more future observations are collected for purposes of testing compliance well data, as 
distinct from the background sample from which the prediction limit is constructed. Background data 
can be obtained from upgradient wells or in combination with historical, uncontaminated compliance 
well data. In intrawell testing, data from an individual compliance well constitute both the background 
and future samples. The two data sets need to be distinct and may not overlap, even if the historical 

18-2 March 2009 

EPAPAV0117308 



Chapter 18. Prediction Limit Primer Unified Guidance 

background data is periodically updated with previously evaluated future samples. The key idea is that at 
any given point in time, background and future data sets are clearly distinguished. 

Formally, prediction limits are constructed to contain one or more future observations or sample 
statistics generated from the background population with a specified probability equal to ( 1- ). The 
probability (1- ) is known as the confidence level of the limit. It represents the chance - over repeated 
applications of the limit to many similar data sets - that the prediction limit will contain future 
observations or statistics drawn from its background population. 

A sample of n background measurements is used to construct the prediction limit. Under the null 
hypothesis that the compliance point population is identical to background, a set of /11 independent 
compliance point observations or a statistic like the mean based on those observations (i.e., the future 
data) is then compared against the prediction limit. For the prediction limit to serve as a valid statistical 
test, the future observations are initially presumed to follow the same distribution as background. 

Only background values are used to construct the prediction limit. But the probability that the 
limit contains all /11 future observations or sample statistics derived from those future data does not 
depend solely on the observed background. It is also based on the number of future measurements or 
sample statistics used in the comparison and ho11 the individual comparisons are conducted. To 
underscore this point, consider the general equation for a prediction limit based on normal or 
transformably normal populations, given by 

PL= x +Ks [18.1) 

where xis the sample mean in background, sis the background standard deviation, and is a multiplier 
depending on the type of prediction limit under construction. The simplest type of prediction limit test 
compares a specific number of individual future observations to the limit (PL). For example, do all three 
compliance measurements collected during a 6-month period fall within the prediction interval? The 
multiplier and hence the prediction limit itself, changes depending on whether one, two or three 
compliance observations will be compared against PL. More generally, the 1-multiplier is selected to 
account not only for the number of future comparisons, but also for the rules of the comparison strate'!Y 
and the number of simultaneous tests to be conducted (e.g., the number of monitoring constituents times 
the number of compliance wells). 

In the simplest case of a successive comparison of m individual future measurements against PL, 
the test is labeled as an m -of-m prediction limit. All m of the future observations need to fall within the 
prediction interval for the test to 'pass' - that is, be no greater than PL. If any one or more of the future 
values exceed the PL, the test fails and the well is deemed to have a statisticall;Jgnificant increase 
[SSI] or constitute an exceedance. 

The -multiplier appropriate for an /11 -of-111 prediction limit test is different from the multipliers 
that would be computed for other kinds of comparison rules. Another simple type is a comparison of a 
single future mean of order p. Here, p future measurements are collected and averaged before comparing 
against PL. If the order-pmean is no greater than PL, the test passes; otherwise, it fails. A test following 
this rule is labeled a 1-ofl prediction limit on a future mean . The important thing to remember is that 
the -multiplier and thus the prediction limit will differ depending on whether or not the p future values 
are first averaged or simply compared against PL one-by-one. The choice to use one rule versus the other 
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impacts the magnitude of the prediction limit and ultimately its expected statistical power and false 
positive rate. 

Other comparison rules of substantial benefit in groundwater monitoring are l-of-111 prediction 
limit on future observations or a statistic like the mean or median. This test requires at least one of 111 
successive observations or statistic to fall within the prediction interval in order to pass. Operationally 
this means that if an initial compliance well measurement is no greater than PL, the test is complete and 
no further sampling need be done. If the initial value exceeds PL, one or more of(m -1) resamples need 
to be obtained. Since these additional measurements are collected sequentially over sufficiently long 
time periods to maintain approximate statistical independence (Cha~ter 3 ), the first resample to fall 
within the prediction interval also ends the test as 'inbounds' or passing, frequently obviating the need to 
gather all 111 measurements. 

Another comparison rule of some use is known as the California strategy, first developed for the 
State of California RCRA program. The California strategy can be construed as a conditionalrule: if an 
initial future observation is no greater than PL, further comparisons are not needed and the test passes. 
However, ifthe initial observation exceeds the PL, 2-of-2 or 3-of-3 resamples al/need to notexceed the 
PL in order for the well to remain in compliance. A slight modification to this rule termed the modified 
California approach has better statistical power and false positive rate characteristics than the original 
California strategies, and is therefore included as a potential prediction limit test. 

18.1.1 BASIC REQUIREMENTS FOR PREDICTION LI Ml TS 

All prediction limits share certain basic assumptions when applied as tests of groundwater. Further, 
parametric prediction limits as presented in the Unified Guidance require the sample data to be either 
normally-distributed or normalized via a transformation. The key points can be summarized as follows: 

1. background and future sample measurements need to be identically and independently distributed 
(the i.i.d. presumption; see Cha~ter 3 ); 

2. sample data do not exhibit temporal non-stationarity in the form of trends, autocorrelation, or 
other seasonal or cyclic variation; 

3. for interwell tests (e.g., upgradient-to-downgradient comparisons), sample data do not exhibit 
non-stationary distributions in the form of significant natural spatial variability; 

4. background data do not include statistical outliers (a form of non-identical distributions); 

5. for parametric prediction limits, background data are normal or can be normalized usmg a 
transformation; and 

6. a minimum of 8 background measurements is available; more for non-parametric limits or when 
accounting for multiple, simultaneous prediction limit tests. 

The first assumption implies that background data are randomly drawn from a single common 
parent population, especially if aggregated from more than one source well. As discussed in Cha~ter 5 , 
analysis of variance [ANOVA] can be used to determine the appropriateness of pooling data from 
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different background wells. There is also a presumption that the compliance point measurements follow 
the same distribution as background in the absence of a release. 

The second assumption is corollary to the first, and requires that the background data are 
stationary over time (Chapter 3 ). This can be evaluated with one or more techniques described in 
Chapter 14 on temporal variability. These account for trends, autocorrelation, or other variation, 
perhaps by utilizing data residuals instead of the raw measurements. If the background residuals meet 
the basic points above, they can be used to construct an adjusted prediction limit. Residuals of the future 
observations would also need to be computed and compared against the adjusted prediction limit to 
ensure a valid and consistent test. 

The second assumption also requires that there be only a single source of variation in the data, 
when using the usual sample standard deviation ( s) to compute the prediction limit. If there are other 
sources of variation such as seasonal patterns or temporal variation in lab analytical performance, these 
should be included in the estimate of variability. Otherwise sis likely to be biased. One method to 
accomplish this is by use of an appropriate ANOV A model to include temporal factors affecting the 
variability (Chapter 14 ). Determination of the components of variance in more complicated models is 
beyond the scope of this guidance and may require consultation with a professional statistician. 

The third assumption requires that background and compliance point populations be identical in 
distribution, absent a release, for interwell tests. Spatial variation violates this assumption since the well 
population means (µ)will be different, making it impossible to know whether an apparent upgradient-to­
downgradient difference is attributable to a release or simply variations in natural groundwater 
concentration levels. The assumption also requires that each population share a common variance ( J 

2
). 

Tests of equal variance (i.e., homoscedasticity) when using prediction limits may be possible either by 
examining groups of historical background and compliance point data or by performing periodic tests 
when enough compliance point measurements have been accumulated to make a diagnostic test possible. 

The fourth assumption implies that background data should be screened for outliers using the 
techniques in Chapter 12 . Statistical outliers can potentially inflate a prediction limit and severely limit 
its statistical power and accuracy by over-inflating both the sample background mean ( x) and especially 
the background standard deviation (s). The Unified Guidance discourages automated removal of outliers 
from background samples, but all possible outliers should be examined to determine whether a cause can 
be identified (see discussion in Chapter 6 ). In some cases, an apparent outlier may represent a valid 
portion of the underlying background population that has not yet been sampled or observed. It also could 
represent evidence that conditions in background have changed or are changing. 

The fifth assumption of normality for parametric prediction limits can be evaluated using the 
diagnostic techniques described in Part II of the guidance. If skewed background data can be 
normalized via a transformation (e.g., the natural logarithm), the prediction limit should be constructed 
on the transformed background values. The resulting limit should either be: 1) back-transformed to the 
concentration domain (e.g., by exponentiation) when comparing future individual compliance 
observations; or 2) left in the transformed scale when compared to future mean compliance data also 
based on the same transformation. In the latter case, use of a logarithmic transformation results in 
evaluating population medians or geometric means and notthe arithmetic means. 
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When normality cannot be justified, a non-parametric prediction limit should be considered 
instead. A non-parametric limit assumes only that all the data come from the same, usually unknown, 
continuous population. Non-parametric prediction limits generally require a much larger number of 
background observations in order to provide the same level of confidence ( 1- ) as a comparable 
parametric limit. Consequently, the Unified Guidance recommends that a parametric model be fit to the 
data if at all possible. 

The last assumption concerns sufficient background sample sizes. A prediction interval can be 
computed with as few as three observations from background. However, this can result in an 
unacceptably large upper prediction limit and a test with very limited statistical power. A sample size of 
eight or more is generally needed to derive an adequate parametric prediction limit, especially if a 
retesting strategy is not employed. The exact requirements depend on the number of simultaneous tests 
(i.e., number of wells times number of constituents per well) to be made against the prediction limit and 
the type ofretesting strategy adopted (see Chapter 19 for more discussion ofretesting strategies). 

If a minimum schedule of quarterly sampling is being followed and there is only one background 
well, at least two years of data will be needed before constructing the prediction limit. 1 If data from 
multiple background wells screened in comparable hydrologic conditions can reasonably be combined 
(see Chapter 5 ), pooling background data to increase background sample sizes is encouraged. 

18.1.2 PREDICTION LIMITS WITH CENSORED DATA 

When a sample contains a substantial fraction of non-detects or left-censored measurements, it 
may be impossible to even approximately normalize the data A sample data set may originate from a 
normal or transformable-to-normal population, but the uncertainty surrounding both the censored values 
and the consequent shape of the lower tail of the distribution prevents a clear identification. If the 
apparent underlying distribution is not normal or transformable to normality, a non-parametric prediction 
limit (Section 18.3 ) should be used. 

Given that non-parametric prediction limits typically have much steeper background data 
requirements than their parametric counterparts, one remedy is to attempt a fit to normality by using 
censored probability plots (Chapter 15 ) in conjunction with either the Kaplan-Meier or robust 
regression on order s ta tis tic.s{ROS] techniques (Chapter 15 ) for left-censored data. Censored 
observations prevent a full and complete ordering of the sample, making it difficult to assess normality 
with standard probability plots (Chapter 9 ). Censored probability plots, on the other hand, only graph 
the detected values, but do so based on a partialordering and ranking of the sample. Data that appear 
distinctly non-normal on a standard probability plot (where non-detects are perhaps replaced by half their 
reporting limits [RLs] to allow plotting) can sometimes appear reasonably normal on a censored 
probability plot. Transformations can also be applied and the censored probability plot reconstructed to 
see if the data can be normalized in that fashion. 

1 The Unified Guidance does not recommend that only one background well be used in any kind of interwell or upgradient­
to-downgradient comparison. Multiple background wells are always prefelTed so that tests for spatial variability may be 
made and the exact nature of background better understood. 
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If the censored probability plot is close to linear and the sample approximately normalized, an 
estimated mean and standard deviation should be computed. These estimates will not be the same if each 
non-detect were replaced by half its RL, and the sample mean calculated from the resulting imputed 
sample. To properly account for the censoring, the estimated mean (denoted as µA ) and the estimated 

standard deviation ( { ) needs to be derived as parameters from the normal distribution providing the 
closest fit to a partial ordering of the sample (as on a censored probability plot). The Unified Guidance 
describes two slightly different techniques for accomplishing this task. 

Once µA and { estimates have been computed, an adjusted parametric prediction limit is 

constructed by substituting µA for x and { for sin the equations of Section 18.2 or Cha~ter 19 . For 

example, the adjusted equation for a general parametric prediction limit would become: 

[18.2) 

Another potential difference between the adjusted prediction limit in equation [18.2) and the 
unadjusted prediction limit in equation [18.1) is the number of degrees of freedom [df] used in selecting 
the -multiplier. Absent any censored measurements, a background sample of size n would normally 
have ( n-1) df With censoring, there is greater statistical uncertainty surrounding each non-detect than 
surrounding the detected values. Because of this, the actual degrees of freedom is somewhere between d 
(the number of detects) and (n-1) (the total sample minus one). Unfortunately, there is no 
straightforward, general method to determine the true df To be conservative, the df should be set equal 
to d, since the value of each detect is known with reasonable certainty. Setting a lower df tends to raise 
the -multiplier and thus the prediction limit over what would be selected with an uncensored sample of 
the same size. This is consistent with the greater uncertainty associated with non-detect measurements. 
However, it is at best an approximate remedy. Further consultation with a professional statistician may 
be warranted to arrive at a better choice of the degrees of freedom. 

18.2 PARAMETRIC PREDICTION LIMITS 

18.2.1 PREDICTION LIMIT FORM FUTURE VALUES 

BACKGROUND AND PURPOSE 

A prediction limit test for 111 future values is constructed so that 111 compliance point observations 
are evaluated by determining whether or not they fall within a prediction interval derived from 
background. As mentioned in Cha~ter 2, some State programs may require up to 4 successive sampling 
events per evaluation period for testing, which can be addressed by the prediction limit approach 
described below. 

If the distributions ofbackground and compliance point data are identical as assumed under the 
null hypothesis H0 , allm of the compliance point observations should be no greater than the upper 
prediction limit [PL]. If any of the future observations exceeds PL, there is statistical evidence that the 
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compliance data do not come from the same distribution as background, but instead are elevated above 
background. 2 

With intrawell comparisons, a prediction limit can be computed on historical data or intrawell 
background to contain a specified number ( 111) of future (i.e. , more recent) observations from the same 
well. If any of the future values exceeds the upper prediction limit, there is evidence of recent 
contamination at the well. 

REQUIREMENTS AND ASSUMPTIONS 

As noted in Section 18.1 , the prediction limit test on 111 future values is designated as an 111 -of-111 
test. Each of the 111 individual future observations need to be compared to the prediction limit [PL]. All 
should be no greater than PL for the test to pass. The number of future observations to be collected (111 ) 
need to be specified in advance in order to correctly compute the 1-multiplier from equation [18.1). 
Consequently, if compliance data are collected on a regular schedule, the prediction interval can be 
constructed to cover a specified time period of future sampling. Usually this period will coincide with 
the time between statistical evaluations specified in the site permit (e.g. , on a semi-annual or annual 
basis). Keep in mind also that 111 denotes the number of consecutive sampling events being compared to 
the prediction limit at a given well for a given constituent. 

As discussed in more detail in Cha~ter 6 , a new prediction limit should be constructed prior to 
each statistical evaluation for inteniel l tests, when additional background data have been collected along 
with the new compliance point measurements. Unless there is evidence of characteristic changes within 
background groundwater quality (e.g. , as demonstrated by observable trends in background), background 
data should be amassed or accumulated over time. Earlier background measurements need not be 
discarded, both to maintain an adequate background sample size and also because a larger span of 
sampling results will provide a better statistical description of the underlying background population. 
The revised prediction limit will then reflect a larger background sample size, n, but possibly the same 
number, 111 , of future values to be predicted at the next statistical evaluation. 

For intralfel l tests, the prediction limits should be revised only after intrawell background has been 
updated (Cha~ter 5 ). Such updating may not coincide with the regular schedule of statistical evaluations 
if done, for instance, every two years or so. In that case, the same intrawell prediction limit might be 
used for multiple evaluations before being revised. 

PROCEDURE 

Step 1. Calculate the sample mean x , and standard deviation s, from the set of n background 
measurements. 

Step 2. Specify the number of individual future observations (111 ) from the compliance well to be 
included in the prediction interval for an 111 -of-111 test. For an upper prediction limit with an 
overall (1-a) confidence test level for the 111 comparisons, use the equation: 

2 In the context of the Unified Guidance, rn represents the number of consecutive samples being compared in the prediction 
limit test for a given well and constituent. 
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- rI 
PL= x+ {a/m,nis~l+ ~ [18.3) 

It is assumed that exactly m consecutive sample values from the compliance point will be 
compared against the upper PL. Note that the quantile from a Student's tcdistribution used in 
equation [18.3) has two parameters: the degrees of freedom (n-1) and a joint comparison 

confidence level (1- a/m). Most Student's tcquantiles can be found directly or approximated 

through interpolation by looking in Table 16-1 ofA~~endix D . 

Note: equation [18.3) assumes the prediction limit is applied to only one constituent at a single 
well. If multiple tests need to be performed (e.g., on multiple wells and/or multiple 
constituents), the prediction limit takes the form: 

PL= x +Ks [18.4) 

where the K -multiplier is determined using one of the strategies described in Cha~ter 19 . 

If a log transformation is applied to the data to bring about approximate normality, the upper 
PL should be constructed using the log-mean ( Y) and log-standard deviation (s1), using the 

equation: 

R J 

PL = exp Ly + r 1 _ 
1
s. -

l I am ,n ) I 
[18.5) 

If multiple tests must be conducted and a log transformation has been applied to the data, the 
upper PL will have the form: 

PL = exp ~,-- + K sr ) [18.6) 

Note: other transformations besides the natural logarithm are handled in a similar manner; 
compute the prediction limit on the transformed data, then back-transform the limit to the 
original concentration scale prior to comparison with any future observations. 

Step 3. Once the prediction limit (PL) has been calculated, compare each of 111 compliance point 
future values against PL. If all of these measurements are no greater than PL, the test passes 
and the well is deemed to be in compliance. If, however, any compliance point concentration 
exceeds PL, there is statistically significant evidence of an increase over background. 

EXAMPLE 18-1 

The data in the table below represent quarterly arsenic concentrations measured in a single well at 
a solid waste landfill. Calculate an intrawell upper prediction limit for 4 future samples with 951

1 

confidence and determine whether there is evidence at the annual statistical evaluation of a possible 
release during Year 4 of monitoring. 
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I nt rawell Background 

Sampling Period Arsenic (ppb) 

Year 1 

Year 2 

Year 3 

SOLUTION 

12.6 
30.8 
52.0 
28.1 
33.3 
44.0 

3.0 
12.8 
58.1 
12.6 
17.6 
25.3 

n = 12 
Mean= 27.52 
SD= 17.10 

Unified Guidance 

Compliance Data 

Sampling Period Arsenic (ppb) 

Year 4 48.0 
30.3 
42.5 
15.0 

Step 1. First check the sample data for the key points identified in Section 18.1.1 . As an example, a 
Shapiro-Wilk test on the background data gives a test statistic of SW = 0.947. The critical 
point at the a= .05 level for the Shapiro-Wilk test on n = 12 observations is 0.859. Since the 
test statistic exceeds the critical point, there is insufficient evidence to reject an assumption of 
normality. 

Step 2. Compute the prediction interval using the raw background data. The sample mean and 
standard deviation of the 12 background samples are 27 .52 ppb and 17.10 ppb, respectively. 

Step 3. A single future year of compliance data then is compared to the prediction limit, leading to a 
test of /11 = 4 individual measurements. Setting the overall confidence level to (1-a) = 951

0, 

the probability used to determine an appropriate Student's tcquantile needs to be set to 
(1 - a/m) / = 9875ACffiel tcdistribution with probability .9875 and (n-1) = 11 

degrees of freedom in Table 16-1 of A~~endix D results in a tcquantile of 2.593. Using 
equation [18.3), the upper prediction limit can be computed as: 

Step 4. Compare the upper PL to each compliance measurement in Year 4. None of the four 
aiJsematimnta111~rinafiabsl 1lb6inw]llhat{}ramsequently, there is no statistically significant evidence of 
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18.2.2 PREDICTION LI Ml T FOR A FUTURE MEAN 

BACKGROUND AND PURPOSE 

Although prediction limits are often constructed as bounds on extreme individual measurements, 
they can also be formulated to predict an acceptable range of concentrations for the mean of p future 
values. The comparison rule for the test is then different: instead ofrequiring all of a set of m individual 
values to fall within the prediction interval for the test to pass, only the average of the (p) future values 
should not exceed the prediction limit. 

In this setting, the prediction limit for a future mean is more nearly akin to a ttest or parametric 
ANOV A, since the mean of the compliance point well is compared to a limit based on the background 
mean. The principal differences in using a prediction limit as opposed to those tests are: first that the 
variability of the compliance point population is assumed to be identical to that in background. With at 
test or ANOVA, each distinct well group contributes to the overall estimate of variability, not merely the 
background values. Secondly, t-tests and especially ANOV A are typically utilized as interwell tests, 
whereas prediction limits for a future mean can be constructed for either interwell or intrawell testing. 

The hypothesis being tested when using a prediction limit for a future mean in detection 
monitoring is exactly the same as that posited for a prediction limit for m future values, namely, H0 : 

background population is identical to compliance population (implying µ c • µBG) vs. HA: compliance 
mean is greater than background mean (i.e. , µ DG > µBG). However, the statistical properties of the two 
prediction interval formulations are somewhat different. 

For the same background sample size (n), false positive rate (a), and number of future samples 
where p = m, the power of the prediction limit for a future mean of order p with normally-distributed 
data is generally higher than for a prediction limit of the next m individual future observations. This 
suggests thatwhen feasible and appropriately implemented, a prediction limits traterc; based on future 
means may be more environmentally protective than a straterc; based on predicting individual future 
measurements . A few examples of the power differences are presented in Figures 18-1 and 18-2 . 
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Figure 18-1. Comparison of Prediction limits (BG = 8, a= .01, 1 test) 
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Even when a retesting strategy is employed, such as the I-of- 111 schemes for prediction limits on 
individual values described in Cha~ter 19 , the statistical power at best matches that of a prediction limit 
on a single future mean with no retesting, when the same numbers ofbackground and compliance point 
measurements are used. As Figure 18-2 illustrates, for some cases the l-of-111 power is comparatively 
lower. Under background conditions, l-of-111 strategies provide an earlier indication of uncontaminated 
groundwater, since a single observation can indicate uncontaminated groundwater. By contrast, all p = 

m individual samples need to be collected to form a mean of order p = m when using a prediction limit 
test for a single future mean. With a groundwater release, no such potential time savings exists. In that 
case, all p or m samples need to be collected with either type of prediction limit. 
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Figure 18-2. Comparison of Prediction limits (BG = 20, a= .05, 1 test) 
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REQUIREMENTS AND ASSUMPTIONS 

Although a prediction limit for a future mean is generally preferable in terms of statistical power 
for identifying potential contamination, it is not always practical to implement. To accommodate the 
large number of statistical tests that all but the smallest sites must contend with, the Unified Guidance 
recommends that almost any prediction limit be implemented in conjunction with a retesting strategy 
(Cha~ter 19 ). Otherwise, the prediction limit formulations provided in this chapter will likely fall short 
of providing an adequate balance between false negative and positive decision errors. Retesting with a 
prediction limit for a future mean will necessitate the collection of p additional measurements to form 
the resampled mean, whenever the initial future mean exceeds the prediction limit. Since all prediction 
limit tests assume that both the background and compliance data are statistically independent, there 
needs to generally be enough temporal spacing between sampling events to avoid introducing significant 
autocorrelation in the series of compliance point values. 
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If semi-annual evaluation of groundwater quality is required, and depending on data characteristics 
(see Cha~ter 14 discussions on temporal variability), there may not be sufficient time for collecting at 
least 4 independent groundwater measurements from a given well over a six-month period. This would 
be the minimum needed to form an initial mean and potentially a resample mean of order 2. To avoid 
this dilemma, the guidance discusses an alternate approach in Cha~ter 19 for using 1-of-l prediction 
limit tests on means. 

Like the parametric prediction limit for m future values, the prediction limit on a future mean 
assumes that the background data used to construct the limit are either normally-distributed or can be 
normalized. If a transformation is used (e.g. , the natural logarithm) and the limit built on the transformed 
values, the prediction limit should notbe back-transformed before comparing to the compliance point 
data. Rather, because of transformation bias in the mean, the compliance point data should also be 
transformed, and the future mean computed from the transformed compliance measurements. Then the 
mean of the transformed values (e.g. , log-mean) should be compared to the prediction limit in the 
transformed domain. As previously mentioned, the prediction limit in the logarithmic domain is not a 
test of the arithmetic mean, but rather of the geometric mean or median (also see Cha~ter 16 ). In most 
situations, a decision that the lognormal median at the compliance point exceeds background will also 
imply that the lognormal arithmetic mean exceeds background. 

PROCEDURE 

Step 1. Calculate the sample mean, x, and the standard deviation, s, from the set of n background 
measurements. 

Step 2. Specify the order (p) of the mean to be predicted (i.e. , the number of individual compliance 
observations to be averaged). If the background data are approximately normal and an upper 
prediction limit with confidence level (1-a) is desired, use the equation: 

- Jffl PL= x + t
1 1

s -+ -
-a,n- p n [ 18. 7) 

where it is assumed that an average of p consecutive sample values from the compliance point 
will be compared against PL. Note that the Student's tcquantile used in the equation has two 
parameters: the degrees of freedom (n-1) and the cumulative probability (1-a) . Most 
Student's tcquantile values can be found directly or approximated through interpolation by 
using Table 16-1 in A~~endix D 

Note also that equation [18.7) assumes that the prediction limit is applied to only one 
constituent at a single well. If multiple tests are to be conducted and a retesting procedure is 
employed, the prediction limit will take the form of equation [18.4) where the K -multiplier is 
determined using the tables described in Cha~ter 19 . 

Step 3. If a log transformation is applied to normalize the background sample, the upper PL on the 
log-scale should be constructed using the log-mean ( y) and log-standard deviation (s1), using 

equation [18.8): 
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- ITTl PL = r + ~ 
1
s - + -

' -a,n- ) p n [18.8) 

Note that unlike the lognormal prediction limit for future values, the limit in equation [18.8) is 
not exponentiated back to the concentration domain. Also, equation [18.8) only applies to a 
single test (i.e. , one constituent at a single well). If multiple tests are to be performed, the 
prediction limit will have the form: 

PL= y + K si [18.9) 

where the K -multiplier is again determined from the tables described in Cha~ter 19 . 

Other transformations are handled similarly: construct the prediction limit on the transformed 
background, but do notback-transform the limit. 

Step 4. Once the limit has been computed, compare the compliance point mean against the prediction 
limit. If the compliance point mean is below the upper PL, the test passes. If the mean 
exceeds the PL, there is statistically significant evidence of an increase over background. 

EXAMPLE 18-2 

The table below contains chrysene concentration data found in water samples obtained from two 
background wells (Wells 1 and 2) and a compliance well (Well 3). Compute the upper prediction limit 
for a future mean of order 4 with 991

1 confidence and determine whether there is evidence of possible 
chrysene contamination. 

Chrysene (ppb) 

Background Compliance 
Month Well 1 Well 2 Joint Well 3 

1 6.9 15.1 68.0 
2 27.3 7.2 48.9 
3 10.8 48.4 30.1 
4 8.9 7.8 38.1 

Mean 13.47 19.62 16.55 46.28 
SD 9.35 19.52 14.54 16.40 

Log-mean 2.451 2.656 2.553 3.789 
LoQ-SD 0.599 .881 .706 0.349 

SOLUTION 

Step 1. Before constructing the prediction limit, check the key assumptions. Assuming there is no 
substantial natural spatial variability and it is appropriate to combine the background wells 
into a single data pool, the algorithm for a parametric prediction limit presumes that the 
background data jointly originate from a single normal population. Running the Shapiro-Wilk 
test on the pooled set of eight background measurements gives SW = 0. 7289 on the original 
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scale and SW = 0.8544 after log-transforming the data. Since the critical point for the test at 
the a= .10 level of significance is sir .io,s = 0.851 (from Table 10-3 of A~~endix D ), the 
results suggest that the data should be fit to a lognormal model. The log-transformed statistics 
for the joint background and compliance well are also found in the above table. 

Step 2. Construct the prediction limit on the pooled and logged background observations. Then n = 8, 
the log-mean is 2.553, and the log-standard deviation is 0.706. Since there are 4 observations 
in the compliance well, take p= 4 as the order of the mean to be predicted. Then setting (1-a) 
= .99, the Student's tcquantile with (n-1) = 7 degrees of freedom and cumulative probability of 
.99 is found from Table 16-1 in A~~endix D to be 2.998. Using equation [18.8), the upper 
prediction limit on the log-scale is computed as: 

PL= 553.Q ( log(ppb) 

Step 3. Compare the log-mean of the chrysene measurements at Well 3 against the upper prediction 
limit. Since it is less than the limit, there is insufficient evidence of chrysene contamination at 
this well at the a = 0. 01 significance level. -

18.3 NON-PARAMETRIC PREDICTION LIMITS 

Two basic remedies are available when a data set cannot be even approximately normalized, often 
due to the presence of a significant fraction of non-detects. If the sample includes left-censored data 
(e.g. , non-detects), a fit to normality can be attempted using censored probability plots (Cha~ter 15 ) in 
conjunction with either the Kaplan-Meier or Robust Regression on Order Statistic.s[Robust ROS] 
techniques (Cha~ter 15 ). If a reasonable normality fit can be found, a parametric prediction limit can be 
applied. Otherwise, a non-parametric prediction limit can be considered. A non-parametric upper 
prediction limit is constructed by setting the limit as a large order s ta tis tic::;elected from background 
(e.g. , the maximum or second-largest background value). 

As with their parametric counterparts, non-parametric prediction limits have an associated 
confidence l eve! ( 1- ) which indicates the probability that the prediction interval [O, PL] will accurately 
contain all /11 of a set of /11 future values over repeated application on many similar data sets. Unlike 
parametric limits, the confidence level for non-parametric limits is not adjustable Despite being easily 
constructed for a fixed background sample size and the number of comparisons, the confidence level 
associated with the any maximal value used as the prediction limit is also fixed. To increase the 
confidence level, the primary choices are to decrease the number of future values to be predicted, or 
increase the number ofbackground observations. 

If existing background can be supplemented with data collected from other background wells (e.g., 
in interwell testing), a non-parametric test confidence level can be increased. Larger samples also 
provide a better characterization of site spatial variability. Unfortunately, it may always not be possible 
to supplement background. In these cases, another option to achieve a desired confidence level and 

18-16 March 2009 

EPAPAV0117322 



Chapter 18. Prediction Limit Primer Unified Guidance 

correspondingly control the false positive rate 1s to incorporate a retesting strategy as outlined in 
Cha~ter 19 . 

Although non-parametric prediction limits do not require a presumption of normality, other 
assumptions apply equally to both parametric and non-parametric limits. Checks should be made of 
statistical independence, identical distributions (under the null hypothesis), and stationarity over time 
and space as discussed in Cha~ter 3 and Part II of the guidance. One particular caution for non­
parametric limits is that background should ideally be screened ahead of time for possible outliers, since 
the upper prediction limit may be set to the background maximum or second highest observed value. 
Unfortunately, this often cannot be accomplished with a formal statistical test. Outlier tests are rather 
sensitive to the underlying distribution of the data. If this distribution cannot be adequately determined 
due to the presence of non-detects, an outlier test is not likely to give reliable results. 

Instead of a formal test, it may be possible to screen for outliers using box plots ( Cha~ter 12 ). 
Even with non-detects, the box plot 'whiskers' delineating the concentration range associated with 
possible outliers are computed from the sample lower and upper quartiles (i.e., the 25th and 75th 
percentiles), which may or may not be impacted by data censoring, or perhaps mildly so when 
computing the lower quartile. For large fractions of non-detects, the best that can usually be done is to 
identify a suspected outlier through close examination oflaboratory results and chain-of-custody reports. 

One of two steps can be taken in the event a possible outlier is flagged. If an error has occurred, it 
should be corrected before constructing the prediction limit. If an error is merely suspected but cannot 
be proven, the prediction limit can be constructed as another order statistic from background instead of 
the maximum (e.g. , the second largest value). This will prevent the suspected outlier from being adopted 
as the upper prediction limit without ignoring the possibility that it may be a real measurement. 

18.3.1 PREDICTION LIMIT FORM FUTURE VALUES 

BACKGROUND AND PURPOSE 

Given n background measurements and a desired confidence level (1-a) , a non-parametric 
prediction limit test for /11 future values is an 111-of- /11 comparison rule. All m future samples need to not 
exceed the upper prediction limit for the test to pass. Thus the procedure is an exact parallel to the 
parametric prediction limit for future values. Because the method is non-parametric, no distributional 
model needs to be fit to the background measurements. It is assumed that the compliance point data 
follow the same distribution as background under the null hypothesis - even if this distribution is 
unknown. Although no distributional model is assumed, order statistics of any random sample follow 
certain probability laws which allow the statistical properties of the non-parametric prediction limit to be 
determined. 

Once an order statistic of the sample data (e.g. , the maximum value) is selected as the upper 
prediction limit, Guttman (1970) has shown that the statistical coverage of the interval - that is, the 
fraction of the background population actually contained within the prediction interval - when 
constructed repeatedly over many data sets, has a beta probability density with cumulative distribution 
equal to 
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I/j, n - i + 1 )= f (n t 1) j I fi 'f j 

{ . ~ ( ·Ju V - u J du 
\n- J + 1 J J 

[18.10) 

where n =sample size, i =(rank of prediction limit value), and ( ) (nn )! 1 (n 1) (n -x2=}K x>l2 

denotes the gamma function. If the maximum is selected as the prediction limit, its rank is equal to n and 
soi = n. If the second largest value is chosen as the limit, its rank would be equal to ( n- 1) and soi = ( n-
1 ). The confidence probability for predicting that one future observation (i.e. , m = 1) from a compliance 
well does not exceed the prediction limit is equal to the expected or average coverage of the non­
parametric prediction limit. 

Because of these properties, the confidence probability for a prediction limit on one future 
measurement can be shown to equal (1-a) = j/(n+l). If the background maximum is taken as the upper 
prediction limit, the confidence level thus becomes n/(n+l). Gibbons (199la) has shown that the 
probability of having m future samples all not exceed such a limit is (1- a)= n/(n+m). More generally, 
the same probability when the ith order statistic is taken as the upper prediction limit becomes (Davis 
and McNichols, 1999): 

a __ ( + mi - 1} ( + mi - 2 )K · ( + 1} ii 
- ( ) ( mnmm)K (n 2) (nHl~·+ 

[18.11) 

Table 18-1 in Appendix lists these confidence levels for various choices of i, n, and m. The 
false positive rate (a) associated with a given prediction limit can be computed as one minus the 
confidence level. As this table illustrates, the penalty for not knowing the form of the underlying 
distribution can be severe. If a non-parametric prediction limit is to be used, more background 
observations are needed compared to the parametric setting in order to constructJ prediction interval 
irith sufficiently high confidence . As an example, to predict /11 = 2 future samples with 951

1 confidence, 
at least 3 8 background samples are needed. Parametric prediction intervals do not require as many 
background measurements precisely because the form of the underlying distribution is assumed to be 
known. 

It is possible to create an approximate non-parametric limit with background data containing all 
non-detects, by using the RL (often a quantitation limit) as the PL. A quantified value above the PL 
would constitute an exceedance. A superior procedure is recommended in this guidance, using the 
Double Quantification Rule described in Chapter 6 . 

PROCEDURE 

Step 1. Sort the background data into ascending order and set the prediction limit equal to the 
maximum, the second-largest observed value or another large background order statistic. 
Then use Table 18-1 of Appendix D to determine the confidence level (1-a) associated with 
predicting the next /11 future samples. 

Step 2. Compare each of the m compliance point measurements to the upper prediction limit [PL]. 
Identify significant evidence of possible contamination at the compliance well if one or more 
measurements exceed the PL. 
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Step 3. Because the risk of false positive decision errors is greatly increased if the confidence level 
drops substantially below a target rate of at least 901

1 to 951
1, the actual confidence level (as 

identified by equation [18.11]) needs to be routinely reported and noted whenever it is below 
the target level. 

Note that equation [ 18 .11] assumes the prediction limit is applied to only one constituent at a 
single well. If multiple tests must be conducted and a retesting procedure is employed, the 
confidence level of the prediction limit must be determined using the tables described in 
Cha~ter 19 . 

EXAMPLE 18-3 

Use the following trichloroethylene data to compute a non-parametric upper prediction limit for the 
next /11 = 4 monthly measurements from a downgradient well and determine the level of confidence 
associated with the prediction limit. 

Tri chloroet hylene Concentrations (ppb) 

Background Wells Compliance 
Month BW-1 BW-2 BW-3 CW-4 

1 <5 7 <5 
2 <5 6.5 <5 
3 8 <5 10.5 7.5 
4 <5 6 <5 <5 
5 9 12 <5 8 
6 10 <5 9 14 

SOLUTION 

Step 1. Determine the background maximum and use this value to estimate the non-parametric 
prediction limit. In this case, the maximum value of the n = 18 pooled background 
observations is 12 ppb. Set PL = 12 ppb. 

Step 2. Compare each of the downgradient measurements against the prediction limit. Since the value 
of 14 ppb for Month 6 exceeds PL, conclude that there is statistically significant evidence of 
an increase over background at CW-4. 

Step 3. Compute the confidence level and false positive rate associated with the prediction limit. 
Since four future samples are being predicted and n = 18, the confidence level equals n/(n + 111) 

= 18/22 = 821
1. Consequently, the Type I error or false positive rate is at most (1 - 0 .82) = 

l 81
1 and the test is significant at the a= 0.18 level. This means there is nearly a one in five 

chance that the test has been falsely triggered. Only additional background data and/or use of a 
retesting strategy would lower the false positive rate. -
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18.3.2 PREDICTION LI Ml T FOR A FUTURE MEDI AN 

BACKGROUND AND PURPOSE 

A prediction limit for a future median is a non-parametric alternative to a parametric prediction 
limit for a future mean (Section 18.2.2 ) when the sample cannot be normalized. In groundwater 
monitoring, the most practical application for this kind oflimit is for medians of order 3 (i.e., the median 
of three consecutive measurement values), although the same procedure could theoretically be employed 
for medians of any odd order (e.g. , 5, 7, etc.). The comparison rule in this case is that the test passes only 
if the median of a set of 3 compliance point measurements does not exceed the upper prediction limit. 
Note that this is also the same as a 2-of-3 test, whereby the well is deemed in compliance if at least 2 of 
3 consecutive observations fall within the prediction interval. Therefore, only 2 independent 
observations will generally be needed to complete the test at uncontaminated wells. The third 
measurement will be irrelevant if the first two pass and so will not need to be collected. 

Given n background measurements and a desired confidence level (1-a) , a non-parametric 
prediction limit for a future median involves a confidence probability that the median of the next p future 
observations will not exceed the limit. As noted in Section 18.3.1 , order statistics of any random sample 
follow certain probability laws. In particular, the statistical coverage ( C ) of a prediction limit estimated 
by the jth order statistic (that is, the jth largest value) in background will follow a beta dis tributionwith 
parameters j and (n+ 1-j). Following the notation of Davis and McNichols (1987), the conditional 
probabilitythat the median of 3 independent future values will not exceed the non-parametric prediction 
limit can be shown to equal 

Pr tuture median inbounds IX j 
11 

}= 3C 2 
- 2C 3 [18.12) 

where X j:n denotes that the prediction limit equals the jth largest order statistic m a sample of n 
observations and a conditional probability denotes the chance that an event will occur given the 
observance of another event (in this case, after having observed X j:n). The (unconditional) confidence 
probability (1-a) can then be derived by taking the expected value of equation [18.12) with respect to 
the random variable C . Using standard properties of the beta distribution, this probability becomes: 

[18.13) 

Thus the confidence level associated with a prediction limit for a future median of order 3 depends 
simply on the sample size ofbackground (n) and the order statistic selected as the upper prediction limit 
(j). Table 18-2 in A~~endix D provides values of the confidence level for various n and choices of the 
order statistic. Like the non-parametric prediction limit for /11 future values, ease of construction comes 
with a price. More background measurements are required to achieve the same levels of confidence 
attainable via a parametric prediction limit for a future mean. For instance, to achieve 991

1 confidence in 
predicting a median of order 3 in a single test, at least 22 background observations are needed if the 
maximum is selected as the upper prediction limit, and at least 40 background observations are needed if 
the prediction limit is set to the second largest measurement. Parametric prediction intervals do not 
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require as many background samples precisely because the form of the underlying distribution is 
assumed to be known. 

REQUIREMENTS AND ASSUMPTIONS 

Once an order statistic (of rank j) is selected as the upper prediction limit, the confidence level is 
fixed by the number ofbackground samples (n). The confidence level can only be increased by enlarging 
background. However, equation [18.13) is only applicable for the case of predicting a future median of a 
single cons tituentat a single we! l. To account for multiple tests and to incorporate a retesting strategy 
(both of which are usually needed), the specific strategies and tables of confidence levels presented in 
Cha~ter 19 should be consulted. 

PROCEDURE 

Step 1. Sort the background data into ascending order and set the upper prediction limit [PL] equal to 
one of the following: the background maximum, the second largest value, or another large 
order statistic in background. If the largest background measurement is a non-detect, set an 
approximate upper prediction limit as the RL most appropriate to the data (usually the lowest 
achievable quantitation limit [QL]). 

Step 2. Compute the median of the next three consecutive compliance point measurements. Compare 
this statistic to the upper prediction limit. Identify significant evidence of possible 
contamination at the compliance well if the median exceeds PL. If PL equals the RL, identify 
an exceedance, if the median is quantified above the reporting limit. 

Step 3. Based on the background sample size ( n), use Table 18-2 of A~~endix D to determine the 
confidence level ( 1-a) associated with predicting the median of the next p = 3 future 
measurements. Because the risk of false positive errors is greatly increased if the confidence 
level drops much below a targeted rate of at least 901

1 to 951
1, the actual confidence level (as 

identified in equation [18.13)) should be routinely reported and noted whenever it is below the 
target level. 

Note that equation [ 18 .13] assumes the prediction limit is applied to only one constituent at a 
single well. If multiple tests are conducted and a retesting procedure is employed, the 
confidence level of the prediction limit needs to be determined using the tables described in 
Cha~ter 19 . 

EXAMPLE 18-4 

Use the following xylene background data to establish a non-parametric upper prediction limit for 
a future median of order 3. Then determine if the compliance well shows evidence of excessive xylene 
contamination. 
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Xylene Concentrations (ppb) 

Background Compliance 
Month Well 1 Well 2 Well 3 Well 4 

1 <5 9.2 <5 
2 <5 <5 5.4 
3 7.5 <5 6.7 
4 <5 6.1 <5 
5 <5 8.0 <5 
6 <5 5.9 <5 <5 
7 6.4 <5 <5 7.8 
8 6.0 <5 <5 10.4 

SOLUTION 

Step 1. The maximum value in the set of pooled background measurements is 9.2. Assign this value 
as the non-parametric upper prediction limit, PL = 9.2. 

Step 2. Compute the median of the three compliance measurements. This statistic equals 7.8 ppb. 
Since the median does not exceed PL, there is insufficient evidence of xylene contamination at 
Well 4, despite the fact that the maximum at Well 4 is larger than the maximum observed in 
background. 

Step 3. Compute the confidence level and false positive rate associated with this prediction limit. 
Given that n = 24 and the order statistic selected is the maximum (i.e., j = n), use Table 18-2 
in A~~endix D to determine that the confidence level for predicting a future median of order 3 
equals 99.1 1

1 and therefore the Type I error or false positive rate is at most 0.91
1. 
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CHAPTER 19. PREDICTION LIMIT STRATEGIES WITH 
RETESTING 
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19.4.2 Testing Future lfedians ................................................................ ................................................... 19-31 

This chapter is a core part of the recommended statistical approach to detection monitoring. Even 
the smallest of facilities will perform enough statistical tests on an annual basis to justify use of a 
retesting strategy. Such strategies are described in detail in this chapter in conjunction with prediction 
limits. First, the Unified Guidance considers the concept and computation of site-wide false positive 
rates [SWFPR]. Then different retesting strategies useful for groundwater monitoring are presented, 
including: 

alllmetric prediction limits with retesting (Section 19.3), and 

Non-parametric prediction limits with retesting (Section 19.4) 

19. 1 RETEST! NG STRATEGIES 

Retesting is a statistical strategy designed to efficiently solve the problem of multiple comparisons 
(i.e., multiple, simultaneous statistical tests). An introduction to multiple comparisons is presented in 
Chapter 6. At first glance, formal retesting seems little different than a repackaged form of verification 
resampling, a practical technique used for years to double-check or verify the results of initial 
groundwater sampling. Indeed, all retesting schemes are predicated on the idea that when the initial 
groundwater results indicate the presence of potentially contaminated groundwater, one or more 
additional groundwater samples should be collected and tested to determine whether or not the first 
results were accurate. 

The difference between formal retesting schemes and verification resampling found in the 
regulations is that the former explicitly incorporates the resample(s) into the calculation of the statistical 
properties of the overall test. A statistical "test" then needs to be redefined to include not only the 
statistical manipulation of the initial groundwater sampling results, but also that for any further 
resamples. Both the initial samples and the resamples are integral components of any retesting method. 

The principal advantage of retesting is that very large monitoring networks can be statistically 
tested without necessarily sacrificing either an acceptable false positive rate or adequately high effective 
power. Data requirements for a typical retesting scheme are often less onerous than those required for an 
analysis of variance (ANOVA). Instead ofhaving to sample each well perhaps four times during any 
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given evaluation period, many of the retesting strategies discussed below involve a minimum of one 
new sample at each compliance well. Resamples are collected only at wells where the initial results 
exceed a limit, and no explicit post-hoc testing of individual wells is necessary as with ANOVA in order 
to identify a contaminated well. 

Since a statistical test utilizing retesting is not complete until all necessary resamples have been 
evaluated, it is important to outline the formal decision rules or scheme associated with each retesting 
strategy. Retesting schemes presented in the Unified Guidance fall into two types: 1-of-m and the 
modified California approach. The 1-of-m approach was initially suggested by Davis and McNichols 
(1987) as part of a broader method termed "p-of-m." The I-of- m scheme assumes that as many as m 
samples might be collected for a particular constituent at a given well, including the initial groundwater 
sample and up to ( m-1) resamples. 

I-of-m schemes are particularly attractive as retesting strategies. If the initial groundwater 
observation is in-bounds, the test is complete and no resamples need to be collected. Only when the first 
value exceeds the background prediction limit, does additional sampling come into play. For practical 
reasons, only 1-of-m schemes with m no greater than 4 are considered in the Unified Guidance. A l-of-4 
retesting plan implies that up to 4 groundwater measurements may have to be collected at each 
compliance well, including the initial observation and 3 possible resamples. For the test to be valid, all 
of these sample measurements need to be statistically independent. This generally requires that sufficient 
time elapses between res ample collection so that the assumption of statistical independence or lack of 
autocorrelation is reasonable (see the discussion in Chapter 14). Because many groundwater evaluations 
are conducted on a semi-annual basis, three will generally be a practical upper bound on the number of 
independent resamples that might be collected. Thus the l-of-2, l-of-3, and l-of-4 retesting schemes are 
included below. 

The second type of retesting scheme is known as the modified California approach. The decision 
rules for this test are slightly different from the 1-of-m schemes, although the test passes as before if the 
initial groundwater measurement is inbounds. If it exceeds the background limit, two of the three 
resample need to be inbounds for the test to pass. The modified California strategy thus requires a 
majority of the resamples to be inbounds for a compliance well test to be deemed 'in bounds'. A l-of-4 
scheme could have both the initial value and the first two resamples be out-of-bounds, yet pass the test 
with an inbounds result from the third resample. Although the modified California test appears to be 
more stringent, the prediction limit for a l-of-4 test under the same input conditions will be lower and 
hence be more likely to trigger single comparison exceedances. With the prediction limits correctly 
defined, both will have identical false positive errors for any specific monitoring design. The guidance 
also provides the same four non-parametric versions of the 1-of-m and modified California tests for 
future values. 

A useful vanat10n on the 1-of-m retesting scheme for individual measurements is the 1-of-m 
strategy for means or medians. Instead of testing a series of individual values, a series of means or 
medians of order p is tested. The order of the mean or median refers to the number of individual 
measurements used to compute the statistic. For example, 1-o f-2 retesting with means of order 2 requires 
that a pair of initial observations be averaged and the resulting mean compared against the background 
limit. If that initial mean is out-of-bounds, a second pair of observations (i.e., two resamples) would be 
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collected and averaged to form the resample mean. The test would fail only if both the initial mean and 
the resample mean exceeded the background limit. 

Retesting schemes for means or medians have steeper data requirements than retesting strategies 
for individual measurements and may not be practical at many sites. Nevertheless, the statistical 
properties (e.g., power and false positive rate) associated with the testing of means and medians are 
superior to comparable plans on individual observations. The Unified Guidance provides five mean 
retesting plans: l-of-1, l-of-2, or l-of-3 for means of order 2; and 1-of-l and l-of-2 for means of order 
3. The guidance also provides 1-of-l and l-of-2 tests of medians of size 3 as non-parametric options. 

These plans were chosen to limit the maximum possible number of distinct and independent 
sampling measurements per compliance well during a single evaluation period to six. In fact, the data 
requirements vary substantially by scheme. With means of order 2, the l-of-1 plan requires a maximum 
of two new sample measurements; the l-of-2 plan requires as many as four; while only the l-of-3 plan 
might need a total of six. For means of order 3, the l-of-1 plan requires three new measurements to form 
the single mean; the l-of-2 plan might require up to six. But for higher order 1-of-m mean or median 
tests, only the initial samples may be needed to identify a 'passing' test outcome under most background 
conditions. 

The three 1-of-l mean and median plans provided in the guidance are technically not retesting 
schemes. The decision rule for these plans merely requires a comparison of a single mean or median 
against the background limit. If the initial mean or median comparison is inbounds, the test passes. If 
not, the test fails. The fact that each average is computed from multiple individual measurements implies 
that an implicit retest or verification resampling is built into these strategies. The statistical properties of 
the l-of-1 plans can often be better than comparable 1-of-m schemes for individual values, with fairly 
similar sampling requirements. 

The Unified Guidance provides l-of-1 and l-of-2 non-parametric prediction limit tests for future 
medians of order 3. By 'median of order 3', it means that the median or 'middle value' ofa set of three 
consecutive sampling events. In the 1-of-2 case, the test passes if either the initial median is inbounds or, 
if not, when the resample median is inbounds. The l-of-1 scheme does not involve any resampling, but 
does require at least two distinct sampling measurements to determine whether the initial median is 
inbounds. 1 

As discussed in Chapter 6, proper design of a groundwater detection monitoring program will 
generally require an initial choice of a retesting scheme before future or compliance sampling data have 
been collected. As a practical matter, sample collection should be spaced far enough apart in time to 
ensure that any potentially needed resamples are statistically independent. Thus, the maximum number 
of resamples need to be known in advance in order to structure a feasible sampling plan for a particular 
retesting strategy. Each retesting scheme also involves a different set of decision rules for evaluating the 
status of any given compliance well. The rules will determine how the background limit will be 
computed. Given the same background sample and group of compliance wells, different retesting 
schemes lead to different background limits on the same data. 

1 As noted in Chapter 18, the l-of-1 retesting scheme for medians of order 3 is equivalent as a decision rule to a 2-of-3 
scheme for individual measurements. 
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If parametric prediction limits are used, the general formula for the limit introduced in Chapter 18 
1s x + KS . The -multiplier and thus the prediction limit will vary depending on which 1-of-m or 
modified California plan is chosen. The -multipliers also depend on the monitoring evaluation schedule 
in place at the facility. In typical applications, it is expected that the background sample used in 
statistical evaluations from any given year will either be static or substantially overlap from one 
evaluation to the next. The same background observations are likely to be utilized or will substantially 
overlap if newer background data are added to the existing pool. Since at least a subset of the 
background measurements will be commonly employed in all the evaluations, there will be a statistical 
dependence exhibited between distinct evaluations (see Section 19.2 below). The number of evaluations 
per year against a common background will affect the correct identification of prediction limits. 
Consequently, the evaluation schedule (i.e., annual, semi-annual, quarterly) also needs to be known or 
specified in advance. 2 

19. 2 COMPUTING SI TE-WI DE FALSE POSI Tl VE RATES [ SWFPR] 

As discussed in Chapter 6, the fundamental purpose of detection monitoring is to accurately 
identify a significant change in groundwater relative to background conditions. To meet this objective, 
statistical monitoring programs should be designed with the twin goals of ensuring adequate statistical 
power to flag well-constituent pairs elevated above background levels and limiting the risk off alsely 
flagging uncontaminated wells across an entire facility. The latter is accomplished by addressing the site­
wide false positive rate [SWFPR]. Both goals contribute to accurate evaluation of groundwater and to 
the validity of statistical groundwater monitoring programs. 

Retesting significantly aids this process of meeting both criteria. However, it can be much easier 
to design and implement an appropriate retesting scheme if one understands how the SWFPR is derived. 
The SWFPR is based on the assumptions that no contamination is actually present at on-site monitoring 
wells, and that each well-constituent pair in the network behaves independently of other constituents and 
wells from a statistical standpoint. If Q denotes the probability that a particular well-constituent pair will 
be falsely declared an exceedance (a false positive error), the probability of at least one such false 
positive error among r independent tests is given by: 

a= SWFPR = 1- Q- QJ [19.1) 

(1-Q) equals the chance that the test will correctly identify the well-constituent pair as 'inbounds.' The 
value of Q itself will depend on the type ofretesting scheme being used. 

2 The Unified Guidance distinguishes between the statistical eraluation (or testing) schedule and the sampling schedule. 
Regularly scheduled sampling events might occur quarterly, even though a statistical evaluation of the data only occurs 
semi-annually or annually. Further, resamples do not constitute regular sampling events, since they are only collected at 
wells with initial exceedances, but they are associated with the data for a particular evaluation. By separately identifying 
the evaluation schedule, there is 1) less confusion about the role ofresamples in the testing process, and 2) opportunity to 
design monitoring programs, so as to allow for multiple individual observations to be collected prior to each evaluation. 
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Consider a l-of-3 retesting plan for future observations. A false positive at a given well­
constituent pair will be registered only if all three observations - the initial groundwater measurement 
and two resamples - exceed the background prediction or control limit. If OJ represents the probability 
that one of these observations exceeds the background limit, Q can be calculated as 01 x 01 x OJ (since 
the initial measurement and resamples are statistically independent) and the SWFPR as: 

a= SWFPR = 1- ~- 01 
3

) [19.2) 

By setting the target site-wide a equal to 0.10 and solving for 01 , one could potentially compute the 
individual comparison false positive rate ( acomp = 01 ) associated with any single comparison against the 
background limit. This would identify the individual per-comparison confidence level (1- acomp) 

necessary to compute the background limit in the first place. 3 If the background limit is computed as a 
prediction limit for the next single future measurement (i.e., m = 1 in a 1-of-m scheme), then OJ equals 
the probability that a single new observation (independent of background) exceeds the prediction limit, 
and (l-01) equals the confidence level of that prediction limit. Further, since 01 can be obtained from 
equation [19.2) as: 

Ol = [19.3) 

the upper prediction limit for a site involving 500 tests (for instance, 50 wells and 10 constituents per 
well) and 20 background samples could be computed using an individual, per-comparison confidence 
level of 

1! fi "(1500 
1- Ol = 1- ~1- v- .10) = 1- .0595 = 94.0% 

leading to a final prediction limit of 

- r-1 
PL= x + t 94• 19s~l + W 

where x and s are the background sample mean and standard deviation. 

Unfortunately, certain statistical dependencies render the foregoing calculations somewhat 
inaccurate. Whether or not a resample exceeds the background limit for any constituent depends partly 
on whether the initial observation for that test also eclipsed the limit. This is because the same 
background data are used in the comparison of both the initial groundwater measurement and the 
resamples. This creates a statistical dependence between the comparisons, even when the compliance 
point observations themselves are statistically independent. If the background data sample mean happens 
to be low relative to the true population mean, the background limit will tend to be low. Each of the 
compliance point observations (whether the first measurement or subsequent resamples) will have a 

3 Note that comp does not represent the false positive rate for the complete l-of-3 test, but is being treated for the sake of 
argument as a one of a series of 3 individual and independent tests. 
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greater than expected chance of exceeding it. Likewise, if the background sample mean is substantially 
higher than the population mean, the background limit will tend to be high, resulting in a lower-than­
expected chance of exceedance for each of the compliance measurements. 

A similar dependence occurs for each well-constituent pair tested against a single background 
across evaluation periods (see discussions in Chapter 5 and Section 19.1 ). A further dependence occurs 
when well-constituent pairs from many compliance wells are compared to a common interwell 
background. The tests during each statistical evaluation again share a common (or nearly common) 
background, thus impacting the individual test false positive rate ( test) and the SWFPR ( ) in turn. 
Three common evaluation strategies are considered in the Unified Guidance: quarterly, semi-annual, and 
annual. The SWFPR is computed on a cumulative, annual basis, with the assumption that background 
and the associated background limit will not be updated or recomputed (especially for intrawell tests) 
more often than every one to two years. 4 

These dependencies between successive comparisons and tests against the background limit during 
retesting means that the derivation above will generally not result in a background limit with the targeted 
annual SWFPR of 10%. The actual false positive rate ( ) will be somewhat higher and can be 
substantially higher ifthe background sample size (n) is small to moderate (say less than 50 samples). In 
part, this is because the correlation between successive comparisons against a common background limit 
is on the order ofl/(1+ n). That is, the smaller the background size, the greater the correlation between 
the resamples and test comparisons. The impact on the SWFPR is also greater if this dependence is 
ignored. 

Fortunately, as Gibbons ( 1994) has noted, the solution suggested in the previous example will be 
approximately valid for large background data sets (say n > 50), since then the correlation between 
successive resamples and/or tests is minimal. In fact, an approximate solution for the modified 
California and more general 1-of-m retesting schemes can also be derived. In the case of 1-of-m 

schemes, the probability Q of a false positive (form= 1 to 4) is OJ "',leading to a SWFPR of: 

a= SWFPR = 1- ~-OJ"') [19.4) 

Solving for l in equation [ 19 .4] leads to an approximate individual comparison false positive rate 
( comp = l ) of: 

OJ = [19.5) 

For the modified California plan, a false positive for a given well-constituent pair during a single 
evaluation will be registered only if both the initial measurement and at least two of three resamples are 

4 Even with these assumptions, not all the statistical dependence will be accounted for at every site or for all constituents. 
Even when background is updated with new measurements, some of the already existing background values are likely to be 
used in re-computing the background limit. Some well-constituent pairs may be correlated, contradicting the assumption of 
independence between tests at the same well or for the same constituent at different wells. The Unified Guidance also does 
not presume to compute the SWFPR for other multi-year periods or for the life of the facility. 
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out-of-bounds (i.e., exceed the background limit). Consequently, the probability Q of a false positive for 
that pair may be expressed as: 

[19.6) 

As before, OJ represents the probability of any single observation exceeding the background limit. Both 
the initial and any resample comparisons against the limit are assumed to be statistically independent. 
Given Q, the approximate overall false positive rate then becomes: 

1-, 
a= SWFPR = 1- 11-0J 3(4- 30J) [ 19. 7) 

Since OJ will always be small in practice, one can usually ignore the term OJ 
4 when expanding the right­

hand side of equation [19.7). Then the approximate SWFPR becomes: 

[19.8) 

Leading to a solution for OJ: 

[19.9) 

which can again be used to construct a background limit for a single new observation. 

As an example, if the target SWFPR is 10% and one must test r = 200 comparisons usmg the 
modified California plan, OJ would become: 

If the background limit is a prediction limit for the next future value, a confidence level of approximately 
94.9% would be needed to achieve the desired overall false positive rate of 10%. This assumes that the 
background sample size is sufficiently large (say n > 50) to make the correlation between retests 
negligible. In similar fashion, the respective single comparison error rates for the l-of-2 through l-of-4 
tests of future observations in this example would respectively be: 1 = .0229, .0808, and .1515. 

19.2.1 BASIC SUBDI VI SI ON PRINCIPLE 

The previous section highlighted certain dependencies in statistical tests due to comparisons of one 
or more samples or sample sets against a common background. In the sitewide design of a facility 
detection monitoring system, the overall target design SWFPR is proportionately divided among all 
relevant tests conducted in an annual period. Depending on the type of testing (e.g., interwell versus 
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intrawell, or a parametric versus non-parametric), the target error rates for a portion of the total set of 
potential tests may need to be calculated. 

Identifying false positive target rates is important when considering non-parametric prediction 
limit tests. The cumulative target error rate for a group of annual tests against a single constituent is 
needed to compare with the achievable levels in Tables 19-19 through 19-24 in Appendix D. The 
latter achievable rates take into account the dependencies previously discussed. -multiple Tables 19-1 
to 19-18 in Appendix D for parametric prediction limit tests have already made use of target false 
positive rate calculations which are generally not needed for identifying the appropriate multipliers. The 
various dependencies against a common background are accounted for in the -multiple tables to meet 
the nominal target rates. R-script software for certain parametric prediction limit tests discussed in a 
following section and in Appendix C also makes use of a target per-test false positive error rate as input. 

In assigning target rates, the Unified Guidance uses a basic subdivision principle which makes 
certain assumptions. First and foremost, it is assumed that the total suite of tests can be subdivided into 
mutually exclusive, independent 5 tests. Each relevant annual statistical test is assigned the same single 
test error rate (1 rest). Using the properties of the Binomial distribution, the target single test error rate can 
be obtained using equation [ 19 .1 OJ for r total annual tests. The total number of annual tests r is the 
product of the number of compliance wells ( w ), the number of valid constituents ( c ), and the number of 
evaluations per year (nE) or r = w x c x nE, with l = SWFPR: 

a test (l l-=a tr [19.lOJ 

Then a cumulative false positive rate can be assessed for any appropriate subset of tests. This 
principle would apply, for instance, if there is more than one regulated unit at a site and each regulated 
unit can be treated independently. A consistent portion of the overall targeted false positive rate would 
be assigned to each regulated unit ( unit), using a rearrangement of equation [ 19 .1 OJ. If a facility with 
three units B, C, and D had 120 total annual tests (b - c - d = 120 = r), the cumulative target error rate 

for Unit B would be: a unitB (l l-=a test )b and similarly for Units C and D. These three cumulative 

error rates will approximately (but not exactly) sum to a total sitewide value close to the SWFPR. 
However, as joint independent tests taken together, the annual SWFPR is in fact exactly I 0%. The 
Bonferroni assumption makes use of the approximately linearity of such error rates for SWFPR 
calculations (discussed below). 

The ways in which the overall SWFPR might be partitioned will vary with each site, considering 
units, types of tests, number of wells, constituents and evaluations per year. If unit-specific cumulative 
false positive rates were established, the group of tests associated with each monitoring constituent 
within each unit might be separately considered. Each group might potentially be further subdivided 
into intrawell versus interwell tests, or prediction limits versus control charts, etc., assuming a mixture of 
statistical methods is employed. By using the subdivision principle in a consistent way, the targeted 
SWFPR can be accurately maintained. 

5 The Unified Guidance does not presume that every statistical test is in fact independent. Tests or groups are treated as if 
independent, however, to allow the computation of nominal target false positive rates and/or to be consistent with 
regulatory constraints (e.g., all constituents must be tested separately). 
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One important use when calculating SWFPR rates is to account for multiple constituents. In 
particular, non-parametric test theory is applied to only a single constituent at a time. Since each 
constituent has its own set ofbackground data and presuming the constituents behave independently of 
one another, the dependence caused by using a common background pertains only to those comparisons 
made against the background for that constituent. To clarify this concept, suppose a total set of r tests 
consists of c separate chemicals each monitored at w wells annually (i.e., r = c x w x nE and nE = 1 ). For 
each constituent, the dependence caused by a common background only applies to the w comparisons 
(one for each well) made for that monitoring parameter. This means that the overall target a = SWFPR 
needs to be apportioned into a fraction for each constituent, called the per-constituent false positive rate 
or c· This can be done using the Binomial formula based on the single test error rate for w wells as: 

ac (l l-=a
1
est) 11

)!' or by partitioning the overall 1 to each constituent c: 

a c (l l-=a )11
c 

The two calculations are equivalent under these conditions, with the latter equation somewhat 
easier to use. 

A similar situation occurs at sites requmng a combination of interwell and intrawell tests. 
Computation of the SWFPR can be appropriately handled using the basic subdivision principle. For 
interwell tests, measurements collected at each compliance well are compared against a common 
interwell background, creating a degree of statistical dependence not only between successive individual 
test comparisons (i.e., initial sample and any resamples) at a given well, but also between tests at 
different compliance wells. With intrawell tests, each well supplies its own background. This implies 
that the component ofbetween-well test dependence is eliminated, changing the way K-multipliers for 
intrawell background limits with retesting are computed. 

For a given set of r well-constituent pairs, l tests to be conducted on an interwell basis, and the 
remaining ( r - /) tests conducted as intrawell, two cumulative false positive rates need to be computed. 

The single test false positive error rate test approach can be used: ainter (l l-=a 1esi )1 for the subset of l 

interwell tests, and aintra (ll-=a 1esJ /r for the subset of r- l intrawell tests, in order to correctly 

maintain the SWFPR equal to a. A somewhat more direct approach can also be 
used: a inter (l l-=a) /rz for the interwell tests and a intra (l l-=a )< · )/rbfor the intrawell tests. The 

two sets of equations are consistent. 

In general, the subdivision principle works as follows. If a group of r tests with targeted false 
positive rate, , is divided into s distinct and mutually exclusive independent subsets, the false positive 
rate for each subset ( sub) can be computed as: 

a = 1- (1- a "{Is 
sub } 

[19.11) 
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The basic subdivision principle does not guarantee that the resulting detection monitoring program 
will have sufficient effective power to match the EPA reference power curve (ERPC). The foregoing 
calculations merely point to the correct overall false positive rate. 

As discussed in Section 6.2.2 of Chapter 6, a simpler approach would be to partition the overall 
SWFPR among a facility's annual number of tests, and can make use of the Bonferroni approximation. 
With low false positive rates characteristic of detection monitoring design, the total SWFPR can be 
divided by the number of annual tests for any of the various combinations of constituents, separate units, 
or interwell versus intrawell tests. The Bonferroni approach results in slightly different false positive 
values than by directly using the Binomial formula, as described above. 

As an overall example, assume a facility with w = 20 wells monitored twice per year (nE = 2) for c 
= 8 constituents Further, assume that 5 of the constituents can be monitored interwell and 3 need to be 
handled as intrawell comparisons. Non-parametric prediction limits will be considered for all tests. 
Calculate the target cumulative false positive error rates for interwell and intrawell comparisons, with 
the SWFPR = l = .1. 

This site has a total of r = wxcxnE = 20x8x2 = 320 tests per year. For the five interwell 
constituents, there are 20 x2 x5 = 200 tests, with 20 x2 x3 = 120 intrawell tests. Each of the 5 interwell 
constituents will have 20 x2 = 40 tests against a common background, while 2 semi-annual sample tests 
will be made against each of the 20 x3 = 60 intrawell backgrounds. 

From equation [ 19 .1 OJ, the single test false positive error rate 1s: a test (11-=a JI,. 
( - 1 )Yt0 

= .0003292 . Each set of interwell constituent tests will have a cumulative false positive 

error rate c for the 40 annual tests as: ac (11-=a)lfc = ( - )/
81 = 01308.1.lNote that all 8 

constituents are used in the equation, since the same false positive error rate is uniformly applied to all 
distinct subgroup tests. The result can be obtained using the single test error rate equation: 

ac (l l-=atest) l1J9 ( -=JHD03292 )4° = 01308 .. This target value would be used to compare with 

achievable non-parametric test error rates for the same input conditions. The cumulative interwell error 

rate for all five constituents can be calculated as: a int er (ll-=a Jc ( -= 01308.J1 = 06 3 71.. 

For the intrawell tests, the simplest approach uses the single test error rate for two tests: 

a 2 intra (ll-=atesJ l1J9 ( -=.IDID03292 }
21

= .0006583 . This would be the cumulative error rate to 

consider with non-parametric intrawell tests. The overall intrawell cumulative error rate for the sixty 

tests would then be: a 60 intra (ll-=a 2 intrJ cw ( -=.IDID06583 )6° = 03873 .. 

If the two overall interwell and intra well cumulative error rates were added, the sum is .1024, quite 
close to the nominal 10% SWFPR. It is exactly that value when considered jointly. By comparison the 
single test error rate using the Bonferroni approximation would be .1/320 = .0003125, while the exact 
Binomial value is .0003292. The estimated interwell cumulative error for a single constituent would be 
40 times the single test value or .0125 (versus the calculated .01308). For many non-parametric test 
considerations, these differences are relatively minor. 
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19.3 PARAMETRIC PREDICTION LIMITS WITH RETESTING 

BACKGROUND AND PURPOSE 

Upper prediction limits for m future observations and for future means were described in Chapter 
18. Applied to a network of statistical comparisons in detection monitoring, these procedures can be 
considered an extension to Dunnett's multiple comparison with control [MCC] procedure (Dunnett, 
1955). These procedures explicitly incorporate retesting that is applicable to a wider variety of cases 
than addressed by Dunnett. 

Retesting can be incorporated with either interwell or intrawell prediction limits. Depending on 
which approach is adopted, there is a distinct difference in the L-multipliers of the general prediction 
limit formula. In an interwell retesting strategy, there are at least two forms of statistical dependence that 
impact the SWFPR. One is that each initial measurement or resample at a given compliance well is 
compared against the same background. A second is the dependence among compliance wells and 
number of annual evaluations, all of which are compared against a common upgradient background. In 
intrawell retesting, this second form of dependence is either essentially eliminated if there is only one 
annual statistical evaluation or else substantially reduced in the event of multiple evaluations. 6 The 
remaining dependence is among successive resamples at each well. 

To account for the basic differences between interwell and intrawell prediction limit tests, an 
extensive series of tables is provided in Appendix D listing a wide combination of background sample 
sizes, numbers of wells, numbers of constituents, and distinctions between interwell and intrawell tests. 
In conjunction with an evaluation schedule (i.e., annual, semi-annual, or quarterly), these tables can be 
used to design and implement specific parametric retesting strategies in this chapter. All of the L_ 
multiplier tables for parametric prediction limits are structured to meet an annual SWFPR of 10% per 
year and to accommodate groundwater networks ranging in size from one to 8,000 total statistical tests 
per year. The Unified Guidance tables are more extensive than similar tables in Gibbons (1994b ). 
Further, each table is designed to indicate the effective power of the -multiplier entries. 

If a particular network configuration is not directly covered in the Appendix D tables, two basic 
options are available. First, bilinear interpolation can be used to derive an approximate -multiplier (see 
below for guidance on table interpolation). Second, the free-of-charge, open source, and widely available 
R statistical programming package (www.r-project.org) can be employed to compute an exact 
multiplier. Further instructions and the two template codes used to compute the Unified Guidance L_ 
multiplier tables are provided in Appendix C. After installing the R package, these template codes can 
be run by supplying specific parameters for the network of interest (e.g., number of wells, constituents, 
background sample size, etc.). Some familiarity with properly installing a program like R is helpful. 
Appendix C explains how to execute a pre-batched set of commands. No other technical programming 
experience is needed. 

6 If multiple evaluations occur each year, new compliance samples each evaluation period are tested against the common 
intrawell background. 
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REQUIREMENTS AND ASSUMPTIONS 

The basic assumptions of parametric prediction limits were described in Chapter 18. These 
include data that are normal or can be normalized (via a transformation), lack of outliers, homogeneity of 
variance between the background and compliance point populations, absence of trends over time, 
stationarity, and statistical independence of the observations. 

The Unified Guidance provides separate -tables for interwell and intrawell limits. One of these 
approaches should be justified before computing prediction limits. To use interwell prediction limits, 
there should be no significant natural spatial variation among the mean concentrations at different well 
locations. Otherwise, a prediction limit test could give meaningless results, since average downgradient 
levels might naturally be higher than background even in the absence of a contaminant release. The 
assumption of spatial variability should therefore be checked using the methods in Chapter 13. 

While intrawell testing eliminates the problem of natural spatial variability, intrawell background 
often is developed using the first n samples from each compliance point well. Since historical data from 
compliance wells need to be utilized to do this, these groundwater measurements should be 
uncontaminated. The number of intrawell background samples available may also be rather limited. n 
will tend to be initially small prior to any updating of background. Such constraints will limit the 
intrawell retesting schemes that can both minimize the SWFPR yet maintain effective power similar to 
the ERPCs. 

One possible way to overcome this limitation is to estimate a pooled standard deviation across 
many wells along the lines suggested by Davis (1998). Such a calculation is no more difficult than a one­
way ANOV A (Chapter 13) for identifying on-site spatial variability. The mean squared error [MSE] 
component of the F -statistic in ANOV A gives an estimate of the average per-well variability. To the 
extent that mean levels vary by well location but the population standard deviation does not, a one-way 
ANOVA can be run on a collection of wells (both background and compliance) to estimate the average 
within-well variance, and hence, the common intrawell standard deviation (see Chapter 13 for further 
details and examples). 

Instead of a standard deviation estimate based solely on intrawell background at a single well with 
its attendant limits in size and degrees of freedom, the mean concentration level can be estimated on a 
well-specific basis, while the standard deviation is estimated utilizing a collection of wells leading to 
much larger degrees of freedom. Although the intrawell background size for a given well might be small 
(e.g., n = 4 or 8), the x-multiplier used to construct the prediction limit is based on both the effective 
sample size (i.e., degrees of freedom plus one) and the intrawell sample size (n). 

The pooled standard deviation for intrawell comparisons can be utilized if the population standard 
deviation is approximately constant across wells. Many data sets may not appear so initially; however, 
any transformation to normality must first be taken into account. The standard deviation is only assumed 
to be constant on the transformed scale. Furthermore, once any transformation is applied, the collection 
of wells should explicitly be tested for homogeneity of variance using the tools in Chapter 11. Only if 
the assumption of equal variances across wells seems reasonable should the pooled standard deviation 
estimate be used. 
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With little or no spatial variability among well locations, an interwell test might be considered. 
However, the sample standard deviation (s) computed from background may not adequately estimate 
true background variability. This can happen when there is a temporal component to the variability 
affecting all wells at a site or regulated unit in parallel fashion, or when there is a significant degree of 
autocorrelation between successive samples. 

A random, temporal component to the variability can result from changes to the laboratory 
analytical method or field sampling methodology, periodic re-calibration of lab instruments, or other 
sample handling or preparation artifacts that tend to impact all observations collected during a given 
sampling event. Such a temporal component can sometimes be identified through the use of parallel time 
series plots (Section 14.2.1) or through a one-way ANOVA using time-of-sampling as the factor 
(Section 14.2.2 ). Results of the ANOV A can be used to derive a better estimate of the background 
population standard deviation ( cr ), along with adjusted degrees of freedom for use in constructing the 
upper prediction limit (see Chapter 14 for further details and an example). 

When autocorrelation is present, methods to adjust the standard deviation estimate and degrees of 
freedom entail possibly modeling the autocorrelation function. This issue is beyond the scope of the 
Unified Guidance and consultation with a professional statistician is recommended. The most practical 
way to avoid significant autocorrelation between samples is to allow enough time to lapse between 
sampling events. Precisely how much time will vary from site to site, but Gibbons (1994a) and others 
(for instance, American Society for Testing and Materials, 2005) recommend that the frequency of 
sampling be no more frequent than quarterly. Alternatively, a pilot study can be run on two or three wells 
with the sample autocorrelation function estimated from the results (Sections 14.3.1 and 14.2.3 ). The 
minimum lag (i.e., time) between sampling events at which the autocorrelation is effectively zero can be 
used as an appropriate sampling interval. 

APPENDIX TABLES FOR PARAMETRIC RETESTING PLANS 

The Unified Guidance provides tables of -multipliers for both interwell and intrawell prediction 
limits with retesting. It also provides separate tables for predicting individual future values versus future 
means. Four distinct retesting schemes are presented in the case of prediction limits for individual 
values: l-of-2, l-of-3, l-of-4, and the modified California plan schemes. Five distinct schemes are 
presented for the case of future means: l-of-1, l-of-2, and l-of-3 for means of order 2, and 1-of-l and l­
of-2 for means of order 3. 

Both the Appendix D interwell retesting tables (Tables 19-1 through 19-9) and the intrawell 
retesting tables (Tables 19-10 through 19-18) are similarly structured. Separate sub-tables are provided 
for a range of possible monitoring constituents ( c = 1 to 40) and for each of the retesting schemes 
mentioned above. Each table is divided into three parallel sections, one section applicable to annual 
statistical evaluations, one to semi-annual evaluations, and one to quarterly evaluations. Within each 
section, K-multipliers are listed for all combinations of background sample size (from n = 4 to 150) and 
number of wells (from w = 1 to 200). These K-multipliers are computed to meet a target annual SWFPR 
ofl 0%, as discussed in Chapter 6. 

The Appendix tables also list those -multipliers which achieve adequate effective power 
compared to the ERPCs. The -multipliers are bolded when the effective power consistently exceeds the 
appropriate ERPC for mean level increases above background of 3 or more standard deviations 
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(designated as 'good' power). The multipliers are italicized and shaded when the effective power is 
somewhat less, but still consistently exceeds the ERPC at mean level increases of 4 or more standard 
deviations above background (designated as 'acceptable' power). Non-bolded, non-italicized entries 
achieve the target SWFPR, but have low power. 

To use the tables, certain key statistical parameters should be known or identified. These include 
whether the prediction limit tests are interwell or intrawell, the evaluation schedule (annual, semi­
annual, or quarterly), the number of constituents (c), the size of the background sample (n), and the 
number of compliance wells to be tested (w). In the interwell case, it is presumed that there are n 
(upgradient) background measurements for each constituent ( c). The listed -multiplier would then be 
applied to each of c prediction limits, one for each monitoring constituent. The intrawell case presumes 
that there are n well-specific background measurements designated at each well-constituent pair, thus 
giving w x c separate sets of intrawell background. Here, the L-multiplier would be applied to each of w 
x c distinct prediction limits. 

In situations where a mixture of test types is needed (e.g., intrawell testing for some constituents, 
interwell for others), the Unified Guidance tables can still be employed. The -multipliers are computed 
to apportion an equal share of the overall cumulative SWFPR to each of the w x c tests that need to be 
run during a given statistical evaluation. Because of this fact, if r of the constituents are analyzed using 
interwell tests, but ( c - r) of the constituents are handled using intrawell limits, correct prediction limits 
can be developed by first selecting an interwell L-multiplier based on all c constituents, and then 
selecting an intrawell -multiplier also based on c constituents. This will ensure that the target SWFPR 
is met, although each multiplier is respectively applied only to a subset of the monitoring list. 

Some background samples might be of different sizes, either for different constituents or at distinct 
wells (e.g., when using intrawell background). Again the Unified Guidance tables can be inspected to 
select a different -multiplier for each distinct n. However, each multiplier should be chosen as if the 
background sample sizes were equal for all w x c tests. Thus, while a multiplier based on n1 background 
observations is applied only to those tests involving that sample size, it should be selected from the 
Appendix D tables as if it will be applied to all the tests. 

For network configurations not listed in Tables 19-1 to 19-18 in Appendix D, an appropriate -
multiplier can be estimated using bilinear interpolation. Such interpolation will be fairly accurate as long 
as adjacent table entries are used, representing the closest values to the desired combination of number 
of wells (w) and background sample size (n). 

In general, to calculate a w*, n* , where w* and n* are the desired input points that lie between the 
closest table entries as: w 1 < w* < w2 and n1 < n* < n2, first calculate the fractional terms: 

( * - w{1) ( * - nr1) 
f w = ( r1) and f 11 = ( ~ 

2 - w 2 - np 

The interpolated L-multiplier can then be computed as: 

w JJ; ·itw n 
2• 2 

[19.12) 
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For example, suppose a -multiplier is needed for a l-of-3 interwell prediction limit test for 
individual values using an annual evaluation schedule. Assume the monitoring network consists of c = 5 
constituents monitored at w = 28 compliance wells, using n = 17 upgradient background measurements 
on which to base the prediction limit. From Table 19-2 in Appendix D, the closest table entries, , w, nto 
the desired combination are 10, 16 = 1.59, 30, 16 = 1.70, :o,:o = 1.52, and 3o,:o = 1.62. The interpolated 
value, !i, 18 , can then be found using the equations in [ 19 .12]: 

( - 20~~ 
f w = ( - 20)0 8. f ( - 16~~ 25. 

11 = ( - 16~0 

K 18,25 ( x 25)-ttl 16,20 ( 25 )-it 16,30 ( ) 25.&ll 20,20 25.& 20,30 

++6~.120.51359}$. 70 .160.59 .115. 

Important considerations in designing a reasonable retesting scheme for detection monitoring are 
discussed in Chapter 6. Given a background sample and a particular network configuration and size, 
parametric 1-of-m plans tend to increase in statistical power as the order of m increases. All of the 
schemes have greater power with larger background sample sizes (n). Furthermore, plans involving 
prediction limits for future means tend to be more powerful than similar plans using prediction limits for 
individual observations. So if the -multiplier for a particular plan is not bolded or italicized, another 
plan can be sought to achieve sufficient effective power using more resamples or perhaps changing to a 
mean prediction limit. Alternatively, the background sample size might need to be augmented if feasible, 
prior to implementing the retesting procedure. 

19.3.1 TESTING INDIVIDUAL FUTURE VALUES 

The advantages to using a prediction limit for future individual values include: 1) the ability to 
explicitly control the SWFPR across a series of well-constituent pairs; and 2) greater flexibility than that 
provided by prediction limits for future means (Section 19.3.2) to handle temporal autocorrelation. In 
those cases when the sampling frequency needs to be reduced to maximize statistical independence of 
the observations, the method can be applied to evaluations of a single new measurement (plus possible 
resamples) at each compliance point well. 

To properly implement a prediction limit strategy for future values with retesting, it needs to be 
feasible to collect 2 to 4 independent measurements at each compliance well during a given evaluation 
period. All initial and any resamples are assumed to be statistically independent and thus should exhibit 
no autocorrelation. 

If statistical evaluations are done annually, it may be possible to collect data on a quarterly basis 
and meet the minimal sampling requirements of any of the resampling schemes discussed in the Unified 
Guidance. However, more frequent evaluations (say semi-annual or quarterly) will require that new 
samples be collected perhaps monthly or every six weeks. In these cases, explicit tests for 
autocorrelation may need to be conducted before adopting a 1-of- m retesting scheme with m > 2 or a 

19-15 March 2009 

EPAPAV0117343 



Chapter 19. Prediction Limits with Retesting Unified Guidance 

modified California plan. If significant autocorrelation is identified, the sampling frequency may need to 
be reduced and/or an alternate strategy utilizing fewer resamples may need to be adopted instead. 

PROCEDURE 

Step 1. Identify the overall targeted annual false positive rate (SWFPR = = 0.10). Determine the 
number of wells (w) to be monitored and the number of constituents (c) to be sampled at each 
well. Also determine whether the evaluation schedule at the unit or facility is annual, semi­
annual or quarterly . 

Step 2. Decide on the number of observations (m) to be predicted. To incorporate retesting, a 
maximum of two independent measurements should be collected from every compliance well 
during each evaluation period to use a l-of-2 retesting scheme, three independent 
measurements if a l-of-3 plan is desired, and four independent measurements if either a l-of-4 
plan or a modified California plan is employed. 

Step 3. For interwell prediction limits given a background sample of n measurements, compute the 
background sample mean ( x ) and standard deviation ( s) for each constituent. Then, based on 
the evaluation schedule (annual, semi-annual or quarterly), c, n, w, and the specific retesting 
scheme chosen, use Tables 19-1 to 19-4 in Appendix D to determine a K-multiplier 
possessing acceptable statistical power. Interpolate within the tables to find the closest 
multiplier if an exact value is not available. 

For intrawell prediction limits, designate n early measurements as intrawell background for 
each well-constituent pair; compute the intrawell background mean ( x ) and standard 
deviation (s) for each case. Given the evaluation schedule, c, n, w, and the chosen retesting 
scheme, use Tables 19-10 to 19-13 in Appendix D to determine an acceptably powerful 
multiplier. Note: if the intrawell background sample size varies by well, a series of -
multipliers should be computed, one for each distinct n. 

For each -multiplier, calculate the upper prediction limit with (1- ) confidence as: 

PL1 a = X + KS [19.13) 

If data were transformed prior to constructing the prediction interval, back-transform the 
prediction limit before making comparisons against the compliance point data. Unlike a 
prediction limit for future means, the formula for predicting m future values does not involve 
any transformation bias if the comparison is made in the original measurement domain. 

Step 4. Collect an initial measurement from each well-constituent pair being tested. Compare each 
value against either 1) the upper prediction limit based on upgradient background in the 
interwell case or 2) the intrawell prediction limit specific to that well-constituent pair. 
Depending on the retesting scheme chosen, if any initial compliance point concentration 
exceeds the limit, collect 1 to 3 additional resamples at that well. If feasible, analyze only for 
those constituents which exhibited initial exceedances. Compare these values sequentially 
against the upper prediction limit. If the test 'passes' prior to collection of all the scheduled 
resamples, the remaining resamples do not need to be gathered or compared against PL. 
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Step 5. Decide that the test at a given well passes (i.e., the well is in-compliance) if any one or more 
of the resamples does not exceed PL when using a 1-of-m scheme or when at least 2 resamples 
do not exceed PL when using the modified California scheme. Identify the well as failing 
when either (1) all resamples using a 1-of- m plan also exceed the prediction limit, or (2) at 
least two of three resamples using a modified California plan exceed PL. 

J EXAMPLE 19-1 

A large hazardous waste facility with 50 compliance wells is to monitor 10 naturally-occurring 
inorganic parameters in addition to 30 non-naturally occurring volatile organic compounds that have 
never been detected on-site. Groundwater evaluations are performed on a semi-annual basis. If the 
regulating authority will allow up to two resamples per exceedence of the background concentration 
limit, construct an interwell prediction limit with adequate statistical power and false positive rate 
control on the following pooled set (n = 25) of background sulfate measurements. 

BG Well Sampling Date Sulfate Log (Sulfate) 
(mg/ I) log(mg/ I) 

GW-01 07-08-99 63 4.143 
09-12-99 51 3.932 
10-16-99 60 4.094 
11-02-99 86 4.454 

GW-04 07-09-99 104 4.644 
09-14-99 102 4.625 
10-12-99 84 4.431 
11-15-99 72 4.277 

GW-08 10-12-97 31 3.434 
11-16-97 84 4.431 
01-28-98 65 4.174 
04-20-99 41 3.714 
06-04-02 51.8 3.947 
09-16-02 57.5 4.052 
12-02-02 66.8 4.202 
03-24-03 87.1 4.467 

GW-09 10-16-97 59 4.078 
01-28-98 85 4.443 
04-12-98 75 4.317 
07-12-98 99 4.595 
01-30-00 75.8 4.328 
04-24-00 82.5 4.413 
10-24-00 85.5 4.449 
12-01-02 188 5.236 
03-24-03 150 5.011 

SOLUTION 

Step 1. Assume for purposes of the example that there are no significant spatial differences among the 
well locations, either upgradient or downgradient. A check of normality of the pooled 
background sulfate measurements indicates that the interwell prediction limit should be 
constructed on the logged sulfate measurements rather than the raw concentrations. 
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Step 2. Groundwater evaluations must be conducted semi-annually (S). By excluding never-detected 
organic chemicals from the SWFPR calculation, the number of constituents that are to be 
considered is c = 10 at each of w = 50 wells. 

Step 3. Since a maximum of two resamples will be allowed during any given evaluation period, 
neither the l-of-4 nor the modified California retesting plan are an option. Consequently, only 
a l-of-2 or l-of-3 retesting strategy is appropriate. With n = 25 background measurements, 
Tables 19-1 and 19-2 in Appendix D should be examined for a semi-annual evaluation 
schedule to determine -multipliers with adequate power. The multiplier of K = 2. 7 5 for a l­
of-2 plan has 'acceptable' power compared to the semi-annual ERPC, but the multiplier of K = 

2.00 for a l-of-3 plan has 'good' power. Use the latter value to construct the interwell 
prediction limit. 

Step 4. The sample log-mean and log-standard deviation of the sulfate background measurements are 
y = 4.32 and Sy= 0.376, respectively. Use these values and the L-multiplier to compute the 

prediction limit on the log-scale as 

PL= y + KS = 4.32 + 2.00 x 0.376 = 5.072 
y 

Then exponentiate the limit to back-transform it to the original measurement domain, for a 
final sulfate prediction limit of PL= e5

·
072 

= 159.5 mg/1. 

Step 5. Compare the final prediction limit against one new sulfate measurement from each of the 50 
compliance point wells. For any exceedence, compare the first of two resamples to the 
prediction limit. If the limit is still exceeded, test the second resample. If all three 
measurements (initial plus two resamples) are above the prediction limit at any specific well, 
declare that a statistically significant exceedence for sulfate has been identified. If, however, 
neither of the resamples exceeds the limit, judge the evidence to be insufficient to declare the 
well to be out-of-compliance. I 

J EXAMPLE 19-2 

Due to significant natural spatial variability, an intrawell testing scheme needs to be adopted at a 
solid waste landfill that monitors for 5 inorganic constituents at each of 10 compliance wells. If only one 
year's worth of quarterly sampling data is available at each well, but no recent contamination is 
suspected, develop an appropriate modified California intrawell retesting plan for the following chloride 
measurements. Assume that one statistical evaluation must be conducted each year. 
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Well ID Chloride Well Mean ± SD Well ID Chloride Well Mean ± SD 
(mg/ I) (mg/ I) (mg/ I) (mg/ I) 

GW-09 22 28.5 ± 10.021 GW-16 31 43.6 ± 13.392 
18.4 34.6 
39.9 60.1 
33.7 48.7 

GW-12 78 68. 7 ± 7.208 GW-24 23.4 33.98 ± 9.083 
70 36.4 
61 31.1 
65.8 45 

GW-13 75.1 65. 75 ± 8.128 GW-25 33.5 31.38 ± 6.533 
65.6 30.2 
67 23.1 
55.3 38.7 

GW-14 59.2 51.28 ± 8.427 GW-26 79.8 60.92 ± 14.447 
57.1 61.3 
41.1 57.8 
47.7 44.8 

GW-15 35 50. 72 ± 15.672 GW-28 37.7 38.0 ± 8.273 
56.8 26.6 
69.8 45.7 
41.3 42 

SOLUTION 

Step 1. With c = 5 constituents, w = 10 wells, one annual evaluation, and an intrawell background size 
for each well of only n = 4, Table 19-13 in Appendix D can be examined to locate a possible 
K-multiplier, leading to an interpolated K = 4.33. Although this multiplier will adequately 
control the annual SWFPR to 10% or less, it yields low power for identifying contamination. 
As an alternative, try computing a pooled standard deviation across the compliance wells for 
chloride. 

Step 2. Side-by-side box plots (Section 11.1) of the chloride values exhibit no obvious differences in 
spread or variation. The F -statistic for Levene' s test (Section 11.2) is also non-significant (f = 

1.0673) at the a= 5% level, suggesting that the variances are not unequal and that a pooled 
standard deviation can be appropriately formed. 

Step 3. Conduct a one-way ANOV A on all chloride measurements from the 10 compliance wells, 
using Wells as the main factor (Section 13.2.2 ). The ANOV A table is presented below. 

Source of Variation Sums of Squares Degrees of Mean F-Statistic 
Freedom Squares 

Between Wells 7585.25 9 842.81 7.55 
Error (within wells) 3350.37 30 111.68 
Total 10935.62 39 
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Step 4. Compute the square root of the Error Mean Squares (also called the root mean squared error 
or RMSE) component in the ANOV A table to derive an estimate of the pooled intrawell 
standard deviation of Sp = 10.568. This estimate of the average intrawell variation has 30 
degrees of freedom [ df], computed by multiplying ( 4-1) = 3 degrees of freedom per well times 
the number of wells, or df= 3 x 10 = 30. 

Step 5. The Appendix D tables are not used to derive -multipliers when a pooled standard deviation 
estimate is used for intrawell prediction limits. R script listed in Appendix C is used (see 
Section 13.3). For a modified California retesting strategy with n = 4 and df = 30, the K­

multiplier becomes K = 1.98. 7 This value not only controls the SWFPR but also has good 
statistical power. So use this multiplier along with the pooled intrawell standard deviation to 
compute an intrawell prediction limit for each compliance well. As an example, since the 
mean for chloride at well GW-09 is 28.5, the intrawell prediction limit would be: 

PL= 28.5 + 1.98 x 10.568 = 49.4 mg/l 

Prediction limits for the other compliance wells would be computed similarly. 

19.3.2 TESTING FUTURE MEANS 

BACKGROUND AND REQUIREMENTS 

The background, requirements, and assumptions for a prediction limit on future means of order p 
are essentially identical to those for prediction limits for future values (Section 19.3 ). For a comparable 
level of sampling effort, predicting a future mean offers increased effective power compared to a strategy 
tbaitfuwrepmulinEiowifinritreftin!Jf diwixAwld lfrnfem whluem c<V li~op~.vly aJ~rmlewpmOOstiieJmimrit sit~ 
compliance well during a given evaluation period. All initial and re sample measurements are assumed 
to be statistically independent. 

To include explicit retesting, it should be feasible to collect either 2p or 3p independent 
measurements per well during each evaluation. The initial p observations are used to form the initial 
mean, while the remaining values are used to form either one or two resample means. If statistical 
evaluations are done annually, it may be possible to collect quarterly data and meet the minimal 
sampling requirements for p = 2 and a l-of-2 retesting scheme. For more frequent semi-annual or 
quarterly evaluations, a larger order p or a retesting scheme entailing two resample means will require 
that new samples be collected perhaps monthly or every six weeks. An explicit test for autocorrelation 
should be made before adopting the strategy presented here. If significant autocorrelation exists, the 
frequency of sampling may need to be reduced and alternate prediction limit strategies considered such 
as a 1-of-l plan for a future mean (see 

Section 19.1) or individual future values (Section 19.3.1 ). 

7 The EPA Region 8 approximation equation described in Chapter 13, Section 13.3 provides a L-multiple estimate of 1.99 
for individual wells at n = 4. The annual L_factor for w = 10 and c =5 and n = 31 in Table 19-13 of Appendix D is 
interpolated as = 1.508. Using the appropriate A, b & c coefficients from Chapter 13, Note 2 for the modified California 
plan, results are quite close to that generated from R-script. 
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An important difference between testing means versus individual values is that in some cases it 
may not be necessary to implement a retest at all. As noted above, for the same degree of sampling 
effort, a prediction limit for a mean of two or more observations can provide greater effective power than 
a prediction limit for the same number of individual values, even if a res amp led mean is not collected. In 
other words, when a l-of-2 retesting plan for individual observations is compared to a 1-of-l plan for 
means of order 2, the 1-of- l mean-based scheme generally has greater power for identifying real 
concentration increases if background samples sizes are n > 10 (compare -multiple power ratings at 
higher n, c,and win Tables 19-1 and 19-5 of Appendix D) A similar comparison holds between al-of-
3 retesting plan for individual observations and a l-of-1 plan for a mean of order 3 (Table 19-2 versus 
Table 19-8 in Appendix D). 

Even more powerful prediction limits for future means are possible when explicit retesting is 
added to the procedure. However, the minimum sampling increases substantially. With a l-of-2 retesting 
plan for means of order 2, as many as four independent groundwater measurements needs to be collected 
and analyzed per evaluation period. With a l-of-3 plan for means of order 2 or a l-of-2 plan for means 
of order 3, the sampling increases to as many as six independent observations per period. The latter 
plans may only be feasible for a single annual evaluation. 

A problem common to all future mean prediction limits arises if the data have to be normalized via 
a transformation. In this case, all comparisons need to be made on the transformed data in order to avoid 
a transformation bias. As a consequence, the procedure is not a direct test of the background and 
compliance point arithmetic means. The test is still valid as a measure of significant mean differences in 
the transformed domain (e.g., a test of geometric mean differences for logarithmic data). To the extent 
that the populations being compared share a common variance in the transformed domain, it may also 
indicate that a significant difference on the transformed scale also corresponds to a significant difference 
in the arithmetic means of the original populations. 

A final potential drawback is that although a I-of- m plan for future observations and a l-of-1 plan 
for means of order p = m seem to require the same total sampling effort, a prediction limit for 
observations can actually entail less sampling. For a future mean test of order p = m, m individual 
measurements will always need to be collected and analyzed. With a prediction limit for individual 
observations, the first sample is analyzed and compared to the limit. If it passes (i.e., does not exceed the 
limit) there is no need to test the second or subsequent observations. Any subsequent resample that 
passes, also indicates that no further resample comparisons are needed for that test. 

Under typical conditions at a site where most or all tested well-constituent pairs are likely to be at 
background conditions, there is a substantial savings in the number of samples for future observations 
versus means of the same size. It can also be noted that the same principle is true for a l-of-2 test of a 
mean of order 2. Under background conditions, the two initial mean samples may be all that is required. 
When groundwater is contaminated, both the I-of- m retesting plan for observations and the l-of-1 plan 
for a mean of order p = m require exactly the same amount of sampling and analysis to identify a 
significant exceedance. 
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PROCEDURE 

Step 1. Identify the number of wells ( w) to be monitored and the number of constituents ( c) to be 
sampled at each well. Also identify the evaluation schedule as annual (A), semi-annual (S), or 
quarterly (Q). 

Step 2. Decide on the order (p) of the future mean to be predicted. To incorporate retesting, it needs to 
be possible to collect 2 p independent samples during each evaluation period to use a l-of-2 
retesting scheme, or 3 p independent samples if a l-of-3 plan is desired. 

Step 3. If an interwell prediction limit is needed, use the common sample of n (upgradient) 
background measurements to compute the background sample mean ( x) and standard 
deviation (s). Given the n background measurements, w, c, p, and the evaluation schedule 
(annual, semi-annual or quarterly), use Tables 19-5 to 19-9 in Appendix D to determine a -
multiplier possessing acceptable statistical power. Calculate the upper prediction limit on 
background as: 

PL= x +KS [19.14) 

If intrawell prediction limits are needed, designate n early measurements at each compliance 
well as intrawell background. Compute the background sample mean ( x) and standard 
deviation (s) for each well. Then, based on n, w, c, p, and the number of evaluations per year, 
use Tables 19-14 to 19-18 in Appendix D to determine an adequately powerful -multiplier. 
Compute an intrawell prediction limit for each compliance well using equation [ 19 .14]. Note: 
if the intrawell background sample sizes vary by well, a series of -multipliers will need to be 
identified in these Appendix D tables, one for each distinct n. 

If the background data were transformed prior to constructing the prediction limit, also 
transform any compliance point data before making comparisons against the prediction limit. 
In particular, compute the comparison mean of order p using the transformed values , rather 
than transforming the sample mean of the raw concentrations. 

Step 6. Collect p initial measurements from each compliance well. Compute the mean of order p for 
each well, first transforming the data if necessary using the same function applied to 
background . Then compare each mean against the upper prediction limit. If retesting is 
desired, for any compliance point mean that exceeds the limit, collect either p or 2p additional 
resamples at that well, depending on the retesting scheme chosen. Form either one or two 
resample means of order p from these data; compare these means sequentially to the upper 
prediction limit. 

Step 7. Identify the well as potentially contaminated when either 1) the initial mean of order p exceeds 
the limit in a 1-of-l plan, or 2) the initial mean and all resample means using a l-of-2 or l-of-
3 plan also exceed the prediction limit. Deem the well to be in-compliance if either 1) the 
initial mean does not exceed the prediction limit, or 2) any of the resample means do not 
exceed the limit. 
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J EXAMPLE 19-3 

Suppose a large facility with minimal natural spatial variation 1s to monitor for 20 separate 
naturally-occurring inorganic chemicals along with a number of other never detected organic 
constituents. If 100 compliance wells are to be tested every six months and 25 background sample 
measurements are available, which resampling plans can control the SWFPR, providing acceptable 
statistical power? Assume that the data for each inorganic compound can be normalized and that the 
temporal autocorrelation between successive samples at the same well is minimal, provided that no more 
than four samples are collected during any semi-annual period. 

SOLUTION 

Step 1. The frequency of statistical evaluations is semi-annual (S). Excluding never-detected 
compounds from the SWFPR calculation leaves c = 20 constituents that need to be explicitly 
tested at each of w = 100 wells. For each of these constituents, since the data can be 
normalized, assume that an interwell prediction limit can be constructed using n = 25 
background measurements. 

Step 2. Determine K-multipliers and power ratings for seven possible prediction limit retesting plans 
excluding the l-of-3 mean order 2 and the l-of-2 mean order 3 tests. Use the sub-tables 
identified as "20 COCs, Semi-Annual" for n =25 and w = 100 in interwell Tables 19-1 through 
10-9 in Appendix D, to obtain the following: 

Prediction Limit Plan KKMultiplier Power Total Samples 

1-of-2, observations 3.13 Low 2 
1-of-3, observations 2.31 Good 3 
1-of-4, observations 1.81 Good 4 
Mod. California, observations 2.54 Good 4 
1-of-1, mean order 2 3.56 Acceptable 2 
1-of-2, mean order 2 2.29 Good 4 
1-of-1, mean order 3 2.95 Good 3 

Step 3. Compare the various plans in terms of statistical power and typical sampling effort. The only 
plan with low power is the l-of-2 scheme for observations. The l-of-1 mean order 2 has 
acceptable power. The other plans all have good power (i.e., ones consistently meeting or 
bettering the ERPC for mean-level increases above background of 3 or more standard 
deviations), but potentially require either 2 or 3 resamples. 

Restricting attention to those with good power, the least potential sampling effort is required 
by the 1-of-1 plan for a mean of order 3 or a 1-of-3 plan for observations. These two plans 
would requires less total sampling than the l-of-4 plan for observations, the 1-of-2 mean order 
2 plan and the same or less sampling than the modified California plan for observations in 
identifying a contaminant release. 

If groundwater is not contaminated, the 1-of-m plans for observations require a mimmum ofl 
measurement to demonstrate that the well is in-bounds (i.e., when the initial measurement 
does not exceed the background limit) as does the modified California plan. The l-of-2 plan 
for a mean of order 2 requires a minimum of 2 measurements, and the l-of-1 plan for a mean 
of order 3 requires a minimum of3 measurements. On balance, the l-of-3 plan for individual 
observations or the l-of-2 plan for a mean of order 2 may provide the best compromise 
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between minimizing sampling effort and offering a higher probability of identifying 
contaminated groundwater. I 

J EXAMPLE 19-4 

Use the chloride data of Example 19-2 to compute and contrast prediction limits for a future mean 
of order 2, with and without explicit retesting. Assume as before that 10 wells are monitored for 5 
inorganic constituents, and evaluated on an annual basis. 

SOLUTION 

Step 1. The chloride data in Example 19-2 showed significant spatial variability, suggesting the use 
of intrawell prediction limits. Furthermore, a one-way ANOV A evaluation of the w = 10 
compliance wells indicated that a pooled standard deviation estimate of Sp= 10.568 with 30 
degrees of freedom could be used to build intrawell prediction limits, instead of using 
individual variance estimates from each compliance well. 

Step 2. With c = 5 constituents, w = 10 wells to be monitored, one annual evaluation (A), and a 
pooled degrees of freedom of df = 30, the R script in Appendix C can be repeatedly run to 
determine -multipliers for each retesting scheme for prediction limits on means of order 2. 
Since the sample size for each of the 10 wells is the same n = 4, the following multiples were 
generated from the R-script for the 1-of-1 to 1-of-3 tests of mean order 2: = 2.68, 1.88 and 
1.51, respectively. 8 The prediction limits can then be constructed using equation [19.15], as 
shown for the first five compliance wells in the table below. 

PL= x +KS 
p 

[19.15] 

Step 3. While the power of each retesting plan is rated 'good' compared to the annual-evaluation 
ERPC, the prediction limits are obviously higher when less (or no) explicit retesting is 
conducted. Depending on conditions at the site, the range of approximately 13 mg/I of chloride 
in the well-specific prediction limits may or may not be important in deciding which strategy 
to use. The 1-of-1 plan for a mean of order 2 requires fewer total samples than the other plans. 
In some situations, the higher initial limits may be outweighed by the savings in sampling cost. 

On the other hand, the ERPC provides a minimal standard for assessing statistical power. 
There can be a range of power curves even among plans all rated as 'good' seen in Figure 19-
1 below, where the full effective power curves for these three strategies are presented. Clearly, 
the 1-of-2 and 1-of-3 plans for means of order 2 have visibly higher power than the 1-of-1 
retesting scheme. If site conditions permit, it may be beneficial to incorporate the 1-of-2 plan 
as a reasonable compromise between the gain in statistical power versus the increase in 
sampling requirements (for contaminated wells). I 

8 Using the Region 8 approximation equation in Chapter 13, the cmresponding -multiples were 2.69, 1.89 and 1.52, 
respectively, based on tabular values at n = 31 of2.258, 1.364 & .946 and using the appropriate A, b & c coefficients for 
each test. Results are very comparable to the R-script values. 
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Well ID Retesting KJJ.Jlultiplier Power Rating Well Mean Prediction 
Plan (mg/ I) Limit 

GW-09 1-of-1 2.68 Good 28.50 56.82 
1-of-2 1.88 Good 28.50 48.37 
1-of-3 1.51 Good 28.50 44.46 

GW-12 1-of-1 2.68 Good 68.70 97.02 
1-of-2 1.88 Good 68.70 88.57 
1-of-3 1.51 Good 68.70 84.66 

GW-13 1-of-1 2.68 Good 65.75 94.07 
1-of-2 1.88 Good 65.75 85.62 
1-of-3 1.51 Good 65.75 81.71 

GW-14 1-of-1 2.68 Good 51.28 79.60 
1-of-2 1.88 Good 51.28 71.15 
1-of-3 1.51 Good 51.28 67.24 

GW-15 1-of-1 2.68 Good 50.72 79.04 
1-of-2 1.88 Good 50.72 70.59 
1-of-3 1.51 Good 50.72 66.68 

Figure 19-1. Comparison of Power Curves for 1-of-m Plans for Mean of Order 2 
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19.4 NON-PARAMETRIC PREDICTION LIMITS WITH RETESTING 

BACKGROUND AND PURPOSE 

When parametric prediction limits are not appropriate, either due to a large fraction of non-detects 
or data that cannot be normalized, retesting can be conducted using non-parametric prediction limits. 
The Unified Guidance discusses retesting schemes for both individual future values and for future 
medians (in parallel to the parametric options discussed in Section 19.3 ). Tests on individual 
observations include the three I-of- m plans and modified California plan approaches. Tests on future 
medians include the I-of-I and I-of-2 plans for medians of order 3. The basic strategy is to establish a 
non-parametric prediction limit for each monitoring constituent based on background measurements so 
that it accounts for the number of well-constituent tests in the overall network. Instead of determining a 
K-multiplier, a non-parametric limit is computed as an order statistic from the background sample. The 
term order statistic refers to one of the values in a sorted (or ordered) data set. 

In order to maintain adequate statistical power while minimizing the overall false positive rate, 
retesting will almost always be needed as part of the detection monitoring system design. As in the 
parametric case, a specific number of additional, independent resamples will potentially need to be 
collected for each compliance well test. The initial and subsequent resamples are then compared against 
the non-parametric prediction limit. 

The largest or second-largest value in background is often selected as a non-parametric limit, 
representing the nth or ( n-I )th order statistics. With higher level I-of- m tests of observations, an even 
lower order statistic may be more appropriate in achieving an optimal balance between the desired 
SWFPR and adequate statistical power. This can be particularly true if the background sample size is 
large, but depends on the overall network design requirements. Although the Unified Guidance provides 
tables of non-parametric limits only for the largest and second-largest order statistics, EPA Region 8 has 
released software written in Visual Basic® labeled the Optimal Rank l'alues Calculator that computes 
the optimal choice of order statistic for I-of-m retesting plans form= I to 4. The program also provides 
approximate statistical power estimates based on user inputs of a target cumulative false positive rate, 
background sample size, and number of simultaneous tests to be conducted. The software and 
explanatory narrative will be provided on the EPA website. 9 

REQUIREMENTS AND ASSUMPTIONS 

When more independent data are added to the testing procedure, retesting with non-parametric 
prediction limits leads to more powerful and more accurate assessments of possible contamination. As 
with parametric retesting schemes, a balance must be struck between I) quick identification and 
confirmation of contaminated groundwater and 2) statistical independence of successive re samples. All 
retesting strategies depend on the assumption of statistical independence between successive resamples. 
This trade-off is typically resolved by allowing enough time between resamples to allow both the well to 

9 The calculator, an accompanying narrative, fact sheet and this guidance will be located on the EPA website: 
If the calculator cannot be 

accessed, contact Mike Gansecki for assistance (e:mail: g;m~]ill)~~~w:_; or phone: 303- 312-6150.) 
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recharge and additional groundwater to flow past the well screen, and by limiting the number of possible 
re samples to 2 or 3. 

Non-parametric retesting schemes offer somewhat less flexibility than their parametric 
counterparts. As with other non-parametric statistical intervals, the same SWFPR control afforded by a 
parametric interval based on a small n cannot usually be attained in a non-parametric interval; larger 
sample sizes are almost always necessary. K-multipliers for parametric prediction limits are continuous 
statistical parameters that can be adjusted to match a desired false positive rate for even the smallest 
sample sizes. By contrast, the bounds of non-parametric intervals are restricted to values in the observed 
background sample. For a given sample size and number of tests to be run, any order statistic selected 
from background as the non-parametric prediction limit results in a discrete probability of false positive 
error. Altering the prediction limit by selecting a different order statistic changes the false positive rate 
only in discrete probability steps, providing a less efficient means of controlling the SWFPR 

The non-parametric prediction limit tests provided in the Unified Guidance do not require the 
underlying distribution to be normal. One potentially attractive application is for background data sets 
containing higher percentages of non-detects which cannot be normalized. For some constituent data 
sets, it may be possible to pool data from several upgradient and historical compliance wells to generate 
much larger total background sizes. A non-parametric Kruskal-Wallis test of medians can establish that 
these data are appropriate for pooling. 

Since larger background sample sizes are needed because no distributional model is posited, the 
non-parametric testing schemes are most applicable to interwell comparisons. Small intrawell 
background sample sizes make it difficult for any of the non-parametric test options to be applied which 
can meet the SWFPR cumulative false positive design objective. Unlike parametric intrawell tests, 
effective sample sizes cannot be expanded by estimating a common pooled standard deviation across a 
number of wells. This conclusion is generally true no matter what order statistic is used to estimate the 
non-parametric prediction limit. But there are other considerations which might allow intrawell testing 
using non-parametric alternatives. For a given sample size, target false positive, a fixed maximum and 
number of total tests, the higher 1-of-m tests of future observations will have lower achievable false 
positive errors, with the l-of-4 test the lowest. If the background sample size is increased through 
periodic additions, this false positive will continue to drop. The power of these tests using the 
maximum with small sample sizes is almost always greater than the EPA reference levels. A temporary 
strategy might be to utilize the highest order 1-of- m test for intrawell purposes until larger sample sizes 
are available. However, the target cumulative false positive rate may not initially be met. With larger 
sample sizes, it may also be possible to decrease the m of the test and still achieve the target false 
positive rate. 

Even interwell comparisons between upgradient and downgradient wells are acceptable only if the 
degree of spatial variability is insignificant. Fortunately, spatial variability may be less of a problem in 
those cases where a non-parametric retesting scheme might be implemented, i.e., when the detection rate 
of the chemical being monitored is fairly low. High constituent non-detect rates tend to result in more 
uniform spatial distribution across site wells, allowing for similar median concentrations. 
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APPENDIX TABLES FOR NON-PARAMETRIC PREDICTION LIMITS 

To design appropriate non-parametric prediction limits with retesting, the Unified Guidance 
provides separate tables for predicting individual future values versus future medians. Four distinct 
retesting schemes are presented in the case of prediction limits for individual values: l-of-2, l-of-3, l-of-
4, and modified California plan schemes. Two distinct schemes are presented for the case of future 
medians: 1-of-l and l-of-2 for medians of order 3. 

Unlike the tables for parametric prediction limits discussed in Section 19.3, non-parametric 
prediction limits do not involve -multipliers. Instead, the entries in Tables 19-19 to 19-24 of Appendix 
D consist of per-constituent significance levels . These levels represent the achievable false positive rate 
( const) associated with each tested constituent for a given retesting scheme, choice of non-parametric 
prediction limit, and network configuration (i.e., number ofwells [w] and background sample size [n)). 10 

The non-parametric prediction limit can be estimated via any order statistic from the background sample. 
However, the most practical limits are usually either the maximum observed background value or the 
second-highest value. Consequently, the Unified Guidance provides tables for these two options. 

Each table for the six specific non-parametric tests contains two sub-tables. One uses a limit based 
on the background maximum and the other the second-highest background value. All the tables are 
otherwise similarly structured. Within each table and sub-tables, per-constituent significance levels are 
given for all combinations of background sample size (n = 4 to 200) and number of wells (w = 1 to 200). 
These significance levels can be used to meet a target annual SWFPR of 10%, discussed in Chapter 6. 

Correct use of these tables involves a few important considerations. First, if an interwell prediction 
limit is desired, the target per-constituent false positive rate ( const) needs to be computed. Any 
prediction limit strategy selected should have a table entry no greater than const in order to ensure that 
the annual SWFPR is no greater than 10%. To compute this target rate, use the formula: 

Q )
/c 

a = 1- 1- a 
con st 

[19.16) 

where c equals the number of monitoring constituents and is the SWFPR = 0.10. 

Unlike the tables for parametric prediction limits, separate tables are not provided for each of the 
three most common evaluation schedules (i.e., annual, semi-annual, and quarterly). The number of 
'wells' in each non-parametric table must be regarded as the actual number of compliance wells (w) times 
the number of annual statistical evaluations (nE = 1, 2, or 4). For using these tables, let w* = w x nE. 

This adjustment is necessary because on each evaluation, w wells should be compared against a 
prediction limit computed from a common interwell background. A site with w* wells tested annually is 
statistically equivalent to a site having w distinct well locations tested nE times per year ( w x nE tests). 

10 Per-constituent rates instead of network-wide false positive rates are given in these tables and those of Davis and 
McNichols ( 1994; 1999) for computational reasons. Although the mathematical algorithm is exact, it is difficult to compute 
with accuracy for a large number of tests (r). Hence the decomposition of r into constituents (c) times wells (w). By 
calculating the per-constituent false positive rate, only the number of wells (w) need be varied. 
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Once w* is computed in this way, the table entry corresponding to w* and n represents the 
achievable annual false positive rate per constituent. As noted, this rate should not exceed the target rate 
( const) in order to meet the overall SWFPR If const is exceeded for a given choice of retesting scheme 
and choice of non-parametric prediction limit, a different limit or scheme should be considered. In 
general, selecting a 1-of- m retesting scheme with larger m will lead to a lower achieved false positive 
rate. Also, per-constituent significance levels for the modified California approach are generally larger 
than those for the 1-of-m plans. 

If intrawell prediction limits are needed, a somewhat different method needs to be employed to 
correctly use the per-constituent significance levels in Tables 19-19 through 19-24 of Appendix D. In 
this case, a target per well-constituent pair false positive rate ( l w c) needs to be first computed using the 
equation: 

a ·CW [ 19.17) 

where is the SWFPR, w equals the actual number of compliance wells and c is the number of 
monitoring constituents. Then the placeholder w* for the non-parametric tables is to be equated with 
the number of annual statistical evaluations ( w* = nE = 1, 2, or 4). w* represents the number of times 
per year that the common intrawell background at any given well-constituent pair will be compared 
against new compliance measurements from that well. The table entry corresponding to w* and the 
intrawell background sample size n may be regarded as the achievable false positive rate per well­
constituent pair. This rate should not exceed the target rate, w-c, if the overall SWFPR is to be met. 

The same approach presented in Section 19.3 is used if a mixture of test methods is needed (e.g., 
parametric prediction limits for some constituents, and non-parametric limits for other constituents). By 
construction, the target SWFPR is evenly proportioned across the list of monitored constituents. As long 
as the significance level per constituent (interwell case) or per well-constituent pair (intrawell case) is 
computed using all c constituents and not just those for which a non-parametric prediction limit test will 
be applied, the SWFPR will not exceed a= 0.10 on an annual basis. 

Tables 19-19 through 19-24 in Appendix D provide the same bold, italicized or plain text used to 
identify 'good', 'acceptable' and 'low' power ratings following the ERPC 3 and 4 standard deviation 
reference criteria as in the parametric prediction limit tables. 

As final technical notes about these tables, the significance levels listed as table entries are 
presented using a short-hand notation in order to compactly present a wide range of false positive rates. 
In this notation, the first four non-zero digits of the significance level are given, followed if necessary, by 
the symbol -d. The value d represents the number ofleading zeros to the right of the decimal point. This 
is equivalent to taking the non-zero portion of the entry and multiplying it by 1 o-d to get the actual 
significance level. As an example, if the entry is .4251-4, the equivalent significance level is 
.00004251. Entries without the -d symbol are the actual fractional significance levels where no 
adjustment is needed. 

For network configurations (number of wells [w] and background sample size [n]) not listed in 
Tables 19-19 through 19-24 in Appendix D, bilinear interpolation can be used to approximate the 
significance level associated with the desired configuration. As discussed in Section 19.3, interpolation 
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should be restricted to the closest four adjacent table entries. The shorthand significance level notations 
in the tables should first be converted to actual fractions before interpolating. 

19.4.1 TESTING INDIVIDUAL FUTURE VALUES 

BACKGROUND AND REQUIREMENTS 

The Unified Guidance recommends two variations of non-parametric prediction limits for use in 
groundwater detection monitoring. The first is the prediction limit for individual future values, 
introduced in Section 18.3.1 . The other is the prediction limit for future medians, detailed in Section 
18.3.2. Basic requirements for non-parametric prediction limits are outlined in those sections. 

The main advantage to a prediction limit for future values is its overall flexibility and ease of 
implementation. Fewer data from each compliance well are needed to implement the test compared to a 
prediction limit for a future median. Only an initial observation from each compliance point may be 
needed to identify a well-constituent pair 'in-bounds'; initial exceedances can be followed by up to a 
maximum of three additional individual re samples. Once the non-parametric upper prediction limit has 
been selected from background as a large order statistic (often the maximum or second-largest value), 
each compliance point measurement is compared directly against this upper limit. 

The user should decide which retesting scheme to use and how many resamples per well are 
feasible, given that the measurements from any well during a given evaluation period need to be 
statistically independent. Tables 19-19 through 19-22 in Appendix D can be employed to compare the 
achievable false positive rates of different schemes and to determine whether they exhibit adequate 
effective power. The user can also explore EPA Region VIII's Optimal Rank i'alues Calculator software 
to consider order statistics other than the maximum or second-largest. 

PROCEDURE 

Step 1. For an interwell test, use the number of monitoring constituents (c) in equation [19.16) to 
determine the target per-constituent false positive rate ( const). Also multiply the number of 
yearly statistical evaluations ( nE) by the actual number of compliance wells ( w) to determine 
the look-up table entry, w* . Then depending on the background sample size n and w, choose a 
type of non-parametric prediction limit (i.e., maximum or 2nd highest value in background) 
and a retesting scheme for individual observations using Tables 19-19 through 19-22 in 
Appendix D. The final plan should have an achieved significance level no greater than aconst 

and also should be labeled with 'acceptable' or 'good' power in the Appendix tables. 

Step 2. For an intrawell test, use the number of constituents ( c) and the actual number of compliance 
wells ( w) in equation [ 19 .17) to compute the target significance level per well-constituent pair 
( w-c). Set w* in the look-up table equal to the number of yearly evaluations, nE. Based on w* 
= nE and the intrawell background sample size n, choose a non-parametric prediction limit and 
retesting scheme so that the achieved well-constituent pair significance level (i.e., the selected 
table entry) does not exceed the target significance level, w-c, and also is labeled with 
'acceptable' or 'good' statistical power. 
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Step 3. Sort the background data into ascending order and set the upper prediction limit equal to an 
appropriate order statistic of the data (e.g., the maximum or the second-largest observed 
value). If all constituent measurements in a background sample are non-detect, use the Double 
Quantification rule in Chapter 6. The constituent should not be included in calculations for 
identifying the target false positive. 

Step 4. Collect one initial measurement per compliance well. Then compare each initial measurement 
against the upper prediction limit. Depending on the retesting scheme chosen, for any 
compliance point value that exceeds the limit, collect one to three additional resamples from 
that well. Again compare the resamples against the upper prediction limit. 

Step 5. Identify any well with an initial exceedance as potentially contaminated when either (1) all 
resamples using a l-of-2, l-of-3, or l-of-4 plan also exceed the prediction limit, or (2) at least 
two resamples exceed the limit using a modified California retesting scheme. Conversely, 
declare a well to have 'passed' the test if either 1) the initial measurement does not exceed the 
prediction limit, 2) any resamples from a 1-of-m scheme do not exceed the limit, or 3) at least 
2 of 3 resamples from a modified California approach do not exceed the limit. 

19.4.2 TESTING FUTURE MEDIANS 

BACKGROUND AND REQUIREMENTS 

Prediction limits for a future median based on either a single or with one repeat (1 of-1 or 1-of-2 
tests) are two non-parametric procedures recommended as retesting methods in the Unified Guidance. 
Compared to a prediction limit for future individual values, the prediction of a median (Chapter 18) 
often requires more data to be collected from each compliance well particularly if resampling is 
included. Slightly greater statistical manipulation is also needed once the data are in hand. For the 1-of-1 
test, the initial median to be predicted requires at least two initial observations from each compliance 
point, and any re sample medians will require additional sets of up to three measurements, all of which 
needs to be statistically independent. 

Given equal amounts of data and the same input conditions, a prediction limit for a future median 
tends to be more statistically powerful than a prediction limit for individual values. This is true whether 
one uses a fixed order statistic or selects across a range of order statistics to form the prediction limit. 
Because of this and the fact that both spatial variability and autocorrelation may be less of a problem (or 
at least less easily assessed) when the detection rate is low and a non-parametric strategy is needed, the 
Unified Guidance includes Appendix D tables for both a 1-of-1 scheme and a l-of-2 scheme to predict 
medians of order 3. The l-of-2 median test will have a lower achievable false positive rate than the l­
of-1 version, with all other conditions equal. 

Depending on the number of annual evaluations and the test configuration, care needs to be taken 
that potentially needed samples are far enough apart in time. The series of observations from any well is 
assumed to be uncorrelated. If autocorrelation is a problem, a prediction limit for future values (Section 
19.4.1) should be considered in which the per-well sampling requirements with explicit retesting are 
more modest. 
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PROCEDURE 

Step 1. For an interwell test, use the number of monitoring constituents (c) in equation [19.16) to 
determine the target per-constituent false positive rate ( const). Also multiply the number of 
yearly statistical evaluations ( nE) by the actual number of compliance wells ( w) to determine 
the look-up table margin value, w* . Then, depending on the background sample size n and w*, 
choose a type of non-parametric prediction limit (i.e., maximum or 2nd highest value in 
background) and a retesting scheme for future medians using Tables 19-23 to 19-24 in 
Appendix D. The final plan should have an achieved significance level no greater than aconst, 

and also should be labeled with 'acceptable' or 'good' power in the Appendix tables. 

Step 2. For an intrawell test, use the number of constituents ( c) and the actual number of compliance 
wells ( w) in equation [ 19 .17) to compute the target significance level per well-constituent pair 
( w-c). Set w* in the look-up table margin equal to the number of yearly evaluations, nE. Based 
on w* = nE and the intrawell background sample size (n), choose a non-parametric prediction 
limit and retesting scheme for future medians so that the achieved well-constituent pair 
significance level (i.e., the selected table entry) does not exceed the target significance level, 

w-c, and also is labeled with 'acceptable' or 'good' statistical power. 

Step 3. Sort background into ascending order and set the upper prediction limit equal to a large 
background order statistic (e.g., the maximum or second largest value). If all constituent 
measurements in a background sample are non-detect, use the Double Quantification rule in 
Chapter 6. The constituent should not be included in calculations identifying the target false 
positive rate. 

Step 4. Collect two initial measurements per compliance well. If both do not exceed the upper 
prediction limit, the test passes since the median of order 3 will also not exceed the limit. 
There is no need to collect the third initial observation or any resamples. If both exceed the 
prediction limit, the median will also exceed the limit. There is no need to collect the third 
initial measurement. If using a 1-of-l plan, move to Step 5. Otherwise, collect up to three 
resamples in order to assess the resample median. 

If one initial measurement is above and one below the limit, collect a third observation to 
determine the position of the median relative to the prediction limit. In all cases, if two or 
more of the compliance point observations are non-detect, set the median equal to the 
quantification level (QL). 

Step 5. Compare the median value for each compliance well against the upper prediction limit. If a l­
of-2 retesting scheme is selected and any compliance point median exceeds the limit, collect 
up to three additional resamples from that well. Compute the resample median and compare 
this value to the upper prediction limit. 

Identify a compliance well as potentially contaminated when either the initial median exceeds 
the upper prediction limit for a 1-of-l plan, or both the initial median and the resample median 
exceed the prediction limit in a l-of-2 plan. Conversely, declare a well to have passed the test 
ifthe initial median does not exceed the prediction limit, or the resample median in a l-of-2 
scheme does not exceed it. 
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J EXAMPLE 19-5 

The following trace mercury data have been collected in the past year from a site with four 
background wells and 10 compliance wells (two of which are shown below). The facility must monitor 
for five constituents, including mercury. Assuming that the percentage of non-detects in background is 
too high to make a parametric analysis appropriate or feasible, compare interwell non-parametric 
prediction limits for both observations and medians at the annual statistical evaluation, and determine 
whether either compliance well indicates significant evidence of mercury contamination. Further 
assume that the sequentially reported compliance well data below are obtained as needed for the 
different test comparisons. 

Mercury Concentrations (ppb) 

Event BG-1 BG-2 BG-3 BG-4 CW-1 CW-2 
1 .21 <.2 <.2 <.2 .22 .36 
2 <.2 <.2 .23 .25 .20 .41 
3 <.2 <.2 <.2 .28 <.2 .28 
4 <.2 .21 .23 <.2 .25 .45 
5 <.2 <.2 .24 <.2 .24 .43 
6 <.2 .54 

SOLUTION 

Step 1. Using a target SWFPR of 10%, compute the target per-constituent false positive rate, noting 
that the monitoring list consists of five parameters. This implies that 

aconst ( -= )151
= 021.hSihg equation [19.16]. Since the detection rate in background is 

only 35%, it is reasonable to consider non-parametric prediction limits with retesting. The 
background sample size of n = 20 is to be used to construct an interwell prediction limit for all 
w = 10 compliance wells. Since there is only one annual evaluation ( nE = 1 ), the look-up table 
margin value ofw* equals w x nE = 10. 

Step 2. Determine potentially applicable retesting plans. First consider non-parametric prediction 
limits for individual observations with n = 20 and w = 10. Consulting Tables 19-19 through 
19-22 in Appendix D, only the l-of-3, l-of-4, and modified California plans meet (i.e., do not 
exceed) the target false positive rate of2.l %. To use the l-of-3 or modified California plans, 
the prediction limit needs to be set to the maximum background measurement. In the l-of-4 
plan, the prediction limit can be set to either the maximum or second-highest value in 
background using the Appendix D tables. A final l-of-4 plan determined with the Optimal 
Rank i'alues Calculator allows the use of the 3rd highest value. All of these plans boast good 
power compared to the annual ERPC. Both the l-of-4 and modified California schemes may 
require as many as 3 separate and independent resamples in addition to the initial observation. 

Consider tests for future medians of order 3 in Tables 19-23 and 19-24 in Appendix D. Only 
the l-of-2 plan using the maximum background value as the prediction limit meets the aconst 

target. It also has good power, but requires 3 initial measurements and up to 3 additional 
individual resamples. 
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Step 3. Sort the combined background data and compute the possible prediction limits as PL(n) = .28 
ppb, PL(n-I) = .25 ppb, and PL(n-2) = .24 ppb, respectively representing the maximum, second­
largest, and third-largest background values. 

Step 4. Determine the test outcomes at each compliance well using the various retesting plans, as 
shown in the table below. For the prediction limits on individual observations, the first sample 
collected during Event I is used as the initial screen to determine if any resampling is 
necessary. The first 3 measurements at each compliance well are used to form the initial 
comparison. The median at CW-I is .20 ppb, while that at CW-2 is .36 ppb. 

Compliance Retesting Achieved aa #Initial Resamples BG Result 
Well Plan Samples Required Limit 

CW-1 1-of-3 .0055 1 0 .28 Pass 
1-of-4, Max .0009 1 0 .28 Pass 
1-of-4, 2nd .0046 1 0 .25 Pass 
1-of-4, 3rd .0135 1 0 .24 Pass 
Mod-Cal .0140 1 0 .28 Pass 
1-of-2, Med .0060 3 0 .28 Pass 

CW-2 1-of-3 .0055 1 2 .28 Pass 
1-of-4, Max .0009 1 2 .28 Pass 
1-of-4, 2nd .0046 1 3 .25 Fail 
1-of-4, 3rd .0135 1 3 .24 Fail 
Mod-Cal .0140 1 3 .28 Fail 
1-of-2, Med .0060 3 3 .28 Fail 

All of the acceptable plans indicate that CW-I is not statistically different from background, 
although more initial sampling is required for the I-of-2 retesting plan with medians. For CW-
2, the results are more problematic. The I-of-3 and I-of-4 plans based on the maximum 
background value allow the well to pass, while the other four plans indicate a significant 
difference from background. The least degree of sampling is required by the I-of-3 plan; at 
some facilities, greater sampling efforts may not be feasible. When a well is likely to be 
contaminated, the number of samples required to actually make a decision about the well is 
similar across the plans with the exception of the I-o f-2 prediction limit on a median. 

A further consideration is that although the power of each plan exceeds the annual ERPC 
when additional resampling is possible, it is helpful to compare the full power curves of 
multiple plans to determine whether a particular plan offers greater power than the rest. Figure 
19-2 displays an overlay of the six power curves associated with the retesting plans in this 
example. For these inputs, the I-of-2 retesting plan for a median of order 3 using the 
background maximum and the I-of-4 plan on individual observations using the 3rd highest 
background value achieve the best overall power (shown as a single curve on Figure 19-2). 
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Figure 19-2. Comparison of Full Power Curves 

li:to li:to 
~· o-.· 

SDsAbove BG 

As seen in Figure 19-2, the two plans that pass the second compliance well have visibly lower 
power - especially in the range of 2 to 3.5 standard deviations above background - than the 
four plans that failed CW-2. In such a situation, the user needs to carefully balance the risks 
and benefits of each acceptable resampling plan. In some cases, the cost of greater amounts of 
resampling may be outweighed by the added sensitivity of the test to evidence of groundwater 
contamination. I 
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This chapter describes control charts, a second recommended core strategy for detection 
monitoring. Control charts are a useful and powerful alternative to prediction limits. The Unified 
Guidance is the first EPA document to discuss retesting and simultaneous testing of multiple wells 
and/or constituents as they relate to control charts. Research of these topics is still ongoing. 

lL!!t~t1i+-<iJDtTi ~ti Di ~t1i1- DJ'!ti 
Control charts are a viable alternative to parametric prediction limits for testing groundwater in 

detection monitoring. They are similar to prediction limits for future observations in that a control chart 
limit is estimated from background and then compared to a sequence of compliance point measurements. 
If any of these values exceeds the control limit, there is initial evidence that the compliance point 
concentrations exceed background. 

Control charts can be constructed as either interwell or intrawell tests. The main difference is how 
background is defined and what measurements are utilized to build the control limit. Interwell control 
charts establish the control limit from designated upgradient and potentially other background wells. 
Intrawell control charts, on the other hand, employ historical measurements from a compliance point 
well as background. Intrawell tests can only be appropriately applied if the historical compliance well 
background is uncontaminated. 

An advantage of control charts over prediction limits is that a control chart graphs the compliance 
data over time. Certain varieties can also evaluate gradual increases above background over the period 
of monitoring. Trends and changes in concentration levels can be easily seen since the sample 
observations are consecutively plotted on the chart. This provides the analyst an historical overview of 
the pattern of measurement levels. Prediction limits are typically constructed to allow only poinr-in-rime 
comparisons between the most recent compliance data and background, making long-term trends more 
difficult to identify. 1 

1 Long-term results from repeated application of a prediction limit can be plotted over time, creating a graph similar in nature 
to a control chart. But this has been infrequently done in practice. 
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As a well-established statistical methodology, there are many kinds of control charts. Historically, 
control charts have been put to great use in quality engineering and manufacturing, but have more 
recently been adapted for use in groundwater monitoring. The specific control chart recommended in 
the Unified Guidance is known as a combined Shewhart-CUSUM control chart (Lucas, 1982). It is a 
'combined' chart because it simultaneously utilizes two separate control chart evaluation procedures. 
The Shewhart portion is almost identical to a prediction limit in that compliance measurements are 
individually compared against a background limit. The cumulative sum [CUSUM] portion sequentially 
analyzes each new measurement with prior compliance data. Both portions are used to assess the 
similarity of compliance data to background in detection monitoring. 

The Shewhart-CUSUM control chart works as follows. Appropriate background data are first 
collected from the specific compliance well for intrawell comparisons or from separate background 
wells for interwell tests. The baseline parameters for the chart, estimates of the mean and standard 
deviation, are obtained from these background data. These baseline measurements characterize the 
expected background concentrations at compliance wells. 

As future compliance observations are collected, the baseline parameters are used to standardize 
the newly gathered data. After these measurements are standardized and plotted, a control chart is 
declared our-ef-conrrol if future concentrations exceed the baseline control limit. This is indicated on the 
control chart when either the Shewhart or CUSUM plot traces begins to exceed a control limit. The limit 
is based on the rationale that if the well remains uncontaminated as it was during the baseline period, 
new standardized observations should not deviate substantially from the baseline mean. If a release 
occurs, the standardized values will deviate significantly from baseline and tend to exceed the control 
limit. The historical baseline parameters then no longer accurately represent current well concentration 
levels. 

Combined Shewhart-CUSUM control charts initially featured two control limits, one for testing 
the Shewhart portion of the chart, one for testing the CUSUM portion of the chart. Later research on 
control charts (Davis, 1999; Gibbons, 1999) indicated that having separate control limits for the 
Shewhart and CUSUM procedures is generally not important. Both control chart traces can instead be 
compared to a single control limit. This modification not only makes the control chart method slightly 
easier to apply, but also aids in measuring the statistical performance of control charts over a variety of 
monitoring networks. 

lL!!1f'iTDPl~ D~+--<i]J~ 

The basic procedure for constructing a control chart 1s presented below. Requirements and 
assumptions for control charts are discussed in later sections: 

Step 1. Given 11 background measurements ( x JB ), estimate the baseline parameters by computing the 

sample mean ( .XB) and standard deviation (SB). 

Step 2. For a compliance point measurement (xi) collected on sampling event Ti, compute the 
standardized concentration Zi: 
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[20.1) 

Step 3. For each sampling event Ti, use the standardized concentrations from Step2 to compute the 
standardized CUSUM Si. Set S0 = 0 when computing the first CUSUM S1. 

Step 4. 

s = 
1 

[20.2) 

The notation max[ A, B] in equation [20.2) refers to picking the maximum of quantities A and 
B. Furthermore, the parameter k designates half the displacemenr or shift in standard 
deviations that should be quickly detected on a control chart. Often k is set equal to 1, meaning 
that the control chart will be designed to rapidly detect upward concentration shifts of at least 
two standard deviations. Since Zi is standardized by the estimated baseline standard deviation, 
an increase of r units in Zi corresponds to an increase of r standard deviations above the 
baseline mean in the domain of concentrations Xi. 

To plot the control chart in concentration units, compute the 11011-s r1111d11rdized 

with the equation: 

CUSUMs Sc 
1 

[20.3) 

Step 5. Calculate the non-standardized control limit used to assess compliance of both future 
measurements (xi) and non-standardized CUSUMs (Ui). Traditionally, two parameters were 
used to compute standardized limits: the decision internal value (h) and the Shewhart Control 
Limit ( SCL ). The Unified Guidance instead recommends only one standardized control limit 
(h ). Compute the non-standardized control limit (h c) as: 

[20.4) 

Step 6. Construct the control chart by plotting both the compliance measurements (xi) and the non­

standardized CUSUMs (Sic) on the y-axis against the sampling events Ti along the x-axis. 

Also draw a horizontal line at the concentration value equal to the control limit, h c· 

Step 7. Moving forward in time from the first plotted sampling event T 1, declare the control chart to 
be potentially out-of-control if either of two situations occurs: I) the trace of non-standardized 
concentrations exceeds h c; or 2) the CUSUMs become too large, exceeding h c· 

The first case signifies a rapid increase in concentration level among the most recent sample 
data. The second can represent either a sudden rise in concentration levels or a gradual 
increase over time. A gradual increase or trend is particularly indicated if the CUSUM exceeds 
the control limit but the compliance concentrations do not. The reason for this is that several 
consecutive, small, increases in Xi will not trigger the control limit, but may cause a large 
enough increase in the CUSUM. As such, a control chart can indicate the onset of either 
sudden or gradual contamination at the compliance point. 

l L J 
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For background nickel data collected during 8 months in 1995 shown below, construct an intrawell 
control chart and compare it with the first 8 months of the compliance period (1996): 

I~ J_<JltT~ ~ 
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Step 1. As discussed in Section 20.3.3, control charts are a parametric procedure requiring normal or 
normalized data. Test the 11 = 8 baseline measurements for normality. A probability plot of 
these data provided in Figure 20-1 exhibits a mostly linear trend. The Shapiro-Wilk test 
statistic computed for these data is W = 0.896. Compared to the a= .10 level critical point of 
W.1o,s = 0.851 (Table 10-3 of Appendix D ), the Shapiro-Wilk test indicates that the baseline 
data are approximately normal. Construct the control chart using the original nickel 
measurements. 

10 20 30 40 

Nickel Concent nt ion (ppb) 
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Step 2. Use the 1995 baseline nickel data to compute the sample mean and standard deviation: xB = 

25 .14 ppb and SB = 11.518 ppb. Then compute the standardized concentration Zi for each 1996 
compliance period sampling event using equation [20.1). These values are listed in the fourth 
column of the table below. 

=I l c ~ ~ ... Tl-JlC ~ J J ~~c1<:i l ~ cLc c J ~ lC 

I ci'11 L 7 L II ) 7111 ) L II L L l )II I 
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Step 3. Compute the standardized CUSUMs as follows. First let the shift displacement parameter k = 
1 and set So= 0. After subtracting k from each Zi, calculate the CUSUM using equation [20.2) 
. Note that none of the CUSUMs are positive until the first occurrence of a positive quantity 
(Zi - k). As shown in the sixth column above, the standardized CUSUMs for the 6th, 7th and 
8th events are calculated as: 

S 
6 

= max 
1 

O, (o. 3 2 - 1 )+ OJ= O 

S7 =max 
1
0,(1.61 -1 )+OJ= 0.61 

SS =max l o,(4.92 -1)+0.61J= 4.53 

Step 4. Calculate the non-standardized CUSUMs (Sic) using the individual Zi, baseline mean and 

standard deviation parameters in equation [20.3). These values are listed in the last column of 
the table above. For the 8th sampling event, this calculation gives: 

s: = 25.14+11.518 (4.53 )= 77.31 

Step 5. Compute the non-standardized control limit using equation [20.4). For purposes of this 
example, set h = 5; the non-standardized limit becomes: 

h c = 25.14+11.518 0 )= 82.73 ppb 

Step 6. Using the compliance period nickel concentrations and the non-standardized CUSUMs, plot 
the control chart as in Figure 20-2. The combined chart indicates there is insufficient evidence 
tilU§idMl~ci:antanriiiatlicncoimrdP CJtinhe6:mshemidmths tmanii:mfil. chln.wntmtjohstlnd>ra<t~ 
nearly exceed h 

c, and conceivably might do so in future sampling events if the apparent trend 
continues. If that were to happen, retesting can be performed to better determine whether the 
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increase was one or a series of chance fluctuations or an actual mean-level change in nickel 
concentrations. l 
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As with other statistical methods, control charts are based on certain assumptions about the sample 
data. There are also some minimum requirements for constructing them. None of the assumptions or 

l L !! I 

The methodology for control charts assumes that the sample data are statistically independent. A 
control chart can give misleading results if consecutive sample measurements are serially correlated (i.e., 
autocorrelated). For this reason, it is important to design a sampling plan so that distinct volumes of 
groundwater are analyzed at each sampling event (Section 14.3.1 ). Duplicate laboratory analyses (i.e., 
aliquot or field splits) should also not be treated as independent observations when constructing a control 
chart. Gibbons ( 1999) recommends that control chart observations be collected no more frequently than 
quarterly. Since physical independence does generally not guarantee statistical independence (Section 
14.1 ), a test of autocorrelation using the sample autocorrelation function or rank von Neumann ratio tests 
(Section 14.2) should be performed to determine whether the current sampling interval affords 
uncorrelated measurements. 

If the background data exhibit a clear seasonal cyclical pattern, the values should be deseasonalized 
before computing the control chart baseline parameters. For a seasonal pattern at a single well, the 

l L J _ 
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method of Section 14.3.3.1 can be used to create adjusted measurements having a stable mean. At 
several or a group of wells indicating a common seasonal pattern, the adjusted values can be computed 
using a one-way analysis of variance [ANOVA] for temporal effects (Section 14.3.3.2 ). When baseline 
data are deseasonalized, it is essential that newly collected compliance measurements also be 
deseasonalized in the same manner. It is presumed that the same pattern or physical cause will impact 
future data in the same manner as for the baseline measurements. 

To deseasonalize compliance point measurements, simply use the seasonal and grand means 
estimated from background in computing the adjusted compliance point values. If the control chart 
remains in control following deseasonalizing, the existing background can be updated with the newer 
measurements. However, the revised background set should be checked again for seasonality and the 
seasonal and grand means re-computed, in order to more accurately adjust future measurements. 

Control charts also assume that the background mean is s rarionary over rime This means there 
should be no apparent upward or downward trend in the background measurements. A trend imparts 
greater-than-expected variation to the background data, increasing the baseline standard deviation and 
ultimately the control limit. The net result is a control chart that has less power to identify groundwater 
contamination. Tests for trend described in Chipter 17 can be used to check the assumption of no 
background trends. Should an upward or downward trend be verified, rhebackground dara should nor be 
de-rrendedWhile it is possible to construct and use a control chart with de-trended background and 
future data, the assumption that the trend will continue indefinitely is very problematic. The trend 
should first be investigated to ensure that background has been properly designated. Other monitoring 
wells should be checked to see if the same trend is occurring, indicating either evidence of an earlier 
release or possibly a sitewide change in the aquifer. In any case, a switch should be made to a trend test 
rather than a control chart. 

As noted, control charts can be employed as either interwell or intrawell tests. However, interwell 
control charts require a spatially stationary mean across the monitoring network. If spatial variability 
exists among background wells for certain constituents, interwell control charts will be no more 
interpretable than prediction limits. A related problem can plague intrawell control charts ifthere is prior 
spatial variability (i.e., some compliance wells are already contaminated prior to selection ofintrawell 
backgrounds). His rorical observarions should be used as baseline dara in inrnrwell res mly if rhe 
compliance wells are known robe unif.fecred by a release from rhe monirored uniT. Otherwise, the 
control limit based on the greater-than-expected background values may be set too high to identify 
current contamination. 
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Both background mean and standard deviation estimates are needed to construct a control chart 
limit. The Unified Guidance recommends at least 11 = 8 measurements for the defining the baseline, 
particularly to ensure an accurate standard deviation estimate. Baseline observations are traditionally not 
plotted on the chart, although it may be visually helpful to include background values on the plot using a 
distinct symbol (e.g., hollow instead of filled symbol). 

Whether baseline observations are obtained from upgradient background wells for interwell testing 
or from individual compliance well historical data for intrawell use, these data are only small random 
samples used to estimate the true background population characteristics. Any particular sample set may 
not be adequately representative. Because of this likelihood, the background sample size requirements 
suggested above for constructing a control chart should be regarded as a minimum. More background 
observations should preferably be added to the initial set to improve the characterization of the 
background distribution. 

For interwell control charts, periodic updating ofbackground (Chapter 5) poses no difficulty. New 
observations should be collected at background wells on each sampling event. Then, every 1-2 years, the 
newly collected background should be added to the existing background pool after testing/checking for 
statistical similarity. The revised background can be used to re-compute the baseline parameters and, in 
turn, the control limit. 

Updating background for intrawell control charts depends on the control chart remammg 'in­
control' for several consecutive sampling events. As long as a confirmed exceedance does not occur, the 
in-control compliance measurements collected since the last background update can be tested against the 
existing background for statistical similarity using a Student' s£ or Wilcoxon rank-sum test (Section 
5.3 ). ASTM Standard D63 l 2-98 (1999) recommends testing the newly revised background set for 
trends, using trend tests including those in Chapter 17. The ASTM methodology is intended to avoid 
incorporating a subtle trend into the control chart background, which influences the re-computed 
baseline parameters and weakens the statistical power of the control chart to identify contaminant 
releases. 

If the comparison of recent in-control measurements against ex1stmg background indicates a 
statistically significant difference, it may reflect changes in natural groundwater conditions unrelated to 
contamination events. In these circumstances, it is possible to update background by creating a 'moving 
window.' The background sample size 11 remains fixed, with only the most recent 11 measurements 
included as background for computing baseline parameters. Earlier sampling events are excluded. The 
overriding goal is to ensure that background reflects the most current and representative groundwater 
conditions (Chapter 3). 

Despite the apparent benefits, the statistical performance of control charts is only partially known 
when background is periodically updated. Davis (1999) has performed the most extensive simulations 
of this question. He suggests that substantially different simulation results occur with the CUSUM 
portion when background is periodically updated (especially early on) and combined with either a small 
maximum run lengrh or a 'warm-up' period or both (see Section 20.4.1 ). 

l L J. 
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Two other issues affect both control charts and prediction limits when updating intrawell 
background. First, if background is periodically augmented by adding new measurements (either from 
upgradient background wells or from recent in-control compliance measurements), the overall 
background sample size is increased. This in turn should cause the prediction or control chart limit to 
decrease. 

For instance, prediction limit tables in Chapter 19 demonstrate that as the background sample 
size increases, lower prediction limit K-multipliers are appropriate. The expanded background sample is 
used to re-compute the prediction limit, provided that the measurements added to background do not 
indicate an adverse change in groundwater quality. New compliance measurements are then tested 
against the revised prediction limit. But the same cannot be done with control charts unless the CUSUM 
is reseUo zero. The reason is that the CUSUM will have already been if.fecredby those compliance 
measurements now being added to intrawell background. An independent comparison between 
compliance point values and background is thus precluded. Consequently, the Unified Guidance 
recommends that the CUSUM portion of the control chart be reset after each periodic update of intrawell 
background. 2 

The second issue is how to update intrawell background when an initial measurement has exceeded 
the control or prediction limit, but one or more resamples disconfirm the exceedance. Routine detection 
monitoring continues in this situation. No confirmed exceedance is registered for a prediction limit test 
and the control chart remains in-control. Should the initial exceedance be included or excluded when 
later updating intrawell background? 

The Unified Guidance recommends a strategy parallel to the handling of outliers (Chapter 12 ). If 
the exceedance can be shown to be a measurement in error or a confirmed outlier, it should be excluded 
from the revised background. Otherwise, any disconfirmed exceedances (including any resamples that 
exceed the background limit but are disconfirmed by other resamples) should probably be included when 
updating the background. The reason is that background limits designed to incorporate retesting are 
computed as low as possible to ensure adequate statistical power. The trade-off is that compliance 
measurements legitimately similar to background but drawn from the upper tail of the distribution, 
sometimes exceed the limit and have to be disconfirmed with a resample. Any exceedance not 
documented as an error or outlier is most likely representative of some portion of the background 
population that previously had gone unsampled or unobserved. 

l L ~ ~ 1 - fl J_ T t : fl ~ +- ~ ~ ~ J.._ ... t ... t +- fl t fl 

The combined Shewhart-CUSUM control chart is a parametric procedure. This implies that 
background used to estimate the baseline parameters should either be normal or normalized via a 
transformation. Normality can be tested on either the raw measurement or transformed scale using one of 
the goodness-of-fit techniques described in Chapter 10. If the hypothesis of normality is accepted, 

2 The same 'overlapping' dependence between the CUSUM and revised background will also be true when background is 
updated using a 'moving window' approach. The CUSUM should therefore be reset in these cases too. However, since the 
background sample size is kept fixed, the standardized control limit ( h) will not decrease as it does when background is 
augmented. 
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construct the control chart on the raw measurements. If it is rejected, try a transformation and retest the 
transformed data for normality. If the transformation works to normalize background, construct the 
control chart on the transformed measurements, being sure to use the same transformation on both 
background and the compliance values to be plotted. 

Unlike prediction limits, no non-parametric version of the combined Shewhart-CUSUM control 
chart exists. If the background sample cannot be normalized perhaps due to a large fraction of non­
detects, a non-parametric prediction limit should be considered (Section 19.4 ). Control charts will be 
most appropriate for those constituents with a reasonably high detection frequency. These include many 
inorganic constituents (e.g., certain trace elements, indicators and geochemical monitoring parameters) 
that occur naturally in groundwater, or for other persistently detected, site-specific organic chemicals. 

If no more than 10-15% of the data are non-detect, it may be possible to normalize the data via 
simple substitution (Section 15.2) of half the reporting limit [RL] for each background non-detect. A 
normalizing transformation can sometimes be found using a censored probabiliry p/or(Chapter 15) for 
background data containing a substantial fraction of non-detects up to 50%. A censored estimation 
technique such as Kaplan-Meier or Robust Regression on Order Statistics [Robust ROS] (Chapter 15) 
can then be used to compute estimates of the baseline mean ( µ B) and standard deviation ( 6 B) that 

account for the left-censored measurements. These adjusted estimates should replace the background 
sample mean ( .XB) and standard deviation (sB) in the control chart equations of Section 20.2. The 

Unified Guidance differs somewhat from the recommended approach in ASTM Standard D6312-98 
(ASTM, 1999), which is to set all non-detects identically to zero. 

No matter how background non-detects are treated, control charts require an additional step for 
future observations that isn' tneeded with prediction limits. Each new compliance point measurement 
statistic must be added to the CUSUM associated with previous sampling events. If the new observation 
is a non-detect, some value (typically a fraction of the RL) needs to be imputed for the censored 
measurement in order to update the CUSUM. The Unified Guidance recommends that half the RL be 
substituted for these measurements. 3 

3 If an intrawell control chart is constmcted and it remains 'in-control' until the next background update, any non-detects 
observed in the meantime should be treated as left-censored measurements for purposes of updating the baseline mean and 
standard deviation estimates. In other words, the simple substitution ofRL/2 should only apply temporarily to compute an 
updated CUSUM. 
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A significant difference exists between control charts and prediction limits in setting statistical 
performance criteria. Standard equations described in previous chapters allow the user to generate an 
exact confidence level (1- L) for prediction limits. Obtaining similar confidence levels for the Shewhart­
CUSUM control charts needs to be done experimentally through varying the two background control 
chart limits (h) and the displacement parameter (k), as well as the retesting options. The control chart 
parameter limits in the two previous EPA RCRA statistical guidance documents were based on work by 
Lucas (1982), Hockman & Lucas (1987), and Starks (1988). Monte Carlo simulations for various 
combinations of control chart parameters (without retests) were used to develop the overall 
recommendations in their papers. 

The specific parameter choices were not fixed, but appeared to work best in simulations at a single 
well. Starks (1988) recommended setting h = 5 and k = 1 for standardized measurements, especially in 
the early stages of monitoring. He further suggested that after 12 consecutive in-control measurements, 
the baseline mean and standard deviation be updated to include more recent sampling measurements. 
The values of k and SCL (the separate Shewhart control limit) could then be reduced to k = 0.75 and SCL 
= 4.0. In effect, this tightens the control chart limits to reflect that additional data are available to better 
characterize the baseline population. 

More recent research (notably Gibbons, 1999) has demonstrated that control charts from the 
quality control literature do not account for several important characteristics of groundwater monitoring 
networks. The most important is the problem of multiple comparisons (i.e., the need to simultaneously 
conduct testing of many well-constituent pairs during an evaluation period described in Chapter 6). 
Control chart performance is typically assessed on an individual well basis, rather than over a network of 
simultaneous tests. The recommended control limits have no obvious connection to the expected false 
positive rate (a), nor is the traditional control limit adjustable like the K-factor in prediction limits. 
There is a need to account for differences in background sample sizes, a desired false positive rate, and 
the number of monitoring network tests in similar fashion to prediction limits. Moreover, early research 
and guidance did not address the issue of retesting in control charts. Retesting provides substantial 
improvements in prediction limit performance, and its potential needs to be evaluated for control charts. 

It is standard practice to discuss the performance of prediction limits in terms of statistical power 
and false positive rates. However, statistical performance of control charts is usually measured via the 
average run lengrh [ARL]. The ARL is the average number of sampling events before the control limit 
is first exceeded, identifying an 'out-of-control' process. Ideally, the ARL should be large when the 
mean concentration of the tested constituent is at or near the baseline average, but increasingly smaller as 
the true mean is gradually shifted above baseline. 

Put in standard statistical terms, the control chart should not easily or quickly signal false evidence 
of a release when a release has nor occurred. To have a low false positive rate when the null hypothesis 
of no contamination is true, the chart should stay 'in-control' for a long time indicated by a large ARL. 
The statistical power for detecting a release when it occurs should be as high as possible. A short ARL 
will indicate that a control chart is quickly determined to be out-of-control. 
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False positive rates (a) for CUSUM control charts cannot be equated precisely with ARLs. But it 
has been found that the ARLs closely follow a geometric distribution pattern with a mean equal to (1/a). 
Thus, a control chart with an ARL of I 00 would have an associated false positive rate of roughly I%. 
The relationship is not exact, especially for combined Shewhart-CUSUM control charts. It is also 
affected by the randomness in the background data used to establish the control chart baseline. 

Thus, the Unified Guidance offers a new framework for measuring control chart statistical 
performance. It is suggested that measuring false positive rates in control charts be conducted by 
establishing a time frame or run length of interest, specifically, a period of one year. A false positive is 
counted if the chart has a confirmed exceedance sometime during the year, under the assumption of no 
contaminant release. Statistical power is similarly evaluated for a fixed time interval (e.g., one year) by 
measuring the proportion of run lengths with confirmed exceedances during rhaTinrerval. In this way, 
both the false positive rate and power are tied to a specific one-year time frame. 

This framework is consistent with the guidance recommendations that prediction limit 
performance be measured according to an annual, cumulative I 0% site-wide false positive rate 
[SWFPR] and that cumulative, annual effective power be comparable to the EPA reference power curves 
[ERPC]. The suggested framework for control charts allows a direct comparison with prediction limits 
when designing alternate statistical approaches. 

l L !! I fl 1 + I =T + - 91 J_ + T p J_ ~ ~-PfllTH ~I 

Until recently, control charts were not designed to address the SWFPR when testing multiple well­
constituent pairs. Furthermore, it was not clear to a user how to adjust for multiple tests using fixed 
control limits (SCL, k and h). Because of these problems, Gibbons (1999) performed a series ofMonte 
Carlo simulations to gauge intrawell control chart performance for up to 500 simultaneous tests. 
Gibbons also examined the outcomes when the single Shewhart and CUSUM decision limit was allowed 
to vary between h = {4.5, 5.0, 5.5, and 6.0}. He found that control charts could be designed with both 
high power and a low SWFPR, as long as retesting was incorporated into the methodology. 

Additional Monte Carlo simulation work was performed by Davis (1999). He found that control 
charts perform similarly to prediction limits when both use retests. But he also noted that certain 
favorable outcomes in Gibbons (1999) were the result of combining frequent updating of background 
and a 'warm-up' period for the chart. In the latter period, any control limit exceedances were ignored. 
The simulations were based on small mrrximum run lengrhs. 

Other researchers have noted (for instance, Lucefio and Puig-Pey, 2000) that the run length 
distribution of CUSUM control charts is often close to geometric. This implies that even when the ARL 
is large, there can be significant probability of an early failure. The difficulty in a real-life setting is that 
one will not know whether an early exceedance of the control limit is due to contaminated groundwater 
or simply a false positive exceedance for an otherwise in-control chart. This guidance recommends 
against the use of 'warm-up' periods when implementing or assessing the performance of Shewhart­
CUSUM control charts. 
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Gibbons (1999) provides results for a number of control chart limit options, but does not determine 
limits which can provide exact false positive rate control. A number of potential commonly applied 
retesting strategies are also not evaluated. In contrast, both Gibbons ( 1994) and the Unified Guidance 
(Chapter 19) do provide such control for prediction limits using a wider array ofretesting strategies. 

Facilities may need to conduct theirown specific Monte Carlo simulations if the published 
literature options cannot be applied at their site. Simulations might be needed for either intrawell or 
interwell control charts or both. Overall methodologies for Monte Carlo simulations are provided 
below. The first step for either type test is a simulation of the cumulative annual false positive rate. 
Then a second simulation measures the cumulative, annual statistical power. 

To perform an inrrawell simulation, repeat the following steps for a large number of simulations 
(e.g., Nsim = 10,000): 

1. Determine the total number of well-constituent pairs for which statistical testing is required, as 
well as the number of pairs at which intrawell control charts will be constructed. Use the basic 
subdivision principle (Section 19.2.1) to determine the per-test false positive rate ( Ltest) 

associated with each control chart that meets the target SWFPR. 

2. Determine the intrawell background sample size (11 ). Generate 11 standard normal measurements. 

Then form baseline estimates by computing the sample mean ( xB) and standard deviation (.ss). 

3. Pick a set of possible standardized control limits (h ). Choose a maximum run length (M), based 
on the number of sampling events conducted each year (e.g., M = 4 for quarterly sampling). 

4. For each potential control limit ( h ), compute the non-standardized control limit using equation 
[20.4). Then simulate the behavior of the control chart from sampling event I to sampling event 
M by generating standard normal compliance measurements for each event. Generate enough 
random measurements to account for resamples potentially needed with a selected retesting 
strategy. 

5. Test the initial measurement associated with each sampling event against the non-standardized 
control limit. Also form the CUSUM for events I to M using equations [20.2) and [20.3). 
Compare the non-standardized CUSUM against the control limit. 

6. If either the initial measurement or the CUSUM exceeds h c, use the resample(s) for that sampling 
event to perform a retest (see below). If the retest confirms the initial exceedance, record a false 
positive for that particular simulation (out of Nsim). 

7. After all Nsim runs have been conducted, compute the observed false positive rate ( Lh) associated 
with each possible s randardized control limit ( h) by dividing Nsim into the number of observed 
false positives. Set the final control limit equal to that value of h for which Lh is closest to Ltest· 

The simulation for an inrerwellcontrol chart is similar to the intrawell case, with a few key 
differences. First, instead of a per-test false positive rate, the basic subdivision principle must be used to 
compute a per-consriruenrlalse positive rate ( Lconst). The reason is that the same background 
measurements for a given constituent are used to test each of the compliance wells in the network. 
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Secondly, when generating standard normal compliance point measurements in Step4 of the intrawell 
simulation, a set of such random observations needs to be generated for each of the w wells in the 
network. The behavior of w control charts must be simulated using a common set of background data 
and single control limit for each one. 

Once a control limit meeting the target SWFPR has been established, a second Monte Carlo 
simulation is run to determine the statistical power of the control chart. Since effective power is defined 
as the ability to flag a single contaminated well-constituent pair, the basic steps are the same for either 
interwell or intrawell control charts. Repeat the following over a large number of simulations (Nsirn). 

1. Determine the background sample size (11 ). Generate 11 standard normal measurements. From 
these, form baseline estimates by computing the sample mean ( xB) and standard deviation (Ss). 

2. Using the standardized control limit ( h) chosen in the first Monte Carlo simulation, compute a 
non-standardized control limit using equation [20.4). Then simulate the behavior of the control 
chart from sampling event 1 to sampling event M by generating sets of normal Ne , 1) 
compliance measurements for each event, where J varies from 1 to 5 by unit steps. Generate 
enough random measurements in each set to account for resamples potentially needed with a 
selected retesting strategy. 

3. For each set of successively higher-valued compliance measurements, test the initial 
measurement associated with each sampling event against the non-standardized control limit. 
Also form the CUSUM for events 1 to Musing equations [20.2) and [20.3). Compare the non­
standardized CUSUM against the control limit. 

4. If either the initial measurement or the CUSUM exceeds h c, use the resample(s) for that sampling 
event to perform a retest (see below). If the retest confirms the initial exceedance, record a true 
detection for that particular mean-level J and simulation (out of Nsirn). 

5. After all Nsirn runs have been conducted, compute the observed power ( 1- I ) associated with each 
true mean level e ) by dividing Nsirn into the number of observed detections. The simulated 
effective power curve for standardized control limit (h) is a plot of(l-1) versus J for J = 1 to 5. 

If the standardized control limit identified during Monte Carlo simulation has effective power 
comparable to the appropriate ERPC (matching the site-specific sampling frequency to one of the three 
curves in Chapter 6: quarterly, semi-annual, or annual), h can be used to form site-specific control 
limits. For interwell limits, compute the (upgradient) background mean and standard deviation for each 
monitoring constituent and use equation [20.4) to form the final, non-standardized control limits. For 
intrawell limits, use the same equation only with intrawell background at each well-constituent pair. 

l L !! l !? 1 t I 

Control chart and prediction limit tests are only practical for most monitoring networks if retesting 
is part of the procedure, demonstrated both by Gibbons ( 1999) and Davis ( 1999). A key issue is to 
decide how control chart retesting should be conducted. Practical retesting strategies for prediction 
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limits on future observations are described in Section 19.1, including both 1-of-m (for m = 2, 3, 4) and 
modified California plans. 

ASTM Standard D6312-98 (1999) recommends a 1-of-2 retesting strategy: whenever an 
exceedance of the control limit occurs on a given sampling event, the next quarterly sampling event is 
used as the resample. Furthermore, if the exceedance is not confirmed by the resample, the ASTM 
standard recommends that the initial exceedance be replaced in the CUSUM by the follow-up sampling 
event, thus implicitly assuming that the initial observation was an error. 

Gibbons (1999) considers the performance of other retesting plans, including l-of-2, l-of-3, and 
the original Cal-3 plan (see Section 19.1 and Appendix B). For each plan, resampling is triggered when 
the most recent observation either by itself exceeds or causes the CUSUM to exceed the limit. Then, 
each resample (if more than one) is compared against h. The initial exceedance measurement is 
removed from the CUSUM computation, replaced by the resample, and then re-compared to the control 
limit. A statistically significant increase [SSI] is declared only if the resample verifies the initial 
exceedance (or both resamples for a 1-of-3 plan). 

Gibbon' s study and ASTM Standard D6312-98 raises an important concern as to the most 
statistically powerful treatment of the CUSUM when an initial exceedance is nor confirmed by retesting. 
A second concern addresses when resamples should be collected. 

The Unified Guidance suggests two practical possibilities to address the first concern. The initial 
exceedance can be removed from the CUSUM altogether, re-setting the CUSUM to its value from the 
previous sampling event. As noted above, this is essentially assuming the first sampling event was in 
error. Another option is to replace the initial exceedance by the first resample which disconfirms the 
exceedance, and then re-compute the CUSUM with that resample. 

In either strategy, the effects on statistical power and accuracy should be simulated when 
constructing site-specific control limits as in the procedure outlined above. Both the false positive rate 
and power depend on a faithful simulation of all aspects of the control chart testing procedure. This 
includes background sample size, the number of well-constituent pairs evaluated, the retesting strategy 
and how the CUSUM is adjusted for resampling. 

The second issue concerns when resamples should be collected. The Unified Guidance does not 
recommend using the next scheduled sampling event as a resample. If the exceedance were due to a 
laboratory analytical error or calculation mistake, a more quickly retrieved resample can resolve the 
discrepancy without waiting until the next quarterly or semi-annual monitoring event. 

Where multiple resamples are used (a 1-of-3 plan, for instance), one would have to wait two 
additional sampling rounds simply to collect the resamples. These in turn could not be plotted on the 
control chart as regular sampling events without intermingling the roles ofresamples and non-resamples, 
thereby complicating the interpretation and assessment of control chart performance. The common 
guidance recommendation is to identify an intermediate period or periods for resampling between 
regularly scheduled evaluations for both control charts and prediction limits. 
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PART IV: COMPLIANCE/ ASSESSMENT 

AND CORRECTIVE ACTION TESTS 

This last part of the Unified Guidance addresses statistical methods useful m 
compliance/assessment and corrective action momtormg, where single-sample testing is required against 
a fixed groundwater protection standard [GWPS]. These standards include not only health- or risk-based 
limits, but also those derived from background as a fixed standard. The full subject of background 
GWPS testing is treated in Section 7.5, but any of the procedures in the following chapters might be 
applied to single-sample background tests. 

The primary tool for both stages of monitoring is the confidence interval. Several varieties of 
confidence intervals are presented in Chapter 21, including confidence intervals around means, 
medians, and upper percentiles for stationary populations, and confidence bands around a trend for cases 
where groundwater concentrations are actively changing. 

Strategies to implement confidence interval tests are discussed m Chapter 22 . In particular, the 
focus is on designing tests with reasonable statistical performance in terms of power and per-test false 
positive rates. 

Chapter 7 of Part I provides a discussion of the overall compliance/assessment and corrective 
action momtonng network design. Program elements such as the appropriate hypothesis structure, 
selecting the appropriate parameter for comparison to a fixed limit GWPS, sampling frequency, 
statistical power, and confidence levels are covered. These final two chapters present the tests in greater 
detail. 
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CHAPTER 21. CONFIDENCE INTERVALS 
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21.1.3 Confidence Interval Around Lognormal Arithmetic Mean................................................................ . 21-8 
21.1.4 Confidence Interval Around Upper Percentile................................................................ . ................ 21-11 
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21.3.1 Parametric Confidence Band Around Linear Regression ................................................................ 21-23 
21.3.2 Non-Parametric Confidence Band Around Theil-Sen Line.............................................................. 21-30 

Confidence intervals are the recommended general statistical strategy in compliance/assessment or 
corrective action momtonng. Groundwater monitoring data must typically be compared to a fixed 
numerical limit set as a GWPS. In compliance/assessment, the comparison is made to determine whether 
groundwater concentrations have increased above the compliance standard. In corrective action, the test 
determines whether concentrations have decreased below a clean-up criterion or compliance level. In 
compliance/ assessment monitoring, the lower confidence limit [LCL] is of primary interest, while the 
upper confidence limit [UCL] is most important in corrective action. For single-sample background 
GWPS testing, the hypothesis structures are the same as for fixed-limit health-based standards. Where a 
GWPS is based on two- or multiple sample testing, a somewhat different hypothesis structure is used 
(Section 7.5) and detection monitoring test procedures in Part III are applicable. 

General strategies for using confidence intervals in compliance/assessment or corrective action 
monitoring are presented in Chapter 7, including discussion of how regulatory standards should be 
matched to particular statistical parameters (e.g., mean or upper percentile). More specific strategies and 
examples are detailed in Chapter 22. In this chapter, basic algorithms and equations for each type of 
confidence interval are described, along with an example of the calculations involved. 

21_1 PARAMETRIC CONFIDENCE INTERVALS 

Confidence intervals are designed to estimate statistical characteristics of some parameter of a 
sampled population. Parametric confidence intervals do this for known distributional models, e.g., 
normal, lognormal, gamma, Weibull, etc. Given a statistical parameter of interest such as the population 
mean (µ),the lower and upper limits of a confidence interv al define the most probableconcentration 
range in which the true parameter ought to lie. 

Like any estimate, the true parameter may not be located within the confidence interval. The 
frequency with which this error tends to occur (based on repeated confidence intervals on different 
samples of the same sample size and from the same population) is denoted a, while its complement (l­
a) is known as the confidence level. The confidence level represents the percentage of cases where a 
confidence interval constructed according to a fixed algorithm or equation will actually contain its 
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intended target, e.g., the population mean. Section 7.2 discusses the difference betweenone- and two­
sided confidence intervals and how the a error is assigned. 

A point worth clarifying is the distinction between a as the complement of the confidence level 
when constructing a confidence interval and the significance level (a) used in hypothesis testing. 
Confidence intervals are often used strictly for estimation of population quantities. In that case, no test is 
performed, so a does not represent a false positive rate. Rather, it is simply the fraction of similar 
intervals that do not contain their intended target. 

The Unified Guidance focuses on confidence interval limits compared to a fixed standard as a 
formal test procedure. In this case, the complement (a) of the confidence level used to generate the 
confidence interval is equivalent to the significance level ( a) of the test. This assumes that the true 
population parameter under the null hypothesis is no greater than the standard in compliance/assessment 
monitoring or not less than the standard in corrective action. 1 

The parametric confidence intervals presented in the Unified Guidance share some common 
statistical assumptions. The most basic is that measurements used to construct a confidence interval be 
independent and identically distributed [ i. i. d.]. Meeting this assumption requires that there be no outliers 
(Chapter 12 ), a stationary mean and variance over the period during which observations are collected 
(Chapters 3 and 14), and no autocorrelation betweensuccessive sampling events (Chapter 14). In 
particular, sampling events should be spaced far enough apart so that approximate statistical 
independence can be assumed (at many sites, observations should not be sampled more often than 
quarterly). Sample data should also be examined for trends. The mean is not stationary under a 
significant trend, as assumed in applying the other methods of this section. An apparent trend may need 
to be handled by computing a confidence bandaround the trend line (Section 21.3). 

Another common assumption is that the sample data are either normal in distribution or can be 
normalized via a transformation (Chapter 10). Normality can be difficultto check ifthe sample contains 
a significant number ofleft-censored measurements (i.e., non-detects). The basic options for censored 
samples are presented in Chapter 15. If the non-detect percentage is no more than 10-151

1, it may be 
possible to assess normality by first substituting one-half of the reporting limit [RL] for each non-detect. 
For higher non-detect percentages up to 501

1, the Unified Guidance recommends computing a censored 
probabilityplot using either the Kaplan-Meier or Robust Regression on Order Statistics [Robust ROS] 
techniques (both in Chapter 15). 

If a censored probability plot suggests that the sample (or some transformation of the sample) is 
normal, either Kaplan-Meier or Robust ROS can be used to construct estimates of the mean ( µ)and 

standard deviation (a ) adjusted for the presence of non-detects. These estimates should be used in place 
of the sample mean ( x ) and standard deviation ( s) in the parametric equations below. 

1 Technically, a represents the maximum possible false positive rate associated with the composite null hypothesis H0 : µ l 

GWPS or H0: µ L GWPS. 

21-2 March 2009 

EPAPAV0117384 



Chapter 21. Confidence Intervals Unified Guidance 

21.1.1 CONFIDENCE INTERVAL AROUND NORMAL MEAN 

BACKGROUND AND PURPOSE 

When compliance point data is to be compared to a fixed standard (e.g., a maximum concentration 
limit [MCL]) and the standard in question is interpreted to represent an average or true mean 
concentration, a confidence interval around the mean is the method of statistical choice. A confidence 
interval around the mean is designed to estimate the true average of the underlying population, while at 
the same time accounting for variability in the sample data. 

REQUIREMENTS AND ASSUMPTIONS 

Confidence intervals around the mean of a normal distribution should only be constructed if the 
data are approximately normal or at least are reasonably symmetric (i.e., the skewness coefficient is 
close to zero). An inaccurate confidence interval is likely to result if the sample data are highly non-
normal, particularly for right-skewed distributions. If the observations are better fit by a lognormal 
distribution, special equations or methods need to be used to construct an accurate confidence interval on 
the arithmetic mean with a specified level of confidence (Section 21.1.3). Therefore, checking for 
normality is an important first step. 

A confidence interval should not be constructed with less than 4 measurements per compliance 
well, and preferably 8 or more. The equation for a normal-based confidence interval around the mean 
involves estimating the population standard deviation via the sample standard deviation ( s ). This 
estimate can often be imprecise using a small sample size (e.g., n l 4). The equation also involves a 
Student's !-quantile based on n-1 degrees of freedom [df], where n equals the sample size. The !­

quantile is large for small n, leading to a much wider confidence interval than would occur with a larger 
sample size. For a 991

1 confidence level, the appropriate !-quantile would bet = 31.82 for n = 2, t = 

4.54 for n = 4, and t = 3.00 for n = 8. 

This last consideration 1s lillportant since statistically significant evidence of a violation during 
compliance/assessment or success during corrective action is indicated only when the entire confidence 
interval is to one side of the standard (i.e., it does not straddle the fixed standard; see Chapter 7). For a 
small sample size, the confidence interval may be so wide that a statistical difference is unlikely to be 
identified. This can happen even if the true mean groundwater concentration is different from the 
compliance or clean-up standard, due to the statistical uncertainty associated with the small number of 
observations. More specific recommendations on appropriate sample sizes are presented in Chapter 22, 
where the statistical power of the confidence interval tests is explored. 

PROCEDURE 

Step 1. Check the basic statistical assumptions of the sample as discussed above. Assuming a normal 
distributional model is acceptable, calculate the sample mean ( x) and standard deviation ( s). 

Step 2. Given a sample of size n and the desired level of confidence (1- a), for each compliance well 
calculate either the lower confidence limit (for compliance/assessment monitoring) with the 
equation: 
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- s 
LCL =x-t -

I-a l-a,11-l )";; 
[21.1] 

or the upper confidence limit (for corrective action) with the equation: 

- s 
UCL =x+t -

I-a l-a,11-l )";; 
[21.2) 

where ti-a,n-I is obtained from a Student's t-tablewith (n-1) degrees of freedom (Table 16-1 
in Appendix D ). To construct a two-sided interval with overall confidence level equal to (1-
J ), substitute J /2 for J in the above equations. 

Step 3. Compare the limit calculated in Step 2 to the fixed compliance or clean-up standard (e.g., the 
MCL or alternate concentration limit [ ACL]. For compliance/assessment monitoring, the LCL 
in equation [21.1] should be used to compute the test. For corrective action, the UCL in 
equation [21.2) should be used instead. 

EXAMPLE 21-1 

The table below lists concentrations of the pesticide Aldicarb in three compliance wells. For 
illustrative purposes, the health-based standard in compliance momtonng for Aldicarb has beenset to 7 
ppb.Determine at the a= 51

1 significance level whether or not any of the wells should be flagged as 
beingout of compliance. 

Aldicarb Concentration (ppb) 

Sampling Date Well 1 Well 2 Well 3 

January 19.9 23.7 5.6 
February 29.6 21.9 3.3 
March 18.7 26.9 2.3 
April 24.2 26.1 6.9 

Mean 23.10 24.65 4.52 
SD 4.93 2.28 2.10 
Skewness (yd 0.506 -0.234 0.074 
Shapiro-Wilk (W) 0.923 0.943 0.950 

SOLUTION 

Step 1. First test the data for non-normality and/or significant skewness. Based on four samples per 
well, the skewness coefficients and Shapiro-Wilk statistics have beencomputed and are listed 
above. None of the skewness coefficients are significantly different from zero. In addition, the 
a=.10 critical point for the Shapiro-Wilk test with n =4 (as presented in Chapter lO)is 
0.792, less than each of the Shapiro-Wilk statistics; consequently, there is no significant 
evidence of non-normality. Construct a normal-based confidence interval around the mean. 

Step 2. Calculate the sample mean and standard deviation of the Aldicarb concentrations for each 
compliance well. These statistics are listed above. 
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Step 3. Since a = 0.05, the confidence level must be set to (I-a) = 0.95. Obtain the upper 95th 
percentile of the !-distribution with ( n-1) = 3 degrees of freedom from Table 16-1 in 
Appendix D, namely t.95 ,3 = 2.353. Then calculate the lower confidence limit [LCL] for each 
well's mean concentration, using equation [21.1]: 

Well 1: LCL
95 

= 23.10 -(2.353 x 4.93)//4=17.30 ppb 

Well 2: LCL
95 

= 24.65 -(2.353 x 2.28 )/Ji= 21.97 ppb 

Well 3: LCL
95 

= 4.52 -(2.353 x 2.10 )/Ji= 2.05 ppb 

Step 4. Compare each LCL to the compliance standard of7 ppb.The LCLs for Well 1 and Well 2 lie 
above 7 ppb, indicating that the mean concentration of Aldicarb in both of these wells 
significantly exceeds the compliance standard. However, the LCL for Well 3 is below 7 ppb. 
providing insufficient evidence at the a = 0.05 level that the mean in Well 3 is out of 
compliance. 

21. 1.2 CONFIDENCE INTERVAL AROUND LOG NORMAL GEOMETRIC MEAN 

PURPOSE AND BACKGROUND 

For many groundwater monitoring constituents, neither the assumption of normality nor 
approximate symmetry holds for the original concentration data. Often the underlying population is 
heavily right-skewed, characterized by a majority oflower level concentrations combined with a long 
right-hand tail of infrequent but extreme values. A model such as the lognormal distribution is 
commonly used to analyze such data. 

The lognormal is traditionally designated by the notation A(µ, cr) (Aitchison and Brown, 197 6), 
where µ and a denote parameters controlling the location and scale of the population. Typically 
designated as N( µ, cr), a normal distribution also has parameters µ and a which denote the true mean and 
standard deviation. These two parameters play different roles in lognormal distributions. The key 
distinction is between the arithmetic domain (or the original measurement scale of the data) and the 
logarithmic domain. The latter denotes the mathematical space following a logarithmic transformation. 
Transformed lognormal data are normally-distributed in the logarithmic domain. In this new domain, µ 
represents the true mean of the log-transformed measurements--- that is, the log-mean. Likewise, a 
represents the true standard deviation of the log-transformed values or the log-standard deviation. 

A common misperception is to assume that a standard equation for a normal-based confidence 
interval can be applied to log-transformed data, with the interval endpoints then back-transformed (i.e., 
exponentiated) to the arithmetic domain to get a confidence interval around the lognormal arithmetic 
mean. Invariably, such an interval will underestimate the true mean. The Student t- confidence interval 
applies to a geometric mean of the lognormal population when back-transformed, rather than the higher­
valued arithmetic mean. The reason is that the sample log-mean gives an estimate of the lognormal 
parameter µ. When this estimate is back-transformed to the arithmetic domain, one has an estimate of 
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exp(µ) - the lognormal geometric mean - not an estimate of the lognormal arithmetic mean, which is 
expressed as exp( µ + .5 cr2). 

Although a confidence interval around the lognormal geometric mean is not an accurate estimate of 
the arithmetic mean, there are instances where such an interval may be helpful. While many GWPSs are 
interpreted to represent long-term arithmetic averages, some (as detailed in Chapter 7) can better 
represent medians or percentiles of the underlying distribution. Because the lognormal geometric mean 
is equivalent to the median, a geometric mean may in some cases be a better statistical parameter of 
comparison than the lognormal arithmetic mean. Furthermore, when the lognormal coefficient of 
variation is large, the arithmetic mean is substantially larger than the geometric mean, mostly due to 
infrequent butextreme individual measurements. The bulk of individual observations are located much 
closer to the geometric mean. It may be that a comparison of the GWPS to the geometric mean rather 
than to the arithmetic mean will provide a more reasonable test oflong-term concentration levels. 

Special equations or computational methods are used to construct an accurate confidence interval 
with a specified level of confidence (Section 21.1.3) when an estimate of the arithmetic mean is needed 
and the observations are approximately normal. There is another factor to consider when estimating an 
upper confidence limit on the lognormal arithmetic mean using Land's procedure (described in Section 
21.1.3) or other possible procedures (see for instance Singh et al., 1997). When used with highly 
variable data, it can lead to severely-biased, high estimates of the confidence limit. This can make it 
very difficult to evaluate the success of corrective action measures. 

In these cases, precise parametric estimation of the arithmetic mean may have to be foregone in 
favor of an alternate statistical procedure. One such alternative is a non-parametric confidence interval 
around the median (Section 21.2 ). Another alternative when the sample is approximately lognormal is 
an estimate around the geometric mean which is equivalent to the population median. A third more 
computationally intensive option is a bootstrap confidence interval around the lognormal arithmetic 
mean (see discussion in Section 21.1.3 ). Unlike the first two options, this last alternative allows a direct 
estimate of the arithmetic mean. 

REQUIREMENTS AND ASSUMPTIONS 

Confidence intervals around the geometric mean of a lognormal distribution should only be 
constructed if the log-transformed data are approximately normal or at least reasonably symmetric (i.e., 
the skewness coefficient in the logarithmic domain is close to zero). The methods of Chapter 10 can be 
used to test normality of the log-transformed values. If the log-transformed sample contains non-detects, 
normality on the log-scale should be assessed using a censored probability plot. Adjusted estimates of 
the mean and standard deviation on the log-scale can then be substituted for the log-mean ( y) and log-
standard deviation (Sy) in the equations below. Like a normal arithmetic mean, a confidence interval 
around the lognormal geometric mean should not be constructed without a minimum of 4 measurements 
per compliance well, and preferablywith 8 or more. 

Step 1. 

PROCEDURE 

Take the logarithm 
values for normality. 

of each measurement, 
If the log-transformed 

denoted as Yi, and check the n log-transformed 
measurements are approximately normal, calculate 
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the log-mean ( y) and log-standard deviation ( sy ). If the normal model is rejected, consider 

instead a non-parametric confidence interval (Section 21.2 ). 

Step 2. Given the desired level of confidence (1-a), calculate either the LCL (for 
compliance/assessment monitoring) with the equation: 

s J 
LCL = exp Ly- - t ____L__ 

I-a l l-a,11-l .J;; 
1 

[21.3) 

or the UCL (for corrective action) with the equation: 

s J 
UCL =exp Ly-+ t ____L__ 

I-a l l-a,11-l .J;; 
1 

[21.4) 

where ti-a,n-I is obtained from a Student's t-tablewith (n-1) degrees of freedom (Table 16-1 
in Appendix D ). In order to construct a two-sided interval with the overall confidence level 
equal to (1- J ), substitute J /2 for J in the above equations. 

Step 3. Compare the limits calculated in Step 2 to the fixed compliance or clean-up standard (e.g., the 
MCL or ACL). For compliance/assessment, use the LCL in equation [21.3). For corrective 
action, use the UCL in equation [21.4). 

Note in either case that the regulatory authority will have to approve the use of the geometric 
mean as a reasonable basis of comparison against the compliance standard. In some cases, 
there may be few other statistical options. However, stakeholders should understand that the 
geometric and arithmetic means estimate two distinct statistical characteristics of the 
underlying lognormal population. 

EXAMPLE 21-2 

Suppose the following 8 sample measurements of benzene (ppb) have beencollected at a landfill 
that previously handled smelter waste and is now undergoing remediation efforts. Determine whether or 
not there is statistically significant evidence at the a= 0.05 significance level that the true geometric 
mean benzeneconcentration has fallen below the permitted MCL of 5 ppb. 

Sample Month 

1 
2 
3 
4 
5 
6 
7 
8 

Benzene (ppb) 

0.5 
0.5 
1.6 
1.8 
1.1 

16.1 
1.6 

<0.5 

21-7 

Log Benzene 
log(ppb) 

-0.693 
-0.693 

0.470 
0.588 
0.095 
2.779 
0.470 

-1.386 
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SOLUTION 

Step 1. To estimate an upper confidence bound on the geometric mean benzeneconcentration with 
9 51

, confidence, first test the skewness and normality of the data set. Since the one non-detect 
concentration is unknown butpresumably betweenO ppb and the RL of 0.5 ppb,a reasonable 
compromise is to impute this value at 0.25 ppb,half the RL. The skewness is computed as YI = 
2.21, a value too high to suggest the data are normal. In addition, a Shapiro-Wilk test statistic 
on the raw measurements works out to SW= 0 .521, failing an assumption of normality at far 
below a significance level of a = 0. 01. 

On the other hand, transforming the data via natural logarithms gives a smaller skewness 
coefficient of YI= 0.90 and a Shapiro-Wilk statistic of W= 0.896. Because these values are 
consistent with normality on the log-scale (the critical point for the Shapiro-Wilk test with n = 
8 and a= 0.10 is 0.818), the data set should be treated as lognormal for estimation purposes. 
As a consequence, equation [21.4) can be used to construct a one-sided UCL on the geometric 
mean. 

Step 2. Compute the sample log-mean and log-standard deviation. This gives y = 0.203 7 log(ppb) 

and Sy= 1.2575 log(ppb). 

Step 3. Apply the log-mean and log-standard deviation into equation [21.4) for a UCL with a= .05, n 
= 8, and 7 degrees of freedom. This gives an estimated limit of: 

s J 

UCL 95 =exp
1

Ly + t 95•7 JsT = exp(2037+1.895 x .4446 )= 2.847 ppb 

Step 4. Compare the UCL to the MCL of 5 ppb.Since the limit is less than the fixed standard, there is 
statistically significant evidence that the benzene geometric mean, and consequently, the 
median benzeneconcentration, is less than 5 ppb. However, this calculation does not show 
that the benzene arithmetic mean is less than the MCL. Extreme individual benzene 
measurements could show up with enough regularity to cause the arithmetic mean to be higher 
than 5 ppb.-

21.1.3 CONFIDENCE INTERVAL AROUND LOG NORMAL ARITHMETIC MEAN 

PURPOSE AND BACKGROUND 

Estimation of a lognormal arithmetic mean is not completely straightforward. As discussed in 
Section 21.1.2, applying standard equations for normal-based confidence limits around the mean to log-
transformed measurements and then exponentiating the limits, results in confidence intervals that are 
invariably underestimate the arithmetic mean. 

Inferences on arithmetic means for certain kinds of skewed populations can be made either exactly 
or approximately through the use of special techniques. In particular, if a confidence interval on the 
arithmetic mean is desired, Land ( 1971; 197 5) developed an exact technique along with extensive tables 
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for implementing it when the underlying population is lognormal. Land also developed a more 
complicated approximate technique (for a full description and examples see EPA, 1997) when the 
population can be transformed to normality via any other increasing, 1-1, and twice differentiable 
transformation (e.g., square, square root, cuberoot, etc.). 

Although the core of Land's procedure is a correction for the so-called 'transformation bias' that 
occurs when making back-transforming estimates from the logarithmic domain to the raw concentration 
domain, it can produce unacceptable results, particularly with UCLs. The Unified Guidance advises 
caution when applying Land's procedure, particularly when the lognormal population has a high 
coefficient of variation. In those cases, the user may want to consider alternate techniques, such as those 
discussed in Singh, et al (1997 and 1999). One option is to use EPA's free-of-charge Pro-UCL software 
Version 4.0 It computes a variety of upper confidence limits, 
including a bootstrap confidence interval around the arithmetic mean. This technique can be applied to 
lognormal data to get a direct, non-parametric UCL that tends to be less biased and to give less extreme 
results than Land's procedure. 

For cases or sample sizes not covered by Tables 21-1 through 21-8 in Appendix D when using 
Land's procedure, Gibbons and Coleman (2001) describe a method of approximating the necessary H-
factors. The same authors review other alternate parametric methods for computing UCLs. 

REQUIREMENTS AND ASSUMPTIONS 

Confidence intervals around the arithmetic mean of a lognormal distribution should be constructed 
only if the data pass a test of approximate normality on the log-scale . While many groundwater and 
water quality populations tend to follow the lognormal distribution, the data should first be tested for 
normality on the original concentration scale. If such a test fails, the sample can be log-transformed and 
re-tested. If the log-transformed sample contains non-detects, normality on the log-scale should be 
assessed using a censored probability plot (Chapter 15). If a lognormal model is tenable, adjusted 
estimates of the mean and standard deviation on the log-scale can be substituted for the log-mean ( y) 
and log-standard deviation (sy) in the equations below. 

As with normal-based confidence intervals, the confidence interval here should not be constructed 
with fewer than 4 measurements per compliance well, and preferably with 8 or more. The reasons are 
similar: the equation for a lognormal-based confidence interval around the arithmetic mean depends on 
the sample log-standard deviation (sy), used as an estimate of the underlying log-scale population 
standard deviation. This estimate can be quite imprecise when fewer than 4 to 8 observations are used. 
A special factor ( H) was developed by Land to account for variability in a skewed population. These 
factors are larger for smaller samples sizes, and need to be exponentiated to estimate the final confidence 
limits (see below). Consequently there is a significant penalty associated with estimating the arithmetic 
mean using a small sample size, occasionally seen in remarkably wide confidence limits. The effect is 
especially noticeable when computing an UCL for corrective action monitoring. 

PROCEDURE 

Step 1. Test the log-tranformed sample for normality. If the lognormal model provides a reasonable 
fit, denote the log-transformed measurements byyi and move to Step 2. 
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Step 2. Compute the sample log-mean ( y) and log-standard deviation (sy). 

Step 3. Obtain the correct bias-correction factor(s) (Ha) from Land's (1975) tables (Tables 21-1 
through 21-8 in Appendix D), where the correct factor depends on the sample size (n), the 
sample log-standard deviation (sy), and the desired confidence level (1-a). 

Step 4. Plug these factors into one of the equations given below for the LCL or UCL (depending on 
whether the comparison applies to compliance/assessment momtonng or to corrective action). 
Note that to construct a two-sided interval with an overall confidence level of ( 1- a), the 
equations should be applied by substituting a/2 for a. 

s H J 

LCL1_a = exp Ly+ .5s~ + ~-
1 · ..;n-11 

s H J 

UCL1_a = exp Ly+ .5s_~ + J2i I 

l n-1 

[21.5) 

[21.6) 

Step 5. Compare the confidence limit computed m Step 4 to the fixed compliance or clean-up 
standard. In compliance/assessment momtonng, use the LCL of equation [21.5). In corrective 
action, use equation [21.6) for the UCL. 

EXAMPLE 21-3 

Determine whether the benzene concentrations of Example 21-2 indicate that the benzene 
arithmetic mean is below the permitted MCL of 5 pp bat the a= 0.05 significance level. 

SOLUTION 

Step 1. From Exam pie 21-2, the benzenedata were found to fail a test of normality, butpassed a test 
oflognormality (i.e., they were approximately normal on the log-scale). As a consequence, 
Land's equation in [21.6) should beused to construct a one-sided UCL on the arithmetic 
mean. 

Step 2. Compute the log-mean and log-standard deviation from the log-scale data. This gives y = 

0.2037 log(ppb) and Sy= 1.2575 log(ppb). 

Step 3. Using Table 21-6 in Appendix D, pick the appropriate H-factor for estimating confidence 
limits around a lognormal arithmetic mean, noting that to achieve 951

1 confidence for a one­
sided UCL, one must use ( 1- a) = 0. 9 5. With a sample size of n = 8 and a standard deviation 
on the log-scale of 1.2575 log(ppb), H_95 = 4.069. 

Step 4. Plug these values along with the log-mean of 0.2037 log(ppb) into equation [21.6) for the 
UCL. This leads to a 951

1 one-sided confidence limit equal to: 
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Q .2575 x4.069 y 
UCL 95 =exp

1

L.2037 + .5(1.5813 )+ fi I = 18.7 ppb 

Step 5. Compare the UCL against the MCL of 5 ppb. Since the UCL is greater than the MCL, 
evidence is not sufficient at the 51

1 significance level to conclude that the true benzene 
arithmetic mean concentration is now below the MCL. This conclusion holds despite the fact 

21. 1.4 

that all but one of the benzene measurements is less than than 5 ppb. In lognormal 
populations, It IS not uncommon to see one or two seemingly extreme measurements coupled 
with a majority of much lower concentrations. Since these extreme measurements help 
determine the location of the arithmetic mean, it is not unreasonable to expect that the true 
mean might be largerthan 5 ppb. 

The contrast in this result to Exam pie 21-2 is noteworthy. In that case, the UCL on the 
geometric mean was only 2.85 ppb. The estimated lognormal coefficient of variation with 
these data (Chapters 3 and 10) is CV= 1.965, somewhat on the high side. It is no surprise that 
results for the arithmetic and geometric means on the same sample are rather different. Neither 
estimator is necessarily invalid, buta decision needs to be made as to whether the MCL for 
benzenein this setting should bebettercompared to an arithmetic mean or to a geometric 
mean/ median for lognormal distributions. -

CONFIDENCE INTERVAL AROUND UPPER PERCENT! LE 

BACKGROUND AND PURPOSE 

Although most MCLs and ACLs appear to represent arithmetic or long-term averages (Chapter 7), 
they can also be interpreted as standards not to be exceeded with any regularity. Other fixed standards 
like nitrate/nitrite attempt to limit short-term risks and thus represent upper percentiles instead of means. 
In these cases, the appropriate confidence interval is one builtaround a specific upper percentile. 

The particular upper percentile chosen will depend on what the fixed compliance standard 
represents or is intended to represent. If the standard is a concentration that represents the 90th 
percentile, the confidence interval should be builtaround the upper 90th percentile. If the standard is 
meant to be a maximum, 'not to be exceeded,' concentration, a slightly different strategy should be used. 
Since there is no maximum value associated with continuous distributions like normal and lognormal, it 
is not possible to construct a confidence interval around the population maximum. Instead, one must 
settle for a confidence interval around a sufficiently high percentile, one that will exceed nearly all of the 
population measurements. Possible choices are the upper 90th to 95th percentile. By estimating the 
location of these percentiles, one needs to determine whether a sufficiently small fraction (e.g., at most I 
in I 0 or I in 20) of the possible measurements will ever exceed the standard. For even greater protection 
against exceedances, the upper 99th percentile could be selected, implying that at most I in I 00 
measurements would ever exceed the standard. But as noted in Chapter 7, selection of very high 
percentiles using non-parametric tests can make it extremely difficult to demonstrate corrective action 
success. 
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REQUIREMENTS AND ASSUMPTIONS 

The equations for constructing parametric confidence intervals around an upper percentile assume 
that the data are normally distributed, at least approximately. If the data can be normalized via a 
transformation, the observations should first be transformed before computing the confidence interval. 
Unlike confidence intervals around an arithmetic mean for transformed data, no special equations are 
required to construct similar intervals around an upper percentile. The same equations used for normal 
data can be applied to data in the transformed domain. The only additional step is that the confidence 
interval limits must be back-transformed prior to comparing them against the fixed standard. 

The confidence interval presented here should not be constructed with fewer than 4 measurements 
per compliance well, and preferably with 8 or more. Too small a sample size leads to imprecise 
estimates of the sample standard deviation ( s ). Another reason is that the confidence interval equation 
involves a special multiplier , which depends on both the desired confidence level ( 1- a) and the sample 
size ( n ). When n is quite small, the multiplier is much greater. This leads to a much wider confidence 
interval than that obtained with a larger n, and therefore much greater statistical uncertainty. For 
example, at a confidence level of95'~, the appropriate •multiplier for an upper one-sided limit on the 
95th percentile is = 26.260 when n = 2, = 5.144 when n =4, and = 3.187 when n = 8. 

When determining the factor(s) needed for a confidence interval around an upper percentile, it 
should be noted that unlike the symmetric Student's !-distribution, separate factors need to be 
determined for the LCL and UCL. Since an upper percentile like the 9 5th is generally larger than the 
population mean, the equations for both the lower (i.e., LCL) and upper (i.e., UCL) limits involve 
adding a multiple of the standard deviation to the sample mean. The only difference is that a smaller 
multiple LCL is used for the LCL, while a larger ucL is used for the upper confidence limit. For certain 
choices of n, P and 1-J, the multiple LCL can even be negative. 

PROCEDURE 

Step 1. Test the raw data for normality. If approximately normal, construct the interval on the original 
measurements. If the data can be normalized via a transformation, construct the interval on the 
transformed values. 

Step 2. For a normal sample, compute the sample mean ( x) and standard deviation ( s). If the data 
have been transformed, compute the mean and standard deviation of the transformed 
measurements. 

Step 3. Given the percentile (P) to beestimated, sample size (n), and the desired confidence level 
(1-a), use Tables 21-9 and 21-10 in Appendix D to determine the factor(s) needed to 
construct the appropriate one-sided or two-sided interval. A one-sided LCL is then computed 
with the equation: 

LCL1_a = x + s ·'t (P;n,a) [21. 7) 

where (P; n, a) is the lower a factor for the Pth percentile given n sample measurements. A 
one-sided UCL is given similarly by the equation: 
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UCL1_a =x+s·'t(P;n,l-a) [21.8) 

Finally, a two-sided confidence interval is computed by the pair of equations for the LCL and 
UCL: 

LCL1_a12 = x + s ·'t (P;n,a/2) [21.9) 

UCL1_a12 = X + s ·'t (P;n,l -a/2) [21.10) 

Step 4. If the data have been transformed, the equations of Step 3 would be used but with two 
changes: 1) the mean and standard deviation of the transformed values are substituted for 
x and s; and 2) the resulting limits back-transformed to get final confidence limits in the 
concentration domain. If a logarithmic transformation has been employed, the log-mean and 
log-standard deviation would be substituted for the sample mean and standard deviation. The 
resulting limit(s) must be exponentiated to get the final confidence limits, as in the equations 
below: 

LCL1_a = expcY +s.v ·'t (P;n,a) [21.11) 

UCL1_a =exp ly + s.v ·'t (P;n,l -a) [21.12) 

Step 5. Compare the confidence limit(s) computed in Step 3 (or Step 4) versus the fixed compliance 
or clean-up standard. In compliance/assessment, use the LCL of equation [21. 7). In corrective 
action, use equation [21.8) for the UCL. 

Note that although the above equations differentiate between the J -error used with the LCL 
and 1-J for the UCL, Tables 21-9 and 21-10 in Appendix D are constructed identically. The 
J -error is represented by its confidence complement 1-J in Table 21-10 of Appendix D. 

EXAMPLE 21-4 

Assume that a facility permit has established an ACL of 30 ppbthat should not be exceeded more 
than 51

1 of the time. Use the Aldicarb concentrations and diagnostic statistical information from 
Example 21-1 to evaluate data from the three compliance wells. Determine whether any of the wells 
should be flaggedas being out of compliance. 

SOLUTION 

Step 1. From Example 21-1, all of the wells pass a normality test. Use the sample mean and 
standard deviation for each compliance well, from the tabularinformation in Exam pie 21-1. 

Step 2. Select the correct factor from Table 21-10 of Appendix D to construct a 991
1 LCL on the 

upper 95th percentile. The upper 95th percentile is needed because the permitted ACL cannot 
be exceeded more than 51

, of the time, implying that 9 51
1 of all the Aldi car b measurements 

should fall below the fixed standard. With n = 4 observations per well, this leads to (P; n, a) 
= (.95; 4, .01) = 0.443. 

21-13 March 2009 

EPAPAV0117395 



Chapter 21. Confidence Intervals Unified Guidance 

Step 3. Compute the LCL for each well as follows using equation [21. 7): 

Well :1LCL 99 = +( X 93.)443.cr~ 
Well :LCL 99 = +( X 28)443.~ 
Well :LCL 99. = + ( X )= 45.pp0.2443.052.4 

Step 4. Compare each LCL against the ACL of30 ppm. Since each well LCL is less than the ACL, 
there is insufficient statistical evidence that the upper 95th percentile of the Aldicarb 
distribution exceeds the fixed standard. Consequently, there is no conclusive evidence that 
more than 51

1 of the Aldicarbconcentrations will exceed the ACL. 

If the site were in corrective action instead of compliance/assessment monitoring, UCLs 
around the 95th percentile would be needed instead of LCLs. In that case, with n = 4 
observations per well, (P; n, 1-a) = (.95; 4, .99) = 9.083 from Table 21-9 of Appendix D. 
Then, the respective well UCLs would be: 

Well :UCL 99. = 

Well :PJCL 99. = 

Well :YCL 99 = 

+( 
+( 

+( 

x 93Jw83.CJS~ 
x 28fle83.~ 

)( 10fle83.~~b 

In this case, two of the three wells would not meet the corrective action limit of 3 0 pp b. -

21. 2 NON-PARAMETRIC CONFIDENCE INTERVALS 

BACKGROUND AND PURPOSE 

A non-parametric confidence interval should be considered when a sample is non-normal and 
cannot be normalized, perhaps due to a significant fraction of non-detects. Non-parametric confidence 
interval endpoints are generally chosen as order statistics of the sample data. The specific order statistics 
selected will depend on the sample size (n), the desired confidence level (1-a), and the population 
characteristic beingestimated. 

Since the data are not assumed to follow a particular distribution, it is generally not possible to 
construct a confidence interval around the population mean. One fairly rare exception would be if it 
were already known that the distribution is symmetric (where the mean is also the median). Sample 
order statistics represent, by definition, concentration levels exceeded by a certain number and hence a 
fraction of the sample values. They are excellent estimators of the percentiles of a distribution, but not 
of quantities like the arithmetic mean. The latter entails summing the data values and averaging the 
result. In positively-skewed populations, not only is the arithmetic mean greater than the median, it also 
may not correspond to any particular percentile. 

Non-parametric confidence intervals can be developed either around a measure of the center of the 
population (i.e., the population median or 50th percentile) or around an upper or lower percentile (e.g., 
the upper 90th). The choice of percentile affects which order statistics are selected as interval endpoints. 
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The sample median is generally estimated using a smaller order statistic than that used for an upper 95th 
percentile. 

Despite the distinction betweennon-parametric confidence intervals around the median and similar 
intervals around an upper or lower percentile, the mathematical algorithm used to construct both types is 
essentially identical. Given an unknown P x lOOth percentile of interest (where Pis betweenO and 1) 
and a sample of n concentration measurements, the probability that any randomly selected measurement 
will be less than the P x 1 OOth percentile is simply P. Then the probability that the measurement will 
exceed the P x lOOth percentile is (1- P). Hence the number of sample values falling below the P x 
1 OOth percentile out of a set of n should follow a binomial distribution with parameters n and success 
probability P, where 'success' is defined as the event that a sample measurement is below the P x 1 OOth 
percentile. 

Because of this connection, the binomial distribution can be used to determine the probability that 
the interval formed by a given pair of order statistics will contain the percentile of interest. This kind of 
probability calculation makes repeated use of the cumulative binomial distribution, often denoted 
Bin(x;n,p). It represents the probability of x or fewer successes occurring in n trials with success 
probabilityp. The computational equation for this expression 2 can be writtenas: 

[21.13) 

To make statistical inferences about the P x 1 OOth percentile, P (expressed as a fraction) would be 
substituted for p in equation [21.13). It can beseen why the same basic algorithm applies both to 
confidence intervals around the median and around upper percentiles like the 9 5th. If an interval around 
the median is desired, one would set P = 0.50. For an interval needed around the upper 95th percentile, 
one would set P = 0.95 and perform similar calculations. 

When constructing non-parametric confidence intervals, the type of confidence interval needs to be 
matched against the kind of fixed standard to which it will becompared. Since the arithmetic mean 
cannot be estimated directly, a confidence interval around the median should be used for those cases 
where the compliance standard represents an average. Some fixed standards can, of course, be directly 
interpreted as median concentration levels, buteven for those standards representing arithmetic averages, 
the confidence interval on the median will give the 'next best' comparison when a non-parametric 
method is used. 

The interpretation of a confidence interval on the median is similar to that of a parametric 
confidence interval around the mean. In compliance/assessment momtonng, if the LCL with confidence 
level ( 1-J ) exceeds the compliance standard, there is statistically significant evidence that the true 

2 The mathematical 
nJ 
t = refers to the combination of n events taken i at a time. 

l i I 

expression It can be calculated as: 

n'l(i 1x{n-i} 1),where n'= {n x (n-1) x ... x 2 x I}. Bycomention, 0 1 = 1. 
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population median is higher than the standard. In corrective action momtonng, if the UCL is below the 
clean-up standard, one can conclude that the true population median is less than the standard with a­
level significance. 

REQUIREMENTS AND ASSUMPTIONS 

Because a non-parametric confidence interval does not assume a specific distributional form for 
the underlying population, there is no need to fit a probability model to the data. If a significant portion 
of the data are non-detect, it may be impossible to adequately fit such a model.. The non-parametric 
confidence interval method only requires the ability to rank the sample data values and pick out selected 
order statistics as the interval endpoints. Unfortunately, this ease of construction comes with a price. As 
opposed to parametric intervals, non-parametric confidence intervals tend to bewider and generally 
require larger sample sizes to achieve comparably high confidence levels. To compute the LCL around 
the median with 991

1 confidence, at least 7 compliance point measurements are needed in the non­
parametric case. Therefore, sample data should befit to a specific probability distribution whenever 
possible. 

The general method for constructing non-parametric confidence intervals involves an iterative 
testing procedure, where potential endpoints are selected from the sorted data values (i.e., order 
statistics) and then tested to determine what confidence level is associated with those endpoints. If the 
initial choice of order statistics gives an interval with insufficient confidence, the interval needs to be 
widened and tested again. Clearly, the greatest confidence will be associated with an interval defined by 
the minimum and maximum observed sample values. But if the sample size n is small, even the largest 
possible confidence level may be less than the desired target confidence (e.g., (1- a)= 0.99). As such, 
the actual or achieved confidence level needs to be listed when reporting results of a non-parametric 
confidence interval test. 

It may be especially difficult to achieve target confidence levels around upper percentiles even 
when the sample size is fairly large. An instructive example is when estimating an upper 95th percentile 
with a sample size of n = 20. In that case, the highest possible two-sided confidence level is 
approximately 641

1, achieved when the minimum and maximum data values are taken as the interval 
endpoints. The confidence level is substantially less than the usual targets of 901

1 or more, and has very 
limited value as a decision basis. 

The width of a confidence interval (which expands as the level of confidence increases) should be 
balancedagainst the desire to construct an interval narrow enough to provide useful information about 
the probable location of the underlying population characteristic (e.g., the P = 95th percentile in the 
above example). A reasonable goal is to construct the shortest interval possible that still approaches the 
highest confidence level. In the example, a confidence level of almost 631

1 could be achieved by setting 
the 17th and 20th ordered sample values as the confidence interval endpoints. The 20th ordered value is 
obviously the maximum observation and cannot be changed. However, if any ranked value less than the 
17th is taken as the lower endpoint, the confidence level will increase only slightly, but the overall 
interval will be unnecessarily widened. 

An iterative process is used to construct non-parametric confidence limits. It is recommended that 
a stopping rule beused to decide when the improvement in the confidence level brought about by 
picking more extreme order statistics is outweighed by the loss of information from making the interval 
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too wide. A reasonable stopping rule might be to end the iterative computations if the confidence level 
changes by less than 1 or 2 percent when a new set of candidate ranks is selected. 

Repeated calculation of cumulative binomial distribution probabilities Bin(x;n,p) are quite tedious 
when performed manually. One can make use of either an extensive tableofbinomial probabilities or a 
software package that computes them. Almost all commercial statistical packages will compute binomial 
probabilities. For small sample sizes up to n l 20, Table 21-11 in Appendix D provides achievable 
confidence levels for various choices of the sample order statistic endpoints such as the median and 
common upper percentiles. 

Tied values do not affect the procedure for constructing non-parametric confidence intervals. All 
tied values (including any non-detects treated as ties) should be regarded as distinct measurements. 
Because of this, ties can be arbitrarily broken when ranking the data. For example, a list of 6 values 
including 3 non-detects would be ordered as [<5, <5, <5, 8, 12, 20) and given the set ofranks [1, 2, 3, 4, 
5, 6). Note that it is possible for the LCL to be set equal to the RL used for non-detects. 

PROCEDURE FOR A CONFIDENCE INTERVAL AROUND THE MEDIAN 

Step 1. Given a sample of size n, order the measurements from least to greatest. Denote the ordered 
values by X(l), x(2l, ... , X(n), where xri) is the ith concentration value in the ordered list and 
numbers 1 through n represent the data ranks. 

Step 2. Given P = .50, pick candidate interval endpoints by choosing ordered data values with ranks 
as close to and as symmetrical as possible around the product of (n+l) x 0.50. If this last 
quantity is a fraction (an even-numbered sample size), the ranks immediately above and below 
it can be selected as candidate endpoints. If the product ( n+l) x 0.50 is an integer (an odd­
numbered sample size), add 1 and subtract 1 to get the upper and lower candidate endpoints . 

• 
Once the candidate endpoints have beenselected, denote the ranks of these endpoints by L 

* and U. 

Step 3. For a two-sided confidence interval, compute the confidence level associated with the 

tentative endpoints L * and u* by taking the difference in the cumulative binomial 
probabilities given by the equation: 

U' -I J J 11 

1-a = Bin(u* -1; n,.50 }- Bin(L -1; n,.50 )=cf' LnT L.!.T 
x=L' l X l 2 

For a one-sided LCL, compute the confidence level associated with endpoint 
equation: 

11 nJ I J 11 

1- a = 1- Bin (r' -1; n,.50 )= cf' L T L-T 
x=L' l X l 2 

For a one-sided UCL, compute the confidence level associated with endpoint 
equation: 

21-17 
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U' -I J J 11 

fi· ) 71 n I I - a = Bin \U - I; n,.50 = 0 L T L -T 
x=O l X l 2 

[21.16) 

To mmlflllze the amount 
compute selected cases 
Appendix D. 

of direct computation needed, these equations have been used to 
over a range of sample sizes for the median in Table 21-11 of 

Step 4. If the candidate endpoint(s) do not achieve the desired confidence level, compute new 

candidate endpoints ( L * -1) and ( U t 1) and re-calculate the achieved confidence level. Repeat 
this process until the target confidence level is achieved. If one candidate endpoint already 
equals the data minimum or maximum, only change the rank of the other endpoint. If neither 
endpoint rank can be changed, set either: 1) the minimum concentration value as a one-sided 
LCL; 2) the maximum concentration value as a one-sided UCL; or 3) the interval spanned by 
the range of the sample as a two-sided confidence interval around the median. In each case, 
report the achieved confidence level associated with the chosen confidence limit(s). 

Step 5. Compare the confidence limit(s) computed in Step 4 versus the fixed compliance or clean-up 
standard. In compliance/assessment momtonng, use the LCL derived as the order statistic with 
rank L *. In corrective action monitoring, use the UCL derived as the order statistic with rank 
U*. 

EXAMPLE 21-5 

Use the following four years of well beryllium concentrations, collected quarterly for a total of n = 

16 measurements, to compute a non-parametric LCL on the median concentration with (1- a)= 991
1 

confidence. 

SAMPLE DATA ORDERED DATA 

Date Beryllium (ppb) Be Rank 

2002, 1st Q 3.17 2.32 (1) 
2002, 2nd Q 2.32 3.17 (2) 
2002, 3rd Q 7.37 3.39 (3) 
2002, 4th Q 4.44 3.65 (4) 
2003, 1st Q 9.50 3.74 (5) 
2003, 2nd Q 21.36 4.44 (6) 
2003, 3rd Q 5.15 5.15 (7) 
2003, 4th Q 15.70 5.58 (8) 
2004, 1st Q 5.58 6.15 (9) 
2004, 2nd Q 3.39 6.94 (10) 
2004, 3rd Q 8.44 7.37 (11) 
2004, 4th Q 10.25 8.44 (12) 
2005, 1st Q 3.65 9.50 (13) 
2005, 2nd Q 6.15 10.25 (14) 
2005, 3rd Q 6.94 15.70 (15) 
2005, 4th Q 3.74 21.36 (16) 

SOLUTION 

Step 1. Order the 16 measurements from least to greatest and determine the rank associated with each 
value (listed above in the last two columns). The smallest observation, 2.32 ppb,receives the 
smallest rank, while the largest value, 21.36 ppb,receives a rank ofl 6. 
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Step 2. Since a confidence interval on the median must be constructed, the desired percentile is the 
50th (i.e., P = 0.50). Therefore the quantity (n+l) x P = 17 x 0.50 = 8.5. The data ranks closest 

to this value are L * = 8 and U = 9, so these are used as initial candidate endpoints. 

Step 3. Using the cumulative binomial distribution, and recognizing that only a lower confidence limit 
is needed, use equation [21.15) to calculate the actual confidence level associated with the 
order statistic x(s) : 

{ ) 
7 16J 16 

1-a = 1-Bin\L' -1; n,P = l-Bin(7; 16,.50 )= l-~01L x T(5o) = 0.4018 

Since the achieved confidence level is much less than 991
1, subtract 1 from L* and recompute 

the confidence level. Repeat this process until the confidence level is at least 991
1. Since the 

achieved confidence when L* = 4 is equal to .9894 or approximately 991
1, the LCL should be 

selected as x(4l (i.e., the 4th order statistic in the data set, also equal to the fourth smallest 
measurement), which equals 3.65 ppm. With statistical confidence of 98.941

1, one can assert 
that the true median beryllium concentration in the underlying population is no less than 3.65 
ppm. 

Step 4. In this example, a lognormal model could also have been fit to the sample. Indeed the 
probabilityplot in Figure 21-2 below indicates good agreement with a lognormal fit, enabling 
a comparison between the non-parametric LCL with that derived from assuming a parametric 
model for the same data. 

Figure 21-2. Probability Plot on Logged Beryllium Data 
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Step 5. Since the non-parametric LCL was constructed around the population median, the fairest 
companson is to construct a lognormal-based confidence interval around the median and not 
the arithmetic mean. As discussed in Section 21.1.2, this is equivalent to constructing a 
confidence interval around the lognormal geometric mean. This can be built via a normal-
based confidence interval around the mean using the log-transformed measurements and then 
exponentiating the interval limits. Thus, using equation [21.3] with the log-mean and log­
standard deviation given by y = 1.8098 log(ppm) and Sy= 0.60202 log(ppm) respectively, one 
can compute the 991

1 LCL as: 

s J 

LCL 99 =exp 
1

L y - t 99•
11

_ 1 fnT = exp d .8098 - (2.602 X60202 )/ Jl6 = 4.13 ppm 

The non-parametric LCL around the median is slightly lower than the limit computed by 
assuming an underlying lognormal distribution. Given the apparent lognormal fit, the 
parametric LCL is probably a slightly betterestimate, butthe non-parametric method performs 
well nonetheless. 

The chief virtue of using a parametric confidence interval is the ability to generate estimates at 
any confidence level even with small sample sizes. On the other hand, if the data are 
lognormally-distributed, a confidence interval on the arithmetic mean may bepreferred for 
compansons to a fixed standard, depending on the type of standard. The advantage of a non­
parametric interval around the median is its greater flexibility to define confidence intervals on 
non-normal data sets. -

PROCEDURE FOR A CONFIDENCE INTERVAL AROUND A PERCENT! LE 

Step 1. Given a sample of size n, order the measurements from least to greatest. Denote the ordered 
values by X(l), x(2l, .. ., X(n), where X(iJ is the ith concentration value in the ordered list and 
numbers 1 through n represent the data ranks. 

Step 2. Given the desired percentile P, pick candidate interval endpoints by choosing ordered data 
values with ranks as close to and as symmetrical as possible around the product ( n+ 1) x P, 
where n is the sample size and P is expressed as a fraction. If this last quantity is a fraction 
(even-numbered sample size), the ranks immediately above and below it can be selected as 
candidate endpoints (unless the fraction is larger than n, in which case the maximum rank n 
would be chosen as the upper endpoint). If the product ( n+ 1) x P is an integer (odd-numbered 
sample size), add 1 and subtract 1 to get the upper and lower candidate endpoints. Once the 

candidate endpoints have beenselected, denote these byL* and U. 

Step 3. For a two-sided confidence interval, compute the confidence level associated with the 

tentative endpoints L * and U by taking the difference in the cumulative binomial 
probabilities given by the equation: 
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U' -I J 
ii * )- { ' ) ?I n . { 5-x 1- a =Bin \U - I; n, P Bin \L - I; n, P = o L Tr \1- P 

x=L' l X 

[21.17) 

For a one-sided LCL, compute the confidence level associated with the endpoint L * using the 
equation: 

11 nJ -x 

1- a = 1- Bin (L' -1; n, P )= d L Tpx Q- P 5 
x=L' l X 

[21.18) 

For a one-sided UCL, compute the confidence level associated with the endpoint u* using the 
equation: 

u' -I J 
ii ) n { 5-x 1-a = Bin\U* -I; n,P = ~o 

1
Lx Tpx \I-P [21.19) 

To minimize the amount of direct computation, these equations have been used to compute 
selected cases over a range of sample sizes and for certain percentiles in Table 21-11 of 
Appendix D. 

Step 4. If the candidate endpoint(s) do not achieve the desired or target confidence level, compute new 

candidate endpoints, ( L * -1) and ( u* +I), and re-calculate the achieved confidence level. 
Repeat this process until the target confidence level is achieved. If one candidate endpoint 
already equals the data minimum or maximum, only change the rank of the other endpoint. If 
neither endpoint rank can be changed,set either: 1) the minimum concentration value as a one­
sided LCL; 2) the maximum concentration value as a one-sided UCL; or 3) the interval 
spanned by the range of the sample data as a two-sided confidence interval around the Pth 
percentile. In each case, report the achieved confidence level associated with the chosen 
confidence limit( s). 

Step 5. Compare the confidence limit(s) computed in Step 4 versus the fixed compliance or clean-up 
standard. In compliance/assessment momtonng, use the LCL derived as the order statistic with 
rank L *. In corrective action monitoring, use the UCL derived as the order statistic with rank 
U*. 

EXAMPLE 21-6 

Use the following 12 measurements of nitrate at a well used for drinking water to determine with 
951

1 confidence whether or not the infant-based, acute risk standard of 10 mg/L has beenviolated. 
Assume that the risk standard represents an upper 95th percentile limit on nitrate concentrations. 
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Sampling Date Nitrate (mg/ L) Rank 

7128199 <5.0 ( 1) 
9/3/99 12.3 (11) 

11/24/99 <5.0 (2) 
5/3/00 <5.0 (3) 

7/14/00 8.1 (7) 
10/31/00 <5.0 (4) 
12/14/00 11.0 (10) 
3/27/01 35.1 (12) 
6/13/01 <5.0 (5) 
9/16/01 <5.0 (6) 

11/26/01 9.3 (8) 
3/2/02 10.3 (9) 

SOLUTION 

Step 1. Half of the sample concentrations are non-detects, making a test of normality extremely 
difficult. One could attempt to fit these data via the Kaplan-Meier or Robust ROS adjustments 
(see Chapter 15), but here a non-parametric confidence interval around the upper 95th 
percentile will be constructed. 

Step 2. Order the data values from least to greatest and assign ranks as in the last column of the table 
above. Note that the apparent ties among the non-detects have beenarbitrarily broken in order 
to give a unique rank to each measurement. 

Step 3. Using Table 21-11 in Appendix D for n = 12, there is approximately 881
1 confidence 

associated with using L * = 11 as the rank of the lower confidence bound and approximately 

981
1 confidence associated with using L* = 10. Since the target confidence level is 951

1, it can 
only be achieved by using a rank of I 0 or less. Thus the non-parametric LCL needs to be set to 
the 10th smallest observation or x0 oi. Scanning the list of nitrate measurements, the LCL = 

11.0 ppm. 

Step 4. Since the order statistic x00i achieves a confidence level of 981
1, one can conclude that the 

true upper 95th percentile nitrate concentration is no smaller than 11.0 ppm with 981
, 

confidence. Even by this more stringent confidence level, the acute risk standard for nitrate is 
violated and there is statistically significant evidence that at least 1 of every 20 nitrate 
measurements from the well will exceed 10 mg/L. 

Step 5. If the well was beingremediated under corrective action momtongn, the fixed standard would 
be compared against a one-way UCL around the upper 95th percentile. In that case, for n = 12, 
Table 21-11 of Appendix D indicates that the maximum observed value of 35.1 mg/L taken 
as the UCL achieves a confidence level of only 461

1. 951
, confidence could not be achieved 

unless at least 59 sample measurements were available and the UCL was set to the maximum 
of those values. The remedial action would be considered successful only if all 59 
measurements were below the fixed standard of I 0 mg/L. -
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21.3 CONFIDENCE INTERVALS AROUND TREND LINES 

It was assumed that the underlying population is stable, (i.e., characteristics like the mean, median, 
or upper percentiles are stationary over the period of sampling) for the confidence intervals so far 
presented in this chapter. In some cases, however, the concentration data will exhibit a trend. Examples 
might include successful remediation efforts that serve to gradually drive down a well's concentration 
levels, or interception of an intensifying plume of contaminated groundwater. 3 

The problem with ignoring a discernible trend when building a confidence interval is that the 
interval will incorporate not only the natural variability in the underlying population, butalso additional 
variation induced by the trend itself The net result is a confidence interval that can be much wider than 
expected for a given confidence level and sample size ( n ). A wider confidence interval makes it more 
difficult to demonstrate an exceedance or return to compliance versus a fixed standard m 
compliance/assessment or corrective action monitoring. The confidence interval will have less statistical 
power to identify compliance violations, or to judge the success of remedial efforts. 

When a linear trend is present, it is possible to construct an appropriate confidence interval built 
around the estimated trend. A continuous series of confidence intervals is estimated at each point along 
the trend, termed a simultaneous confidence band. An upper or lower confidence band will tend to 
follow the estimated trend line whether the trend is increasing or decreasing. It is computed once the 
trend line has beenestimated. 

Construction of a confidence interval around a trend line presumes that a trend actually exists. The 
algorithms presented in this section assume that a trend is readily discernible on a time series plot of the 
measurements and that it is essentially linear. Otherwise, the results may be less than credible. 

21.3.1 PARAMETRIC CONFIDENCE BAND AROUND LINEAR REGRESSION 

BACKGROUND AND PURPOSE 

A standard method for estimating a linear trend is linear regression, introduced in Chapter 17. In 
this section, equations for constructing a linear regression are extended to form a confidence band 
around the trend. Although a parametric technique, there is no requirement that the concentration 
measurements be normal or transformable to normality. Instead, the residual concentrations after 
subtracting out the estimated trend line should be roughly normal in distribution or at least symmetric. 

By way of interpretation, each point along the trend line is an estimate of the true mean 
concentration at that point in time. As the underlying population mean either increases or decreases, the 
confidence bandsimilarly increases or decreases to reflect this change. 

Although the equations presented below can beused to simultaneously construct a confidence 
interval around each point on the trend line, in practice, the user will want to compute a confidence 

3 This might occur if the well screen first intercepts the leading edge of the plume, followed by the more heavily contaminated 
core. 
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interval for a few or several of the most recent sampling events. Because the individual confidence 
intervals comprising the simultaneous confidence band have a joint confidence level of ( 1- J ) , no matter 
how many confidence intervals are constructed, the overall false positive rate associated with the entire 
set of tests against the fixed standard will be no greater than a pre-specified a. 

REQUIREMENTS AND ASSUMPTIONS 

To accurately estimate a confidence band, the sample variance should be stationary or constant as a 
function of time. Although the mean level may be increasing or decreasing with time, the level of 
variation about the mean should be essentially the same. 

Once a linear regression is fitted to the data, the residuals around the trend line should be tested for 
normality and apparent skewness. Inferences concerning a linear regression are generally appropriate 
when two conditions hold: 1) the residuals from the regression are approximately normal or at least 
reasonably symmetric in distribution; and 2) a plot ofresiduals versus concentrations indicates a scatter 
cloud of essentially uniform vertical thickness or width. That is, the scatter cloud does not tend to 
increase in width with the level of concentration or exhibit any kind of regular pattern other than looking 
like a random scatter of points. 

If one or both of these conditions is seriously violated, it may indicate that the basic trend is either 
non-linear, or the size of the variance is not independent of the mean level. If the variance is roughly 
proportional to mean concentrations, one possible remedy is to try a transformation of the measurements 
and re-estimate the linear regression. This will change the interpretation of the estimated regression from 
a linear trend of the form y = a + b t , where y and t represent concentration and time respectively, to a 

non-linear pattern. As an example, if the concentration data are transformed via logarithms, the 
regresmn equation will have the form log y = a+ bt. On the original concentration scale, the trend 

function will then have the form y =exp (a+ bt). 

When the regression data are transformed in this way, the estimated trend in the concentration 
domain (after back-transforming) no longer represents the original mean. The transformation induces a 
bias in the confidence intervals comprising the confidence band when converted back to the original 
scale as in the case of samples with no trend. If a log transformation is used, for instance, the back-
transformed confidence band around the trend line represents confidence intervals around the original­
scale geometric means and not the arithmetic means. If a comparison of an estimated geometric mean or 
similar quantity to the fixed standard makes sense, computing a trend line on the transformed data 
should be acceptable. However, if a confidence interval around an arithmetic mean is required, 
consultation with a professional statistician may be necessary. 

The technique presented here produces a confidence interval around the mean as a function of time 
and not an upper percentile. Thus, we recommend that the use of this method berestricted to cases 
where the fixed standard represents a mean concentration and not an explicit upper percentile or a 'not­
to-exceed' limit. 

At least 8 to 10 measurements should be available when computing a confidence band around a 
linear regression. There must be enough data to not only estimate the trend function butalso to compute 
the variance around the trend line. In the simplest case when no trend is present, there are ( n-1) degrees 
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of freedom [ df] in a sample of size n with which to estimate the population variance. With a linear trend, 
however, the available degrees of freedom df is reduced to ( n-2). For moderate to large samples, loss of 
one or two degrees of freedom makes little difference. But for the smallest samples, the impact on the 
resulting confidence limits can be substantial. 

One last assumption is that there should be fewif any non-detects when computing the regression 
line and its associated confidence band. As a matter of common sense, a readily discernible trend in a 
data set (either increasing or decreasing) should be based on quantified measurements. Changes in 
detection and/or RLs over time can appear as a declining trend, but may actually be an artifact of 
improved analytical methods. Such artifacts of plotting and data reporting should generally not be 
considered real trends. 

PROCEDURE 

Step 1. Construct a time series plot of the measurements. If a discernible trend is evident, compute a 
linear regression of concentration against sampling date (time), letting Xi denote the ith 
concentration value and ti denote the ith sampling date. Estimate the linear slope with the 
equation: 

[21.20) 
i=l 

This estimate leads to the regression equation, given by: 

A ( -•li1xx [21.21) 

where T denotes the mean sampling date, s: is the variance of the sampling dates, x is the 

mean concentration level, and x represents the estimated mean concentration at time t. 

Step 2. Compute the regression residual at each sampling event with the equation: 

--:::xxr 
1 

[21.22) 

Check the set of residuals for lack of normality and significant skewness using the techniques 
in Chapter 10. Also, plot the residuals against the estimated regression values ( xi) to check 

for non-uniform vertical thickness in the scatter cloud. If the residuals are non-normal and 
substantially skewed and/or the scatter cloud appears to have a definite pattern (e.g. , funnel­
shaped; 'U' -shaped; or, residuals mostly positive on one end of the graph and mostly negative 
on the other end, instead of randomly scattered around the horizontal line r = 0), repeat Steps 1 
and 2 after first transforming the concentration data. 

Step 3. Calculate the estimated variance around the regression line (also known as the mean squared 
error [MSE]) with the equation: 

1 11 

s2 =--cf' r2 
e n - 2 i=l 1 

[21.23) 
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Step 4. Given confidence level (I-a) and a point in time (t 0) at which a confidence interval around the 
trend line is desired, compute the lower and upper confidence limits with the respective 
equations: 

A 2 F 
Xo -= 2 e • S_ a ,21JR2 [21.24) 

[21.25) 

where £0 is the estimated mean concentration at time t0 from the regression usmg equation 

[21.21), and F1_2a, 2, n-2 is the upper (1-2 a)th percentage point from an F-distribution with 2 
and (n-2) degrees of freedom. Values for F can be found in Table 17-1 of Appendix D. 

Step 5. Depending on whether the regulated unit is in compliance/assessment or corrective action 
momtonng, compare the appropriate confidence limit against the GWPS. Multiple confidence 
limits can be computed at a single compliance point well without increasing the significance 
level (a) of the comparison. It is possible to estimate at what point in time (if ever) the 
confidence limit first lies completely to one side of the fixed comparison standard, without 
risking an unacceptable false positive rate increase for that well. 

EXAMPLE 21-7 

Trichloroethylene [TCE] concentrations are beingmonitored at a site undergoing remediation. If 
the GWPS for TCE has beenset at 20 pp b,test the following I 0 measurements collected at a compliance 
point well over the last two and a half years to determine if the clean-up goal has beenreached at the a = 

0.05 level of significance. 

Month Sampled TCE Concentration Regression Estimates Residuals 
(ppb) 

2 54.2 51.735 2.465 
4 44.3 48.530 -4.230 
8 45.4 42.119 3.281 

11 38.3 37.311 0.989 
13 27.1 34.106 -7.006 
16 30.2 29.298 0.902 
20 28.3 22.888 5.412 
23 17.6 18.080 -0.480 
26 14.7 13.272 1.428 
30 4.1 6.861 -2. 761 

SOLUTION 

Step 1. Construct a time series plot of the TCE measurements as in the graph below (see Figure 21-
3). A general downward, linear trend is evident. Then compute the estimated regression line 
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using equations [21.20) and [21.21), first determining that the mean time value is t = 15.3, 

the variance of time values 1s s: = 88.2333, and the mean TCE measurement is x = 30.42 ppb: 

b [( ) ( -+--=) 3.4«15~2.543.15fl-+~( x 2333)89--F.460B5flftp /month 

y = - 603.1~2:-30 3)15 

Figure 21-3. Time Series Plot and Regression Line of TCE Measurements 
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Step 2. Compute the regression residuals using equation [21.22) (listed in the table above). Note that 
the residuals are found by first computing the regression line estimate for each sampled month 
(i.e., t = 2, 4, 8, etc.) and then subtracting these estimates from the actual TCE concentrations. 
A probability plot of the regression residuals appears reasonably linear (Figure 21-4) and the 
Shapiro-Wilk statistic computed from these data yields SW= 0.962, well above the a= 0.05 
critical point for n = 10 of sw.05,10 = 0.842. Thus, normality of the residuals cannot be rejected. 

In addition, a plot of the residuals versus the regression line estimates (Figure 21-5) exhibits 
no unusual pattern, merely random vanation about the residual mean of zero. Therefore, 
proceed to compute a confidence interval around the trend line. 

21-27 March 2009 

EPAPAV0117409 



Chapter 21. Confidence Intervals Unified Guidance 

2 

1 

0 

-1 

-2 

Figure 21-4. Probability Plot of TCE Residuals 
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Figure 21-5. Scatterplot of TCE Residuals vs. Regression Line Estimates 
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Step 3. Compute the variance around the estimated trend line using equation [21.23): 

!.{465J (-+230.}l K (-++761)2]= 
8 

60.15 

Step 4. Since the comparison to the GWPS of 20 pp bis to be made at the a= 0.05 significance level, 
the confidence limit is (1-a) = 951

1 confidence. Since the remediation effort aims to 
demonstrate that the true mean TCE level has dropped below 20 ppb,a one-way UCL needs to 
be determined using equation [21.25). A logical point along the trend to examine is the last 
sampling event at 10 = 30. Using the estimated regression value at t0 = 30, and the fact that 
F.90,2,8 = 3 .1131, the UCL on the mean TCE concentration at this point becomes: 

UCL 95 = 861.6 x+ 87.)lpb 

Since this upper limit is less than the GWPS for TCE, conclude that the remediation goal has 
beenachieved by t0 = 30. In fact, other times can also be tested using the same equation. At 
the next to last sampling event ( t0 = 26), the UCL is: 

272.13 x+ x 1131.3 6~ ~~Jf'-'---~3 ~-51~ 
clO x 2333.8-S9 

14.}J'pb 

which also meets the remediation target at the a = 0. 05 level of significance. 

Step 5. If the linear trend is ignored, a one-way UCL of the mean might have beenused. The overall 
TCE sample mean x = 30.42, the TCE standard deviation s = 15.508, and the upper 95th 
percentage point of the !-distribution with 9 degrees of freedom is t.95,9 = 1.8331. Using 
equation [21.2) with the same data yields the following: 

21.3.2 

UCL
95 

= 30.42 +Q.8331 X15.508 )/JIO = 39.41 ppb 

Had the linear trend beenignored when computing the UCL, the remediation target would not 
have been achieved. The downward trend induces the largest part of the variation observed 
over the two and a half years of sampling and needs to be taken into account. -

NON-PARAMETRIC CONFIDENCE BAND AROUND THEIL-SEN LI NE 

BACKGROUND AND PURPOSE 

The Theil-Sen trend line is introduced in Section 17.3.3 as a non-parametric alternative to linear 
regression. Whether due to the presence of non-detects or trend residuals that cannot be normalized, the 

21-29 March 2009 

EPAPAV0117411 



Chapter 21. Confidence Intervals Unified Guidance 

Theil-Sen method can usually construct a trend estimate without some of the assumptions 
linear regression. 

needed by 

The Theil-Sen trend line is non-parametric becauseit combines the median pairwise slope (Section 
17.3.3) with the median concentration value and the median sample date to construct the trend. Because 
of this construction, the Theil-Sen line estimates the change in median concentration over time and not 
the mean as in linear regression. 

There are no simple formulas to construct a confidence bandaround the Theil-Sen line. However, a 
more computationally-intensive technique - bootstrapping - can be employed instead. The conceptual 
algorithm is fairly simple. First consider the set of n pairs ofmeasurements used to construct the Theil­
Sen trend. Each pair consists of a sample date (ti) and the concentration value measured on that date (Xi) 
as a statistical sample. Next, repeatedly draw samples of size n with replacement from the original 
sample of pairs. These artificially constructed samples are known as bootstrap samples . At least 500 to 
2,000 bootstrap samples are generated in order to improve the accuracy of the final confidence band. 
Note that a bootstrap sample is not precisely the same as the original because pairs are sampled with 
replacement. This means that a given pair might show up multiple times in any particular bootstrap 
sample. 

For each bootstrap sample, use the Theil-Sen algorithm to construct an associated trend line 
(Section 17.3.3 ). Each of these trend lines is known as a bootstrap replicate. Finally, determine the 
distribution of the bootstrap replicates and select certain percentiles of this distribution to form lower 
and upper confidence limits. These limits can be constructed to represent a non-parametric simultaneous 
confidence bandaround the Theil-Sen trend line with (1-J) confidence. 

REQUIREMENTS AND ASSUMPTIONS 

The key requirements for constructing a confidence bandaround a Theil-Sen trend are the same as 
for the Theil-Sen procedure itself (Section 17.3.3 ). As a non-parametric procedure, the trend residuals 
do not have to be normal or have equal variance across the data range. But the residuals are assumed to 
be statistically independent. Approximate checks of this assumption can be made using the techniques 
of Chapter 14, after removing the estimated Theil-Sen trend and as long as there aren't too many non­
detects. It is also important to have at least 8-10 observations from which to construct the bootstrap 
samples. 

Non-detects can be accommodated by the Theil-Sen method 
least 501

1, and the censored values occur in the lower part of the 
median concentration value and the median pairwise slope used 
based on clearly quantified values. 

as long as the detection frequency is at 
observed concentration range. Then the 
to compute the Theil-Sen trend will be 

Since there are no simple mathematical equations which can construct the Theil-Sen confidence 
band, a computer software program is essential for performing the calculations. Perhaps the best current 
solution is to use the open-source, free-of-charge, statistical computing package R (www.r-project.org). 
A template program (or script) written in R to compute a Theil-Sen confidence band is listed m 
Appendix C. This script can be adapted to any site-specific data set and used as many times as 
necessary, once the R computing environment has beeninstalled. 
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PROCEDURE 

Step 1. Given the original sample of n measurements, form a sample of n pairs (ti, xi), where each pair 
consists of a sample date (ti) and the concentration measurement from that date (Xi). 

Step 2. Form B bootstrap samples by repeatedly sampling n pairs at random with replacement from 
the original sample of pairs in Step 1. Typically, set B L 500. 

Step 3. For each bootstrap sample, construct a Theil-Sen trend line using the algorithm m Section 
17.3.3. Denote each of these B trend lines as a bootstrap replicate. 

Step 4. Determine a series of equally spaced time points (ti) along the range of sampling dates 
represented in the original sample, j = 1 to m. At each time point, use the Theil-Sen trend line 
associated with each bootstrap replicate to compute an estimated concentration ( x; ). There 

will be B such estimates at each of the m equally-spaced time points when this step is 
complete. 

Step 5. Given a confidence level ( 1- J) to construct a two-sided confidence band, determine the lower 
e 12 )th and the upper ( 1- J /2 )th percentiles, denoted x ;a12 ] and x y-a12 ] from the distribution of 

estimated concentrations at each time point ( tj). The collection of these lower and upper 
percentiles along the range of sampling dates (tj, j = 1 to m) forms the bootstrapped confidence 
band. To construct a lower confidence band, follow the same strategy. But determine the 
lower J th percentile x ;a] from the distribution of estimated concentrations at each time point 

(tj). For an upper confidence band, compute the upper (1- J )th percentile, x)1
-a] at each time 

point (tj). 

Step 6. Depending on whether the regulated unit is in compliance/assessment or corrective action 
momtonng, compare the appropriate confidence band against the GWPS. Estimate at what 
point in time (if ever) the confidence band first sits completely to one side of the fixed 
companson standard. 

EXAMPLE 21-8 

In Example 17-7, a Theil-Sen trend line was estimated for the following sodium measurements. 
Note that the sample dates are recorded as the year of collection (2-digit format), plus a fractional part 
indicating when during the year the sample was collected. Construct a two-sided 951

1 confidence band 
around the trend line. 

Sample Date 
(yr) 
89.6 
90.1 
90.8 
91.1 
92.1 
93.1 
94.1 
95.6 
96.1 
96.3 

Sodium Cone. 
(ppm) 

56 
53 
51 
55 
52 
60 
62 
59 
61 
63 
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SOLUTION 

Step 1. Designate the n = 10 (sample date, concentration) pairs as the original sample for purposes of 
bootstrapping. Set the number of bootstrap samples to NB = 500. 

Step 2. Sample at random and with replacement NB = 500 times from the original sample to form the 
bootstrap samples. Compute a bootstrap replicate Theil-Sen trend line for each bootstrap 
sample. This gives 500 distinct linear trend lines. 

Step 3. Divide the observed range of sampling dates from 89.6 to 96.3 into m = 101 equally-spaced 
time points, ti (note: choice of m is arbitrary, depending on how often along the time range an 
estimate of the confidence band is needed). At each time point, compute the Theil-Sen 
concentration estimate using each bootstrap replicate trend. This leads to 500 estimates of the 
form: 

where x B is the median concentration of the Eth bootstrap sample, QB is the Theil-Sen slope 
of the Eth bootstrap sample, and TB is the median sampling date of the Eth bootstrap sample. 

Step 4. Given a two-way confidence level of 951
1, compute the lower J /2 = 0.05/2 = 0.025 and upper 

(1-J /2) = (1-0.05/2) = 0.975 sample percentiles (Chapter 3) for the set of 500 concentration 
estimates associated with each time point (tj). This entails sorting each set and finding the 
value closest to rank ( n+I) x p, where p =desired percentile. In a list of n = 500, find the 
sorted values closest to the ranks 501 x 0.025 = 12.525 for the lower percentile and 501 x 

0.975 = 488.475 for the upper percentile. Collectively, the lower and upper percentiles plotted 
by thetime points give an approximation to the 951

1 two-sided confidence band. 

Step 5. Plot the lower and upper confidence bands as well as the original Theil-Sen trend line and the 
raw sodium measurements, as in Figure 21-6. The fact that the trend is increasing over time is 
confirmed by the rising confidence band.-
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Figure 21-6. 95% Theil-Sen Confidence Band on Sodium Measurements 
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Ch ft p1Ir 7 lays out general strategies for statistical testing in compliance/assessment and corrective 
action monitoring via the use of confidence intervals. Procedures for constructing confidence intervals 
are described in Ch ft p1Ir 21. This chapter discusses potential methods for developing confidence 
interval tests so that adequate statistical power is maintained in compliance/assessment monitoring and 
false positive rates are minimized in corrective action monitoring. 

As discussed in Ch ft p1Ir 7, EPA' s primary concern in compliance/assessment and corrective 
action monitoring is the identification and remediation of contaminated groundwater. The basic 
statistical hypotheses are reversed in these two phases of monitoring as described in Ch ft p1Ir 21 and 
earlier. The lower confidence limit {LCL] is of most interest in compliance/assessment, while the upper 
confidence limit {UCL] is used in corrective action. Statistical power is also of greater concern to the 
regulatory agency in compliance/assessment- representing the probability that contamination above a 
fixed standard will be identified. A sufficiently conservative false positive rate during corrective action 
is important from a regulatory standpoint, since a false positive implies that contaminated groundwater 
has been falsely declared to meet a compliance standard. The reverse of these risks is generally true for 
a regulated entity. 

To ensure that contaminated groundwater is treated in ways that are statistically sound, the two 
specific strategies which follow separately address compliance/assessment monitoring and formal testing 
in corrective action. The latter occurs after the completion of remedial activities or when potential 
compliance can be anticipated. Each strategy is designed to allow stakeholders on both sides of the 
regulator/regulated divide to understand the expected statistical performance of a given confidence 
interval test. 

The two strategies which follow are based on the behavior of the 11 o rma l mar n confidence interval. 
They especially assume that the monitoring data are stationary over the period of record. Other 
important assumptions were discussed in Ch ft p1Ir 21. In the discussion which follows, consideration is 
given to data that is normal following a logarithmic transformation and the possible tests which can be 
applied. 
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In most statistical literature including Gibbons & Coleman (2001) comparing a confidence interval 
against a fixed standard, a low false positive error rate (a) is chosen or recommended without respect to 
the power of the test. However, the power to detect increases above a fixed standard using a lower 
confidence limit around the mean can be negligible when contaminant variability is high and the sample 
size is small (Chapter 7). To remedy this problem, the Unified Guidance suggests an alternate strategy. 
That is, instead of pre-specifying the false positive rate prior to computing confidence interval limits, a 
desired level of power (l-1) should be set as an initial target. 

Ideally one would like to simultaneously minimize and maximize power by also mm1m1zmg l 

(i.e., the false negative rate). However, this is generally impossible given a fixed sample size (Chapter 
3), since there is a trade-off between power and the false positive rate. Especially for small sample sizes, 
fixing a low often leads to less than desirable power. Conversely, pre-specifying a high power 
necessitates a higher than typical false positive rate. Larger sample sizes are needed if both power and 
are pre-specified. High variability at a fixed sample size both lowers power and/or increases the need for 
a larger false positive error rate. 

A number of considerations are relevant when constructing mean confidence limits to achieve 
adequate statistical power. In most Agency risk assessment evaluations, chronic risk levels are generally 
proporrional to the average concentration. Development of MCLs followed similar proportional risk 
methodologies. Fixed health-based limits which can serve as groundwater protection standards [GWPS] 
also cover an enormous concentration range when both carcinogenic and non-carcinogenic constituents 
are included. 

Another relevant factor pertains to those situations where the true mean concentrations lie quite 
close to either side of a compliance standard. The difference between complying and not complying 
with the GWPS in terms of the true mean concentration level may be so small as to make a clear 
determination of compliance very difficult (Figure 22-1 ). Only sufficiently large differences relative to 
a standard are likely to be determined with a high level of certainty (i.e., statistical power). 
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True Mean Under H0 

Confidence Intervals too wide to determine compliance of true mean 

With the wide range of GWPS in place and recogmzmg that risk factors are proportional or 
multiplicative rather than additive (e.g., a 10 -6 cancer risk), it would be appropriate to use a consistent 
measure of increased risk that is independenr of the actual GWPS concentration level. While ultimately 
the decision of the regulatory authority, the Unified Guidance suggests a proportional increase (i.e., a 
ratio) above the GWPS, which is identified at some predetermined level of statistical power to judge the 
appropriateness of any specific mean confidence interval test. 

For compliance/assessment monitoring purposes, increases in the true concentration mean of 1.5 
and 2 times a fixed standard are evaluated at a range of confidence levels. While this is not quite the 
same as evaluating an absolure mean increase for a given constituent, the use of a risk ratio (R) does in 
fact define a specific increase in concentration level. For example, a risk ratio of 1.5 would identify a 
critical increase above the 15 µg/l MCL standard for lead of 22.5 - 15 = 7.5 µg/l, while for chromium 
with an MCL = 100 ug/l, the absolute increase would be 50 ug/1. Each represents a 50% increase in risk 
relative to the GWPS. 

Two approaches for assessing statistical power in compliance/assessment monitoring are provided 
using these critical risk ratios, based on different assumptions regarding sample variability. In the first 
approach, a constant population variance is assumed, equal to the standard (i.e., GWPS) being tested. 
Under the null hypothesis that the true population mean is no greater than the GWPS, this assumption 
corresponds to having a coefficient of variation [CV] of 1 when the true mean equals the standard. 
Although observed sample variability is ignored, this case can be considered a relatively conservative 
approach. 
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Assuming CV= 1, the relationship between the risk ratio (R), statistical power (1- ), sample size 
(11 ), and the false positive rate ( ) can be obtained using the following equation: 

1- (3 =GT ,n-1 fy-a,n-1 lfl =;;; (R -1 )j [22.1] 

where f-a,n-i is the (1-a)th Student's £quantile with (11-l) degrees of freedom and G ,nr-i ( Ill~ 
represents the cumulative 11011-cenrral £distribution with ( 11-l) degrees of freedom and non-centrality 
parameter fl. By fixing a desired or target power level, equation [22.1] can be used to choose the 
necessary a based on the available sample size 11. Alternatively, the equation can be used to determine 
the sample size (11 ) needed to allow for a pre-determined choice of a. 

Numerical tabulations of equation [22.1) are found in Tables 22-1 and 22-2 in Appendix D. These 
tables cover a practical range of 11 = 3 to 40 and a= .001 to .20, and offer combinations of the minimum 
false positive rate (a) and sample size (11) for several fixed levels of power. These can be used to 
construct lower confidence limits having a pre-specified level of power. It is important to note that the 
listed combinations are the small es .ta-values resulting in the targeted power. For a fixed 11, use of an a­
value larger than that listed in the tables will provide even greater power than the target. Similarly, for 
given a, use of a larger sample size than that listed in the tables will also result in greater power than the 
target. 

Minimum parameter values are presented in Tables 22-1 and 22-2 of Appendix D to document 
how the desired power level can be achieved with as few observations and as small a false positive error 
rate as possible. It is also true that an assumption of CV= 1 should be somewhat conservative at many 
sites. Actual power will be higher than that listed in these tables if the coefficient of variation is smaller. 
Not every power level is achievable in every combination of 11 and , so some of the entries in these two 
tables are left blank. 

The second approach requires an estimate of the population coefficient of variation. In this case, 
the required (but approximate) false positive rate of the test can be directly obtained from equation 

[22.2), where R is the desired risk ratio, 11 is the sample size, VGs the estimated sample coefficient of 

variation, -f-~,n _
1 

is the (1-(3)th Student's £quantile with (11 -1) degrees of freedom, and F ,nr-i (•) is the 

cumulative (central) Student's £distribution function: 

l -;F' I(R 1 }-Ji; L 
,nT-11 . VCR - ~-~,n-1 l [22.2) 

Equation [22.2) was evaluated for sample sizes varying from n = 4 to 12 and for CVs ranging from 
0.1 to 3.0 at two target combinations of power and risk ratio - R = 1.5 at 50% power and R = 2 at 80% 
power. Results of these calculations are provided in Table 22-3 of Appendix D. Similar to the critical 
power targets recommended by the Unified Guidance in detection monitoring (i.e., 55-60% power at 3 a 
above background, and 80-85% power at 4 a over background), two high power targets at proportionally 
increasing risk ratios were also chosen for this setting. 
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Table 22-3 in Appendix D provides the approximate minimum false positive rate (a) necessary to 
achieve each power target in a single confidence interval test. The shaded and italicized entries in the 
table represent those cases where the minimum a is below the RCRA regulatory limitation of a= .01 
from §264.97(i)(2) for an individual test false positive error rate. For these situations, the user would 
need to set a = 0. 01, which in turn would provide even greater statistical power than the target. 

For higher estimated CVs, many of the entries in this table exceed a= .5 (bolded entries). These 
cases illustrate the difficulty of simultaneously attaining the recommended level of power while 
controlling the false positive rate, especially for small sample sizes and highly variable data. Setting a 
lower a, results in insufficient statistical power. On the other hand, setting a L .5 amounts to a simple 
comparison of the sample mean against the fixed standard, with essentially no adjustment for sample 
variability or uncertainty. Similar to the first approach, a maximum false positive rate of = .2 is a 
reasonable upper bound which implies at most a l-in-5 chance of an error. 

Generally speaking, setting 80% power at a risk ratio of R = 2 in Table 22-3 of Appendix D is 
more constraining (requiring higher a's) than 50% power at a risk ratio of R = 1.5, although the effect 
can be reversed for low CVs and sample sizes. To meet both targets simultaneously for a given 11, the 
larger of the corresponding significance levels (a) should be selected. Guidance users may choose either 
of the two approaches described above. Other ratio and power options not covered in Tables 22-1 
through 22-3 of Appendix D can be handled by direct computation using either equation [22.1] or 
equation [22.2]. The first method makes an a priori assumption about the CV. The second method is 
approximate, depending on a sample CV estimate which might be erratic at small sample sizes and larger 
true population CVs especially if the compliance data are non-normal. 

Both approaches are directly applicable to the normal mean LCL test in Section 21.1.1. While the 
CV can be directly estimated using /xs on the original concentration data, this statistic will 

underestimate the likely variability when data are lognormal. In that case, the logarithmic CV estimate 
in Chapter 10, Section 10.4 should be used. If the data best fit a lognormal distribution, a number of 
considerations follow: 

It is possible to misapply the normal mean confidence interval test using the original 
concentration data, even when the data stem from a lognormal distribution. The mean is 
relatively robust with respect to departures from normality as long as the CV variability is 
not too great. If the predetermined false positive error is selected based on the normal 
power criteria above, the resulting LCL test will be at least as powerful as the normal test. 
The actual false positive error rate will also differ. 

If a geometric mean test in Section 21.1.2 is used, the LCL should be computed from the 
logarithmically transformed data. Tables 22-1 to 22-3 in Appendix D are based on normal 
distribution assumptions and the error rates are very conservative with respect to the 
achievable power. As an example, given a data set from a lognormal distribution with n = 
10, and an estimated CV= .8, an alpha value of .151 can be identified from Table 22-3 in 
Appendix D. The actual power to detect a doubling above a GWPS at 80% confidence 
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would result in a power level of 94.5%. The false positive needed to detect a geometric 
mean doubling for this example to meet the above criteria would be = .026. 1 

The Land lower confidence interval test from Section 21.1.3 can also be used. But since 
there are limited -choices in the tables, the guidance option is to select a fixed limit of .01, 
.05, or .1. If data are truly lognormal, the power of this test is at least as great as would be 
predicted by equations [22.1] and [22.2). Otherwise, professional statistical assistance may 
be necessary. 

Since compliance data will often be pooled over time to increase the eventual sample size 
(Chapter 7), the two approaches can be combined by determining the false positive rate for a given risk 
ratio and power level during the first year with Tables 22-1 and 22-2 of Appendix D. Tests in 
subsequent years might use the second power approach when a better CV estimate (using more data) can 
be derived. Overall, each approach should provide a reasonable manner of adjusting the individual test 
false positive rate (a) to ensure adequate power to detect real contaminant increases. As a general guide, 
the Unified Guidance suggest formulating power in terms of risk ratios no higher than R = 2. There 
should be at least 70-80% statistical power for detecting increases of that magnitude during 
compliance/assessment monitoring. 

Compliance monitoring recently began at a solid waste landfill. Measurements for vinyl chloride 
during detection monitoring are listed below for two compliance wells. If a value of 5 ppb vinyl chloride 
is used as the GWPS and a confidence interval test must have 80% power for detecting an increase in 
mean vinyl chloride levels of twice the GWPS, how should the confidence interval bounds be 
constructed and what do they indicate? Assume that compliance monitoring began with Year 2 of the 
sampling record and that annual groundwater evaluations are required. 

~ Jl (l c l ci'•Jll-C ci'\lt-u I • L I Jlci'(l-1C J J c 
L - J - c ~ ! "#'J ~ ! .. c L - J - c ~ ! "#'J ~ ! .. c - -

1ci'2 J ci' I II II 1ci'2 311 - ci' II 3 

1•2 J ci' II II C 1•2 I II - . II I 
1 2 J ci' 311 ci' 311 3 1 2 311 ci'cJll c 
1-2 J ci' ci'cJI! ci'ell C 1-2 _II II 3 

1ci'2 • 411 ci'd'll • 1ci'2 II I I II 

1•2 • ci'ci'I! • 311 I 1•2 II 4 ci'C II _ 

1 2 • I II c ci'e 11 / 1 2 311 4 411 

1-2 • 411 411 • 1-2 311 4 II 4 
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Step 1. Assume for purposes of this example that the vinyl chloride data are approximately normal. In 
practice, this should be explicitly checked. Also evaluate potential trends in the vinyl chloride 

1 For users with access to statistical software containing the cumulative non-central t-distribution, the inverse non-central t 
CDF can be used to identify the appropriate false positive level. For sample size df=n -1= 9, and a non-central t parameter 

= 8 /;·:log ( )/ sfl, the appropriate central t-value can be obtained from -I (dJF ,p~. The confidence level of 

this t-value is 1 - . For the example, df= 9, l = .2, I = 3.115, and the central t-value is 2.23 with = .0264. 
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measurements over time, as in the time series plot of Figure 22-2. Despite apparent 
fluctuations, no obvious trend is observed. So treat these data as if the population has a stable 
mean at least for the time frame indicated in the sampling record. 
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Step 2. Given that compliance monitoring began in Year 2, use the four measurements available from 
each well to construct lower confidence limits. Since 80% power is desired for detecting vinyl 
chloride increases of two times the 5 ppb GWPS, Table 22-2 in Appendix D indicates that for 
11 = 4, a false positive rate of a= 0.163 must be used to guarantee the desired power. This 

corresponds to a Student's £quantile of f-a,n _
1 

= t;;
37

,
3 

= 1.1714 . Then using the sample means 

and standard deviations of the Year 2 vinyl chloride measurements, the lower confidence 
limits can be computed as: 

LCLGW-I = X - {-a,n-I ~ = 8.0-1.1714 €.2346/-J4)= 6.7 ppb 
...; 11 

LCLGW-l = x - {-a,n-I ~ = 9.9 -1.1714 €.4468/-J4)= 8.5 ppb 
...; 11 

Step 3. Since both lower confidence limits exceed the GWPS, there is statistically significant evidence 
of an increase in vinyl chloride at these wells above the compliance limit. Such a conclusion 
also seems reasonable from Figure 22-2. However, the chance is better than 15% (i.e., a= 
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16.3%) that the apparent exceedance is merely a statistical artifact. If power criteria are 
ignored and a fixed minimum rate of a= .01 is used, the lower confidence limits would be: 

LCLGW-I = X - {n-l ~ = 8.0 -4.541€.2346/-J4)=2.9 ppb 
'\/ 11 

LCLGW- 2 = X - {n-l ~ = 9.9 -4.541€.4468/-J4)=4.3 ppb 
'\/ 11 

Neither limit now exceeds the GWPS, so the vinyl chloride concentrations would be judged in 
compliance with this test, illustrating the lack of power in lowering the false positive rate (a). 

Step 4. To increase the confidence level (i.e., by lowering a) of the tests at the end of the first year of 
compliance monitoring (i.e., Year 2 in the preceding table ofvinyl chloride values) wirhour 
losing statistical power, combine the measurements from Years 1 and 2, where Year 1 samples 
represent the final measurements from detection monitoring prior to the start of compliance 
monitoring. In this case, 11 = 8, and the minimum false positive rate from Table 22-2 of 
Appendix D can be lowered to a= .046 or approximately 4.5%. Then the re-computed lower 
confidence limits LCLGw-i = O.'j/Jpb and LCLGw-2 = 4.ftpb again both exceed the GWPS, 

indicating significant evidence of a compliance violation. 

Step 5. If the strategy presented in Step:J of combining measurements from detection monitoring and 
compliance monitoring is considered untenable, additional confirmation of the results can be 
made at the end of Year 3 by combining the first two years of compliance monitoring samples 
and ignoring the measurements from Year 1. Again with 11 = 8, the minimum false positive 
rate guaranteeing at least 80% power will be a= .046. The lower confidence limits are then: 

LCLGW-I = X - -f-a,n-I ~ = 7.575 -1.9512 ~.9521/ Fs)= 6.2 ppb 
'\/ 11 

LCLGW-2 = X - -f-a,n-I ~ = 9.975 -1.9512 €.7473/ Fs)= 8.1 ppb 
'\/ 11 

Step 6. An even lower false positive rate can be achieved after the first three years of compliance 
monitoring. Pooling these measurements gives n = 12. Then Table 22-2 in Appendix D 
identifies a minimum false positive rate of a= .013 or less than 1.5%. In this case, the lower 
confidence limits LCLGw-i = 8.ppb and LCLGw-2 = 6.'j/Jpb again exceed the GWPS, 

confirming the previous vinyl chloride exceedances from either Year 2, Years 1 and 2 
combined, or Years 2 and 3 combined. Furthermore, not only is the false positive rate quite 
low, but the power of the test still meets the pre-specified target. -
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As noted earlier, the primary regulatory concern in formal corrective action testing is false 
declarations ofremedial success. If groundwater is truly contaminated above a regulatory standard yet a 
statistical test result indicates the concentrations are no longer so elevated, then on-going contamination 
has been missed and the remedial process should not be exited. Statistically, this idea translates into a 
desire to minimize the corrective action false positive rate ( ). False positives in corrective action are 
precisely those decisions where the true concentration mean is falsely identified to be below the 
regulatory standard, when in fact it still exceeds the standard. 

Constructing confidence interval tests by fixing a low target false positive rate is straightforward. 
All of the confidence interval tests presented in Chapter 21 can be calibrated for choice of . What is 
not straightforward is how best to incorporate statistical power in corrective action. As with any 
confidence interval test, selecting a low when the sample size is small typically results in a confidence 
limit with low power. Power under corrective action monitoring represents the probability that the upper 
confidence limit [UCL] will fall below the fixed standard when in fact the true population mean is also 
less than the standard. Facilities undergoing remediation clearly have an interest in demonstrating the 
success of those clean-up efforts. They therefore may want to maximize the power of the confidence 
interval tests during corrective action, under the constraint that must be kept low. 

What statistical power criteria might a facility reasonably define in corrective action testing? 
Because of the orders of magnitude range found among various GWPS, a risk ratio approach similar to 
what is suggested in Section 22.1.1; only in this case, the target ratios (R) are lessrh1111 one . While a true 
mean at a level of R = 0.9 times a given standard might be declared in compliance very infrequently, one 
at R = 0.5 times or R = 0.25 times the standard should meet the compliance requirements much more 
often. By using a consistent risk ratio across a variety of constituents, absolute decreases in the mean 
concentration are consistent with an assumed level of risk. 

Unlike the risk ratio method detailed for compliance/assessment monitoring, where power was pre­
specified but a combination of the false positive rate ( ) and sample size (11 ) might be varied to meet that 
power level, in corrective action both power and are likely to be pre-specified (power by the facility 
and by the regulatory authority). The remaining component is how large a sample size is needed to 
attain the desired level of power, given a pre-specified false positive rate ( ). 

The normal distribution can be used to estimate sample size requirements for such risk ratios, 
given a specific false positive rate (a) and desired level of power (1-(3). There is likely to be uncertainty, 
however, in the degree of sample variation, as expressed by the CV. Since the constituents in a 
contaminated aquifer may be modified by remedial actions, it can be difficult to estimate fu rure 
variability (and the CV) from pre-treatment data. In some situations, a decrease in the mean over time 
might be paralleled by a decrease in total variation. If proportional, the CV would remain relatively 
constant. However, the CV could decrease or increase depending on aquifer conditions, constituent 
behavior, e rcThe best that can be recommended is to develop an estimate of the expected future CV 
under conditions of aquifer stability. 

As with compliance/assessment testing, future year estimates of the CV could be developed from 
the accumulated previous years' data. Sample sizes necessary to meet specific power targets (1-13) can 
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then be generated from the following approximate equation, where R = fractional risk ratio (less than 

1.0), (1-a) is the desired confidence level, and VC= estimated coefficient of variation: 

[22.3) 

Since 11 appears on both sides of equation [22.3), it has to be solved iteratively for trial-and-error choices 
of 11 , making it difficult to calculate without a proper computing environment. Tables 22-4 to 22-6 in 
Appendix D provide requisite sample sizes (11) based on equation [22.3) for three specific risk ratios (R 
= .75, .50, and .25) over a variety of inputs of a, 13, and CV. 

These tables can be consulted when designing a remedial program, especially when determining a 
sampling frequency adequate for generating the minimally needed sample size over a specific period of 
time. For example, to detect a drop in the true mean down to 0.75 0 GWPS (i.e., R = 0.75) with 80% 
power when CV= 0.6, Table 22-4 in Appendix D indicates that a minimum of 11 = 16 observations are 
needed to have a false positive rate ( ) no greater than 10%. Demonstrating such a reduction over the 
next two years might then require the collection of 8 measurements per year (or two per quarter) from 
the compliance well involved. 2 

While Tables 22-4 to 22-6 in Appendix D identify the sampling requirements needed to 
simultaneously meet pre-specified targets for power ( 1-1 ) and the false positive rate ( ), they come with 
some limitations. First, many of the minimum sample sizes are prohibitively large when sample 
variation as measured by the CV is substantial. Proving the success of any remedial program will be 
difficult when the compliance data exhibit significant relative variability. Less sampling is required to 
demonstrate a more substantial concentration drop below the compliance standard than to demonstrate a 
slight decrease (e.g., compare the sample sizes for R = 0.75 to R = 0.25). This fact mirrors the statistical 
truth in both detection and compliance/assessment monitoring that highly contaminated wells are more 
easily identified (and require fewer observations to do so) than are only mildly contaminated wells. 

Another limitation of equation [22.3) is that it assumes all 11 measurements are statistically 
independent. This assumption puts practical limits on the amount of sampling at a compliance well that 
can reasonably be achieved over a specific time period. Samples obtained too frequently may be 
autocorrelated and thus violate statistical independence. Minimum sample sizes do not apply to data 
exhibiting an obvious trend, and are appropriate only when the aquifer is in a relatively steady-state. 
Alternate methods to construct confidence bands around trends are presented in Chapter 21. However, 
equation [22.3) cannot be used to plan sample sizes in this setting. Finally, Tables 22-4 to 22-6 in 
Appendix D are based on an assumption of normally-distributed data. Although non-normal data sets 
might be approximated to some degree by the range of CVs considered, more sophisticated methods 
might be needed to compute sample size requirements for such data. This might entail consultation with 
a professional statistician. 

2 A slightly more approximate direct calculation using the standard normal distribution instead ofStudent t-values will also 

provide the needed sample size estimate as: I ·{zf?_/J, + z ]-~ J. vqQ -R )~2 . The recommended sample size in 

the example above is rounded to n = 15 using the z-normal equation. The estimate can be improved and made more 
conservative by adding an additional sample. 
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Suppose elevated levels of specific conductance (µmho) shown in the table below must be 
remediated at a hazardous waste facility. If the clean-up standard has been set at L = 1000 µmho, at what 
point should remediation efforts be declared a success for the two compliance well data in the table 
below? Assume that the risk of false positive error needs to be no greater than a= 0.05 at either well. 
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Step 1. First consider the data in well GW-12. A time series plot of the most recent 20 specific 
conductance values is shown in Figure 22-3. This plot indicates a fairly linear downward 
trend, suggesting that a trend line should be fit to the data, along with an upper confidence 
bound around the trend. 
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Step 2. Fit a regression line of specific conductance versus sampling date using the formulas in 
Section 21.3. The equation of estimated trend line shown on Figure 22-4 is: 

.Y= 790360 - 36.:311-6 

Step 3. Examine the trend residuals. A probability plot of the residuals is given in Figure 22-5. Since 
this plot is reasonably linear and the Shapiro-Wilk test statistic for these residuals (SW = 

.9622) is much larger than the 1 % critical point for 11 = 20 (sw.01 , 20 = 0.868), there is no reason 
to reject the assumption of normality. 

p J I BL B ! ( ! )+ p (' ) I ' ~ 7$ I ! ,L !)I 

0 

Also plot the residuals against sampling date (Figure 22-6). As no unusual pattern is evident 
on this scatter plot (e.g., trend, funnel-shape, e rq and the variability of the residuals is 
reasonably constant across the range of sampling dates, the key assumptions of the linear 
regression appear to be satisfied. 

Step 4. Since the false positive error rate must be no greater than 5%, use a= .05 when constructing 
an upper confidence band around the regression line. Using the formulas in Section 21.3 at 
each observed sampling date, both a 95% upper confidence band and a 95% lower confidence 
band are computed and shown in Figure 22-7. Only the upper confidence band is needed to 
measure the success of the remedial effort. Note that the formula uses an F-confidence level 
ofl- or .95 for a one-sided confidence interval. The lower 95% confidence band is shown 
for illustrative purposes and the confidence level between the upper and lower bands is 
actually 90%. 
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Step 5. Determine the first time point at which the remediation effort should be judged successful. In 
Figure 22-7, the upper confidence band drops below the clean-up standard of L = 1000 µmho 
in the second quarter of 1992, so well GW-12 could be declared in compliance at this point. 

Step 6. Now consider compliance well GW-13. A time series plot of the specific conductance 
measurements in this case (Figure 22-8) shows an initially steep drop in conductance level, 
followed by a more or less stable mean for the rest of the sampling record. The best strategy in 
this situation is to remove the four earliest measurements and then compute an upper 
confidence limit on the remaining values. 
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Step 7. Before computing an upper confidence limit, test normality of the data. If the entire sampling 
record is included, the Shapiro-Wilk test statistic is only .5804, substantially below the 1 % 
critical point with n = 23 of sw.01 ,23 = 0.881, indicating a non-normal pattern. Certainly, a 
transformation of the data could be attempted. But simply removing the first four values 
(representing the steep drop in conductance levels) gives a Shapiro-Wilk statistic equal to 
.9536, passing the normality test easily. Further confirmation is found by comparing the 
probability plots in Figures 22-9 and 22-10. In the first plot, all the data from GW-13 are 
included, while in the second the first four values have been removed. 
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Step 8. Another instructive comparison is to compute the upper confidence limits on the same data 
with and without the first four values. Consider the initial 8 conductance measurements, 
representing the first two years of quarterly data under corrective action. If all 8 values are 
used to compute the upper 95% confidence bound (taking 95% so that a = .05) and the 
formula for a confidence interval around a normal mean from Section 21.1 is applied, the limit 
becomes: 

- s 635.7126 
UCL 95 = X + (_a,n-l .Ji" = 901.75+1.8946 X .J8 = 1327.6 µmho 

While this limit exceeds the clean-up standard of L = 1000 •mho, the same limit excluding the 
first four measurements is easily below the compliance standard: 

54.0085 
UCL 95 = 451.75 +2.3534 x .,f4 = 515.3 µmho 

! •• #J $ !!• ~ J I B L B ! ( ! ) + p (3 &:J % , ~ %~ ! J $ ~ L 6 7 ( ! % •• 1 $ I I 

3 

2 

1 

0 

-1 
• 
• 

-2 

0 500 1000 1500 2000 2500 

Specific Conductance Q.!mho) 

l L J I - •C c 

EPAPAV0117432 



l L J I - • c::i c rJ = J Ji L l) + - c ~ c rJ • • - + I Ji 1 - c !! + I Ji rJ l) c 91 - J_ I + 0 Ji ~ Ji - i c ~ .... Ji i L l) + -

2 

• 

1 

0 

-1 

• 
-2 

300 400 500 600 700 

Specific Conductance Q.!mho) 

Step 9. Based on the calculation in Step8, the clean-up standard is certainly met by early 1990 at 
GW-13. However, it is also instructive to examine the confidence bounds on larger sets of data 
from the stable portion of the sampling record. For instance, if the initial 4 measurements are 
excluded and then the next 8 values are used, the upper 95% confidence bound is: 

68.3452 
UCL 95 = 478.75+1.8946 x .J8 = 524.5 µmho 

If all of the last 19 specific conductance values are used, a similar 9 5% confidence bound 
becomes: 

74.2760 
UCL 95 = 503.158 + 1.7341 x .Jl9 = 532.7 µmho 

Step 10. Both of the limits in Step9 easily meet the clean-up standard of L = 1000 µmho. However, the 
amount of data used in the latter case is more than double than that of the former, which can 
impact the relative statistical power of the upper confidence limit for detecting decreases 
below the fixed standard. Given that the specific conductance seems to level off at close to 
500 µmho, or one-half the clean-up standard, and given that the CV is approximately equal to 
.15, Table 22-5 in Appendix D (looking under CV = 0.2) indicates that at least 6 
measurements are needed to have a 95% chance of detecting a drop in conductance level to 
half the standard. So in this example, both UCLs are sufficiently powerful for detecting such a 
decrease. -
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For fixed standards which represent an upper percentile or maximum, the proper comparison in 
compliance/assessment monitoring utilizes the lower confidence limit around an upper percentile tested 
against the GWPS. In formal corrective action testing, the appropriate comparison employs an upper 
confidence limit around an upper percentile. Parametric and non-parametric confidence intervals around 
percentiles are presented in Chapter 21. 

While the basic comparison is similar to confidence intervals around a mean, two points should be 
noted. First, any numerical standard identified as a maximum concentration ' noto be exceeded' needs to 
be treated statistically as an upper percentile. The reason is that while every observed data set has a finite 
maximum, there is no way to estimate the confidence bounds around the maximum of a continuous 
population. The true 'maximum' is always positive infinity, illustrating a point of breakdown between 
mathematical models and physical reality. Nonetheless, confidence limits around an upper 90th to 99th 
percentile can be used as a close approximation to a maximum or some limit likely to only be 
infrequently exceeded. 

Secondly, computing statistical power for an interval around an upper percentile is similar to but 
not quite the same as, statistical power for an interval around the mean. Statistical power for a 
compliance/assessment test of the upper 90th percentile is derived by considering whether more than 
10% of all the population measurements exceed the GWPS. If so, the 90th percentile must also exceed 
the standard. In corrective action testing, the equivalent question is whether less than 10% of the 
measurements exceed the GWPS. In that case, the true 90th percentile must also be less than the 
standard. 

Statistically, each observation is set equal to 0 or 1 depending on whether the measured 
concentration is less than or greater than the fixed standard. Then the percentage of measurements 
exceeding the GWPS is given by the average of the set of zeros and ones. In other words, the problem is 
similar to estimating an arithmetic mean . 

The similarity ends, however, when it comes to setting power targets. For mean-based 
evaluations, power at true mean concentration levels is equivalent to a fixed multiple or fraction of the 
GWPS (e.g., 1.5 or 2 times the standard; 0.25 or 0.5 times the standard). But for upper percentile power, 
the alternative hypothesis is defined in terms of the ac rual percen rage ef measure men rs either exceeding 
rhe s randard in compliance/assessment monitoring (e.g., 20% or 30% instead of the null hypothesis 
value of 10%) or exceeding rheclean-up levelin corrective action monitoring (e.g., 2% or 5% instead of 
10%). In both hypothesis frameworks, the actual fraction of measurements above the standard can be 
denoted by p. Furthermore, the power formulas rely on a normal approximation to the binomial 
distribution. If p is the probability that an individual observation exceeds the GWPS, and p0 is the 
percentage ofvalues exceeding the GWPS when the (1-p0)th upper percentile concentration equals the 
standard, the quantity: 

[22.4) 

l L J I - •C c 

EPAPAV0117434 



l L J I - • c::i c rJ = J Ji L l) + - c ~ c rJ • • - + I Ji 1 - c !! + I Ji rJ l) c 91 - J_ I + 0 Ji ~ Ji - i c ~ .... Ji i L l) + -

has an approximately standard normal distribution under either the compliance/assessment null 
hypothesis p C p0 or the corrective action null hypothesis p L p0. 

Under the compliance/assessment alternative hypothesis (HA), the true fraction exceeding the 
standard is greater than the null value (p =PI > p0). With the corrective action alternative hypothesis, the 
true fraction is less than the null value (p =PI <po). PI can be specified as a multiple of po, say PI = 

k-p0 , where k can either be greater or less than one. Then it is possible to compute the sample size (n) 
necessary to simultaneously achieve a pre-specified level of power (1-13) and false positive rate (a) with 
the equation: 

[22.5) 

where zc represents the cth percentile from a standard normal distribution. 

Equation [22.5) can be used for designing and constructing confidence interval tests around upper 
percentiles in both compliance/assessment and corrective action monitoring. However, the interpretation 
and practical approach to its use differ depending on the stage of monitoring . 

•• !! • !! b 

In compliance/assessment monitoring, the alternative hypothesis (i.e., that the well is contaminated 
above the compliance standard) is expressed in terms of the relative percentage of concentration values 
that will exceed the GWPS compared to an uncontaminated well. To illustrate, if the compliance 
standard represents the 95th percentile so that no more than p0 = 5% of the individual measurements 
exceed this level, the percentage exceeding under the alternative hypothesis might be taken as PI= 2 xp0 

= 10%. Then a power level would be targeted so that exceedances of the standard occurring as frequently 
as PI would be identified with a probability equal to (1-13). 

If11 measurements are used to construct a lower confidence bound on the upper percentile (1-p0) of 
interest (e.g., the 9 5th), there will be a ( 1-13) x 100% chance of showing that the lower confidence limit 
exceeds the GWPS when in fact at least kp0 x 100% of the measurements actually exceed the standard. 
Furthermore, equation [22.5) also implies that the LCL willfilsely exceed the GWPS with probability a. 
That is, when the true percentage of measurements exceeding the standard is actually p0 or less, the test 
will identify a compliance violation a x 100% of the time. 

Because EPA's primary concern in compliance/assessment monitoring is having adequate 
statistical power to detect groundwater contaminated above the regulatory standard, a high power level 
(l-1) should first be pre-specified. Then can be varied in equation [22.5) until the resulting minimum 
sample size ( n ) matches the available sample or a feasible sample size for future sampling is found. In 
other words, power should always be kept high (e.g., at least 70-75% ), even at the expense of the false 
positive rate ( ). However, there may be sites where a feasible sample size can be calculated such that 
borh l and are minimized. 
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Values of 11 for various choices of power level (1-~), Type I error rate (a), and upper percentile (1-
p0) are tabulated in Table 22-7 in Appendix D. These can be used to maintain a specific level of power 
when employing a confidence interval around an upper percentile in compliance/assessment monitoring. 
The percentiles covered in this table include the 90 th' 95 th' 98 th' and 99 th_ Levels of statistical power (1-
~) provided include .50, .60, .70, .80, .90, .95, and .99, while the false positive rate (a) ranges from .20 
down to .01. Specific cases not covered by Table 22-7 in Appendix D can be computed directly with 
equation [22.5). 

J ~ Of? l P 1- ~ • • 

Suppose a compliance limit for the pressure under which chlorine gas is stored in a moving 
container (for instance, a rail car) is designed to protect against acute, short-term exposures due to 
ruptures or leaks in the container. If the compliance limit represents an upper 90th percentile of the 
possible range of pressures that might be used to seal a series of such containers, how many containers 
should be sampled/tested to ensure that if in fact 30% or more of the container pressures exceed the 
limit, violation of the standard will be identified with 90% probability and exhibit only a 5% chance of 
false positive error? 

Hi J_ 5h 91 i 
Step 1. Since the compliance limit on chlorine gas pressure represents the 90th percentile, at most 

10% of the container pressures should exceed this limit under normal operations. In statistical 
notation, p0 = 0.10 and (1-p0) = 0.90. If there is a problem with the process used to seal the 
containers and 30% of the pressures instead exceed the limit, this amounts to considering a 
multiple of k = 3 times the nominal exceedance amount. 

Step 2. Since a violation of the pressure standard by at least 3 p0 or 30% needs to be identified with 
90% probability, the target power is (1- ~) = 0.90. Also, the chance of constructing a lower 
confidence limit on the true 90th percentile gas pressure that filselyidentifies an exceedance 
of the standard must be kept to a= .05. 

Step 3. Looking in Table 22-7 in Appendix D under the 90th percentile and k = 3, the necessary 
minimum sample size is 11 = 30. Thus, 30 similarly-sealed containers should be tested for gas 
pressure so that a confidence interval around the 90th percentile can be constructed on these 
30 measurements using either the parametric or non-parametric formulas in Chapter 21. -

•• !! • !! • 

Equation [22.5) can also be used in formal corrective action testing. In this setting, an upper 
confidence limit [UCL] around an upper percentile is of interest and the false positive rate ( ) needs to 
be minimized to ensure a low probability of falsely or prematurely declaring remedial success. In 
practice, should be pre-specified to a low value. Then, different values for power (1- ~) can be input 
into equation [22.5) until the resulting minimum sample size (11 ) either matches the available amount of 
sampling data or is feasible to collect in future sampling. 

Once the minimum sample size is computed and these 11 measurements are used to construct a 
UCL on the upper percentile (1-p0) of interest (e.g., the 95th), there will be a (1-~) x 100% chance that 

l L J I - •C c 

EPAPAV0117436 



l L J I - • c::i c rJ = J Ji L l) + - c ~ c rJ • • - + I Ji 1 - c !! + I Ji rJ l) c 91 - J_ I + 0 Ji ~ Ji - i c ~ .... Ji i L l) + -

the UCL will be less than the clean-up standard when in fact no more than kp0 x 100% of the 
measurements actually exceed the standard. For instance, if k = 1/2, (1-13) will be the power of the test 
when in fact half as many of the measurements exceed the standard as are nominally allowed. 

Equation [22.5) also implies that the UCL will filsely drop below the clean-up standard with 
probability a. That is, when the true percentage of measurements exceeding the standard is actually p 0 or 
greater - indicating that the clean-up standard has not been met - the test will still declare the 
remedial effort successful a x 100% of the time. 

Values of n for various choices of power level (1-13), Type I error rate (a), and upper percentile (1-
p0) are tabulated in Table 22-8 in Appendix D. This table can be used to determine or adjust the feasible 
power level based on a pre-specified when employing a confidence interval around an upper percentile 
in corrective action. Note that the minimum sample sizes in Table 22-8 of Appendix D are generally 
quite large, especially for small error rates (a). Because of the regulatory interest in minimizing the risk 
of prematurely exiting remediation, statistical comparisons in corrective action are likely to initially have 
fairly low power. As the clean-up process continues, enough additional data can be accumulated to 
adequately raise the odds of declaring the remediation a success when in fact it is. 

J ~ Of? l P 1- ~ • • -

Suppose excessive nitrate levels must be remediated in a rural drinking water supply. If the clean­
up standard for infant nitrate exposure represents an upper 95th percentile of the concentration 
distribution, what sample size ( n ) should be selected to ensure that if true nitrate levels drop below the 
clean-up standard, the remediation effort will be judged successful with at least 80% probability? 

Hi J_ 5h 91 ~ 

Step 1. Examining Table 22-8 in Appendix D under the 95th percentile and power = (1-13) = .80, a 
choice of 11 cannot be made until two other statistical parameters are fixed: the false positive 
rate (a) and the relative fraction of exceedances (p). The false positive rate governs the 
likelihood that the upper confidence limit on nitrate will be below the clean-up standard, even 
though more than 5% of all nitrate measurements are above the compliance standard (so that 
the .trut95th percentile for nitrate still exceeds the clean-up criterion). The relative fraction of 
exceedances (p) sets the true percentage of individual nitrate concentrations that exceed the 
clean-up standard under the alternative hypothesis (HA); that is, what fraction of nitrate values 
are exceedances when the clean-up standard is truly met. 

Unfortunately, no matter what choices of a and p are selected in Table 22-8 of Appendix D, 
the smallest required sample size is n = 55, when a= .20 and p = .25. Even if it is practical 
and affordable to test 5 5 samples of groundwater for nitrate, the chance of falsely declaring the 
remediation effort a success will still be 20%. To cut that probability in half to a= .10, 11 = 99 
samples needs to be tested. 
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Step 2. To lessen the required sampling effort, consider the alternatives. Lower sample sizes are 
needed if the percentile of interest is less extreme, for instance if the clean-up standard 
represents a 90th percentile instead of the 95th. In this case, only 11 = 48 samples are needed 
for 80% power and a I 0% false positive rate with p = .25. Of course, more frequent 
exceedances of the compliance limit are then allowed (i.e., I 0% versus 5% of the largest 
nitrate concentrations). 

Another less desirable option is to raise the a level of the test. This raises the risk of falsely 
declaring the remediation effort to be a success. One could also lower p. At p = .25 for the 
95th percentile, 80% power is guaranteed only when the true nitrate exceedance frequency is 
one-fourth the maximum allowable rate--- i.e., when the true rate of exceedances is .25 x 5% = 

1.25%. Exceedance rates greater than this will be associated with /essthan 80% power. But 
while lowering p and keeping other parameters constant will indeed decrease 11, it also has the 
effect of requiring a very low actual exceedance rate before the power of the test will be 
sufficiently high. At p = .10 for the 95th percentile, for instance, the true exceedance rate then 
needs to be only .10 x 5% = 0.5% to maintain the same level of power. 

The final option is to lower the desired power. Power in this setting is the probability that the 
UCL on nitrate will be below the clean-up standard, when the groundwater is no longer 
contaminated above the standard. When the true nitrate levels are sufficiently low to meet the 
compliance standard, demonstrating this fact will only occur with high probability (i.e., high 
power) when the sample size is fairly large. By taking a greater chance that the status of the 
remediation will be declared inconclusive (i.e., when the UCL still exceeds the clean-up 
standard even though the true nitrate levels have dropped), power could be lowered to 70% or 
60% for instance, with a corresponding reduction in the required 11 • To illustrate, if the power 
is set at 60% instead of 80% for the 95th percentile and the false positive rate is set at a= .10, 
the required sample size would drop from 11 = 99 to 11 = 68. 

Step 3. In many groundwater contexts, the minimum sample sizes of Table 22-8 in Appendix D may 
seem excessive. Certainly, the sampling requirements associated with upper percentile clean­
up standards are substantially greater than those needed to test mean-based standards. 
However, remediation efforts often last several years, so it may be possible to accumulate 
larger amounts of data for statistical use than is possible in, say, detection or compliance 
monitoring. In any event, it is important to recognize how the type of standard and the 
statistical parameters associated with a confidence interval test impact the amount of data 
necessary to run the comparison. Each parameter should be assessed and interpreted in the 
planning stages of an analysis, so that the pros and cons of each choice can be weighed. 

Step 4. Once a sample size has been selected and the data collected, either a parametric or non­
parametric upper confidence limit should be constructed on the nitrate measurements and 
compared to the clean-up standard. -
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A.2 GLOSSARY 

Alpha (a) level 

1-of-m Plan 

Accuracy 

ACL 

Aliquot replicates 

ANOVA 

Appendix I 

Appendix II 

Autocorrelation 

Background 

Beta (~) level 

Bias 

Box Plot 

Calibration 

CERCLA 

Confidence Interval 

Confidence Level 

Decimal level of significance or false positive error of a statistical test 

Retesting plan consisting of an initial sample followed by up to ( m-1) 
resamples; resamples are collected only if initial sample exhibits a 
statistical difference 

Closeness of a measured or computed value to its "true" value, where 
the true value is obtained with perfect information. 

Alternate Qoncentration 1.imit; a fixed standard or clean-up action level 
alternative to prescribed RCRA regulatory health- or background limits 

Physical splits of a single water quality sample for multiple analyses 

Analysis of Va riance; a statistical method for identifying differences 
among several population means or medians 

40 CFR Part 2l8 chemical parameter list for Subtitle D detection 
monitoring programs 

40 Part 2l8 CFR chemical parameter list for Subtitle D compliance or 
assessment monitoring programs 

Correlation of values of a single variable data set over successive time 
intervals 

Natural or baseline groundwater quality at a site; can be characterized by 
upgradient, historical, or sometimes sidegradient water quality 

Decimal value representing a false negative error rate in a statistical test 

Systematic deviation between a measured (i.e., observed) or computed 
value and its true value. Bias is affected by faulty instrument calibration 
and other measurement errors, systematic errors during data collection, 
and sampling errors such as incomplete spatial randomization during the 
design of sampling programs. 

Plot of selected descriptive statistics at a monitoring point (e.g., mean, 
median, upper and lower quartiles) 

Comparison of a measurement standard, instrument, or item with a 
standard or instrument of higher precision and lower bias to detect and 
quantify inaccuracies and to report or eliminate those inaccuracies by 
adjustments. Also used to quantify instrument measurements of a given 
concentration in a given sample. 

Qomprehensive &,nvironmental B.esponse, Qompensation and 1.iability 
Act (or Superfund); statute for non-active hazardous waste site 
management and remediation 

Statistical interval designed to bound the true value of a population 
parameter such as the mean or an upper percentile 

Degree of confidence associated with a statistical estimate or test, 
denoted as (1 - a) 
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Coverage 

Critical value 

Degrees of freedom 

Descriptive Statistics 

Effective Power 

Fraction of a population expected to be contained within a tolerance 
interval 

Predetermined decision level for a test of statistical hypotheses 

The number of ways which members of a data set or sets can be 
independently varied 

Statistics used to organize and summarize sample data 

In a groundwater network of statistical tests, the power of the test 
method to identify a single well contaminated by a single constituent 

EPA Reference Power Curves Recommended standards for comparing performance of RCRA 
(ERPC) statistical methods in detection monitoring; based on individual 

False Negative 

False Positive 

GWPS 

Heterogeneous 

Histogram 

Homogeneous 

Ho moscedasticity 

Hypothesis 

Independent & Identically 
Distributed (i.i.d) 

Indicator Parameters 

Interwell 

Intrawell 

Mann-Kendall Test 

prediction limit using n = 10 background samples and a= .01 

Finding ofno statistically significant difference when there is, in fact, a 
physical difference in the underlying populations or between a single 
population and a fixed compliance standard; also known as beta (~) or 
Type II error 

Finding a statistically significant difference when there is, in fact, no 
physical difference in the underlying populations or between a single 
population and a fixed compliance standard; also known as alpha (a), 
significance level, or Type I error 

(Ground Water £.rotection .S.tandards) Concentration limits set by the 
regulatory agency as a standard to be attained in groundwater 
monitoring. These may be fixed health- or risk-based limits (e.g. 
MCLs) or a background level. 

Non-uniform in structure or composition throughout 

Graphical representation of frequenc y with data values grouped into 
specified numerical ranges 

Uniform in structure and composition throughout 

Equality of variance among sets of data 

One of two statements made about potential outcomes of a statistical 
test. The null and alternative hypothesis statements refer to the condition 
of a population parameter. The null hypothesis is favored, unless the 
statistical test demonstrates the greater likelihood of the alternative 
hypothesis. 

Groundwater measurements having the same statistical distribution and 
exhibiting no statistical dependence or correlation 

Chemical parameters whose presence or elevation is possibly indicative 
of a facility release 

Comparisons between distinct monitoring wells 

Comparisons over time at a given monitoring well between early and 
later measurements 

Non-parametric test of trend 
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MCL 

MDL 

Modified California Plan 

Non-detects (NDs) 

Non-parametric Test 

Normal distribution 

Outlier 

Parametric Test 

Percentile 

Population 

PQL or QL 

Precision 

Prediction Interval 

Prediction Limit 

Probability 

Probability Distribution 

Proportion 

Random sample 

Maximum Qontaminant 1,evel; a fixed water quality standard defined 
under the Safe Drinking Water Act and used in 40 CFR 2l8.40(e)(3) 

Method Detection 1,imit-the minimum concentration of a substance 
that can be measured and reported with 99% confidence that the analyte 
concentration is greater than zero in a specific matrix. 

Retesting plan consisting of an initial sample followed by three 
resamples; if initial value exhibits a statistical difference, two of three 
resamples must not exhibit a difference for the test to 'pass' 

Observations below the MDL, RL, or QL 

Statistical test that does not depend on knowledge of the distribution of 
the sampled population 

A family of symmetric continuous probability distributions defined by 
two finite parameters, the mean and variance 

Value unusually discrepant from rest of a series of observations 

Statistical test that depends upon or assumes observations from a 
particular probability distribution or distributions 

The specific value of a distribution that divides the distribution such that 
p percent of the distribution is equal to or below that value. If the 9)th 
percentile is X, it means that 9) per cent of the values in the statistical 
sample are less than or equal to X. 

All possible measurements/values over a period of time at a given 
location, series of locations, or over a spatial or volumetric extent 

£.ractical Quantification 1,imit-lowest concentration level for an 
analytical method which can be reliably achieved within specified limits 
of precision and accuracy under routine laboratory operating conditions 

A measure of mutual agreement among individual measurements of the 
same property, usually under prescribed similar conditions, expressed 
generally in terms of the sample standard deviation. 

Statistical interval constructed from background data on the next 
'future' sample or samples arising from the same population 

Upper or lower limit of a prediction interval 

Quantitative measure of uncertainty about the occurrence of a random or 
uncertain event 

Numerical statistical pattern associated with a population of 
measurements; many common patterns can be described using 
mathematical formulas 

A population proportion (p) is the ratio of the number of units of a 
population that have the specified characteristic or attribute (M) to the 
total number of units in the population (N). 

Collected data which are based only on their probability of occurrence 
in random fashion 
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Ranking 

RCRA 

Reporting Limit 

Residual 

ROS 

Sample 

SDWA 

Seasonality 

Sen's Slope Estimator 

SWFPR 

Spearman's Test 

Statistical Parameter 

Statistical Power 

Statistically Significant 
Difference (or Increase) 

Time Series Plot 

Tolerance Interval 

Tolerance Limit 

Trace Value 

Random Variable 

Variance 

Verification Resampling or 
Retesting Plan 

Assignment of numbers to an ordered data set indicating their relative 
position, generally integer values from 1 to n for the smallest to largest 
values in a sample of size n (unless specified in reverse rank order) 

Resource Qonservation and Recovery Act; statutory provisions for 
active facility hazardous (Subtitle C) and non-hazardous waste (Subtitle 
D) definition, storage, treatment and disposal 

Reporting L,imit-lowest concentration level for an analytical method 
which can be reliably measured by a laboratory 

Typically, the difference of a value in a data set from its mean 

Regression on Q.rder ~tatistics, either parametric or robust; techniques for 
fitting non-detect data to a single distribution 

Set of measurements from a population (can be as few as one) 

~afe Drinking Water Act; statute under which drinking water standards 
are promulgated and water treatment sites regulated 

The presence of seasonal effects on ground water quality observations; 
effects may be natural or man-made. 

Non-parametric method to estimate the rate of change of concentration 
levels over time 

~ite Wide Ealse £.ositive Rate; design probability of at least one 
statistically significant finding among a network of statistical test 
comparisons at a group of uncontaminated wells 

Non-parametric test of trend using data ranks 

A numerical characteristic of a statistical population or probability 
distribution 

Strength of a test to identify an actual release of contaminated 
groundwater or difference from a compliance standard 

Statistical difference exceeding a test limit large enough to account for 
data variability and chance 

Graphical plot of individual concentration values over time 

Statistical interval constructed to 'cover' a specified proportion of the 
underlying population of measurements 

The upper or lower limit of a tolerance interval 

Measured value close to, but above the limit of detection; may lie 
between the MDL and the QL 

A numerical value or characteristic that can assume different values on 
different sampling events or at different locations 

A measure of spread or dispersion calculated as the average of squared 
differences from the mean in a set of data or a population 

A plan to collect an additional resample or resamples to confirm or 
disconfirm an initial statistically significant finding 
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A.3 INDEX 

---- A -----

Alpha (a) error 3-19 

Alternative hypothesis 3-12 

Aitchison's method for non-detect data 15-6 

Aliquot replicate data 2-11, 6-27 

ANOVA (Analysis ofvariance), 

diagnostic testing 6-40 

equality ofvariance, Levene's test 11-4 

formal testing and problems with 2-14, 6-38, 17-3 

Kruskal-Wallis formal detection test 8-29, 17-9 

parametric one-way detection test 8-28, 17-1 

pooled variance 13-8 

spatial variability test 8-16, 13-5 

temporal variability 8-17, 14-6 

two-way 14-34 

Assumptions for statistical testing, general, 

i.i.d (independent and identically distributed) 3-4 

normality 3-7 

lack of statistical outliers 3-7 

stationarity 3-5 

statistical independence 3-4 

Assumptions, 

for compliance and corrective action monitoring 

(see Design, compliance/corrective action programs) 

for detection monitoring 

(see Design, detection monitoring programs) 

ASTM statistical guidance 1-3 

Autocorrelation function test 8-18, 14-12 

---- B -----

Background, 

assumptions for data, 

appropriate data 5-1 

autocorrelation i-4 

independence 5-4 

outliers 5-4 

representative data 5-1 

spatial variability 5-6 

trends 

in trawell 5-7 

use of residuals 5-7 

establishing, selecting monitoring constituents 

and sample sizes 5-3 

expanding background sample sizes 5-8 

importance of 5-1 

review of historical data 5-9 

A-12 
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updating, 

how to update 5-12 

presence oftrends 5-14 

when to update 5-12 

with retesting data 5-13 

used as GWPS 7-19 

Beta (~) error 3-19 

Beta distribution for non-parametric prediction limits 

18-18, 18-20 

Binomial distribution, 

SWFPR calculations 6-7, 19-4, 19-7, 19-28 

upper percentile tests 21-14, 21-17 

Bonferroni approximation, 

post-hoc ANOVA contrasts 6-3, 17-6 

SWFPR calculations 6-7, 19-7 

Boxplots, 

design 8-9, 9-5 

spatial variability screening 13-2 

outlier screening method 12-5 

---- c -----

Censored probability plot 8-22, 15-7, 15-13 

Censoring 15-1 

Central limit theorem, 3-16 

applied to logarithmic data 10-7 

Chi-squared distribution, 

used with Kruskal-Wallis test, 17-8, 17-12 

table D-23 

Coefficient of skewness, 

method summary 8-11 

screening method for normality 10-9 

Coefficient ofvariation, definition 3-10 

as test of normality B-1 

method summary 8-12 

screening method for normality 10-9 

Cohen's method for non-detect data 8-24, 15-21 

Common statistical measures, general definitions, 

coefficient of variation 3-10 

correlation coefficient 3-12 

interquartile range 3-10 

logarithmic coefficient ofvariation 3-11 

logarithmic mean 3-11 

logarithmic standard deviation 3-11 

median 3-10 

percentile 3-2 

quartiles 3-10 

sample mean 3-9 
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sample percentile 3-10 

sample standard deviation 3-9 

Compliance/corrective action tests, 

confidence intervals, 

around trend lines, 

non-parametric Theil-Sen 8-45, 21-30 

parametric linear regression 8-44, 21-23 

design (see Design, compliance/corr.act. program) 

non-parametric 21-14 

median 8-42, 21-17 

upper percentile 8-43, 21-21 

parametric, 21-1 

lognormal arithmetic mean 8-40, 21-8 

lognormal geometric mean 8-39, 21-5 

normal mean 8-38, 21-3 

upper percentile 8-41, 21-11 

pre-specifying power in compliance tests 22-2 

pre-specifying power in corrective action 22-9 

upper percentiles in compliance testing 22-19 

upper percentiles in corrective action tests 22-20 

Concepts, key statistical, 

Central Limit Theorem 3-16 

continuous distribution 3-7 

detection limits 3-9 

distribution 3-2 

family of distributions 3-9 

equality ofvariance 3-6 

i.i.d. 3-4 

ladder of powers 3-8 

normalizing transformation 3-8 

outliers 3-7 

pairwise correlation 3-5 

percentile 3-2 

population 3-2 

population mean 3-9 

population variance 3-9 

probability distribution 3-8 

random sample 3-3 

reporting limit 3-9 

representative sample 3-2 

sample 3-2 

sample size 3-2 

sampling distribution 3-16 

seasonal variability 3-3 

spatial variability 3-5 

stationarity 3-3 

statistic 3-2 

temporal variation 3-6 

trend 3-6 

Conditional probability, California plan 18-4 

Confidence bands 7-16, 21-22, 21-28 
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Confidence intervals, 

around trend lines, 

non-parametric Theil-Sen 8-45, 21-30 

parametric linear regression 8-44, 21-23 

non-parametric 21-14 

median 8-42, 21-17 

upper percentile 8-43, 21-21 

parametric, 21-1 

lognormal arithmetic mean 8-40, 21-8 

lognormal geometric mean 8-39, 21-5 

normal mean 21-3 

upper percentile 21-11 

tests using, 

lower (LCL) 4-6, 7-3 

upper (UCL) 7-3 

Confidence level 21-1 

Continuity correction, 

Mann-Kendall trend test 17-31 

Wilcoxon rank-sum test 16-18 

Contrasts for ANOV A detection tests, 

parametric Bonferroni 17-3, 17-6 

non-parametric 17-9, 17-12 

Control charts, Shewhart-CUSUM, 

in detection monitoring design 6-45 

introduction 8-38, 20-1 

performance criteria, 20-11 

multiple comparisons 20-12 

retesting 20-14 

method summary 8-38 

use ofMonte Carlo simulations 20-13 

requirements and assumptions 20-6 

Correlation coefficient, definition 3-12 

Cumulative false positive errors, 

in compliance/assessment monitoring. 7-10 

in corrective action monitoring 7-12 

---- D -----

Darcy equation, 

autocorrelation and sampling interval 6-26, 8-20, 

14-19 

Design, compliance/corrective action programs, 

assumptions, impact of, 

left-censored or non-detect data 7-18 

lognormal and other normalized data 7-19 

non-normal data 7-19 

sample variability 7-17 

comparisons to background GWPS, 7-19 

ACL 7-21 

mean prediction limit 7-20 

elements of 7-2 
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groundwater protection standards [GWPS], 7-6 

ACL 7-7, 7-10, 7-21 

central tendency vs. upper percentiles 7-6 

MCLs 7-6 

rep re sen tative parameters for 7-6 

problems of interpretation 7-8 

hypothesis testing structures, 7-2 

lower confidence limits for compliance 7-4 

upper confidence limits for corr. action 7-5 

use of one way confidence intervals 7-2 

introduction 7-1 

recommended strategies, 7-13 

confidence interval type 7-13 

sequential data pooling 7-13 

statistical program design, 

cumulative false positive in compliance mon. 7-10 

cumulative false positive in corr. act. mon. 7-12 

false positives and power in compliance mon. 7-8 

false positives and power in corr. act mon. 7-11 

shifts and trends, accounting for, 

confidence bands 7-16 

moving window 7-15 

Design, detection monitoring program, 

assumptions in, 

independence, statistical, 6-24 

aliquot replicate data 6-27 

Darcy's equation and autocorrelation 6-26 

data mixtures 6-27 

i.i.d. 6-25 

random data, importance of 6-24 

temporal correlation corrections 6-28 

interwell versus intrawell tests, 6-28 

background-downgradient assumptions for 

interwell testing 6-28 

tradeoffs in design 6-31 

non-detect data, 6-36 

MDL 6-36 

reporting limits 6-37 

use of techniques 6-36 

outliers, 6-34 

automated screening 6-35 

recommendations 6-35 

elements of detection monitoring design, 

effect sizes and data based power curves, 

data-based power curves 6-19 

effect sizes 6-18 

multiple comparisons problem, 6-2 

recommended guidance criteria 6-4 

power, recommendations for, 

effective power 6-13 

EPA reference power curves [ERPC] 6-16 
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generating the ERPCs 6-14 

introduction to power curves 6-13 

non-central t-distribution 6-14 

sites using more than one statistical method 6-21 

site-wide false positive rate [SWFPR], 6-16 

development and rationale 6-7 

double quantification rule 6-11 

number of tests and constituents 6-9 

introduction to 6-2 

site design examples 6-46 

tests for detection monitoring design, 

ANOVA, 

diagnostic testing 6-40 

formal testing and problems with 6-38 

control charts 6-45 

intervals, statistical, 

general 6-42 

prediction limits 6-43 

tolerance limits 6-44 

trend tests, 6-41 

use ofresiduals 6-41 

two-sample tests, 

diagnostic use 6-38 

t-tests and non-parametric options 6-37 

Detection monitoring tests, formal 

ANOVA, 

Kruskal-Wallis ANOVA 8-29, 17-9 

one-way parametric ANOVA 8-28, 17-1 

control charts, Shewhart-CUSUM, 

introduction 8-38, 20-1 

performance criteria, 20-11 

multiple comparisons 20-12 

retesting 20-14 

method summary 8-38 

use of Monte Carlo simulations 20-13 

design (see Design, detection monitoring program) 

requirements and assumptions 20-6 

prediction limits, single tests, 

introduction 18-1 

non-parametric future median 8-36, 18-20 

non-parametric future values 8-35, 18-17 

parametric future mean 8-34, 18-11 

parametric future values 8-33, 18-7 

prediction limits, using repeat testing, 

basic subdivision principle 19-7 

computing sitewide false positive 19-4 

non-parametric K-tables usage 19-27 

non-parametric tests general 19-26 

non-parametric future medians 8-36, 19-31 

non-parametric future values 8-35, 19-30 

parametric tests general 19-11 
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parametric K-tables usage 19-13 

parametric future means 8-34, 19-20 

parametric future values 8-33, 19-15 

R-script for parametric tests C-16 

strategies 19-1 

tolerance limits, 

general 8-30, 17-14 

non-parametric tolerance limits 8-30, 17-18 

parametric tolerance limits 8-30, 17-15 

trend tests, 

general 17-21 

linear regression trend test 8-31, 17-23 

Mann-Kendall trend test 8-32, 17-30 

R-script for Theil-Sen confidence band C-20 

Theil-Sen trend line 8-32, 17-34 

two-sample tests, 

pooled variance t-test 8-25, 16-1 

Tarone-Ware test 8-27, 16-20 

Welch's test 8-25, 16-7 

Wilcoxon rank-sum test 8-26, 16-14 

Dixon's test for outliers 8-15, 12-8 

Double quantification rule 6-11 

---- E -----

Effect sizes and data based power curves, 

data-based power curves 6-19 

effect sizes 6-18 

Equality ofvariance, screening methods, 

box plots 11-2 

mean-standard deviation scatter plot 8-15, 11-8 

Equality ofvariance, test, Levene's 8-14, 11-4 

Errors in hypothesis testing (see Hypothesis testing) 

Estimate, interval (see Confidence intervals) 

Exploratory tools, summaries and design, 

box plots 8-9, 9-6 

histograms 8-10, 9-7 

probability plots 8-11, 9-15 

scatter plots 8-10, 9-12 

time series plots 8-9, 9-1 

---- F -----

Factors in ANOV A tests 6-40, 14-6 

Family of probability distributions 3-9 

F-distribution 3-17, tables D-17 

Filliben's test (see Probability plot correlation 
coefficient) 

Fitting distributions (see Normality screening methods 
and tests) 

F-tests, for ANOVA 11-6, 13-7, 13-11, 14-9, 17-5 
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---- G -----

Gamma distribution 3-8, 10-1 

Geometric mean, 10-3 

compliance monitoring test for 21-5 

Goodness-of-fit tests (see Normality screening methods 
and tests) 

Groundwater monitoring and tests, 

context for 4-1 

statistical programs 4-3 

compliance or assessment monitoring 4-4 

confidence limits 4-6 

corrective action monitoring 4-5 

detection monitoring 4-3 

regulatory options 4-5 

statistical significance factors 4-5 

analytical 4-10 

data errors 4-11 

geochemical 4-9 

hydrological 4-9 

statistical 4-8 

well system design 4-8 

Groundwater protection standards [GWPS], 7-6 

ACL 7-7, 7-10, 7-21 

background used as 7-19 

central tendency vs. upper percentiles 7-6 

MCLs 7-6 

regulatory options 2-12 

rep re sen tative parameters for 7-6 

problems of interpretation 7-8 

---- H -----

Histogram design 8-10, 9-7 

Homoscedasticity (see Equality of variance) 

Hypothesis testing framework, general, 

alternative hypothesis 3-12 

false negative errors (Type II) 3-12, 3-18, 3-22 

false positive errors (Type I) 3-12, 3-15, 3-22 

hypothesis testing 3-12 

null hypothesis 3-12 

power 3-18 

simple versus compound hypotheses 7-11 

truth table 3-19 

Hypothesis testing, 

in compliance/corrective action monitoring., 7-2 

confidence interval type 7-13 

false positives and power in compliance mon. 7-8 

false positives and power in corr. act mon. 7-11 

lower confidence limits for compliance 7-4 
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one-way versus two-way errors 7-5 

sequential data pooling 7-13 

upper confidence limits for corr. action 7-5 

use of one way confidence intervals 7-2 

in detection monitoring 2-9, 3-12, 4-3 

---- I -----

I.i.d (independent and identically distributed) 3-4, 6-25 

Independence, statistical 3-4 

in detection monitoring design 6-24 

versus physical independence 14-2 

Interquartile range, definition 3-10 

Intervals, statistical, 6-42 

confidence 6-42, 21-1 

prediction 6-43, 18-1 

tolerance 6-44, 17-14 

control chart 6-42, 20-1 

Interwell versus intrawell tests, 

in background data i-6 

in detection monitoring design 6-28 

with prediction limits 19-9, 19-11, 19-27, 19-28 

---- J -----

---- K -----

Kaplan-Meier method for non-detect data 8-23, 15-7 

Kruskal-Wallis test, 

for determining spatial variability 13-6, 17-9 

one-way detection monitoring test 8-29, 17-9 

---- L -----

Ladder of powers transformations 10-4 

Level a test or level of significance 3-15 

Levene's test for equality of variance 8-14, 11-4 

Linear combination of variables 3-16, 10-6 

Linear regression 8-31, 14-36, 17-23, 21-23 

Lognormal data, 

comparison to normal default study 10-7, C-2 

in compliance monitoring design 7-19 

problems with Land UCL 21-9 

t-tests 

two sample 16-10 

versus fixed GWPS 21-3. 21-5 

Logarithmic distribution measures, definitions, 

coefficient of variation 3-11 

sample mean 3-11 

sample standard deviation 3-11 
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---- M -----

Mann-Kendall trend test 8-32, 17-30 

MCLs in compliance monitoring 7-6 

Mean 3-9 

Mean-standard deviation scatter plot 8-15, 11-8 

Median, definition 3-10 

Method Detection Limit 6-11 

Mixture distributions with non-detect data 15-6 

Monte Carlo simulations, 

control charts 20-13 

detection monitoring test comparisons 6-23 

normal vs. lognormal default assumptions 10-7, C-2 

power with lognormal data C-13 

Moving window strategy for compliance monit. 7-15 

Multiple comparisons problem, 6-2 

Multiple non-detect data limits 15-1 

---- N -----

Non-centrality parameter, 6-14, 6-21, C-10, 

using R-script 13-10, C-16 

Non-detect data 

general considerations 6-36, 15-1 

in compliance/corr.action design 7-18 

in detection monitoring design 6-36 

methods for imputing values 

Cohen's method 8-24, 15-21 

Kaplan-Meier 8-23, 15-7 

mixture distributions 15-6 

parametric ROS 8-24, 15-23 

robust ROS 8-23, 15-13 

simple substitution 8-21, 15-3, B-5 

test of proportions B-5 

Normal distribution, 

approximation to binomial 22-18 

importance of 10-5 

standard (see Standard normal distribution) 

Normality screening methods, 

coefficient ofvariation 8-12, 10-9, B-1 

coefficient of skewness 8-11, 10-9 

Normality, tests of, 

probability plot correlation coefficient 8-13, 

10-16, 10-23 

Shapiro-Wilk n :;S,iO 8-12, 10-13, 10-22 

Shapiro-Francia n > 50 8-12, 10-14 

Shapiro-Wilk group test 8-13, 10-19 

Null hypothesis 3-12 

---- 0 -----
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One-tailed versus two-tailed test 7-5 

One-way ANOVA (see ANOVA) 

Optimal rank values calculator 19-26, 19-33 

Outlier screening methods, 

probability plot 12-1 

box plots 12-5 

Outlier tests, 

Dixon's 8-15, 12-8 

Rosner's 8-16, 12-12 

Outliers, swamping 12-11 

---- p -----

Parameter, 

definition, statistical 3-9 

non-centrality, 6-14, 6-21, C-10 

Parametric ROS for non-detect data 8-24, 15-23 

Partial ordering of censored data 10-2 

Percentile 3-2 

Plots, design and example, 

box 8-9, 9-6 

histograms 8-10, 9-7 

probability 8-11, 9-15 

scatter 8-10, 9-12 

time series 8-9, 9-1 

Pooled variance using ANOVA 13-8 

Population 3-2 

Power, 

detailed calculations for, 

ERPC 6-13 

prediction limits C-12 

upper percentiles 22-18 

using loguormal data C-13 

Welch's !-test C-10 

in compliance monitoring 7-8, 22-1 

in corrective action monitoring 7-11, 22-8 

in detection monitoring, 

effective power 6-13 

EPA reference power curves [ERPC] 6-16 

generating the ERPCs 6-14 

introduction to power curves 6-13 

non-central !-distribution 6-14 

Monte Carlo simulations for control charts 20-13 

Prediction limits, single tests, 

introduction 18-1 

non-parametric future median 8-36, 18-20 

non-parametric future values 8-35, 18-17 

parametric future mean 8-34, 18-11 

parametric future values 8-33, 18-7 

Prediction limits, using repeat testing, 
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basic subdivision principle 19-7 

computing sitewide false positive 19-4 

non-parametric Appendix K-tables usage 19-27 

non-parametric tests general 19-26 

non-parametric future medians 8-36, 19-31 

non-parametric future values 8-33, 19-30 

parametric tests general 19-11 

parametric Appendix K-tables usage 19-13 

parametric future means 8-34, 19-20 

parametric future values 8-35, 19-15 

R-script for parametric tests C-16 

strategies 19-1 

Probability 3-7 

Probability distribution 3-2 

Probability plot correlation coefficient, 

method summary 8-13 

test of normality 10-16 

Probability plots, 

design 9-15 

outlier screening method 12-1 

---- Q -----

Quartile, definition 3-10 

---- R -----

Random data, importance of 3-3, 6-24 

Rank von Neumann ratio test 8-19, 14-18 

Ranking of data 10-13 to 10-23 

partial ranking 15-7, 16-16, 18-6 

RCRA regulatory discussions, 

Addendum 1992 guidance 2-4 

general guidance recommendations, 

compliance/assess. and corrective action 2-15 

detection monitoring methods 2-14 

interim status monitoring 2-13 

groundwater protection standards 2-12 

hypothesis tests 2-9 

interim final guidance [IFG] 1989 2-4 

performance standards 2-6 

recent regulatory modifications (2006) 2-5 

sampling frequency requirements 2-10 

statistical methods 2-6 

summary 2-1 

Regression (see Linear regression) 

Relative frequency distribution, histograms 9-11 

Rejection region, 

lower-tailed test 7-5 

upper-tailed test 7-5 

Representative sample 3-2 
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Residual, regression 17-25 

Residual analysis 17-28 

Robust ROS method for non-detect data 8-23, 15-13 

Root mean square error with pooled variance 13-8 

Rosner's test for outliers 8-16, 12-12 

R-script, 

intrawell pooled variance 13-10, C-16 

modified California plan C-18 

parametric prediction limits C-16 

Theil-Sen confidence band 21-30, C-20 

---- s -----

Sample correlation coefficient, definition 3-10 

Sample mean, definition 3-9 

Sample percentile, definition 3-10 

Sample standard deviation, definition 3-9 

Sample size recommendations, 

background data 5-2, 5-7 

compliance and corrective action tests, 

sequential pooling 22-6 

corrective action using power criteria 22-9, 22-21 

Sample variability in compliance mon. design 7-17 

Sampling distribution 3-16 

Scatter plots, 

design 9-12 

mean-standard deviation for equality of 

variance screen 11-8 

Seasonal Mann-Kendall test for trend 8-21, 14-37 

Sequential data pooling in compliance mon. 7-13 

Shapiro-Wilk test of normality 8-12, 10-13 

Shapiro-Francia test of normality 10-15 

Shapiro-Wilk group test normality 8-13, 10-19 

Shewhart-CUSUM (see Control charts) 

Simple substitution for non-detect data 8-21, 15-3 

Simultaneous confidence intervals 17-6, 17-12 

Site-wide false positive rate [SWFPR], 

calculations for 6-7, 19-4, 19-7 

development and rationale 6-7 

double quantification rule 6-11 

number of tests and constituents 6-9 

recommended criteria 

subdivision principle 6-7, 19-7 

Skewness coefficient 8-11, 10-9 

Spatial variability, 

introduction 13-1 

screening methods, 

box plots 13-2 

pooled variance using ANOVA 13-8 

tests, 

one-way parametric ANOVA 8-16, 13-5 
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Kruskal-Wallis (non-parametric) 13-6, 17-9 

use ofR-script for pooled variance 13-10, 13-12 

Standard deviation, definition 3-9 

Standard normal distribution, 

approximations for, 

Mann-Kendall trend test 17-31 

Shapiro-Wilk group test 10-20 

in probability plots 8-11, 9-15, 12-1 

R-script calculations C-16 

table D-1 

used in ERPC estimation 6-5, 6-9 

Z-transform used in tests, 

control charts 20-3 

contrasts for Kruskal-Wallis 17-12 

probability plot correlation coefficient 10-16 

parametric ROS 15-23 

Wilcoxon rank-sum 16-18 

Stationarity, 3-5 

Statistic 3-2 

Statistical Significance 4-5 

Subdivision principle for SWFPR calculations 6-7, 19-7 

SWFPR (see Site-wide false positive rate) 

Symmetric distribution 10-9 

---- T -----

Tarone-Ware test detection monitoring 8-27, 16-20 

Transformations, distributional, 

importance ofnormalizing 10-5 

ladder of powers 10-4 

logarithmic 10-6 

other distributions 10-1 

t-tests, 

pooled variance t-test for detection monitoring 

8-25, 16-1 

updating background data with 5-12 

Welch's test for detection monitoring 8-25, 16-7 

!-confidence intervals for means 7-4, 21-3, 21-5 

!-distribution table D-15 

Temporal dependence, general 14-1 

Temporal variability, 

corrections for, 6-28 

stationary mean seasonal pattern 8-20, 14-28 

sampling interval with Darcy's eq. 8-20, 14-19 

sampling frequency adjustment 14-18 

temporal effect across wells 14-33 

temporal effect using ANOVA 8-17, 14-35 

temporal effect linear trend 14-36 

trends using seasonal Mann-Kendall test 

8-21, 14-37 

screening methods, 
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time series parallel plots 14-3 

tests, 

ANOVA one-way 8-14, 14-6 

autocorrelation function 8-18, 14-12 

rank von Neumann ratio test 8-19, 14-18 

Tests of hypotheses (see Hypothesis testing .. ) 

Test of proportions for non-detect data B-5 

Theil-Sen trend line 8-32, 17-34 

Time series plots, 

design 8-9, 9-1 

temporal variability screening 14-3 

Tolerance limits, detection monitoring tests, 

general 8-30, 17-14 

non-parametric tolerance limits 8-30, 17-18 

parametric tolerance limits 8-30, 17-15 

Transformations to normality 10-3 

Trends, 

accounting for in compliance/corr. act. mon., 

confidence bands 7-16 

moving window 7-15 

Truth table for hypothesis testing 3-16 

Tukey hinges for box plots 3-10 

Two-factor ANOVA 6-40, 14-6 

Two-tailed test errors, 7-5 

Type I error (see Hypothesis testing ... ) 
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Type II error (see Hypothesis testing ... ) 

u 

---- v -----

Variance stabilizing transformation 11-1 

Variation, coefficient of(see Coefficient ofvariation) 

---- w -----

Weibull distribution 3-8, 10-1 

Welch's test for detection monitoring 8-25, 16-7 

Wilcoxon rank-sum test, 

for detection monitoring 8-26, 16-14 

updating background data with 5-12 

x 

y 

---- z -----

Z-distribution (see Standard normal distribution) 
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B.1 PAST GUIDANCE FOR CHECKING NORMALITY 

The 1989 Interim Final Guidance [IFG] outlined three different methods for checking normality: 
the coefficient of variation [CV] test, probability plots, and the chi-square test. Of these three, only 
probability plots are recommended within the Unified Guidance. The coefficient-of-variation and chi­
square tests each have potential problems or are inferior to alternate methods. These alternatives include 
the coefficient of skewness, the Shapiro-Wilk or Shapiro-Francia tests, and Filliben' s probability plot 
correlation coefficient. 

The coefficient of variation [CV] test in the original 1982 RCRA Part 264 groundwater monitoring 
regulations was recommended within the IFG because it is easy to calculate and amenable to small 
sample sizes. To ensure that a normal model with a significant fraction of negative concentration values 
was not fit to positive data, the IFG recommended that a sample CV be less than one to indicate 
'normality.' The test was inexact since the distribution of sample CV's from a truly normal population 
itself is a function of both sample size and the true coefficient of variation. Truly normal populations of 
positive-valued data are likely to have a CV of 0.3 or lower, although individual sample CV's will 
occasionally exceed one, depending on the sample size. It was also possible to incorrectly reject 
normality using this criterion even when the population was really normal. 

While the coefficient of variation indirectly offers an estimate of skewness and hence 
normality/non-normality, there are better formal tests to accomplish both goals. The Unified Guidance 
recommends estimating skewness of a data set using the coefficient of skewness (Section 10.4 ), along 
with other tests of normality in Chapter 10. Nevertheless, the coefficient of variation provides a 
measure of intrinsic variability in positive-valued data sets. Although approximate, the coefficient of 
variation can indicate the relative variability of certain data, especially with small sample sizes and in 
the absence of other formal tests. 

The CV is also a valid measure of the multiplicative relationship between the mean and the 

standard deviation for positively-valued random variables. The estimator CV= s/x reasonably 

approximates the true CV for non-negative normal populations. In lognormal populations, the 
coefficient of variation can also be used in evaluations of statistical power. For the lognormal 
distribution, the population coefficient of variation works out to be: 

CV = ~exp (a.~}- 1 

where cry is the population log-standard deviation. Because of this, instead of a ratio between the 
standard deviation and the mean, the lognormal coefficient of variation is usually estimated by 

CV = ~exp~-~ }- 1 

where s.v is the log-standard deviation. This last estimate is usually more accurate than the simple ratio 

of standard deviation-to-mean, especially when the underlying population coefficient of variation is 
high. However, neither coefficient of variation estimator is a satisfactory test as to whether a data set is 
truly normal or lognormal. 
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The chi-square test was also recommended within the IFG. Though an acceptable goodness-of-fit 
test, it is not considered the most sensitive or powerful test of normality (Gan and Koehler, 1990). The 
downside to the chi-square test can be explained by considering the behavior of parametric tests based 
on the normal distribution. Most tests, like the t-test or parametric prediction limits, which assume that 
the underlying data are normal, give fairly robust results when the normality assumption fails over the 
middle ranges of the data distribution. That is, if the extreme tails are approximately normal in shape 
even if the middle part of the density is not, these parametric tests will still tend to produce valid results. 
However, if the extreme tails are non-normal in shape (e.g., highly skewed), normal-based tests can lead 
to false conclusions, meaning that either a data transformation or a non-parametric technique should be 
used instead. 

The chi-square test entails a division of the sample data into 'bins' or 'cells' representing distinct, 
non-overlapping ranges of the data (Figure B-1 ). In each bin, an expected value is computed based on 
the number of data points that would be found if the normal distribution provided an appropriate model. 
The squared difference between the expected number and observed number is then computed and 
summed over all the bins to calculate the chi-square test statistic. 

Figure B-1. How the Chi-Square Goodness-of-Fit Test Works 

If the chi-square test indicates that the data are not normal, it may not be clear what ranges of the 
data most violate the normality assumption. Departures from normality in the middle bins are given 
nearly the same weight as departures in bins representing the extreme tails, and all the departures are 
summed together to form the test statistic. As such, the chi-square test is not as powerful for detecting 
departures from normality in the extreme tails of the distribution, the areas most crucial to the validity of 
parametric tests like the t-test or ANOV A (Miller, 1986). This implies that if there are departures in the 
tails, but the middle portion of the data distribution is approximately normal, the chi-square test may not 
register as statistically significant even when better tests of normality would. 

B-3 March 2009 

EPAPAV0117469 



Appendix B. Historical Notes Unified Guidance 

The IFG also suggested that the original data should be presumed to be normal prior to testing the 
distributional assumption. If a statistical test rejected the model of normality, the data could be checked 
instead for lognormality by evaluating their natural logarithms. The 1992 Addendum to Interim Final 
Guidance [Addendum] noted that many data sets in environmental monitoring are better fit by a 
lognormal than by a normal distributional model. Primarily on that basis, it was recommended that the 
lognormal distribution replace the normal as the default model for groundwater analysis, especially 
since for small data sets, the available tests of normality have limited statistical power to reject the null 
hypothesis of normality, even if the data arise from a lognormal distribution. The Unified Guidance 
brings this argument around almost full circle by ar guing that the normal model is a slightly better 
default for small samples, but that distributional testing is recommended in any case in order to establish 
the most appropriate model (Section 10.3 ). 

B.2 THE CABF PROCEDURE 

Facilities operating under a RCRA permit specifying Cochran's Approximation to the Behrens­
Fisher Student's t-test [CABF] may change this method to a more appropriate procedure at the time of 
State or Regional permit review and update. Owners and operators may also apply for a permit 
modification under §270.4l(a)(3). This change is considered a Class 1 permit modification, which must 
be made with prior approval from the Director. 1 Depending on the nature of the permit conditions, it 
may also be appropriate, on a facility-specific basis, for an oversight agency to approve a change of 
method without a formal permit modification. 

Under appropriate circumstances, an owner or operator may wish to continue using a t-test type 
procedure. However, instead of the CABF method, it is recommended that either a pooled variance 
Student's t-test or a variant of this test due to Welch (1937) be employed (Chapter 16). Not only is 
Welch's test a more standard type oft-test than the CABF procedure, but research has shown it to be 
equivalent or preferable to other varieties of the t-test (Moser and Stevens, 1992). 

Circumstances appropriate for the use of a t-test procedure might include facilities with very few 
monitoring wells (e.g., three or less) and that monitor for a very limited number of constituents (e.g., 
one or two). As long as no more than l to 10 statistical comparisons are being made each year, running a 
t-test at the 0.01 level of significance in each case should result in at most a 10% annual probability of 
any comparison registering as a false positive when there is no actual contamination. 

One of the problems with the CABF procedure in practice was the use of aliquot replicate samples 
to bolster the total sample size (Section 2.2.4). Both the pooled variance t-test and Welch's t-test make 
the assumption that the sample observations are statistically independent. Though aliquot replicate 
sampling increases the number of available measurements, aliquot replicate samples mostly provide 
information about analytical variability and accuracy, and tend to be highly correlated. Since the goal of 
a RCRA groundwater statistical program is to provide data about hydro-geochemical variability in the 
(uppermost) aquifer below the facility, aliquot replicate sampling (like the CABF procedure itself) 
should be avoided unless a more sophisticated components of variance model is used to account for the 
separate effects of analytical variability and natural groundwater variance. 

1 See l3 F..R... 37912, September 28, 1988 for more details about the permit modification process. 
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B.3 PAST GUIDANCE FOR NON-DETECTS 

Guidance for handling non-detect measurements was first offered in the 1989 Interim Final 
Guidance [IFG]. There the basic recommendations included the following: 1) if less than ll% of all 
samples are non-detect, replace each non-detect by half its detection or quantitation limit [QL] and 
proceed with a parametric analysis, such as ANOVA, tolerance limits, or prediction limits; 2) if the 
percentage of non-detects is between ll and lO, either use Cohen's adjustment to the sample mean and 
variance in order to proceed with a parametric analysis, or employ a non-parametric procedure by using 
the ranks of the observations and treating all non-detects as tied values; 3) if the percentage of non­
detects is greater than lO, use the test of proportions. 

In the 1992 Addendum to Interim Final Guidance [Addendum], the recommendation for data sets 
with small fractions of non-detects (i.e., :S ll%) was left unchanged; however, for cases with moderate 
detection rates (i.e., non-detects comprising ll% to l0% of the data), Cohen's adjustment was 
supplemented by Aitchison's method for data sets in which non-detects could be regarded as zero 
concentrations. In addition, the test of proportions was deleted from the Addendum. Instead, for large 
fractions of non-detects, three options were suggested: 1) for two sample comparisons, the Wilcoxon 
rank-sum test was recommended over the test of proportions; 2) for moderately large background 
samples, the Addendum recommended non-parametric prediction and tolerance limits; and 3) for 
extremely low detection rates (e.g., 2: 90% non-detects) and small background samples, the Addendum 
recommended the use of Poisson prediction and tolerance limits. 

The test of proportions was not recommended in the Addendum, even for detection rates under 
l0%, for the following reason. Although acceptable as a statistical procedure, the test of proportions 
does not account for potentially different magnitudes among the concentrations of detected values. 
Rather, each sample is treated essentially as a 'O' or 'l' depending on whether the measured 
concentration is below or above the QL. The test of proportions ignores information about concentration 
magnitudes, and hence is often less powerful than a non-parametric rank-based test like the Wilcoxon 
rank-sum, even after adjusting for a large fraction of tied observations (e.g., non-detects). In part, this is 
because the ranks of a data set preserve additional information about the relative magnitudes of the 
concentration values, information which is lost when all observations are scored as O's and l's. 

Furthermore, small-scale Monte Carlo simulations comparing the test of proportions to the 
Wilcoxon rank-sum test showed that for small to moderately large proportions of non-detects (say 0% to 
60%), the Wilcoxon rank-sum procedure adjusted for ties was more powerful in identifying real 
concentration differences than the test of proporti ons. When the percentage of non-detects was quite 
high (at least 70% to 7l%), the test of proportions was occasionally more powerful than the Wilcoxon 
for extremely small group sample sizes (e.g., no more than 4 to 6 measurements per group), but the 
results of the two tests usually led to the same conclusion. Consequently, the Wilcoxon rank-sum test 
was recommended in all cases where non-detects constituted more than ll percent of the samples. 

The revised Unified Guidance also places less emphasis on Cohen's method. The reason is that it 
could only accommodate a single censoring limit (e.g., reporting limit [RL]) in its original formulation 
and assumed that all quantified values were necessarily greater than this limit. Because many 
environmental data sets include multiple reporting and/or detection limits and an intermixing of detects 
and non-detects, two other methods are now recommended that are designed to handle more complex 
data configurations (Chapter 15 ). Cohen's and the parametric ROS method may have limited 
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applicability when both detect and non-detect data are expected to stem from a single parametric 
distribution and a single censoring limit can be used. 

B.4 TREND TESTS 

The Unified Guidance recommends trend testing as an alternative to prediction limits or control 
charts when those methods are not suitable. To understand the basis for this recommendation, it may 
help to consider how intrawell comparisons initially supplemented, and then came in many cases to 
supplant, interwell comparisons. 

In the 1989 IFG and the 1992 Addendum, the recommended statistical methods closely followed 
the 1988 and 1991 Final Rules published in the Federal Register. Although these methods replaced 
historical use of the CABF Student's t-test, there was still an emphasis on interwell comparisons 
between background and downgradient wells through the use of t-tests and ANOV A. Indeed, where 
justified, interwell comparisons provide undeniable conceptual advantages over other kinds of tests. 
When (upgradient) background measurements can be used to establish a reasonable baseline 
concentration level, such data offer invaluable information about site-specific conditions at 
uncontaminated locations and the level of variability one should expect to encounter in the absence of 
events that precipitate groundwater contamination. 

Unfortunately, ANOVA and !-tests all involve a comparison of population means under the key 
assumption that the populations have not changed over time. The underlying distributions in each group 
or well are assumed to be stable over the period of monitoring, so that concentration measurements 
fluctuate randomly around a constant mean level. Stability, of course, is not guaranteed. Several factors 
can impact the statistical characteristics of the underlying aquifer at either upgradient or downgradient 
wells, including natural fluctuations in aquifer parameters, migration of contaminants from off-site 
sources, changes in the mixture of deposited waste and its geochemical interaction with the subsurface 
environment, and alterations in geochemistry from 'percolation' effects due to past waste disposal 
practices or land usage. 

EPA's hope in the 1989 IFG was that ANOVA-type comparisons would be done quickly enough 
(e.g., every six months) that the underlying populations could be considered essentially static during 
each testing period. At some sites, this may be a reasonable assumption. However, in practice, sampling 
is now done on a quarterly, semi-annual, or annual basis. In order to gather the four to five samples 
needed- at a minimum - to run a t-test or ANOVA, at least one to four years of sampling is 
necessary. Over this length of time, the statistical characteristics of groundwater may or may not change. 

Furthermore, interwell comparisons between upgradient and downgradient well locations are not 
always appropriate, either due to natural spatial variability, screening of background and downgradient 
wells in different hydrostratigraphic positions, effects of groundwater mounding, etc. In such cases, the 
appropriate statistical approach is to use an intrawell test at each compliance location. Intrawell tests 
involve a comparison only of data collected at that specific well location, thus eliminating spurious 
differences that might arise due to natural spatial variability or other background-to-downgradient 
differences not attributable to the presence of contaminated groundwater. 

Two basic intrawell techniques are described in the Unified Guidance: intrawell prediction limits 
and control charts. Both designate some portion of the historical sampling record as intrawell 
'background' for that well. Ideally, this intrawell background should consist of measurements known to 
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be uncontaminated. Furthermore, both methods assume (unless special adjustments are made) that the 
intrawell background represents a random sample from a stable population, just as with the t-test and 
ANOV A. If the population mean and/or standard deviation change while intrawell background is being 
compiled, results of either prediction limit or contro 1 chart tests against more recent data from the well 
can be severely biased or altogether inaccurate. 

For these reasons, neither prediction limits nor control charts are appropriate for every 
circumstance where an intrawell test is warranted . The Unified Guidance recommends trend testing as 
an alternative to prediction limits or control charts when those methods are not suitable as intrawell 
techniques (Chapter 17). Tests for trend are specifically designed to identify groundwater populations 
whose mean concentration levels are not stable over time, but rather are significantly increasing (or 
decreasing). 

B.5 PREDICTION LIMITS AND RETESTING 

B.5.1 RETESTING SCHEMES 

Since roughly 1987, several different retesting schemes have been suggested in regulatory 
documents or published in scientific literature. Classification of these schemes shows that they fall into 
three basic types: 1-of-m, California, and tolerance screens. The 1-of-m approach was initially suggested 
by Davis and McNichols (1987) as part of a broader method termed 'p-of-m.' Essentially the p-of-m 
approach assumed that as many as m observations would be collected for a particular constituent at a 
given well, including the initial groundwater measurement and up to ( m-1) resamples. As long as at 
least p of these observations were below a predetermined upper prediction limit, the constituent would 
'pass' the test at that well, allowing detection monitoring to continue. 

Davis and McNichols determined how to calculate the necessary prediction limits so that the 
overall false positive rate would remain below a fixed value (say l%, as targeted in the 1992 
Addendum), even when the same testing procedure was applied over many different testing periods (r in 
their terminology). By applying the same technique to r different well-constituent pairs (and assuming 
mutual statistical independence among constituents and compliance wells) instead of to r different 
testing or evaluation periods, one then has a retesting scheme that can be applied at a large variety of 
monitoring networks while ensuring that the site-wide false positive rate [SWFPR] is kept to a 
mm1mum. 

In practice, though the p-of-m strategy provides a great deal of flexibility in designing a retesting 
scheme, only those schemes known as I-of- m are typically useful in the current regulatory context of 
groundwater monitoring. Consider, for example, a 2-of-3 strategy. By definition, if at least two of three 
groundwater samples are below the upper prediction limit (i.e., are 'in-bounds'), the constituent passes 
and is not flagged as exceeding background. Since at least two samples must be 'in-bounds,' it is not 
enough to collect one initial groundwater measurement and show that it is below the prediction limit. At 
least one additional resample must always be collected and measured. 1-of-m strategies, by contrast, 
only require a single groundwater observation to pass. If the initial measurement is below the prediction 
limit, the constituent passes the overall test and no resamples need be collected. 

The second retesting scheme, known as California-sty! e plans, was suggested partly in response to 
perceived problems with the 1-of-m plans. California regulators noted, for instance, that a l-of-3 
retesting scheme would allow a constituent in a given well to pass even if both the initial groundwater 
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measurement and one of the two retests exceeded the predetermined prediction limit. The only way for 
that well-constituent pair to fail would be if all three measurements - the initial and the two resamples 
- exceeded the prediction limit. To many regulators (and not just those in California) the 1-of-m 
scheme appeared to practically guarantee that contaminated wells would go unidentified, 'passing' the 
test each time and undermining protection ofhuman health and the environment. 

In 1991, California received explicit approval from EPA to use an alternate retesting scheme 
constructed as follows. For each well-constituent pair, collect an initial groundwater observation. If this 
initial measurement is in-bounds (i.e., below the prediction limit), the test for that pair passes and no 
resamples need be collected. If the initial measurement exceeds the prediction limit, two or possibly 
three resamples must be collected and each must be in-bounds for the test to pass. If any of the 
resamples exceeds the prediction limit (i.e., is 'out-of-bounds'), the test fails and possible groundwater 
contamination is indicated. 

The California strategy was seen as a more environmentally 'conservative' approach to retesting. 
An initially high groundwater measurement would only be deemed 'spurious' if all the subsequent 
resamples were below the target prediction limit, providing at least double reconfirmation that the well 
was 'clean' for that constituent. Unfortunately, the more stringent requirements of the California plans 
came with unexpected consequences. A California retesting plan typically requires a larger target 
prediction limit (or 'trigger level') than a 1-of-m plan with a comparable number ofresamples, in order 
to achieve the same overall SWFPR. Since a larger trigger level corresponds to a less statistically 
powerful test, a given California plan may or may not have adequate effective power even if a similar 1-
of-m plan does. 

The net result is that 1-of-m retesting schemes often provide greater statistical power for detecting 
real groundwater contamination, particularly in large networks, even though not every resample need be 
below the prediction limit. If the trigger level is low enough, at least one of the resamples may exceed 
the prediction limit even when there is no contamination. So these cases should not automatically be 
classified as verified contamination. Conversely, a lower prediction limit increase the odds (i.e., power) 
that truly contaminated groundwater will be identified, since both the initial observation and any 
resamples will be more likely to exceed a lower trigger level than one set to a higher benchmark. 

B.5.2 TOLERANCE SCREENS 

A final type of retesting scheme might be termed the tolerance screen approach. First suggested by 
Gibbons ( 1991 b ), this approach was modified and recommended by EPA in the 1992 Addendum, but -
for reasons discussed below - is not recommended within the Unified Guidance. In contrast to the 1-of­
m and California-style plans, which make use of repeated prediction limits as the trigger levels, the 
tolerance screen involves a two-stage testing procedure as follows. An initial groundwater measurement 
is collected from each well in the network and compared to an upper tolerance limit with specified 
coverage and confidence levels. If any measurement exceeds the tolerance limit, one or more resamples 
are collected from that well and these measurements are compared against an upper prediction limit. 

Other than the use of a tolerance limit instead of a prediction limit as the 'screen' for the initial 
groundwater measurement, the rules for passing the test are the same as a modified California approach 
described in Section 19.1. Either the first observation must be below the tolerance limit (i.e., 'in­
bounds') or q-of-(m-1) resamples must be below the prediction limit. If both of these conditions are 
violated, possible groundwater contamination is indicated. 
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The use of two separate trigger levels (i.e., tolerance limit and prediction limit) for the initial 
observation versus the resamples may seem an unnecessary complication in developing a retesting 
procedure. However, there are two advantages to this approach. For one, the tolerance and prediction 
limits are computed on the same background data and both these calculations are done prior to any data 
comparisons. Secondly, by allowing two different trigger levels, greater flexibility is gained in designing 
- for a given sized network of comparisons - a retesting scheme that meets a target SWFPR. 

Gibbons' (199lb) original tolerance screen approach advocated constructing a 9l% confidence 
tolerance limit with a degree of coverage that would vary depending on the network size. For 100 tests, 
Gibbons reasoned that a tolerance limit with 9l% coverage would result in as many as l exceedances of 
the initial trigger just by chance (i.e., even when no contamination was present). Any such exceedance 
would then require that a resample be collected at that well and compared to a prediction limit with 9l% 
confidence for the next l future samples (m = l), in order to maintain an overall l% SWFPR. The same 
type of false positive rate control could be achieved by setting the degree of coverage to 99%, so that 
only 1 exceedance would be expected in 100 tests against the tolerance limit. In this case, the prediction 
limit would be computed with 9l% confidence but m = 1 instead. In all cases, the number of future 
measurements (m) being predicted would equal the number of measurements possibly expected to 
exceed the tolerance limit just by chance. 

To offer even greater flexibility, EPA recommended a modification to Gibbons' tolerance screen 
within the 1992 Addendum. To understand why a modified version was adopted, note that the formula 

for an upper prediction limit on the next m future samples with (1 - a ) confidence may be expressed as 

follows: 

- R PL = x + t s 1 + -
I-a n-I,I-a/m n 

Careful examination of this formula shows that the effect of changing the number of future samples m 
for a given confidence level is equivalent to changing the confidence level associated with a prediction 
limit for a single future observation ( m = 1 ). 

Because of this, EPA suggested three alterations to Gibbons' original scheme: 1) instead of fixing 
the level of confidence and varying the number of future samples m, fix m = 1 and allow the confidence 
level of the prediction limit to vary; 2) allow more than one resample per comparison up to a practical 
maximum of three; and 3) use a tolerance limit with average coverage instead of minimum coverage. 
While Gibbons offered power comparisons with his scheme against either a single tolerance limit or a 
single prediction limit, the Addendum offered recommended choices of degrees of coverage and 
confidence levels that would simultaneously limit the SWFPR to approximately l% and generate 
effective power at least as high as the EPA reference power curve. 

Unfortunately, as Davis and McNichols (1994) noted, the Monte Carlo simulations used in the 
Addendum to generate recommended retesting plans based on the tolerance screen approach were partly 
flawed. Two criticisms were particularly relevant. First, Davis and McNichols noted that the Appendix 
to the Addendum spoke of networks in terms of number of wells rather than the number of tests. Since 
the total number of tests is a product of the number of wells and the number of constituents being 
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monitored in each well, they suggested that the Addendum recommendations for retesting plans might 
elevate the SWFPR above l% (the recommended per-evaluation rate in 1992). 

The reason is that if a particular plan in the Addendum was only applicable to a single constituent 
(albeit across a large number of wells), a similar but separate plan would be needed for each constituent. 
This in turn would imply that the target overall false positive rate of l% would only apply per 
constituent, meaning that tests for many constituents in the same network would lead to a sharply 
elevated SWFPR. Of course, the text of the Addendum clearly spoke of tests as a combination of wells 
and constituents. Still, Davis and McNichols were correct to note that some may have misunderstood the 
contextual meaning of the phrase 'wells' in the Appendix and also in the table on non-parametric 
retesting strategies, which was naively used as a simple shorthand for the more awkward 'well­
constituent pairs.' 

A second criticism related to the algorithm used to simulate the effective power of the tolerance 
screen plans. Davis and McNichols correctly observed that while effective power was defined in terms 
of a single well contaminated by a single constituent, the power curves illustrated in the Addendum 
Appendix mistakenly added those cases where the contaminated well failed the overall testing procedure 
to those where uncontaminated wells failed the procedure (i.e., instances of false positives). The net 
effect was to slightly raise the stated power above the actual power, especially at lower standard 
deviation shifts in the mean level above background (e.g., 0 < L1<2). As a result of this criticism, all 
calculations in the Unified Guidance with respect to retesting plans have been divided into two 
components: 1) computation of the SWFPR based on the total number of tests, taken as a product of 
wells times constituents, and 2) computation of the effective power based on a single contaminated well­
constituent pair. 

A third criticism can now be added to those offered by Davis and McNichols. Given a fixed 
background sample, one drawback to both 1-of-m and California-style plans is that they have limited 
flexibility when it comes to controlling the SWFPR below a target level (e.g., 10%) over a variety of 
network sizes. In some cases, sufficient false positive rate control and adequate power can only be 
achieved by switching, say, from a l-of-2 plan to a l-of-3 plan, or from a California plan to a 1-of-m 
scheme, or by increasing the background sample size. The problem is that using the same trigger level 
- here a prediction limit - to test both the initial measurement and any resamples restricts the number 
of simultaneous tests that can be accommodated. The EPA tolerance screen approach uses different 
trigger levels at each stage, allowing greater manipulation of the statistical parameters used to construct 
the tolerance and prediction limits and ultimately more flexibility in designing a retesting scheme that 
can meet a target SWFPR for a fixed background size over a wide variety of networks. 

Despite this advantage, new research done in preparing the Unified Guidance indicates that the 
effective power of any tolerance screen retesting procedure is always less than a comparable scheme 
based on a single repeated trigger value. The gain in flexibility in controlling false positive rates is real, 
but the most powerful retesting procedures will be of the 1-of-m or modified California-style varieties. 
Because of this loss in effective power, the Unified Guidance recommends an appropriate 1-of-m or 
modified California-style plan (Chapter 19). 

B.5.3 NON-PARAMETRIC RETESTING SCHEMES 

In the Addendum, two basic approaches to non-parametric retesting were described, each 
suggested by Gibbons (1990; 1991 a). Both of these strategies defined the upper prediction limit as the 
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maximum observed background value. Once in hand, one new observation was collected from each 
downgradient well and compared against the non-parametric prediction limit. Measurements that 
exceeded the prediction limit were then retested. In his 1990 article, Gibbons presented tables of 
approximate network-wide significance levels for the case of I-of- m retesting plans. Gibbons' 1991 
article detailed the more stringent non-parametric California plans, giving exact false positive rates, but 
only in the case where the prediction limit was defined as the maximum of background. 

Both of these efforts were superseded by Davis and McNichols (1994), who give exact false 
positive rates are given for both 1-of-m and strict California retesting strategies. In addition, Davis and 
McNichols compute these false positive rates when the non-parametric prediction limit is taken as either 
the maximum background value or the second-largest background concentration. The latter calculation 
is helpful in two ways. First, if a particular background concentration is unusually high and possibly an 
outlier, one could choose to fix the non-parametric prediction limit as the second-highest (and 
presumably more representative) background concentration. The statistical characteristics of the 
retesting scheme would still be assured without having to 'throw out' the suspected background outlier. 
Secondly, the statistical power of prediction limits based on the second-largest background value is 
greater than for those prediction limits based on the maximum. For large background samples (n), use of 
this alternate prediction limit may be the only option at some sites to achieve both the targeted false 
positive rate and sufficient effective power. 

While the tables in the Davis and McNichols article are extremely useful, they do not include 
results for the modified California retesting scheme with m = 4, in which either the initial measurement 
or two of three resamples must be in-bounds. To complete the tables needed for the Unified Guidance, a 
variation of the Davis and McNichols algorithm was initially used to calculate the significance levels of 
the modified California retesting scheme with m = 4. Since that time, Davis and McNichols (1999) 
published an exact algorithm not only for the 1-of-m and strict California plans, but also for the 
modified California plan first suggested in an earlier draft of the Unified Guidance. Following their 
algorithm with some minor computational adjustments, the Unified Guidance tables have been 
recomputed, covering first the non-parametric 1-of-m plans and then the non-parametric modified 
California plan (Chapter 19). In each case, results are provided for non-parametric prediction limits 
taken either as the maximum value in background or as the second-largest concentration. 

To measure the statistical power of these non-parametric retesting strategies, Davis and McNichols 
estimated power using Monte Carlo simulation with normally-distributed random variates. They then 
offered a new measure of power labeled the Modified Addendum Criterion or MAC, which rated 
schemes against an EPA reference power curve with n = 8 background samples. Recognizing that a 
particular power curve might only exceed the EPA reference power curve at large mean concentration 
shifts (Ll) above background, the MAC evaluated at what percentage power a proposed scheme did in 
fact begin to exceed the EPA reference power curve (e.g., starting at 30% power, or l0% power, etc.). 

In the Unified Guidance, effective power of non-parametric retesting schemes is measured in a 
similar, though not identical, manner. One difference is that the recommended EPA reference power 
curves are based on I 0 rather than 8 background samples. With n = 8, there is less than a l0% 
probability of identifying a mean concentration increase above background of 3 standard deviations and 
less than an 80% chance of identifying an increase of 4 standard deviations. Another mostly semantic 
difference is that the schemes in the Unified Guidance are evaluated on whether or not they exceed the 
EPA reference power curve for concentrations exceeding background by a given number of standard 
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deviation units (e.g., 3 or 4 standard deviations), instead of at a particular power percentage (e.g., 3 0%, 
70%, etc.). 

To actually compute effective power, Monte Carlo simulations were not utilized in the Unified 
Guidance. Rather, since the underlying data were assumed to be normal, a simple modification to the 
numerical integration algorithms presented in Davi s and McNichols ( 1987) was used to compute the 
power directly. Of course, if the data are normal in the first place, a parametric retesting scheme would 
be more appropriate. Non-parametric strategies should only be considered when the data appear to be 
distinctly non-normal or exhibit too many non-detects to judge normality. Nevertheless, since the true 
underlying distribution is unknown, the usual method of attack is to measure the statistical power that 
results when the underlying distribution is taken to be normal. 
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C. l SPECIAL STUDY: NORMAL VS. LOGNORMAL PREDICTION LIMITS 

Section 10.3 outlines the strategy for distributional testing in the Unified Guidance. Among these 
recommendations is that the normal distribution should be treated as a default model until specific 
testing indicates otherwise. To establish this recommendation, a special study was conducted for the 
Unified Guidance to answer two key questions: 1) what are the consequences of incorrectly applying 
statistical techniques based on one distributional assumption (normal or lognormal), when the 
underlying distribution is, in fact, the other? and 2) what is the impact on statistical power and accuracy 
of assuming the wrong underlying distribution? These questions were tested for prediction limit tests in 
detection monitoring (and, by extension, for control charts). 

The general effects of violating test assumptions can be measured in terms of false positive and 
negative error rates (and therefore power). A series ofMonte Carlo simulations was generated for the 
Unified Guidance to evaluate the impacts on predic tion limit false positive error rates and statistical 
power of using normal and lognormal distributions when applied either correctly or incorrectly to the 
underlying 'true' distributions. For varying inputs of background sample size, population coefficients of 
variation and confidence levels, sample data sets were generated and prediction limits computed for a 
single future observation using either a normal prediction limit [NorPL] or a lognormal prediction limit 
[LgnPL ], as given in the equations below. x and sx are the mean and standard deviation respectively of 

the original measurements, while y and s represent the log-mean and log-standard deviation: 
y 

- R NorPL = x + t s 1 + -
I-a n-U-a x n 

- R-- 1 -
LgnPL =exp=y+t s l+-= 

I-a = n-U-a y n = 
- -
- -

To evaluate prediction limit performance, for each choice of inputs and statistical parameters, one 
million (N = 1,000,000) simulated normal background data sets and one million lognormal background 
data sets were generated and tested against each limit. When the underlying distribution was normal, a 
fixed unit standard deviation was coupled with a series of increasing mean levels to vary the population 
coefficient of variation. Then, to measure power in each case, new measurements were generated from 
similar normal models with mean levels incremented by k standard deviation units above the 
background mean, for k ranging from 0 to l. A parallel evaluation was also conducted when a retest was 
added to the procedure. In this case, the prediction limits were constructed using the K multiples for a l­
of-2 retesting scheme as described in Chapter 19. A summary of these results is given in Figure C-1. 

C.1.1 RESULTS FOR NORMAL DATA 

If the underlying population is truly normal, treating the sample data as lognormal in constructing 
a prediction limit can have significant consequences. Figure C-1 presents key results, either averaged 
over all the statistical input parameters or broken down by sample size, confidence level, and coefficient 
of variation. These statistics include the average ratio between the normal prediction limit [NorPL] and 
the lognormal prediction limit [LgnPL ], the average difference between the nominal (i.e., expected) false 
positive rate (a) of the test and the observed false positive rate, and the average percentage of cases 
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where two statistical power targets were met, those being l0% power at 3 standard deviations above the 
background mean and 80% power at 4 standard deviations above the background mean. 

With no retesting and truly normal data, the lognormal prediction limits were in every case 
considerably longer and thus less powerful than the normal prediction limits. The discrepancies in 
performance were smallest for larger sample sizes, lower confidence levels, and smaller coefficients of 
variation. However, in only one of the category breakdowns (1-a = 0.99l) did the normal prediction 
limits fail to meet both power targets at least half the time, while the lognormal limits jointly met both 
power targets less than half the time in all cases except one (1-a = 0.90). As to false positives, the 
lognormal limits consistently exhibited less than the expected (nominal) false positive rate. The normal 
prediction limits tended to have slightly higher than nominal error rates. 

When retesting was added to the procedure, the performance of both limits improved. The false 
positive rates of both were closer to the nominal rates, though the normal prediction limits were 
relatively closer to the expected rates. While power improved across the board compared to not using a 
retest, the normal limits were on average about 13% shorter than the lognormal limits, leading again to a 
measurable loss of statistical power for the lognormal prediction limits. Particularly noticeable was the 
significant difference in power at higher confidence levels, the very kinds of confidence levels needed 
when designing retesting strategies for multiple tests against a prediction limit. 

On balance, misapplication of logarithmic prediction limits to normal data consistently resulted in 
lower power (often considerably) and false positive rates that were lower than expected, unless the 
population coefficient of variation was quite small, the background sample size was larger, and the 
confidence level more moderate. Since a lognormal prediction limit will be applied only if the 
underlying population is thought or assumed to be lognormal, it is helpful to gauge how these factors 
work in practice. On one hand, the higher confidence levels and consequently lower a values needed for 
retesting strategies with simultaneous tests (Chapter 19) would argue against presuming the underlying 
data to be lognormal without specific goodness-of-fit testing. In other words, if the data are actually 
normal but the lognormal prediction limit is misapplied, a high price in statistical power may be paid. 

In terms of sample size, the greatest penalties from misapplying lognormal prediction limits occur 
for smaller background sizes. Since goodness-of-fit tests are least able to distinguish between normal 
and lognormal data with small samples, small background samples be not be presumed to be lognormal 
as a default unless other site-specific evidence suggests otherwise. For larger sample sizes, goodness-of­
fit tests have much better discriminatory power, enabling a better indication of which model to use. 

With regard to coefficient of variation [CV], the guidelines are less clear cut. Given that 
groundwater data are generally positive in value, truly normal populations are likely to have population 
coefficients of variation of0.3 or lower. Larger coefficients of variation would result in a significant 
fraction of negative measurements. In addition, the probability of observing a large sample coefficient of 
variation from a normal population with population coefficient of variation of 0.3 or less is rather small. 

However, the measurement and censoring of small concentration values complicates the picture. 
Such values are measured below a reporting limit [RL] and are generally listed as 'less thans.' A 
measurement process that is normal with high coefficient of variation and mean close to the RL can 
generate a mixture ofleft-censored and detected values with fairly high coefficient of variation yet not 
be lognormal. In fact, the cases in Figure C-1 with higher coefficients of variation were analyzed in 
essentially this fashion, with negative values imputed to a small, positive reporting limit prior to 
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calculation of the prediction limits. The results indicate a substantial loss of performance when 
lognormal limits are misapplied to these left-censored normal data sets, with or without retesting. 
Therefore, the observed CV should not be used as the sole criterion of whether to presume an underlying 
normal or lognormal data model. Rather, iflarge fractions of censored data are present, censored 
probability plots (Chapter 15) should be constructed to aid in choosing an appropriate distribution. 

C.1.2 RESULTS FOR LOGNORMAL DATA 

Do normal-based prediction limits suffer in a similar comparison when the underlying population 
it really lognormal? The results from applying normal and lognormal prediction limits to underlying 
lognormal data are presented in Figure C-2. There, the summaries are similar to Figure C-1 with one 
important exception. As explained in Chapter 10 and Appendix Section C.2, the lognormal 
distribution is not an additive model. Because of this fact, the distributional alternatives used in 
assessing the statistical power of a lognormal-based prediction limit usually involve setting the 
alternative mean to a multiple of the background mean while keeping a constant lognormal coefficient 
of variation. 

The net effect is that the power oflognormal-base d tests depends greatly on the actual level of the 
coefficient of variation. This is different from normal-based power analyses, where the coefficient of 
variation only plays a role in terms of the degree of censoring in the data (thus affecting power through 
the handling ofleft-censored values, i.e., non-detects). Because the achievable power varies over such a 
large range - depending on the level of skewness of the specific lognormal distribution - reference 
statistical power for lognormal models must be tied to the observed background coefficient of variation. 
However, since a performance comparison across coefficient of variation levels was needed for the 
results of Figure C-2, a single benchmark was used to assess the comparative power of the normal and 
lognormal prediction limits. While imperfect for practical use, this benchmark was set at 2l% power for 
alternatives of three times the background mean and l0% power at five times the background mean. 

For an underlying lognormal model with no retesting, Figure C-2 indicates that while the false 
positive rates oflognormal-based prediction limits are essentially as advertised (i.e., a 9l% confidence 
prediction limit has close to the nominal l% false positive rate), the false positive rates of normal-based 
limits are higher than expected, often substantially, especially for higher confidence levels and higher 
coefficients of variation. The most significant drawback to misapplying normal prediction limits to 
lognormal data would then be an excessive site-wide false positive rate from using such limits on 
multiple well-constituent pairs. 

However, the situation changes dramatically with the addition of even a single retest. In this case, 
the lognormal prediction limits are still more accurate than the normal limits, in terms ofhaving false 
positive rates closer to the nominal targets. Nevertheless, with the added retest, the achieved false 
positive rates for the normal limits tend to be less than the expected rates, especially for moderate to 
larger sample sizes. In addition, except for very skewed lognormal distributions, the power of the 
normal limits is comparable or greater than the power of the lognormal limits. 
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Figure C-1. Accuracy and Power of Normal vs. Lognormal Prediction Limits When 
Underlying Data Are Normal 

No Retesting, 1-of-1 Scheme 

Category Assumed Length a-Error Power- Power-80°/o Power-
Model Ratio 50°/o Both 

ALL normal 0.6599 0.00611 0.759 0.741 0.741 
log normal -0.01965 0.348 0.277 0.277 

N normal 0.5729 0.00643 0.500 0.500 0.500 
log normal -0.01590 0.286 0.107 0.107 

8 normal 0.6713 0.00607 0.679 0.607 0.607 
log normal -0.01962 0.357 0.321 0.321 

12 normal 0.6935 0.00599 0.857 0.857 0.857 
log normal -0.02107 0.357 0.321 0.321 

16 normal 0.7020 0.00596 1.000 1.000 1.000 
log normal -0.02201 0.393 0.357 0.357 

(1-a) 0.900 normal 0.8437 0.00898 1.000 1.000 1.000 
log normal -0.03843 1.000 0.857 0.857 

0.950 normal 0.7436 0.00857 1.000 1.000 1.000 
log normal -0.02884 0.393 0.250 0.250 

0.990 normal 0.5583 0.00416 0.643 0.607 0.607 
log normal -0.00749 0.000 0.000 0.000 

0.995 normal 0.4940 0.00274 0.393 0.357 0.357 
log normal -0.00385 0.000 0.000 0.000 

CV 0.125 normal 0.9504 -0.00005 0.688 0.688 0.688 
log normal -0.00740 0.500 0.438 0.438 

0.250 normal 0.8401 -0.00009 0.688 0.688 0.688 
log normal -0.01486 0.438 0.438 0.438 

0.333 normal 0.7439 0.00015 0.688 0.688 0.688 
log normal -0.01959 0.438 0.313 0.313 

0.500 normal 0.5794 0.00266 0.750 0.688 0.688 
log normal -0.02614 0.250 0.188 0.188 

0.667 normal 0.5112 0.00830 0.813 0.813 0.813 
log normal -0.02611 0.250 0.188 0.188 

0.752 normal 0.4989 0.01160 0.813 0.813 0.813 
log normal -0.02458 0.250 0.188 0.188 

1.000 normal 0.4954 0.02021 0.875 0.813 0.813 
log normal -0.01887 0.313 0.188 0.188 

Legend. Category: N =Sample size; (1-a) = Nominal confidence level; CV =Coefficient of variation of 
underlying normal distribution. For each case, results for all simulations with that characteristic 
were averaged to derive that line of the figure. 
Assumed Model: Whether normal or log normal formulas were used to compute the prediction 
limits. 
Length Ratio: Ratio of the normal prediction limit to the log normal prediction limit. 
a-error: Achieved false positive rate minus nominal false positive rate. 
Power-50°/o : Fraction of simulations in which 50% power target at 3 standard deviations above 
background was met by the prediction limit. 
Power-80°/o : Fraction of simulations in which 80% power target at 4 standard deviations above 
background was met by the prediction limit. 
Power-Both : Fraction of simulations in which both the 50% and 80% power targets were met. 
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Retesting, 1-of-2 Scheme 

Category Assumed Length a-Error Power- Power-80°/o Power-
Model Ratio 50°/o Both 

ALL normal 0.8712 0.00134 0.911 0.884 0.884 
log normal 0.00052 0.670 0.625 0.625 

n normal 0.7870 0.00254 0.643 0.536 0.536 
log normal -0.00302 0.500 0.500 0.500 

8 normal 0.8815 0.00130 1.000 1.000 1.000 
log normal 0.00070 0.643 0.607 0.607 

12 normal 0.9034 0.00066 1.000 1.000 1.000 
log normal 0.00157 0.714 0.679 0.679 

16 normal 0.9129 0.00087 1.000 1.000 1.000 
log normal 0.00283 0.821 0.714 0.714 

(1-a) 0.900 normal 1.0370 -0.00134 1.000 1.000 1.000 
log normal 0.01496 1.000 1.000 1.000 

0.950 normal 0.9543 0.00235 1.000 1.000 1.000 
log normal -0.00485 1.000 1.000 1.000 

0.990 normal 0.7807 0.00252 0.893 0.786 0.786 
log normal -0.00510 0.500 0.321 0.321 

0.995 normal 0.7129 0.00185 0.750 0.750 0.750 
log normal -0.00295 0.179 0.179 0.179 

CV 0.125 normal 0.9867 0.00009 0.875 0.875 0.875 
log normal 0.00023 0.875 0.875 0.875 

0.250 normal 0.9486 0.00003 0.875 0.875 0.875 
log normal -0.00048 0.813 0.813 0.813 

0.333 normal 0.9065 0.00016 0.875 0.875 0.875 
log normal -0.00164 0.688 0.625 0.625 

0.500 normal 0.8289 0.00095 0.938 0.875 0.875 
log normal -0.00190 0.563 0.500 0.500 

0.667 normal 0.8051 0.00242 0.938 0.875 0.875 
log normal 0.00132 0.563 0.500 0.500 

0.752 normal 0.8048 0.00270 0.938 0.875 0.875 
log normal 0.00241 0.563 0.500 0.500 

1.000 normal 0.8178 0.00306 0.938 0.938 0.938 
lo normal 0.00371 0.625 0.563 0.563 

Legend. Category: N =Sample size; (1-a) = Nominal confidence level; CV =Coefficient of variation of 
underlying normal distribution. For each case, results for all simulations with that characteristic 
were averaged to derive that line of the figure. 
Assumed Model: Whether normal or log normal formulas were used to compute the prediction 
limits. 
Length Ratio: Ratio of the normal prediction limit to the log normal prediction limit. 
a-error: Achieved false positive rate minus nominal false positive rate. 
Power-50°/o : Fraction of simulations in which 50% power target at 3 standard deviations above 
background was met by the prediction limit. 
Power-80°/o : Fraction of simulations in which 80% power target at 4 standard deviations above 
background was met by the prediction limit. 
Power-Both : Fraction of simulations in which both the 50% and 80% power targets were met. 
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Figure C-2. Accuracy and Power of Normal vs. Lognormal Prediction Limits When 
Underlying Data Are Lognormal 

No Retesting, 1-of-1 Scheme 

Category Assumed Length a-Error Power-25°/o Power-50°/o Power-Both 
Model Ratio 

ALL normal 0.6082 0.03557 0.806 0.581 0.581 
log normal -0.00001 0.500 0.412 0.412 

n normal 0 .4444 0.04682 0.775 0.550 0.550 
log normal 0.00000 0.400 0.325 0.325 

8 normal 0.6006 0.03782 0.825 0.600 0.600 
log normal -0.00002 0.500 0.425 0.425 

12 normal 0.6723 0.03102 0.825 0.600 0.600 
log normal 0.00001 0.550 0.450 0.450 

16 normal 0.7153 0.02660 0.800 0.575 0.575 
log normal -0.00003 0.550 0.450 0.450 

(1-a) 0.900 normal 0.8985 0.02509 1.000 0.750 0.750 
log normal -0.00001 0.950 0.650 0.650 

0.950 normal 0.7108 0.04175 0.975 0.675 0.675 
log normal -0.00002 0.525 0.475 0.475 

0.990 normal 0.4472 0.04037 0.700 0.475 0.475 
log normal 0.00000 0.275 0.275 0.275 

0.995 normal 0.3762 0.03505 0.550 0.425 0.425 
log normal 0.00000 0.250 0.250 0.250 

CV 0.125 normal 0.9549 0.00733 1.000 1.000 1.000 
log normal -0.00003 1.000 1.000 1.000 

0.250 normal 0.8749 0.01419 1.000 1.000 1.000 
log normal -0.00004 1.000 1.000 1.000 

0.500 normal 0.7282 0.02535 1.000 1.000 1.000 
log normal -0.00004 0.813 0.813 0.813 

0.750 normal 0.6278 0.03315 1.000 0.938 0.938 
log normal 0.00006 0.500 0.500 0.500 

1.000 normal 0.5629 0.03829 0.938 0.813 0.813 
log normal -0.00008 0.438 0.438 0.438 

1.250 normal 0.5204 0.04216 0.938 0.500 0.500 
log normal 0.00009 0.375 0.188 0.188 

1.500 normal 0.4915 0.04479 0.750 0.438 0.438 
log normal -0.00002 0.250 0.188 0.188 

2.000 normal 0.4566 0.04815 0.500 0.125 0.125 
log normal 0.00003 0.250 0.000 0.000 

2.500 normal 0.4378 0.05037 0.500 0.000 0.000 
log normal -0.00004 0.188 0.000 0.000 

3.000 normal 0.4266 0.05189 0.438 0.000 0.000 
lo normal -0.00002 0.188 0.000 0.000 

Legend. Category: N =Sample size; (1-a) = Nominal confidence level; CV =Coefficient of variation of 
underlying lognormal distribution. For each case, results for all simulations with that 
characteristic were averaged to derive that line of the figure. 
Assumed Model: Whether normal or log normal formulas were used to compute the prediction 
limits. 
Length Ratio: Ratio of the normal prediction limit to the log normal prediction limit. 
a-error: Achieved false positive rate minus nominal false positive rate. 
Power-25°/o : Fraction of simulations in which 25% power target at 3 times the background 
mean was met by the prediction limit. 
Power-50°/o : Fraction of simulations in which 50% power target at 5 times the background 
mean was met by the prediction limit. 
Power-Both : Fraction of simulations where both 25% and 50% power targets were met. 
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Retesting, 1-of-2 Scheme 

Category Assumed Length a-Error Power-25°/o Power-50°/o Power-Both 
Model Ratio 

ALL normal 0.9920 -0.00405 0.587 0.544 0.537 
log normal 0.00009 0.600 0.544 0.531 

n normal 0.7334 0.00804 0.625 0.525 0.500 
log normal 0.00022 0.550 0.425 0.425 

8 normal 0.9830 -0.00354 0.600 0.550 0.550 
log normal 0.00016 0.600 0.550 0.550 

12 normal 1.0931 -0.00897 0.575 0.550 0.550 
log normal -0.00020 0.625 0.600 0.575 

16 normal 1.1586 -0.01175 0.550 0.550 0.550 
log normal 0.00018 0.625 0.600 0.575 

(1-a) 0.900 normal 1.3532 -0.02895 0.800 0.700 0.700 
log normal 0.00027 1.000 0.850 0.850 

0.950 normal 1.1500 -0.00478 0.700 0.600 0.600 
log normal 0.00009 0.750 0.625 0.625 

0.990 normal 0.7890 0.00892 0.475 0.475 0.475 
log normal 0.00000 0.375 0.375 0.375 

0.995 normal 0.6759 0.00860 0.375 0.400 0.375 
log normal 0.00000 0.275 0.325 0.275 

CV 0.125 normal 0.9889 -0.00035 1.000 1.000 1.000 
log normal 0.00011 1.000 1.000 1.000 

0.250 normal 0.9684 -0.00099 1.000 1.000 1.000 
log normal 0.00008 1.000 1.000 1.000 

0.500 normal 0.9332 -0.00214 1.000 1.000 1.000 
log normal 0.00008 0.938 0.938 0.938 

0.750 normal 0.9199 -0.00317 0.938 1.000 0.938 
log normal 0.00018 0.688 0.813 0.688 

1.000 normal 0.9253 -0.00416 0.688 0.688 0.688 
log normal 0.00008 0.500 0.500 0.500 

1.250 normal 0.9428 -0.00481 0.500 0.500 0.500 
log normal 0.00014 0.500 0.438 0.438 

1.500 normal 0.9673 -0.00527 0.438 0.250 0.250 
log normal 0.00011 0.500 0.375 0.375 

2.000 normal 1.0266 -0.00606 0.188 0.000 0.000 
log normal 0.00004 0.375 0.188 0.188 

2.500 normal 1.0913 -0.00662 0.063 0.000 0.000 
log normal 0.00003 0.250 0.188 0.188 

3.000 normal 1.1566 -0.00696 0.063 0.000 0.000 
lo normal 0.00004 0.250 0.000 0.000 

Legend. Category: N =Sample size; (1-a) = Nominal confidence level; CV =Coefficient of variation of 
underlying lognormal distribution. For each case, results for all simulations with that 
characteristic were averaged to derive that line of the figure. 
Assumed Model: Whether normal or log normal formulas were used to compute the prediction 
limits. 
Length Ratio: Ratio of the normal prediction limit to the log normal prediction limit. 
a-error: Achieved false positive rate minus nominal false positive rate. 
Power-25°/o : Fraction of simulations in which 25% power target at 3 times the background 
mean was met by the prediction limit. 
Power-50°/o : Fraction of simulations in which 50% power target at 5 times the background 
mean was met by the prediction limit. 
Power-Both : Fraction of simulations in which both the 25% and 50% power targets were met. 

C-8 March 2009 

EPAPAV0117486 



Appendix C. Technical Appendix Unified Guidance 

On balance, adding a retest to the testing procedure significantly minimizes the penalty of 
misapplying normal prediction limits to lognormal data, as long one uses a sample size of at least 8 and 
the coefficient of variation is not too large. Consequently, for most situations, there is less penalty 
associated with making a default assumption of normality than in making a default assumption of 
lognormality. With highly skewed data, say with large coefficients of variation of l .l or more, 
goodness-of-fit tests tend to better discriminate between the normal and lognormal models. Again such 
diagnostic testing should be done explicitly, rather than simply assuming the data are normal or 
lognormal. 

The most problematic cases occur for very small background sample sizes, where a misapplication 
of prediction limits in either direction can result in poorer statistical performance, even with retesting. In 
some situations, testing may have to done on an interim or ad-hoc basis until more data is collected. 
Still, the Unified Guidance does not recommend an automatic default assumption oflognormality. 
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C.2 CALCULATING STATISTICAL POWER 

C.2.1 STATISTICAL POWER OF WELCH'S T-TEST 

The statistical power of any test represents the probability that the alternative hypothesis, HA, will 
be accepted, given that the null hypothesis, Ho, is actually false. In groundwater monitoring, power 
usually represents the probability that the compliance point concentrations will be identified as 
significantly higher than background, when in fact they are higher. Of course, statistical power is not a 
single number, but rather a function of the increase in the compliance population mean above the 
background average. This fact makes the exact power of many tests difficult to calculate, especially 
since many test statistics have a complicated distributional behavior under the alternative hypothesis. 

The critical points or percentage points of any test are computed under the assumption that the null 
hypothesis is true. In the case of Welch's !-test, the !-statistic approximately follows a Student's !­

distribution under H0. That is not the case, however, when the alternative hypothesis is true; then the !­

statistic follows what is known as a non-central !-distribution with non-centrality parameter 8. 
Essentially, the non-centrality parameter() governs the average or expected value of the !-statistic. 

When the null hypothesis is true, so that the two population means are equal, the !-statistic should 
tend to be close to zero. The distribution of the !-statistic is in fact centered at zero in this case, meaning 
that the usual Student's !-distribution can be regarded as a non-central !-distribution with non-centrality 
parameter equal to zero. 

When HA is true instead, and the compliance point population mean is larger than the background 
mean, Welch's I-statistic will tend to be positive rather than centered at zero. The actual center of the 
distribution will depend on precisely how much larger the compliance point mean is compared to 
background. However, if Gx represents the standard deviation of the first population and cry represents 
the standard deviation of the second population, it can be shown that the two-sample Welch's !-statistic 
approximately follows a non-central !-distribution with degrees of freedom equal to 

and non-centrality parameter equal to 

8 =ti/ ()2 ()2 

__£_ + _L [C.2] 
n n 

x y 

where ~is the concentration difference separating the background and compliance point population 
means. 

Clearly, the distribution of the !-statistic under HA depends in a complex manner not only on the 
sample sizes and the true difference between the population means, but also the respective population 
variances. Since statistical power is the probability that the Welch's !-statistic exceeds the original 
critical point, lcp, yet the population variances are almost always unknown, computation of an exact 
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power is essentially impossible. Instead, an approximate power can be computed by substituting the 
sample variances for their population counterparts into equations [C. l] and [C.2]. By letting 

f = a-~/ a~ , the non-centrality parameter becomes 

8=~ 
(J 

x 

nn 
1 
__ x_.~v _ = k nn 

x y [C.3] 
ny + fnx 

where k represents the increase in standard deviation units above the background mean. The non­

centrality parameter can be approximated by substituting J = s_~ / s~ for fin [C.3]. 

Using this formulation, the approximate statistical power of Welch's t-test can be computed by 
repeatedly increasing k (e.g., in half units starting with O.l) and determining the probability of exceeding 
the original critical point, lcp, under the non-central !-distribution. A concise summary of the non-central 
t-distribution can be found in Evans, Hastings, and Peacock (1993). Percentage points of this 
distribution can be computed in selected standard statistical packages, including the free, open-source 
statistical software R (www.r-project.org). 

~EXAMPLE C-1 

Determine the approximate power of the t-test on benzene data used in Example 16-1. 

SOLUTION 

Step 1. Since Welch's !-test was run on the logged benzene measurements, power should also be 
computed using the logged values. In that case, the degrees of freedom was approximated at 
df = 11 and the critical point at a= .OJ was found to be lcp = 1.796 from the Student's !­

distribution in Table 16-1. 

Step 2. Determine the non-centrality parameter 8 from equation [C.3], substituting J = s_~ / s ~ for f 
Since nx = n y = 8, the sample downgradient log-standard deviation is Sy= 1.9849, and the 

sample background log-standard deviation is sx = 1.0826. Plugging these values into f 
gives J = (~.9849 2 /(~.0826 2 = 3.362. The approximate non-centrality parameter becomes 

8X8 ( ) 8 = k = k l.3l4 
8 + 3.362 x 8 

where k represents the increase above the benzene background log-scale mean in log-standard 
deviation units. 

Step 3. Systematically increase k from O.l to l in steps of O.l to determine the non-centrality 
parameter 8 at each point to be computed on the power curve (presented in the table below). 
Then determine each power value by calculating from the non-central !-distribution, with non­
centrality parameter 8 and df= 11, the probability of exceeding the original critical point oftcp 
= 1.796. 
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k 8 power 

0.5 0.677 0.1565 
1.0 1.354 0.3541 
1.5 2.031 0.6022 
2.0 2.708 0.8135 
2.5 3.385 0.9360 
3.0 4.062 0.9843 
3.5 4.739 0.9973 
4.0 5.416 0.9997 
4.5 6.093 1.0000 
5.0 6.770 1.0000 

Step 4. Interpret the power results. The table in Step 3 shows an approximate probability of 81 % for 
detecting a two log-standard deviation increase above the background mean benzene level. If 
the data had been analyzed in the original units, a two standard deviation increase would 
translate into almost 11 ppb (using the sample background standard deviation ofl.31 ppb 
from Example 16-1 as an estimate of the true standard deviation). 

However, in the logarithmic domain, the interpretation is a bit different. As discussed in 
Section C.2.3, adding kcr to the log-scale mean is equivalent to multiplying the arithmetic 
mean by exp(kcr). Therefore, a two log-standard deviation increase in the log-scale 
background mean is roughly equivalent to multiplying the original background mean by a 
factor of exp(2 x 1.0826) = 8.7, taking the sample log-scale background standard deviation of 
1.0826 as an estimate for the true log-scale standard deviation. 

Consequently, if the true background mean for benzene is close to the sample value of 3 ppb, 
the test will have more than 80% power for detecting a downgradient benzene mean of at least 
3 x 8. 7 ~ 26 ppb or larger. ...._ 

C.2.2 POWER OF PREDICTION LIMITS FOR FUTURE MEAN VS. OBSERVATIONS 

The Unified Guidance discusses two basic kinds of parametric prediction limits: those for 
individual future observations and those for future means. Analytical expressions for the statistical 
power of each can be written and compared using the same sample size (n), the same false positive rate 
(a), and the same number of future measurements (p = m). 

The power of a prediction limit for a future mean of order p (that is, a mean of p individual future 
values) with normally-distributed data can be expressed in the equation 

- /~ -

- -

= - 1 1- = 
I-~=Pr=r -()=L'.1 -+-->t =[C.4] I-' - n- I - - I -a n-I -

::= = p n= , ::= 
- -

where (1-13) is a notation for power, L1 is the true difference (in standard deviation units) between the 
background and compliance point population means, and 
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- ;~-- I I -
T_-8=L1 -+--
"I: p 11: 

[C.l] 

denotes a random variable distributed according to the non-central t-distribution with non-centrality 
parameter 8 and (n-1) degrees of freedom. 

By contrast, the power of a prediction limit for p individual future values can be derived using the 
formulation in Davis and McNichols (1987), leading to the expression 

[C.6) 

where in this case <l>-1 (u) denotes the inverse standard normal transformation. The non-central t­

distribution is required in each case, with further integration of the non-central t cumulative distribution 
function [CDF] needed for the case of p individual future measurements. These formulas are utilized in 
Chapter 18 to provide graphical power comparisons between prediction limits for future means versus 
prediction limits for individual values. 

C.2.3 COMPUTING POWER WITH LOGNORMAL DATA 

The special Monte Carlo study presented in Section C.1 involved a computation of statistical 
power when the underlying data are lognormal in distribution rather than normal. In the case of normal 
data, effective power is computed by adding an upward 'shift' in the mean of the baseline distribution, 
in order to simulate an increasing compliance point concentration. Adding such a shift does not increase 
the variance (cr2

) of the shifted distribution, only the mean(µ). 

With lognormal data, both the mean and variance depend on the two distributional parameters, µ 
and cr. Adding a shift to the log-mean µon the log-scale thus increases both the variance and the mean 
in the concentration domain, confusing the usual interpretation of power as the ability to detect upward 
changes in the mean level when all other factors (including the variance) are held constant. 

In fact, if computations are conducted on the log-scale and a shift (L1) is added to the log-mean 
parameter (µ),the effect is to multiply the lognormal mean in the arithmetic domain by a factor of 

exp {L1). To see this, note that the lognormal mean is written as 

M = exp {µ + .l a 2 
) [C.7] 

An additive shift to the log-mean results in a change to the (arithmetic) lognormal mean of 

[C.8) 

To compute statistical power, one must assess test performance both under background conditions 
and under increasing levels of contamination. But the power that can be expected with lognormal data 
varies depending on the lognormal coefficient of variation [CV). For a fixed coefficient of variation, as 
lognormal concentrations increase, the lognormal standard deviation increases proportionally to the 
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lognormal mean. Because of this - and in contrast to the case of normal data - a different lognormal 
power curve could be associated with each unique value of the CV. 

To sidestep this problem, the Unified Guidance assumes that if background is lognormal, the same 
coefficient of variation [CV] will apply to both the background and compliance point populations. This 
assumption has two important consequences: 1) comp liance point data with mean levels higher than 
background will tend to also be more variable than the background measurements, a common empirical 
truth in environmental data sets; and 2) on the log-scale, the log-variance parameter ( cr2

) will be the 
same in both populations. The reason that this second consequence holds is that the log-standard 
deviation parameter is solely a function of the coefficient of variation, as expressed in the following 
equation: 

[C.9) 

Thus ifthe CV is held constant, to will the log-standard deviation parameter (cr). 

The upshot of the second consequence is that all power computations for lognormal data can be 
done in the log-domain, using the fact that the transformed data will be normally distributed and that the 
background and compliance point populations will have a common standard deviation. Consequently, 
the computational framework for simulating statistical power oflognormal data is almost precisely the 
same as the framework for the normal case. 

In particular, the power curve for a given test can always be generated - without loss of 
generality -by assuming that the background data follow (perhaps in the log-domain) a standard 
normal distribution, and that the compliance point data follow (again in the log-domain for lognormal 
populations) a normal distribution with unit variance and shifted mean equal to ka = k, since a is 
assumed for computational purposes equal to 1. Then the multiplier k is typically allowed to range from 
0 to 5, as this adequately sketches out the normal power curve in most situations. 

The only aspect of the lognormal case that differs from the normal is the scaling of the horizontal 
axis of the power curve. In the log-domain, the curve documents power at increasing multiples of k log­
standard deviations (cr) above the background log-mean (µ).To interpret these values in terms of the 
original concentrations, the background mean has to be reconstructed using the formula 

[C.1 OJ 

while the compliance point (arithmetic) mean corresponding to the ka log-scale increase becomes 

M cw = exp {µ + ka + 0 .l a 2 )= M BG exp (ka ) [C.11) 

or equivalently, a multiple of exp( kcr) times the mean background level. 
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~EXAMPLE C-2 

Suppose that background data are fit best by a lognormal distribution with CV= O.l. What steps 
must be taken to simulate the statistical performance of a lognormal prediction limit on observations 
with a single verification resample? 

SOLUTION 

Step 1. Compute the background log-standard deviation parameter as: 

a =~log (1 + CV
2 )=~log (1 + .2l )= 0.4724 

taking multiplier k = 0 to represent the background population. 

Step 2. Generate simulated random values from a standard normal distribution with zero mean and 
unit standard deviation. These values represent simulated and standardized log-domain 
background measurements. 

Step 3. Compute the background prediction limit for lognormal data with a single resample using the 
formula: 

[C.12) 

where y and Sy are respectively the log-mean and log-standard deviation, and K is taken from 

the Chapter 19 tables in the Appendix, depending on the background sample size, the 
number of tests to be run, and the type of l-of-2 retesting plan (interwell or intrawell). Note 
that the simulated background values do not need to be exponentiated prior to computing the 
background prediction limit, due to the construction offormula [C.12). 

Step 4. For any specific kin the range from 0 to l (with increasing steps of O.l), set the compliance 
point log-mean equal to µA= k. Use this result to generate two normal measurements with 
shifted mean µA and unit standard deviation. The two simulated values represent an original 
sample and a possible resample from the contaminated compliance point. Exponentiate these 
two values to get simulated lognormal measurements from the desired (alternative) 
distribution. 

Step l. Compare the simulated values against the background prediction limit. Ifboth exceed the 
limit, increment the count of cases associated with kin which a difference from background 
has been identified. If only one or none exceeds the limit, do not increment the count. 

Step 6. Repeat Steps 2 through 5 a large number of iterations (say 10,000 or more) and determine the 
fraction of cases for given k at which an exceedance of background is found. This fraction 
represents the estimated power of the lognormal prediction limit in the log-domain of a ka 
increase above the background log-mean. Equivalently, with a population CV= O.l, this 

C-15 

represents a compliance point mean level of exp (ka )=exp (k x .4724) times the (arithmetic) 

background mean. Repeat this entire process for each kin the range of 0 to l to estimate the 
full lognormal power curve for that prediction limit. ...._ 
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C.3 R SCRIPTS 

Certain calculations in the Unified Guidance cannot easily be done either by hand, with a 
spreadsheet, or even within many common statistical packages. In some cases, proprietary software 
tailored to groundwater statistics can be consulted. Barring that, an alternate solution is to download and 
install the free-of-charge, open source, statistical analysis and programming environment R software. It 
can be utilized to perform or program almost any kind of statistical test or calculation. However, with its 
power and flexibility comes a somewhat steeper learning curve for new programming language. 

One of R's advantages is the ability to run 'scripts,' short pre-written programs that can be run 
repeatedly to perform specific statistical calculations. Scripts can be easily tailored to data- or site­
specific configurations using a simple text editor. Because users of the Unified Guidance may 
occasionally need calculations not covered in the Appendix tables or which are unavailable in standard 
statistical software, a small number of R scripts are listed below. These scripts can be modified as 
necessary and then run in R, once the R environment is installed on a personal computer. They are 
provided as a courtesy to users of the Unified Guidance and are provided without any guarantees or 
implied warranties. 

The scripts provided in the Unified Guidance below cover two specific topics: 1) calculation of 
parametric intrawell prediction limit K-multipliers used with retesting, especially in cases where a 
pooled standard deviation estimate might be used in place of the usual sample standard deviation 
(Section 13.3 ); and 2) computation of a bootstrapped non-parametric confidence band around a Theil­
Sen trend line (Section 21.3.2). 

It is first necessary to install the R-software. As of this date, the latest version is 2.7.2. The 
program can be downloaded from the website: Versions are available for most 
current Windows operating systems, as well as other types. Once the program has been downloaded 
(approximately 30 mb), it can be accessed through a self-installed desktop icon. 

The R-scripts should first be transferred to a working directory; copies are provided with the 
distribution CD. If copied directly from the guidance Acrobat pdf using a text editor such as Notepad, it 
will be necessary to copy each page of the script separately and combine (avoiding unnecessary margin, 
header and footer information). Each file should be named and saved with the extension changed to a 
xxx.r format. It may be necessary to add a number of additional comment codes(#) at the beginning of 
the scripts using the text editor, so that each line of narrative text is first identfied by a comment code. 
To run the scripts: 

1) Open the R-software from the desktop icon; you will be in the R-console window; 

2) Click File on the toolbar, select Change dir and hit [Enter]; set the working directory to the 
one with your scripts; hit [Enter]; 

3) Then click File and select Open Script [Enter]; Click on the desired R-script file and hit Enter; 

4) In the R-console window; change script inputs as desired; Click Edit on the toolbar and select 
Run All. 
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l) The program will run behind the console window. Outputs can be read by minimizing the R­
editor. Using the side scrollbar, check the R-script text run to determine if any errors occurred. As 
noted above, it may be necessary to add the comment code(#) where line length has been exceeded. To 
run additional inputs within a script, simply modify the inputs in the R-console window and then follow 
steps 4) and l). To run other scripts, minimize R, select the new script, adjust as appropriate and follow 
steps 3) to l). 

6) If an effect size power level is desired for the two prediction limit scripts, change one of the two 
values in parentheses on the line de! = c(3,4) and run again. 

C.3.1 PARAMETRIC INTRAWELL PREDICTION LIMIT MULTIPLIERS 

1-of-m Retesting Plans 

# R Script for 1-of-m retesting plans 
# Compute multiplier for intrawell prediction limit using either regular or pooled SD estimate 
# and 1-of-m retesting for either observations or means of order p 
# Solve for kappa given an SWFPR adjusted for nbr of constituents and wells; 
# then rate by effective power 
# ne = number of yearly evaluations 
#Note: ne=4 (quarterly eval), ne=2 (semi-annual), ne=l (annual) 
# n = intrawell BG sample size; w = # wells; coc = # constituents 
# df = degrees of freedom associated with variance estimate of prediction limit formula 
#Note: if the usual std deviation for a single well is used, set df = (n-1); 
# if using a pooled SD estimate across w equal sized wells, set df= w*(n-1) or 
# df = (sum of well n's) - w, if w pooled wells are of different sizes 
# alph = per-test false positive rate 
# m =type of 1-of-m retesting scheme (usually m= 1,2,3,or 4) 
# ord = order of the mean to be predicted (for tests on observations, set ord=l) 
# swfpr is the targeted network-wide false positive rate, by default set to 10% 
# Rate power at 3 and 4 SD units above BG; 
# use ERPC power values as the reference power 
# user supplied values of n, w, coc, df, evaluation frequency, m, and ord 
n= 4 
W= 10 
COC= 5 
df= w*(n-1) 
ne= 1 
m= 3 
ord= 2 

swfpr= .1 
alph= 1 - (1-swfpr)A(l/(coc*w)) 
ref= c() 

(ne== ref= c(.5 4 ,.81) 
(ne= ref= c(.59 ,.85) 
(ne==4 ref= c(.60,.86) 

# default tolerance values for convergence 
tol= .000001 
tol2= .0001 

# default lower and upper limits on range for desired multiplier 
II= 0 
ul= 15 

# recursive function to compute correct multiplier within limits (lo,hi) 
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kfind = (lo,hi,n,alph,ne,tol) { 
(abs(hi-lo)<tol2) return( lo) 

nc= (x) sqrt(n)*qnorm(x)/sqrt(ord) 
tt= sqrt(n)*lo 
g= (x) ne*m*(l-(1-x)Am)A(ne 1-x)A(m-1 )*pt(tt,df,nc(x)) 
klo = 1 - alph - integrate(g,0,1)$value 

(abs(klo)<=tol) return( lo) 
tt= sqrt(n)*hi 
khi = 1 - alph - integrate(g,0,1)$value 

(abs(khi)<=tol) return( hi) 
tt= sqrt(n)*(mean(c(lo,hi))) 
km id= 1 - alph - integrate(g,0,1)$value 

(abs(kmid =tol) return(mean(c(lo,hi))) 
(sign(klo)!=sign(khi)) { 

(sign(klo)!=sign(kmid)) { 
kfind (lo ,mean( c(lo,hi)) ,n,alph ,ne ,tol) } 

{ 

{ 
kfind(mean(c(lo,hi)),hi,n,alph,ne,tol)}} 

stop('bad limits')} 
} 

del= c(3,4) 
pow= c() 
powrate = c() 

kap= kfind (11,ul,n,alph,ne,tol) 

(jj 1 :length(del)) { 
de= del [jj] 
tt= sqrt(n)*kap 
nc= function (x) {sqrt(n)*(qnorm(x)/sqrt(ord) + del[jj])} 
h= (x) { 

(ne==l) { 

{ 

m*( ( 1-x)A(m-1) )* pt(tt,df,nc(x)) 
} 

ne*m*(( 1-(1-x)Am)A(ne 
} 

-x)A(m-1 ))*pt(tt,df,nc(x)) 

pow[jj]= 1 - integrate(h,0,1,stop.on.error =F)$value 
} 

((pow[l] >= ref[l]) && (pow[2] = ref[2])) powrate= 'GOOD' 
((pow[l] < ref[l]) && (pow[2] >= ref[2])) powrate= 'ACCEPTABLE' 
((pow[l] >= ref[l]) && (pow[2] < ref[2])) powrate= 'ACCEPTABLE' 
((pow[l] < ref[l]) && (pow[2] < ref[2])) powrate = 'LOW' 

print(paste('intrawell lofm' ),quote =F) 
print(paste('n,w,coc,ne= ', n, w,coc, ne ),quote= F) 
print(paste('m,ord=' ,m,ord ),quote =F) 
print(paste('ref power ERPC at 3 and 4 SDs' ),quote =F) 
print( ref) 
print(paste('kappa=', round (kap ,2) ),quote= F) 
print(paste('calculated power at 3 and 4 SDs' ),quote =F) 
print( round (pow ,3)) 
print(paste('power ,powrate ),quote =F) 

C-18 

Unified Guidance 

March 2009 

EPAPAV0117496 



Appendix C. Technical Appendix Unified Guidance 

Modified California Retesting Plans 

# R Script for modified California plan 
# Compute multiplier for intrawell prediction limit using regular 
# or pooled SD estimate and modified Calif retesting for observations 
# Solve for kappa given an SWFPR adjusted for number of constituents and wells; 
# then rate by effective power 
# ne = number of yearly evaluations 
#Note: ne=4 (quarterly eval), ne=2 (semi-annual), ne=l (annual) 
# n = intrawell BG sample size; w = # wells; coc = # constituents 
# df = degrees of freedom associated with variance estimate of prediction limit formula 
#Note: if the usual std deviation is used, set df = (n-1); 
# if using a pooled SD estimate across w wells, set df= w*(n-1) 
# alph = per-test false positive rate 
# swfpr is the targeted network-wide false positive rate, by default set to 10% 
# Rate power at 3 and 4 SD units above BG; use ERPC power values as the reference power 
# user supplied values of n, w, coc, df, and evaluation frequency 
n= 4 
W= 10 
COC= 5 
df= w*(n-1) 
ne= 1 

swfpr= .1 
alph= 1 - (1-swfpr)A(l/(coc*w)) 

ref= c() 

(ne==l) ref= c(.54 ,.81) 
(ne==2) ref= c(.5 9,.85) 
(ne==4) ref= c(.60,.86) 

# default tolerance values for convergence 
tol= .000001 
tol2= .0001 

# default lower and upper limits on range for desired multiplier 
II= 0 
ul= 15 

# recursive function to compute correct multiplier within limits (lo,hi) 
kfind = (lo,hi,n,alph,ne,tol) { 

(abs(hi-lo)<tol2) return( lo) 
nc= (x) sqrt(n)*qnorm(x) 
tt= sqrt(n)*lo 
g= (x) ne*(x*(l + 3*x - 5 *xA2 + 2*xA3))A(ne-1)*(1 + 6*x - 15* xA2 + 

8*xA 3)* pt(tt,df,nc(x)) 

C-19 

klo = 1 - alph - integrate(g,0,1)$value 
(abs(klo)<=tol) return( lo) 

tt= sqrt(n)*hi 
khi = 1 - alph - integrate(g,0,1)$value 

(abs(khi)<=tol) return( hi) 
tt= sqrt(n)*(mean(c(lo,hi))) 
kmid = 1 - alph - integrate(g,0,1)$value 

(abs(kmid =tol) return(mean(c(lo,hi))) 
(sign(klo)!=sign(khi)) { 

(sign(klo)!=sign(kmid)) { 
kfind (lo,mean( c(lo,hi)),n,alph,ne,tol) } 

{ 
kfind(mean(c(lo,hi)),hi,n,alph,ne,tol)}} 
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{ 
stop('bad limits')} 

} 

del= c(3,4) 
pow= c() 
powrate = c() 

kap= kfind (11,ul,n,alph,ne,tol) 

(jj 1 :length(del)) { 
de= del [jj] 
tt= sqrt(n)*kap 
nc= function (x) {sqrt(n)*( qnorm(x) + del[jj])} 
h= (x) { 

(ne==l) { 

{ 

(1 + 6*x - 15* xA2 + 8*xA3)*pt(tt,df,nc(x)) 
} 

ne*(x*(l + 3*x - 5 *xA2 + 2*xA3))A(ne-1)*(1 + 6*x - 15* xA2 + 
8*xA 3)* pt(tt,df,nc(x)) 

} 

} 

pow[jj]= 1 - integrate(h,0,1,stop.on.error =F)$value 

((pow[l] >= ref[l]) && (pow[2] >= ref[2])) powrate= 'GOOD' 
((pow[l] < ref[l]) && (pow[2] >= ref[2])) powrate= 'ACCEPTABLE' 
((pow[l] >= ref[l]) && (pow[2] < ref[2])) powrate= 'ACCEPTABLE' 
((pow[l] < ref[l]) && (pow[2] < ref[2])) powrate = 'LOW' 

print(paste('intrawell mod Cal' ),quote= F) 
print(paste('n,w,coc,ne= ',n, w,coc, ne ),quote 
print(paste('ref power from ERPC at 3 and 4 ),quote =F) 
print(ref) 
print(paste ('kappa=', round (kap ,2) ),quote= F) 
print(paste('calculated power at 3 and 4 SDs' ),quote =F) 
print( round (pow ,3)) 
print(paste('power ,powrate ),quote =F) 

C.3.2 THEIL-SEN CONFIDENCE BAND 

# R script for Theil-Sen Confidence band 
# Compute bootstrapped confidence band around Theil-Sen trend line 
# user inputs: list of x-values, list of y-values, desired confidence level 
# Note: replace numbers in parentheses below with specific x and y values 
# corresponding to data-specific ordered pairs 
# x-values should be numeric values representing sampling dates or events 
# y-values should be concentration values corresponding to these dates or events 
# Script produces a plot of the Theil-Sen trend line, the confidence band around the trend, 
# and an overlay of the actual data values 

X= C(89.6,90.1,90.8,91.1,92.1,93.1,94.1, 95.6, 96.1,96.3) 
y= c(56, 53, 51, 55, 52, 60,62,59, 61,63) 
conf = .90 

elimna = (m){ 
# 
# remove any rows of data having missing values 
m= as.matrix(m) 
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ikeep= c(l :nrow(m)) 
1 :nrow(m)) (sum(is.na(m[i,])>= 

elimna= m[ikeep[ikeep>=l],] 
elimna 
} 

theilsen2= 
# 

(x,y){ 

# Compute the Theil-Sen regression estimator 
# Do not compute residuals in this version 
# Assumes missing pairs already removed 
# 
ord = order(x) 
xs= x[ord] 
ys= y[ord] 
vecl = outer(ys,ys, 
vec2= outer(xs,xs, 
vl= vecl [vec2>0] 
v2= vec2[vec2>0] 
slope= median(v1/v2) 
coef= 0 
coef[ 1] = median (y)-slope*median (x) 
coef[2] = slope 
list( coef =coef) 
} 

nb= 1000 
temp= matrix ( c(x, y),ncol 
temp= elimna (temp) 
x= temp[,1] 
y= temp 
n= length(x) 
ord = order(x) 
cut= min(x) + lOO)*(max(x)-min(x))/100 
tO= theilsen2(x,y) 
tmp= matrix(nrow=nb,ncol=101) 

(i l:nb) { 
idx= sample(ord,n,rep=T) 
xboot= x[idx] 
yboot= y[idx] 
tboot= theilsen2(xboot,yboot) 

ikeep 0 

#remove any pairs with missing values 

#compute 101 cut pts 
#compute trend line on original data 

tmp = tboot$coef[1] + cut*tboot$coef[2] 
} 

lb= O; ub= 0 
(i 1:101 

} 

lb[i] = quantile(tmp [,i],c( ( 1-conf)/2)) 
ub [i] = quantile(tmp [,i],c( ( l+conf)/2)) 

tband = list(xcut=cut, lo=lb,hi =ub ,thsO =tO) 
yt= tband $ths0$coef[1] + tband $ths0$coef[2]*tband $xcut 
plot(ytrvtband $xcut,type ='I' ,xlim = range(x), ylim =c(min (tband $lo ),max(tband $hi) ),xlab ='Date', ylab 
points( x, y ,pch = 16) 
lines(tband $hirvtband $xcut,type= 'I' ,lty=2) 
lines(tband $lorvtband $xcut,type= '1',lty=2) 
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D STATISTICAL TABLES 
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Appendix D. Chapters 10 to 18 Tables 

Table 10-1. Percentiles of Standard Normal Distribution 

p 

0.50 

0.51 

0.52 

0.53 

0.54 

0.55 

0.56 

0.57 

0.58 

0.59 

0.60 

0.61 

0.62 

0.63 

0.64 

0.65 

0.66 

0.67 

0.68 

0.69 

0.70 

0.71 

0.72 

0.73 

0.74 

0.75 

0.000 

0.0000 

0.0251 

0.0502 

0.0753 

0.1004 

0.1257 

0.1510 

0.1764 

0.2019 

0.2275 

0.2533 

0.2793 

0.3055 

0.3319 

0.3585 

0.3853 

0.4125 

0.4399 

0.4677 

0.4959 

0.5244 

0.5534 

0.5828 

0.6128 

0.6433 

0.6745 

0.001 

0.0025 

0.0276 

0.0527 

0.0778 

0.1030 

0.1282 

0.1535 

0.1789 

0.2045 

0.2301 

0.2559 

0.2819 

0.3081 

0.3345 

0.3611 

0.3880 

0.4152 

0.4427 

0.4705 

0.4987 

0.5273 

0.5563 

0.5858 

0.6158 

0.6464 

0.6776 

0.002 

0.0050 

0.0301 

0.0552 

0.0803 

0.1055 

0.1307 

0.1560 

0.1815 

0.2070 

0.2327 

0.2585 

0.2845 

0.3107 

0.3372 

0.3638 

0.3907 

0.4179 

0.4454 

0.4733 

0.5015 

0.5302 

0.5592 

0.5888 

0.6189 

0.6495 

0.6808 

0.003 

0.0075 

0.0326 

0.0577 

0.0828 

0.1080 

0.1332 

0.1586 

0.1840 

0.2096 

0.2353 

0.2611 

0.2871 

0.3134 

0.3398 

0.3665 

0.3934 

0.4207 

0.4482 

0.4761 

0.5044 

0.5330 

0.5622 

0.5918 

0.6219 

0.6526 

0.6840 

0.004 

0.0100 

0.0351 

0.0602 

0.0853 

0.1105 

0.1358 

0.1611 

0.1866 

0.2121 

0.2378 

0.2637 

0.2898 

0.3160 

0.3425 

0.3692 

0.3961 

0.4234 

0.4510 

0.4789 

0.5072 

0.5359 

0.5651 

0.5948 

0.6250 

0.6557 

0.6871 

D-1 

0.005 

0.0125 

0.0376 

0.0627 

0.0878 

0.1130 

0.1383 

0.1637 

0.1891 

0.2147 

0.2404 

0.2663 

0.2924 

0.3186 

0.3451 

0.3719 

0.3989 

0.4261 

0.4538 

0.4817 

0.5101 

0.5388 

0.5681 

0.5978 

0.6280 

0.6588 

0.6903 

0.006 

0.0150 

0.0401 

0.0652 

0.0904 

0.1156 

0.1408 

0.1662 

0.1917 

0.2173 

0.2430 

0.2689 

0.2950 

0.3213 

0.3478 

0.3745 

0.4016 

0.4289 

0.4565 

0.4845 

0.5129 

0.5417 

0.5710 

0.6008 

0.6311 

0.6620 

0.6935 

0.007 

0.0175 

0.0426 

0.0677 

0.0929 

0.1181 

0.1434 

0.1687 

0.1942 

0.2198 

0.2456 

0.2715 

0.2976 

0.3239 

0.3505 

0.3772 

0.4043 

0.4316 

0.4593 

0.4874 

0.5158 

0.5446 

0.5740 

0.6038 

0.6341 

0.6651 

0.6967 

0.008 

0.0201 

0.0451 

0.0702 

0.0954 

0.1206 

0.1459 

0.1713 

0.1968 

0.2224 

0.2482 

0.2741 

0.3002 

0.3266 

0.3531 

0.3799 

0.4070 

0.4344 

0.4621 

0.4902 

0.5187 

0.5476 

0.5769 

0.6068 

0.6372 

0.6682 

0.6999 

Unified Guidance 

0.009 

0.0226 

0.0476 

0.0728 

0.0979 

0.1231 

0.1484 

0.1738 

0.1993 

0.2250 

0.2508 

0.2767 

0.3029 

0.3292 

0.3558 

0.3826 

0.4097 

0.4372 

0.4649 

0.4930 

0.5215 

0.5505 

0.5799 

0.6098 

0.6403 

0.6713 

0.7031 
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Appendix D. Chapters 10 to 18 Tables 

Table 10-1. Percentiles of Standard Normal Distribution 

p 

0.76 

0.77 

0.78 

0.79 

0.80 

0.81 

0.82 

0.83 

0.84 

0.85 

0.86 

0.87 

0.88 

0.89 

0.90 

0.91 

0.92 

0.93 

0.94 

0.95 

0.96 

0.97 

0.98 

0.99 

0.000 

0.7063 

0.7388 

0.7722 

0.8064 

0.8416 

0.8779 

0.9154 

0.9542 

0.9945 

1.0364 

1.0803 

1.1264 

1.1750 

1.2265 

1.2816 

1.3408 

1.4051 

1.4758 

1.5548 

1.6449 

1.7507 

1.8808 

2.0537 

2.3263 

0.001 

0.7095 

0.7421 

0.7756 

0.8099 

0.8452 

0.8816 

0.9192 

0.9581 

0.9986 

1.0407 

1.0848 

1.1311 

1.1800 

1.2319 

1.2873 

1.3469 

1.4118 

1.4833 

1.5632 

1.6546 

1.7624 

1.8957 

2.0749 

2.3656 

0.002 

0.7128 

0.7454 

0.7790 

0.8134 

0.8488 

0.8853 

0.9230 

0.9621 

1.0027 

1.0450 

1.0893 

1.1359 

1.1850 

1.2372 

1.2930 

1.3532 

1.4187 

1.4909 

1.5718 

1.6646 

1.7744 

1.9110 

2.0969 

2.4089 

0.003 

0.7160 

0.7488 

0.7824 

0.8169 

0.8524 

0.8890 

0.9269 

0.9661 

1.0069 

1.0494 

1.0939 

1.1407 

1.1901 

1.2426 

1.2988 

1.3595 

1.4255 

1.4985 

1.5805 

1.6747 

1.7866 

1.9268 

2.1201 

2.4573 

0.004 

0.7192 

0.7521 

0.7858 

0.8204 

0.8560 

0.8927 

0.9307 

0.9701 

1.0110 

1.0537 

1.0985 

1.1455 

1.1952 

1.2481 

1.3047 

1.3658 

1.4325 

1.5063 

1.5893 

1.6849 

1.7991 

1.9431 

2.1444 

2.5121 

D-2 

0.005 

0.7225 

0.7554 

0.7892 

0.8239 

0.8596 

0.8965 

0.9346 

0.9741 

1.0152 

1.0581 

1.1031 

1.1503 

1.2004 

1.2536 

1.3106 

1.3722 

1.4395 

1.5141 

1.5982 

1.6954 

1.8119 

1.9600 

2.1701 

2.5758 

0.006 

0.7257 

0.7588 

0.7926 

0.8274 

0.8633 

0.9002 

0.9385 

0.9782 

1.0194 

1.0625 

1.1077 

1.1552 

1.2055 

1.2591 

1.3165 

1.3787 

1.4466 

1.5220 

1.6072 

1.7060 

1.8250 

1.9774 

2.1973 

2.6521 

0.007 

0.7290 

0.7621 

0.7961 

0.8310 

0.8669 

0.9040 

0.9424 

0.9822 

1.0237 

1.0669 

1.1123 

1.1601 

1.2107 

1.2646 

1.3225 

1.3852 

1.4538 

1.5301 

1.6164 

1.7169 

1.8384 

1.9954 

2.2262 

2.7478 

0.008 

0.7323 

0. 7655 

0.7995 

0.8345 

0.8705 

0.9078 

0.9463 

0.9863 

1.0279 

1.0714 

1.1170 

1.1650 

1.2160 

1.2702 

1.3285 

1.3917 

1.4611 

1.5382 

1.6258 

1.7279 

1.8522 

2.0141 

2.2571 

2.8782 

Unified Guidance 

0.009 

0.7356 

0.7688 

0.8030 

0.8381 

0.8742 

0.9116 

0.9502 

0.9904 

1.0322 

1.0758 

1.1217 

1.1700 

1.2212 

1.2759 

1.3346 

1.3984 

1.4684 

1.5464 

1.6352 

1.7392 

1.8663 

2.0335 

2.2904 

3.0902 

March 2009 

EPAPAV0117504 



Appendix D. Chapters 10 to 18 Tables Unified Guidance 

Table 10-2. Coefficients [an-i+i] for Shapiro-Wilk Test of Normality, n = 2(1)50 

i/n 2 3 4 6 7 8 9 10 

1 0.7071 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739 
2 .0000 .1677 .2413 .2806 .3031 .3164 .3244 .3291 
3 .0000 .0875 .1401 .1743 .1976 .2141 
4 .0000 .0561 .0947 .1224 
5 .0000 .0399 

i/n 11 12 13 14 15 16 17 18 19 20 
1 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 0.4808 0.4734 
2 .3315 .3325 .3325 .3318 .3306 .3290 .3273 .3253 .3232 .3211 
3 .2260 .2347 .2412 .2460 .2495 .2521 .2540 .2553 .2561 .2565 
4 .1429 .1586 .1707 .1802 .1878 .1939 .1988 .2027 .2059 .2085 
5 .0695 .0922 .1099 .1240 .1353 .1447 .1524 .1587 .1641 .1686 

6 0.0000 0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 0.1334 
7 .0000 .0240 .0433 .0593 .0725 .0837 .0932 .1013 
8 .0000 .0196 .0359 .0496 .0612 .0711 
9 .0000 .0163 .0303 .0422 
10 .0000 .0140 

i/n 21 22 23 24 25 26 27 28 29 30 

1 0.4643 0.4590 0.4542 0.4493 0.4450 0.4407 0.4366 0.4328 0.4291 0.4254 
2 .3185 .3156 .3126 .3098 .3069 .3043 .3018 .2992 .2968 .2944 
3 .2578 .2571 .2563 .2554 .2543 .2533 .2522 .2510 .2499 .2487 
4 .2119 .2131 .2139 .2145 .2148 .2151 .2152 .2151 .2150 .2148 
5 .1736 .1764 .1787 .1807 .1822 .1836 .1848 .1857 .1864 .1870 

6 0.1399 0.1443 0.1480 0.1512 0.1539 0.1563 0.1584 0.1601 0.1616 0.1630 
7 .1092 .1150 .1201 .1245 .1283 .1316 .1346 .1372 .1395 .1415 
8 .0804 .0878 .0941 .0997 .1046 .1089 .1128 .1162 .1192 .1219 
9 .0530 .0618 .0696 .0764 .0823 .0876 .0923 .0965 .1002 .1036 
10 .0263 .0368 .0459 .0539 .0610 .0672 .0728 .0778 .0822 .0862 

11 0.0000 0.0122 0.0228 0.0321 0.0403 0.0476 0.0540 0.0598 0.0650 0.0697 
12 .0000 .0107 .0200 .0284 .0358 .0424 .0483 .0537 
13 .0000 .0094 .0178 .0253 .0320 .0381 
14 .0000 .0084 .0159 .0227 
15 .0000 .0076 

i/n 31 32 33 34 35 36 37 38 39 40 

1 0.4220 0.4188 0.4156 0.4127 0.4096 0.4068 0.4040 0.4015 0.3989 0.3964 
2 .2921 .2898 .2876 .2854 .2834 .2813 .2794 .2774 .2755 .2737 
3 .2475 .2463 .2451 .2439 .2427 .2415 .2403 .2391 .2380 .2368 
4 .2145 .2141 .2137 .2132 .2127 .2121 .2116 .2110 .2104 .2098 
5 .1874 .1878 .1880 .1882 .1883 .1883 .1883 .1881 .1880 .1878 

6 0.1641 0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691 
7 .1433 .1449 .1463 .1475 .1487 .1496 .1503 .1513 .1520 .1526 
8 .1243 .1265 .1284 .1301 .1317 .1331 .1344 .1356 .1366 .1376 
9 .1066 .1093 .1118 .1140 .1160 .1179 .1196 .1211 .1225 .1237 
10 .0899 .0931 .0961 .0988 .1013 .1036 .1056 .1075 .1092 .1108 

Source: Madansky (1988) 
Footnote. The notation n = 2(1)50 is shorthand for n from 2 to 50 in unit steps 
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Table 10-2. Coefficients [an-i+i] for Shapiro-Wilk Test of Normality, n = 2(1)50 

i/n 31 32 33 34 35 36 37 38 39 40 

11 0.0739 0.0777 0.0812 0.0844 0.0873 0.0900 0.0924 0.0947 0.0967 0.0986 
12 .0585 .0629 .0669 .0706 .0739 .0770 .0798 .0824 .0848 .0870 
13 .0435 .0485 .0530 .0572 .0610 .0645 .0677 .0706 .0733 .0759 
14 .0289 .0344 .0395 .0441 .0484 .0523 .0559 .0592 .0622 .0651 
15 .0144 .0206 .0262 .0314 .0361 .0404 .0444 .0481 .0515 .0546 

16 0.0000 0.0068 0.0131 0.0187 0.0239 0.0287 0.0331 0.0372 0.0409 0.0444 
17 .0000 .0062 .0119 .0172 .0220 .0264 .0305 .0343 
18 .0000 .0057 .0110 .0158 .0203 .0244 
19 .0000 .0053 .0101 .0146 
20 .0000 .0049 

i/n 41 42 43 44 45 46 47 48 49 so 
1 0.3940 0.3917 0.3894 0.3872 0.3850 0.3830 0.3808 0.3789 0.3770 0.3751 
2 .2719 .2701 .2684 .2667 .2651 .2635 .2620 .2604 .2589 .2574 
3 .2357 .2345 .2334 .2323 .2313 .2302 .2291 .2281 .2271 .2260 
4 .2091 .2085 .2078 .2072 .2065 .2058 .2052 .2045 .2038 .2032 
5 .1876 .1874 .1871 .1868 .1865 .1862 .1859 .1855 .1851 .1847 

6 0.1693 0.1694 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 0.1691 
7 .1531 .1535 .1539 .1542 .1545 .1548 .1550 .1551 .1553 .1554 
8 .1384 .1392 .1398 .1405 .1410 .1415 .1420 .1423 .1427 .1430 
9 .1249 .1259 .1269 .1278 .1286 .1293 .1300 .1306 .1312 .1317 
10 .1123 .1136 .1149 .1160 .1170 .1180 .1189 .1197 .1205 .1212 

11 0.1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113 
12 .0891 .0909 .0927 .0943 .0959 .0972 .0986 .0998 .1010 .1020 
13 .0782 .0804 .0824 .0842 .0860 .0876 .0892 .0906 .0919 .0932 
14 .0677 .0701 .0724 .0745 .0775 .0785 .0801 .0817 .0832 .0846 
15 .0575 .0602 .0628 .0651 .0673 .0694 .0713 .0731 .0748 .0764 

16 0.0476 0.0506 0.0534 0.0560 0.0584 0.0607 0.0628 0.0648 0.0667 0.0685 
17 .0379 .0411 .0442 .0471 .0497 .0522 .0546 .0568 .0588 .0608 
18 .0283 .0318 .0352 .0383 .0412 .0439 .0465 .0489 .0511 .0532 
19 .0188 .0227 .0263 .0296 .0328 .0357 .0385 .0411 .0436 .0459 
20 .0094 .0136 .0175 .0211 .0245 .0277 .0307 .0335 .0361 .0386 

21 0.0000 0.0045 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 0.0314 
22 .0000 .0042 .0081 .0118 .0153 .0185 .0215 .0244 
23 .0000 .0039 .0076 .0111 .0143 .0174 
24 .0000 .0037 .0071 .0104 
25 .0000 .0035 

Source: Madansky (1988) 
Footnote. The notation n = 2(1)50 is shorthand for n from 2 to 50 in unit steps 
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Table 10-3. a-Level Critical Points for Shapiro-Wilk Test, n = 3(1)50 

n\a 0.01 0.05 0.10 

3 0.753 0.767 0.789 
4 0.687 0.748 0.792 
5 0.686 0.762 0.806 
6 0.713 0.788 0.826 
7 0.730 0.803 0.838 
8 0.749 0.818 0.851 
9 0.764 0.829 0.859 
10 0.781 0.842 0.869 

11 0.792 0.850 0.876 
12 0.805 0.859 0.883 
13 0.814 0.866 0.889 
14 0.825 0.874 0.895 
15 0.835 0.881 0.901 
16 0.844 0.887 0.906 
17 0.851 0.892 0.910 
18 0.858 0.897 0.914 
19 0.863 0.901 0.917 
20 0.868 0.905 0.920 

21 0.873 0.908 0.923 
22 0.878 0.911 0.926 
23 0.881 0.914 0.928 
24 0.884 0.916 0.930 
25 0.888 0.918 0.931 
26 0.891 0.920 0.933 
27 0.894 0.923 0.935 
28 0.896 0.924 0.936 
29 0.898 0.926 0.937 
30 0.900 0.927 0.939 

31 0.902 0.929 0.940 
32 0.904 0.930 0.941 
33 0.906 0.931 0.942 
34 0.908 0.933 0.943 
35 0.910 0.934 0.944 
36 0.912 0.935 0.945 
37 0.914 0.936 0.946 
38 0.916 0.938 0.947 
39 0.917 0.939 0.948 
40 0.919 0.940 0.949 

41 0.920 0.941 0.950 
42 0.922 0.942 0.951 
43 0.923 0.943 0.951 
44 0.924 0.944 0.952 
45 0.926 0.945 0.953 
46 0.927 0.945 0.953 
47 0.928 0.946 0.954 
48 0.929 0.947 0.954 
49 0.929 0.947 0.955 
so 0.930 0.947 0.955 

Source: Madansky (1988) 
Footnote. The notation n = 3(1)50 is shorthand for n from 3 to 50 in unit steps 
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Table 10-4. a-Level Critical Points for Shapiro-Francia Test, n = 50(1)99 

n\a 0.01 0.05 0.10 

so 0.935 0.953 0.963 
51 0.935 0.954 0.964 
53 0.938 0.957 0.964 
55 0.940 0.958 0.965 
57 0.944 0.961 0.966 
59 0.945 0.962 0.967 
61 0.947 0.963 0.968 
63 0.947 0.964 0.970 
65 0.948 0.965 0.971 
67 0.950 0.966 0.971 
69 0.951 0.966 0.972 

71 0.953 0.967 0.972 
73 0.956 0.968 0.973 
75 0.956 0.969 0.973 
77 0.957 0.969 0.974 
79 0.957 0.970 0.975 
81 0.958 0.970 0.975 
83 0.960 0.971 0.976 
85 0.961 0.972 0.977 
87 0.961 0.972 0.977 
89 0.961 0.972 0.977 

91 0.962 0.973 0.978 
93 0.963 0.973 0.979 
95 0.965 0.974 0.979 
97 0.965 0.975 0.979 
99 0.967 0.976 0.980 

Source: Shapiro & Francia (1972) 
Footnote. The notation n = 50(1)99 is shorthand for n from 50 to 99 in unit steps 
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Table 10-5. a-Critical Pts., Prob. Plot Correlation Coeff. Test, n = 3(1)50(5)100 

n\a 0.01 0.025 0.05 0.10 

3 0.869 0.872 0.879 0.891 
4 0.822 0.845 0.868 0.894 
5 0.822 0.855 0.879 0.902 
6 0.835 0.868 0.890 0.911 
7 0.847 0.876 0.899 0.916 
8 0.859 0.886 0.905 0.924 
9 0.868 0.893 0.912 0.929 
10 0.876 0.900 0.917 0.934 
11 0.883 0.906 0.922 0.938 
12 0.889 0.912 0.926 0.941 
13 0.895 0.917 0.931 0.944 
14 0.901 0.921 0.934 0.947 
15 0.907 0.925 0.937 0.950 
16 0.912 0.928 0.940 0.952 
17 0.912 0.931 0.942 0.954 
18 0.919 0.934 0.945 0.956 
19 0.923 0.937 0.947 0.958 
20 0.925 0.939 0.950 0.960 
21 0.928 0.942 0.952 0.961 
22 0.930 0.944 0.954 0.962 
23 0.933 0.947 0.955 0.964 
24 0.936 0.949 0.957 0.965 
25 0.937 0.950 0.958 0.966 
26 0.939 0.952 0.959 0.967 
27 0.941 0.953 0.960 0.968 
28 0.943 0.955 0.962 0.969 
29 0.945 0.956 0.962 0.969 
30 0.947 0.957 0.964 0.970 
31 0.948 0.958 0.965 0.971 
32 0.949 0.959 0.966 0.972 
33 0.950 0.960 0.967 0.973 
34 0.951 0.960 0.967 0.973 
35 0.952 0.961 0.968 0.974 
36 0.953 0.962 0.968 0.974 
37 0.955 0.962 0.969 0.975 
38 0.956 0.964 0.970 0.975 
39 0.957 0.965 0.971 0.976 
40 0.958 0.966 0.972 0.977 
41 0.958 0.967 0.973 0.977 
42 0.959 0.967 0.973 0.978 
43 0.959 0.967 0.973 0.978 
44 0.960 0.968 0.974 0.978 
45 0.961 0.969 0.974 0.978 
46 0.962 0.969 0.974 0.979 
47 0.963 0.970 0.975 0.979 
48 0.963 0.970 0.975 0.980 
49 0.964 0.971 0.977 0.980 
50 0.965 0.972 0.978 0.981 
55 0.967 0.974 0.980 0.982 
60 0.970 0.976 0.981 0.983 
65 0.972 0.977 0.982 0.984 
70 0.974 0.978 0.983 0.985 
75 0.975 0.979 0.984 0.986 
80 0.976 0.980 0.985 0.987 
85 0.977 0.981 0.985 0.987 
90 0.978 0.982 0.985 0.988 
95 0.979 0.983 0.986 0.989 
100 0.981 0.984 0.987 0.989 

Source: Filliben (1975) 
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Table 10-6. Shapiro-Wilk Multiple Group Test: Values to Compute Gi for n = 

7(1)50 

n y ii n y ii 

7 -2.356 1.245 .4533 31 -6.248 1.965 .1840 
8 -2.696 1.333 .4186 32 -6.324 1.976 .1811 
9 -2.968 1.400 .3900 33 -6.402 1.988 .1781 

10 -3.262 1.471 .3660 34 -6.480 2.000 .1755 
11 -3 .485 1.515 .3451 35 -6.559 2.012 .1727 
12 -3.731 1.571 .3270 36 -6.640 2.024 .1702 
13 -3.936 1.613 .3111 37 -6.721 2.037 .1677 
14 -4.155 1.655 .2969 38 -6.803 2.049 .1656 
15 -4.373 1.695 .2842 39 -6.887 2.062 .1633 
16 -4.567 1.724 .2727 40 -6. 961 2.075 .1612 
17 -4.713 1.739 .2622 41 -7.035 2.088 .1591 
18 -4.885 1.770 .2528 42 -7.111 2.101 .1572 
19 -5.018 1.786 .2440 43 -7.188 2.114 .1552 
20 -5.153 1.802 .2359 44 -7.266 2.128 .1534 
21 -5.291 1.818 .2264 45 -7.345 2.141 .1516 
22 -5.413 1.835 .2207 46 -7.414 2.155 .1499 
23 -5.508 1.848 .2157 47 -7.484 2.169 .1482 
24 -5.605 1.862 .2106 48 -7 .555 2.183 .1466 
25 -5.704 1.876 .2063 49 -7.615 2.198 .1451 
26 -5.803 1.890 .2020 50 -7.677 2.212 .1436 
27 -5.905 1.905 .1980 
28 -5.988 1.919 .1943 
29 -6.074 1.934 .1907 
30 -6.150 1.949 .1872 

Source: Gibbons (1994) 
Footnote. The notation n = 7(1)50 is shorthand for n from 7 to 50 in unit steps 
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Table 10-7. Shapiro-Wilk Multiple Group Test: Values of Gi for n = 3(1)6 

n=3 n=4 n = 5 n=6 

(s = .7500) (s = .6297) (s = .5521) (s = .4963) 

u w G; w G; w G; w G; 

-7.0 .7502 -3.291 
-5.4 .7511 -2.810 
-5.0 .7517 -2.678 
-4.6 .7525 -2.543 
-4.2 .7537 -2.400 
-3.8 .7555 -2.254 .6378 -3.497 
-3.4 .7581 -2.099 .6417 -3.270 
-3.0 .7619 -1.937 .6473 -3.043 .5733 -4.013 
-2.6 .7673 -1.767 .6553 -2.839 .5831 -3.698 
-2.2 .7749 -1.589 .6666 -2.642 .5968 -3.383 
-1.8 .7855 -1.404 .6822 -2.441 .6156 -3.113 
-1.4 .7995 -1.210 .7030 -2.222 .6407 -2.874 
-1.0 .8172 -1.010 .7293 -1.964 .6726 -2.558 .6318 -3.719 
-0.6 .8386 -0.805 .7609 -1.664 .7108 -2.181 .6748 -2.878 
-0.2 .8625 -0.599 .7964 -1.309 .7537 -1.815 .7230 -2.273 
0.0 .8750 -0.496 .8149 -1.122 .7761 -1.635 .7482 -2.068 
0.2 .8875 -0.395 .8333 -0.944 .7984 -1.418 .7733 -1.858 
0.4 .8997 -0.294 .8514 -0.766 .8203 -1.200 .7979 -1.614 
0.6 .9114 -0.195 .8688 -0.573 .8413 -0.970 .8215 -1.383 
1.0 .9328 -0.003 .9004 -0.192 .8795 -0.513 .8645 -0.842 
1.4 .9505 0.181 .9267 0.148 .9114 -0.057 .9004 -0.349 
1.6 .9580 0.268 .9378 0.298 .9248 0.174 .9154 -0.075 
1.8 .9645 0.354 .9475 0.451 .9365 0.374 .9285 0.182 
2.2 .9751 0.516 .9631 0.739 .9553 0.745 .9498 0.653 
2.6 .9827 0.669 .9744 0.998 .9690 1.087 .9652 1.045 
3.0 .9881 0.812 .9824 1.202 .9788 1.403 .9761 1.440 
3.4 .9919 0.947 .9880 1.426 .9855 1.673 .9837 1.838 
3.8 .9945 1.074 .9919 1.660 .9902 1.907 .9890 2.170 
4.2 .9963 1.195 .9945 1.847 .9934 2.136 .9926 2.512 
4.6 .9975 1.309 .9963 2.028 .9955 2.455 .9950 2.748 
5.0 .9983 1.418 .9975 2.193 .9970 2.850 .9966 3.090 
5.4 .9989 1.522 .9983 2.341 .9980 3.245 .9977 3.540 
5.8 .99925 1.621 .9989 2.483 .9986 3.640 
6.2 .99949 1.717 .9993 2.628 
6.6 .99966 1.809 .9995 2.754 
7.0 .99977 1.899 .9997 2.869 
7.4 .99985 1.985 .9998 2.971 
7.8 .99990 2.068 .9998 3.084 
8.2 .99993 2.149 .9999 3.224 
8.6 .99995 2.226 .9999 3.359 

Source: Wilk & Shapiro (1968) 
Footnote. The notation n = 3(1)6 is shorthand for n from 3 to 6 in unit steps 
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Table 12-1. a-Level Critical Points for Dixon's Outlier Test, n = 3(1)25 

n\a .01 .05 .10 

3 0.988 0.941 0.886 
4 0.889 0.765 0.679 
5 0.780 0.642 0.557 

6 0.698 0.560 0.482 
7 0.637 0.507 0.434 
8 0.683 0.554 0.479 
9 0.635 0.512 0.441 
10 0.597 0.477 0.409 

11 0.679 0.576 0.517 
12 0.642 0.546 0.490 
13 0.615 0.521 0.467 
14 0.641 0.546 0.492 
15 0.616 0.525 0.472 

16 0.595 0.507 0.454 
17 0.577 0.490 0.438 
18 0.561 0.475 0.424 
19 0.547 0.462 0.412 
20 0.535 0.450 0.401 

21 0.524 0.440 0.391 
22 0.514 0.430 0.382 
23 0.505 0.421 0.374 
24 0.497 0.413 0.367 
25 0.489 0.406 0.360 

Source: USEPA (1998) 
Footnote. The notation n = 3(1)25 is shorthand for n from 3 to 25 in unit steps 
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Table 12-2. a-Level Critical Points for Rosner's Outlier Test 

k=2 k=3 

n\a .OS .01 .OS .01 

20 2.83 3.09 2.88 3.13 
2.52 2.76 2.60 2.83 

2.45 2.68 

30 3.05 3.35 3.12 3.41 
2.67 2.92 2.73 3.01 

2.56 2.75 

40 3.17 3.52 3.22 3.58 
2.77 2.98 2.81 3.03 

2.62 2.82 

so 3.27 3.61 3.34 3.68 
2.85 3.08 2.89 3.15 

2.68 2.89 

60 3.34 3.70 3.42 3.75 
2.90 3.17 2.95 3.20 

2.73 2.95 

80 3.45 3.80 3.49 3.85 
2.97 3.23 3.03 3.27 

2.81 3.01 

100 3.52 3.87 3.60 3.97 
3.03 3.28 3.10 3.34 

2.86 3.06 

Source: Barnett & Lewis (1994) 
Footnote. k = number of suspected outliers. Since k critical points are needed for each test, there 
are 2 values under each k = 2 entry, 3 under each k = 3 entry, etc. 
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Table 12-2. a-Level Critical Points for Rosner's Outlier Test (cont.) 

k=4 k=S 

n\a .OS .01 .OS .01 

20 2.95 3.20 2.97 3.18 
2.63 2.83 2.65 2.89 
2.49 2.68 2.51 2.69 
2.39 2.58 2.42 2.61 

2.37 2.57 

30 3.16 3.48 3.19 3.48 
2.77 3.02 2.78 3.03 
2.59 2.79 2.60 2.80 
2.49 2.70 2.51 2.74 

2.45 2.62 

40 3.32 3.64 3.31 3.63 
2.86 3.10 2.88 3.13 
2.67 2.87 2.69 2.89 
2.55 2.74 2.55 2.74 

2.47 2.65 

so 3.40 3.74 3.45 3.77 
2.93 3.18 2.96 3.21 
2.72 2.92 2.74 2.94 
2.59 2.78 2.61 2.79 

2.52 2.70 

60 3.48 3.82 3.51 3.81 
2.98 3.20 3.01 3.24 
2.77 2.97 2.77 2.96 
2.63 2.82 2.65 2.83 

2.56 2.72 

80 3.57 3.91 3.61 3.93 
3.05 3.31 3.11 3.36 
2.84 3.04 2.86 3.08 
2.69 2.87 2.72 2.89 

2.62 2.76 

100 3.64 3.96 3.70 4.01 
3.13 3.34 3.16 3.42 
2.89 3.06 2.91 3.10 
2.74 2.90 2.77 2.93 

2.67 2.84 
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Table 14-1. Approximate a-Level Critical Points for Rank von Neumann Ratio Test 

for n = 4(1)30(2)50(5)100 

n\a .005 .01 .02S .05 .10 

4 0.60 
s 0.40 0.70 
6 0.29 0.46 0.63 0.80 0.97 
7 0.50 0.54 0.64 0.86 1.11 
8 0.55 0.62 0.76 0.93 1.14 
9 0.57 0.67 0.82 0.98 1.18 
10 0.62 0.72 0.89 1.04 1.23 

11 0.67 0.77 0.93 1.08 1.26 
12 0.71 0.81 0.96 1.11 1.29 
13 0.74 0.84 1.00 1.14 1.32 
14 0.78 0.87 1.03 1.17 1.34 
1S 0.81 0.90 1.05 1.19 1.36 
16 0.84 0.93 1.08 1.21 1.38 
17 0.87 0.96 1.10 1.24 1.40 
18 0.89 0.98 1.13 1.26 1.41 
19 0.92 1.01 1.15 1.27 1.43 
20 0.94 1.03 1.17 1.29 1.44 

21 0.96 1.05 1.18 1.31 1.45 
22 0.98 1.07 1.20 1.32 1.46 
23 1.00 1.09 1.22 1.33 1.48 
24 1.02 1.10 1.23 1.35 1.49 
2S 1.04 1.12 1.25 1.36 1.50 
26 1.05 1.13 1.26 1.37 1.51 
27 1.07 1.15 1.27 1.38 1.51 
28 1.08 1.16 1.28 1.39 1.52 
29 1.10 1.18 1.30 1.40 1.53 
30 1.11 1.19 1.31 1.41 1.54 

32 1.13 1.21 1.33 1.43 1.55 
34 1.16 1.23 1.35 1.45 1.57 
36 1.18 1.25 1.36 1.46 1.58 
38 1.20 1.27 1.38 1.48 1.59 
40 1.22 1.29 1.39 1.49 1.60 
42 1.24 1.30 1.41 1.50 1.61 
44 1.25 1.32 1.42 1.51 1.62 
46 1.27 1.33 1.43 1.52 1.63 
48 1.28 1.35 1.45 1.53 1.63 
so 1.29 1.36 1.46 1.54 1.64 

SS 1.33 1.39 1.48 1.56 1.66 
60 1.35 1.41 1.50 1.58 1.67 
6S 1.38 1.43 1.52 1.60 1.68 
70 1.40 1.45 1.54 1.61 1.70 
7S 1.42 1.47 1.55 1.62 1.71 
80 1.44 1.49 1.57 1.64 1.71 
8S 1.45 1.50 1.58 1.65 1.72 
90 1.47 1.52 1.59 1.66 1.73 
9S 1.48 1.53 1.60 1.66 1.74 
100 1.49 1.54 1.61 1.67 1.74 

Sources: Bartels (1982), Madansky (1988) 
Footnote. The notation n = 4(1)30(2)50(5)100 is shorthand for n from 4 to 30 in unit steps, then 
from 30 to 50 by 2's, then from 50 to 100 by S's 
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Table 16-1. Percentiles of Student's t-Distribution 

df\P .75 .80 .85 .90 .95 .96 .97 .975 .98 .9833 .9875 .99 .995 .999 

1 1.000 1.376 1.963 3.078 6.314 7.916 10.579 12.706 15.895 19.043 25.452 31.821 63.657 318.309 
2 0.816 1.061 1.386 1.886 2.920 3.320 3.896 4.303 4.849 5.334 6.205 6.965 9.925 22.327 
3 0.765 0.978 1.250 1.638 2.353 2.605 2.951 3.182 3.482 3.738 4.177 4.541 5.841 10.215 
4 0.741 0.941 1.190 1.533 2.132 2.333 2.601 2.776 2.999 3.184 3.495 3.747 4.604 7.173 
5 0.727 0.920 1.156 1.476 2.015 2.191 2.422 2.571 2.757 2.910 3.163 3.365 4.032 5.893 
6 0.718 0.906 1.134 1.440 1.943 2.104 2.313 2.447 2.612 2.748 2.969 3.143 3.707 5.208 
7 0.711 0.896 1.119 1.415 1.895 2.046 2.241 2.365 2.517 2.640 2.841 2.998 3.499 4.785 
8 0.706 0.889 1.108 1.397 1.860 2.004 2.189 2.306 2.449 2.565 2.752 2.896 3.355 4.501 
9 0.703 0.883 1.100 1.383 1.833 1.973 2.150 2.262 2.398 2.508 2.685 2.821 3.250 4.297 
10 0.700 0.879 1.093 1.372 1.812 1.948 2.120 2.228 2.359 2.465 2.634 2.764 3.169 4.144 
11 0.697 0.876 1.088 1.363 1.796 1.928 2.096 2.201 2.328 2.430 2.593 2.718 3.106 4.025 
12 0.695 0.873 1.083 1.356 1.782 1.912 2.076 2.179 2.303 2.402 2.560 2.681 3.055 3.930 
13 0.694 0.870 1.079 1.350 1.771 1.899 2.060 2.160 2.282 2.379 2.533 2.650 3.012 3.852 
14 0.692 0.868 1.076 1.345 1.761 1.887 2.046 2.145 2.264 2.359 2.510 2.624 2.977 3.787 
15 0.691 0.866 1.074 1.341 1.753 1.878 2.034 2.131 2.249 2.342 2.490 2.602 2.947 3.733 
16 0.690 0.865 1.071 1.337 1.746 1.869 2.024 2.120 2.235 2.327 2.473 2.583 2.921 3.686 
17 0.689 0.863 1.069 1.333 1.740 1.862 2.015 2.110 2.224 2.315 2.458 2.567 2.898 3.646 
18 0.688 0.862 1.067 1.330 1.734 1.855 2.007 2.101 2.214 2.303 2.445 2.552 2.878 3.610 
19 0.688 0.861 1.066 1.328 1.729 1.850 2.000 2.093 2.205 2.293 2.433 2.539 2.861 3.579 
20 0.687 0.860 1.064 1.325 1.725 1.844 1.994 2.086 2.197 2.285 2.423 2.528 2.845 3.552 
21 0.686 0.859 1.063 1.323 1.721 1.840 1.988 2.080 2.189 2.277 2.414 2.518 2.831 3.527 
22 0.686 0.858 1.061 1.321 1.717 1.835 1.983 2.074 2.183 2.269 2.405 2.508 2.819 3.505 
23 0.685 0.858 1.060 1.319 1.714 1.832 1.978 2.069 2.177 2.263 2.398 2.500 2.807 3.485 
24 0.685 0.857 1.059 1.318 1.711 1.828 1.974 2.064 2.172 2.257 2.391 2.492 2.797 3.467 
25 0.684 0.856 1.058 1.316 1.708 1.825 1.970 2.060 2.167 2.251 2.385 2.485 2.787 3.450 
26 0.684 0.856 1.058 1.315 1.706 1.822 1.967 2.056 2.162 2.246 2.379 2.479 2.779 3.435 
27 0.684 0.855 1.057 1.314 1.703 1.819 1.963 2.052 2.158 2.242 2.373 2.473 2.771 3.421 
28 0.683 0.855 1.056 1.313 1.701 1.817 1.960 2.048 2.154 2.237 2.368 2.467 2.763 3.408 
29 0.683 0.854 1.055 1.311 1.699 1.814 1.957 2.045 2.150 2.233 2.364 2.462 2.756 3.396 
30 0.683 0.854 1.055 1.310 1.697 1.812 1.955 2.042 2.147 2.230 2.360 2.457 2.750 3.385 
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Table 16-1. Percentiles of Student's t-Distribution (cont.) 

df\P .75 .80 .85 .90 .95 .96 .97 .975 .98 .9833 .9875 .99 .995 .999 

31 0.682 0.853 1.054 1.309 1.696 1.810 1.952 2.040 2.144 2.226 2.356 2.453 2.744 3.375 
32 0.682 0.853 1.054 1.309 1.694 1.808 1.950 2.037 2.141 2.223 2.352 2.449 2.738 3.365 
33 0.682 0.853 1.053 1.308 1.692 1.806 1.948 2.035 2.138 2.220 2.348 2.445 2.733 3.356 
34 0.682 0.852 1.052 1.307 1.691 1.805 1.946 2.032 2.136 2.217 2.345 2.441 2.728 3.348 
35 0.682 0.852 1.052 1.306 1.690 1.803 1.944 2.030 2.133 2.215 2.342 2.438 2.724 3.340 
36 0.681 0.852 1.052 1.306 1.688 1.802 1.942 2.028 2.131 2.212 2.339 2.434 2.719 3.333 
37 0.681 0.851 1.051 1.305 1.687 1.800 1.940 2.026 2.129 2.210 2.336 2.431 2.715 3.326 
38 0.681 0.851 1.051 1.304 1.686 1.799 1.939 2.024 2.127 2.207 2.334 2.429 2.712 3.319 
39 0.681 0.851 1.050 1.304 1.685 1.798 1.937 2.023 2.125 2.205 2.331 2.426 2.708 3.313 
40 0.681 0.851 1.050 1.303 1.684 1.796 1.936 2.021 2.123 2.203 2.329 2.423 2.704 3.307 
41 0.681 0.850 1.050 1.303 1.683 1.795 1.934 2.020 2.121 2.201 2.327 2.421 2.701 3.301 
42 0.680 0.850 1.049 1.302 1.682 1.794 1.933 2.018 2.120 2.199 2.325 2.418 2.698 3.296 
43 0.680 0.850 1.049 1.302 1.681 1.793 1.932 2.017 2.118 2.198 2.323 2.416 2.695 3.291 
44 0.680 0.850 1.049 1.301 1.680 1.792 1.931 2.015 2.116 2.196 2.321 2.414 2.692 3.286 
45 0.680 0.850 1.049 1.301 1.679 1.791 1.929 2.014 2.115 2.195 2.319 2.412 2.690 3.281 
46 0.680 0.850 1.048 1.300 1.679 1.790 1.928 2.013 2.114 2.193 2.317 2.410 2.687 3.277 
47 0.680 0.849 1.048 1.300 1.678 1.789 1.927 2.012 2.112 2.192 2.315 2.408 2.685 3.273 
48 0.680 0.849 1.048 1.299 1.677 1.789 1.926 2.011 2.111 2.190 2.314 2.407 2.682 3.269 
49 0.680 0.849 1.048 1.299 1.677 1.788 1.925 2.010 2.110 2.189 2.312 2.405 2.680 3.265 
50 0.679 0.849 1.047 1.299 1.676 1.787 1.924 2.009 2.109 2.188 2.311 2.403 2.678 3.261 
51 0.679 0.849 1.047 1.298 1.675 1.786 1.924 2.008 2.108 2.186 2.310 2.402 2.676 3.258 
52 0.679 0.849 1.047 1.298 1.675 1.786 1.923 2.007 2.107 2.185 2.308 2.400 2.674 3.255 
53 0.679 0.848 1.047 1.298 1.674 1.785 1.922 2.006 2.106 2.184 2.307 2.399 2.672 3.251 
54 0.679 0.848 1.046 1.297 1.674 1.784 1.921 2.005 2.105 2.183 2.306 2.397 2.670 3.248 
55 0.679 0.848 1.046 1.297 1.673 1.784 1.920 2.004 2.104 2.182 2.304 2.396 2.668 3.245 
56 0.679 0.848 1.046 1.297 1.673 1.783 1.920 2.003 2.103 2.181 2.303 2.395 2.667 3.242 
57 0.679 0.848 1.046 1.297 1.672 1.782 1.919 2.002 2.102 2.180 2.302 2.394 2.665 3.239 
58 0.679 0.848 1.046 1.296 1.672 1.782 1.918 2.002 2.101 2.179 2.301 2.392 2.663 3.237 
59 0.679 0.848 1.046 1.296 1.671 1.781 1.918 2.001 2.100 2.178 2.300 2.391 2.662 3.234 
60 0.679 0.848 1.045 1.296 1.671 1.781 1.917 2.000 2.099 2.177 2.299 2.390 2.660 3.232 
70 0.678 0.847 1.044 1.294 1.667 1.776 1.912 1.994 2.093 2.170 2.291 2.381 2.648 3.211 
80 0.678 0.846 1.043 1.292 1.664 1.773 1.908 1.990 2.088 2.165 2.284 2.374 2.639 3.195 
90 0.677 0.846 1.042 1.291 1.662 1.771 1.905 1.987 2.084 2.160 2.280 2.368 2.632 3.183 
100 0.677 0.845 1.042 1.290 1.660 1.769 1.902 1.984 2.081 2.157 2.276 2.364 2.626 3.174 
110 0.677 0.845 1.041 1.289 1.659 1.767 1.900 1.982 2.078 2.154 2.272 2.361 2.621 3.166 
120 0.677 0.845 1.041 1.289 1.658 1.766 1.899 1.980 2.076 2.152 2.270 2.358 2.617 3.160 

D-16 
March 2009 

EPAPAV0117518 



Appendix D. Chapters 10 to 18 Tables Unified Guidance 

Table 17-1. Percentiles of F-Distribution for (1-a) = .80 

V2 \v1 1 2 3 4 6 7 8 9 10 11 12 13 14 15 
1 9.47 12.00 13.06 13.64 14.01 14.26 14.44 14.58 14.68 14.77 14.84 14.90 14.95 15.00 15.04 
2 3.56 4.00 4.16 4.24 4.28 4.32 4.34 4.36 4.37 4.38 4.39 4.40 4.40 4.41 4.42 
3 2.68 2.89 2.94 2.96 2.97 2.97 2.97 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 
4 2.35 2.47 2.48 2.48 2.48 2.47 2.47 2.47 2.46 2.46 2.46 2.46 2.45 2.45 2.45 
5 2.18 2.26 2.25 2.24 2.23 2.22 2.21 2.20 2.20 2.19 2.19 2.18 2.18 2.18 2.18 
6 2.07 2.13 2.11 2.09 2.08 2.06 2.05 2.04 2.03 2.03 2.02 2.02 2.01 2.01 2.01 
7 2.00 2.04 2.02 1.99 1.97 1.96 1.94 1.93 1.93 1.92 1.91 1.91 1.90 1.90 1.89 
8 1.95 1.98 1.95 1.92 1.90 1.88 1.87 1.86 1.85 1.84 1.83 1.83 1.82 1.82 1.81 
9 1.91 1.93 1.90 1.87 1.85 1.83 1.81 1.80 1.79 1.78 1.77 1.76 1.76 1.75 1.75 
10 1.88 1.90 1.86 1.83 1.80 1.78 1.77 1.75 1.74 1.73 1.72 1.72 1.71 1.70 1.70 
11 1.86 1.87 1.83 1.80 1.77 1.75 1.73 1.72 1.70 1.69 1.69 1.68 1.67 1.67 1.66 
12 1.84 1.85 1.80 1.77 1.74 1.72 1.70 1.69 1.67 1.66 1.65 1.65 1.64 1.63 1.63 
13 1.82 1.83 1.78 1.75 1.72 1.69 1.68 1.66 1.65 1.64 1.63 1.62 1.61 1.61 1.60 
14 1.81 1.81 1.76 1.73 1.70 1.67 1.65 1.64 1.63 1.62 1.61 1.60 1.59 1.58 1.58 
15 1.80 1.80 1.75 1.71 1.68 1.66 1.64 1.62 1.61 1.60 1.59 1.58 1.57 1.56 1.56 
16 1.79 1.78 1.74 1.70 1.67 1.64 1.62 1.61 1.59 1.58 1.57 1.56 1.55 1.55 1.54 
17 1.78 1.77 1.72 1.68 1.65 1.63 1.61 1.59 1.58 1.57 1.56 1.55 1.54 1.53 1.53 
18 1.77 1.76 1.71 1.67 1.64 1.62 1.60 1.58 1.56 1.55 1.54 1.53 1.53 1.52 1.51 
19 1.76 1.75 1.70 1.66 1.63 1.61 1.58 1.57 1.55 1.54 1.53 1.52 1.51 1.51 1.50 
20 1.76 1.75 1.70 1.65 1.62 1.60 1.58 1.56 1.54 1.53 1.52 1.51 1.50 1.50 1.49 
21 1.75 1.74 1.69 1.65 1.61 1.59 1.57 1.55 1.53 1.52 1.51 1.50 1.49 1.49 1.48 
22 1.75 1.73 1.68 1.64 1.61 1.58 1.56 1.54 1.53 1.51 1.50 1.49 1.49 1.48 1.47 
23 1.74 1.73 1.68 1.63 1.60 1.57 1.55 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 
24 1.74 1.72 1.67 1.63 1.59 1.57 1.55 1.53 1.51 1.50 1.49 1.48 1.47 1.46 1.46 
25 1.73 1.72 1.66 1.62 1.59 1.56 1.54 1.52 1.51 1.49 1.48 1.47 1.46 1.46 1.45 
26 1.73 1.71 1.66 1.62 1.58 1.56 1.53 1.52 1.50 1.49 1.48 1.47 1.46 1.45 1.44 
27 1.73 1.71 1.66 1.61 1.58 1.55 1.53 1.51 1.49 1.48 1.47 1.46 1.45 1.44 1.44 
28 1.72 1.71 1.65 1.61 1.57 1.55 1.52 1.51 1.49 1.48 1.47 1.46 1.45 1.44 1.43 
29 1.72 1.70 1.65 1.60 1.57 1.54 1.52 1.50 1.49 1.47 1.46 1.45 1.44 1.43 1.43 
30 1.72 1.70 1.64 1.60 1.57 1.54 1.52 1.50 1.48 1.47 1.46 1.45 1.44 1.43 1.42 
35 1.71 1.69 1.63 1.58 1.55 1.52 1.50 1.48 1.46 1.45 1.44 1.43 1.42 1.41 1.40 
40 1.70 1.68 1.62 1.57 1.54 1.51 1.49 1.47 1.45 1.44 1.42 1.41 1.40 1.40 1.39 
45 1.69 1.67 1.61 1.57 1.53 1.50 1.48 1.46 1.44 1.43 1.41 1.40 1.39 1.38 1.38 
50 1.69 1.66 1.60 1.56 1.52 1.49 1.47 1.45 1.43 1.42 1.41 1.39 1.38 1.38 1.37 
55 1.68 1.66 1.60 1.55 1.52 1.49 1.46 1.44 1.43 1.41 1.40 1.39 1.38 1.37 1.36 
60 1.68 1.65 1.60 1.55 1.51 1.48 1.46 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.35 
70 1.67 1.65 1.59 1.54 1.50 1.47 1.45 1.43 1.41 1.40 1.38 1.37 1.36 1.35 1.35 
80 1.67 1.64 1.58 1.53 1.50 1.47 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.35 1.34 
90 1.67 1.64 1.58 1.53 1.49 1.46 1.44 1.42 1.40 1.38 1.37 1.36 1.35 1.34 1.33 
100 1.66 1.64 1.58 1.53 1.49 1.46 1.43 1.41 1.40 1.38 1.37 1.36 1.35 1.34 1.33 
110 1.66 1.63 1.57 1.52 1.49 1.46 1.43 1.41 1.39 1.38 1.36 1.35 1.34 1.33 1.32 
120 1.66 1.63 1.57 1.52 1.48 1.45 1.43 1.41 1.39 1.37 1.36 1.35 1.34 1.33 1.32 

D-17 
March 2009 

EPAPAV0117519 



Appendix D. Chapters 10 to 18 Tables Unified Guidance 

Table 17-1. Percentiles of F-Distribution for (1-a) = .90 

V2 \v1 1 2 3 4 6 7 8 9 10 11 12 13 14 15 
1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.47 60.71 60.90 61.07 61.22 
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.40 9.41 9.41 9.42 9.42 
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.22 5.21 5.20 5.20 
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.91 3.90 3.89 3.88 3.87 
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.28 3.27 3.26 3.25 3.24 
6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.92 2.90 2.89 2.88 2.87 
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.68 2.67 2.65 2.64 2.63 
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.52 2.50 2.49 2.48 2.46 
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.40 2.38 2.36 2.35 2.34 
10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.30 2.28 2.27 2.26 2.24 
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.23 2.21 2.19 2.18 2.17 
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.17 2.15 2.13 2.12 2.10 
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.12 2.10 2.08 2.07 2.05 
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.07 2.05 2.04 2.02 2.01 
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.04 2.02 2.00 1.99 1.97 
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 2.01 1.99 1.97 1.95 1.94 
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.98 1.96 1.94 1.93 1.91 
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.95 1.93 1.92 1.90 1.89 
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.93 1.91 1.89 1.88 1.86 
20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.91 1.89 1.87 1.86 1.84 
21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.90 1.87 1.86 1.84 1.83 
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.88 1.86 1.84 1.83 1.81 
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.87 1.84 1.83 1.81 1.80 
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.85 1.83 1.81 1.80 1.78 
25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.84 1.82 1.80 1.79 1.77 
26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.83 1.81 1.79 1.77 1.76 
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.82 1.80 1.78 1.76 1.75 
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.81 1.79 1.77 1.75 1.74 
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.80 1.78 1.76 1.75 1.73 
30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.79 1.77 1.75 1.74 1.72 
35 2.85 2.46 2.25 2.11 2.02 1.95 1.90 1.85 1.82 1.79 1.76 1.74 1.72 1.70 1.69 
40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.74 1.71 1.70 1.68 1.66 
45 2.82 2.42 2.21 2.07 1.98 1.91 1.85 1.81 1.77 1.74 1.72 1.70 1.68 1.66 1.64 
so 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76 1.73 1.70 1.68 1.66 1.64 1.63 
55 2.80 2.40 2.19 2.05 1.95 1.88 1.83 1.78 1.75 1.72 1.69 1.67 1.65 1.63 1.61 
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.68 1.66 1.64 1.62 1.60 
70 2.78 2.38 2.16 2.03 1.93 1.86 1.80 1.76 1.72 1.69 1.66 1.64 1.62 1.60 1.59 
80 2.77 2.37 2.15 2.02 1.92 1.85 1.79 1.75 1.71 1.68 1.65 1.63 1.61 1.59 1.57 
90 2.76 2.36 2.15 2.01 1.91 1.84 1.78 1.74 1.70 1.67 1.64 1.62 1.60 1.58 1.56 
100 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69 1.66 1.64 1.61 1.59 1.57 1.56 
110 2.75 2.35 2.13 2.00 1.90 1.83 1.77 1.73 1.69 1.66 1.63 1.61 1.59 1.57 1.55 
120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.63 1.60 1.58 1.56 1.55 
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Appendix D. Chapters 10 to 18 Tables Unified Guidance 

Table 17-1. Percentiles of F-Distribution for (1-a) = .95 

V2 \v1 1 2 3 4 6 7 8 9 10 11 12 13 14 15 
1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 242.98 243.91 244.69 245.36 245.95 
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.40 19.41 19.42 19.42 19.43 
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74 8.73 8.71 8.70 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94 5.91 5.89 5.87 5.86 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.70 4.68 4.66 4.64 4.62 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.98 3.96 3.94 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57 3.55 3.53 3.51 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28 3.26 3.24 3.22 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07 3.05 3.03 3.01 
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91 2.89 2.86 2.85 
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79 2.76 2.74 2.72 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69 2.66 2.64 2.62 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63 2.60 2.58 2.55 2.53 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53 2.51 2.48 2.46 
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48 2.45 2.42 2.40 
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42 2.40 2.37 2.35 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.41 2.38 2.35 2.33 2.31 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.31 2.29 2.27 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.34 2.31 2.28 2.26 2.23 
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28 2.25 2.22 2.20 
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.22 2.20 2.18 
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26 2.23 2.20 2.17 2.15 
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.24 2.20 2.18 2.15 2.13 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.22 2.18 2.15 2.13 2.11 
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.20 2.16 2.14 2.11 2.09 
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.12 2.09 2.07 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.17 2.13 2.10 2.08 2.06 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.15 2.12 2.09 2.06 2.04 
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.14 2.10 2.08 2.05 2.03 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09 2.06 2.04 2.01 
35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 2.07 2.04 2.01 1.99 1.96 
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00 1.97 1.95 1.92 
45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05 2.01 1.97 1.94 1.92 1.89 
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.99 1.95 1.92 1.89 1.87 
55 4.02 3.16 2.77 2.54 2.38 2.27 2.18 2.11 2.06 2.01 1.97 1.93 1.90 1.88 1.85 
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 1.89 1.86 1.84 
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97 1.93 1.89 1.86 1.84 1.81 
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.91 1.88 1.84 1.82 1.79 
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94 1.90 1.86 1.83 1.80 1.78 
100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.89 1.85 1.82 1.79 1.77 
110 3.93 3.08 2.69 2.45 2.30 2.18 2.09 2.02 1.97 1.92 1.88 1.84 1.81 1.78 1.76 
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.87 1.83 1.80 1.78 1.75 
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Appendix D. Chapters 10 to 18 Tables Unified Guidance 

Table 17-1. Percentiles of F-Distribution for (1-a) = .98 

V2 \v1 1 2 3 4 6 7 8 9 10 11 12 13 14 15 
1 1012 .55 1249.50 1350.50 1405.83 1440.61 1464.45 1481.80 1494.99 1505.34 1513.69 1520.56 1526.31 1531.20 1535.40 1539.05 
2 48.51 49.00 49.17 49.25 49.30 49.33 49.36 49.37 49.39 49.40 49.41 49.42 49.42 49.43 49.43 
3 20.62 18.86 18.11 17.69 17.43 17.25 17.11 17.01 16.93 16.86 16.81 16.76 16.72 16.69 16.66 
4 14.04 12.14 11.34 10.90 10.62 10.42 10.27 10.16 10.07 10.00 9.94 9.89 9.85 9.81 9.78 
5 11.32 9.45 8.67 8.23 7.95 7.76 7.61 7 .50 7.42 7.34 7.28 7.23 7.19 7.16 7.12 
6 9.88 8.05 7.29 6.86 6.58 6.39 6.25 6.14 6.05 5.98 5.93 5.88 5.83 5.80 5.76 
7 8.99 7.20 6.45 6.03 5.76 5.58 5.44 5.33 5.24 5.17 5.11 5.06 5.02 4.98 4.95 
8 8.39 6.64 5.90 5.49 5.22 5.04 4.90 4.79 4.70 4.63 4.58 4.53 4.49 4.45 4.42 
9 7.96 6.23 5.51 5.10 4.84 4.65 4.52 4.41 4.33 4.26 4.20 4.15 4.11 4.07 4.04 
10 7.64 5.93 5.22 4.82 4.55 4.37 4.23 4.13 4.04 3.97 3.92 3.87 3.83 3.79 3.76 
11 7.39 5.70 4.99 4.59 4.34 4.15 4.02 3.91 3.83 3.76 3.70 3.65 3.61 3.57 3.54 
12 7.19 5.52 4.81 4.42 4.16 3.98 3.85 3.74 3.66 3.59 3.53 3.48 3.44 3.40 3.37 
13 7.02 5.37 4.67 4.28 4.02 3.84 3.71 3.60 3.52 3.45 3.39 3.34 3.30 3.26 3.23 
14 6.89 5.24 4.55 4.16 3.90 3.72 3.59 3.48 3.40 3.33 3.27 3.23 3.18 3.15 3.11 
15 6.77 5.14 4.45 4.06 3.81 3.63 3.49 3.39 3.30 3.23 3.18 3.13 3.09 3.05 3.02 
16 6.67 5.05 4.36 3.97 3.72 3.54 3.41 3.30 3.22 3.15 3.09 3.05 3.00 2.97 2.93 
17 6.59 4.97 4.29 3.90 3.65 3.47 3.34 3.23 3.15 3.08 3.02 2.97 2.93 2.89 2.86 
18 6.51 4.90 4.22 3.84 3.59 3.41 3.27 3.17 3.09 3.02 2.96 2.91 2.87 2.83 2.80 
19 6.45 4.84 4.16 3.78 3.53 3.35 3.22 3.12 3.03 2.96 2.91 2.86 2.81 2.78 2.74 
20 6.39 4.79 4.11 3.73 3.48 3.30 3.17 3.07 2.98 2.91 2.86 2.81 2.77 2.73 2.70 
21 6.34 4.74 4.07 3.69 3.44 3.26 3.13 3.02 2.94 2.87 2.81 2.76 2.72 2.68 2.65 
22 6.29 4.70 4.03 3.65 3.40 3.22 3.09 2.99 2.90 2.83 2.77 2.73 2.68 2.65 2.61 
23 6.25 4.66 3.99 3.61 3.36 3.19 3.05 2.95 2.87 2.80 2.74 2.69 2.65 2.61 2.58 
24 6.21 4.63 3.96 3.58 3.33 3.15 3.02 2.92 2.83 2.77 2.71 2.66 2.62 2.58 2.55 
25 6.18 4.59 3.93 3.55 3.30 3.13 2.99 2.89 2.81 2.74 2.68 2.63 2.59 2.55 2.52 
26 6.14 4.56 3.90 3.52 3.28 3.10 2.97 2.86 2.78 2.71 2.65 2.60 2.56 2.52 2.49 
27 6.11 4.54 3.87 3.50 3.25 3.07 2.94 2.84 2.76 2.69 2.63 2.58 2.54 2.50 2.46 
28 6.09 4.51 3.85 3.47 3.23 3.05 2.92 2.82 2.73 2.66 2.61 2.56 2.51 2.48 2.44 
29 6.06 4.49 3.83 3.45 3.21 3.03 2.90 2.80 2.71 2.64 2.58 2.54 2.49 2.45 2.42 
30 6.04 4.47 3.81 3.43 3.19 3.01 2.88 2.78 2.69 2.62 2.57 2.52 2.47 2.44 2.40 
35 5.94 4.38 3.73 3.35 3.11 2.93 2.80 2.70 2.61 2.55 2.49 2.44 2.39 2.36 2.32 
40 5.87 4.32 3.67 3.30 3.05 2.88 2.74 2.64 2.56 2.49 2.43 2.38 2.34 2.30 2.26 
45 5.82 4.27 3.62 3.25 3.01 2.83 2.70 2.60 2.51 2.44 2.39 2.34 2.29 2.25 2.22 
50 5.78 4.23 3.59 3.22 2.97 2.80 2.67 2.56 2.48 2.41 2.35 2.30 2.26 2.22 2.18 
55 5.74 4.20 3.56 3.19 2.94 2.77 2.64 2.54 2.45 2.38 2.32 2.27 2.23 2.19 2.16 
60 5.71 4.18 3.53 3.16 2.92 2.75 2.62 2.51 2.43 2.36 2.30 2.25 2.21 2.17 2.13 
70 5.67 4.14 3.49 3.13 2.88 2.71 2.58 2.48 2.39 2.32 2.26 2.21 2.17 2.13 2.10 
80 5.64 4.11 3.47 3.10 2.86 2.68 2.55 2.45 2.37 2.30 2.24 2.19 2.14 2.10 2.07 
90 5.61 4.09 3.45 3.08 2.84 2.66 2.53 2.43 2.35 2.28 2.22 2.17 2.12 2.08 2.05 
100 5.59 4.07 3.43 3.06 2.82 2.65 2.52 2.41 2.33 2.26 2.20 2.15 2.10 2.07 2.03 
110 5.57 4.05 3.41 3.05 2.81 2.63 2.50 2.40 2.32 2.25 2.19 2.14 2.09 2.05 2.02 
120 5.56 4.04 3.40 3.04 2.80 2.62 2.49 2.39 2.30 2.23 2.18 2.12 2.08 2.04 2.01 
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Table 17-1. Percentiles of F-Distribution for (1-a) = .99 

V2 \v1 1 2 3 4 6 7 8 9 10 11 12 13 14 15 
1 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99 5928.36 5981.07 6022.47 6055.85 6083.32 6106.32 6125.86 6142.67 6157.28 
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.41 99.42 99.42 99.43 99.43 
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.13 27.05 26.98 26.92 26.87 
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.45 14.37 14.31 14.25 14.20 
s 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.96 9.89 9.82 9.77 9.72 
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72 7.66 7.60 7.56 
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.54 6.47 6.41 6.36 6.31 
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.73 5.67 5.61 5.56 5.52 
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.18 5.11 5.05 5.01 4.96 
10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.77 4.71 4.65 4.60 4.56 
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46 4.40 4.34 4.29 4.25 
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22 4.16 4.10 4.05 4.01 
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96 3.91 3.86 3.82 
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80 3.75 3.70 3.66 
1S 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 3.61 3.56 3.52 
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.62 3.55 3.50 3.45 3.41 
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.46 3.40 3.35 3.31 
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.43 3.37 3.32 3.27 3.23 
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30 3.24 3.19 3.15 
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29 3.23 3.18 3.13 3.09 
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.24 3.17 3.12 3.07 3.03 
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 3.07 3.02 2.98 
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14 3.07 3.02 2.97 2.93 
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09 3.03 2.98 2.93 2.89 
2S 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 3.06 2.99 2.94 2.89 2.85 
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 3.02 2.96 2.90 2.86 2.81 
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.99 2.93 2.87 2.82 2.78 
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.96 2.90 2.84 2.79 2.75 
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.93 2.87 2.81 2.77 2.73 
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.91 2.84 2.79 2.74 2.70 
3S 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88 2.80 2.74 2.69 2.64 2.60 
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73 2.66 2.61 2.56 2.52 
4S 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74 2.67 2.61 2.55 2.51 2.46 
so 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.63 2.56 2.51 2.46 2.42 
SS 7.12 5.01 4.16 3.68 3.37 3.15 2.98 2.85 2.75 2.66 2.59 2.53 2.47 2.42 2.38 
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.44 2.39 2.35 
70 7.01 4.92 4.07 3.60 3.29 3.07 2.91 2.78 2.67 2.59 2.51 2.45 2.40 2.35 2.31 
80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 2.55 2.48 2.42 2.36 2.31 2.27 
90 6.93 4.85 4.01 3.53 3.23 3.01 2.84 2.72 2.61 2.52 2.45 2.39 2.33 2.29 2.24 
100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.43 2.37 2.31 2.27 2.22 
110 6.87 4.80 3.96 3.49 3.19 2.97 2.81 2.68 2.57 2.49 2.41 2.35 2.30 2.25 2.21 
120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.40 2.34 2.28 2.23 2.19 
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Table 17-2. Percentiles of Chi-Square Distribution for df = 1(1)30(5)100 

df \ (1-al 0.90 0.9S 0.97S 0.98 0.99 

1 2.706 3.841 5.024 5.412 6.635 
2 4.605 5.991 7.378 7.824 9.210 
3 6.251 7.815 9.348 9.837 11.345 
4 7.779 9.488 11.143 11.668 13.277 
s 9.236 11.070 12.833 13.388 15.086 
6 10.645 12.592 14.449 15.033 16.812 
7 12.017 14.067 16.013 16.622 18.475 
8 13.362 15.507 17 .535 18.168 20.090 
9 14.684 16.919 19.023 19.679 21.666 
10 15.987 18.307 20.483 21.161 23.209 
11 17.275 19.675 21.920 22.618 24.725 
12 18.549 21.026 23.337 24.054 26.217 
13 19.812 22.362 24.736 25.472 27.688 
14 21.064 23.685 26.119 26.873 29.141 
1S 22.307 24.996 27.488 28.259 30.578 
16 23.542 26.296 28.845 29.633 32.000 
17 24.769 27.587 30.191 30.995 33.409 
18 25.989 28.869 31.526 32.346 34.805 
19 27.204 30.144 32.852 33.687 36.191 
20 28.412 31.410 34.170 35.020 37.566 
21 29.615 32.671 35.479 36.343 38.932 
22 30.813 33.924 36.781 37.659 40.289 
23 32.007 35.172 38.076 38.968 41.638 
24 33.196 36.415 39.364 40.270 42.980 
2S 34.382 37.652 40.646 41.566 44.314 
26 35.563 38.885 41.923 42.856 45.642 
27 36.741 40.113 43.195 44.140 46.963 
28 37.916 41.337 44.461 45.419 48.278 
29 39.087 42.557 45.722 46.693 49.588 
30 40.256 43.773 46.979 47.962 50.892 
3S 46.059 49.802 53.203 54.244 57.342 
40 51.805 55.758 59.342 60.436 63.691 
4S 57.505 61.656 65.410 66.555 69.957 
so 63.167 67.505 71.420 72.613 76.154 
SS 68.796 73.311 77.380 78.619 82.292 
60 74.397 79.082 83.298 84.580 88.379 
6S 79.973 84.821 89.177 90.501 94.422 
70 85.527 90.531 95.023 96.388 100.425 
7S 91.061 96.217 100.839 102.243 106.393 
80 96.578 101.879 106.629 108.069 112.329 
85 102.079 107.522 112.393 113.871 118.236 
90 107 .565 113.145 118.136 119.648 124.116 
9S 113.038 118.752 123.858 125.405 129.973 
100 118.498 124.342 129.561 131.142 135.807 

Footnote. The notation df = 1(1)30(5)100 is a shorthand for df from 1 to 30 by unit steps, then 
from 35 to 100 by S's 
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Table 17-3. Upper Tolerance Limit Factors With y Coverage for n = 4(1)30(5)100 

9SO/o Confidence 99°/o Confidence 
n\v 0.90 0.9S 0.99 0.90 0.9S 0.99 

4 4.162 5.144 7.042 7.380 9.083 12.387 
s 3.407 4.203 5.741 5.362 6.578 8.939 
6 3.006 3.708 5.062 4.411 5.406 7.335 
7 2.755 3.399 4.642 3.859 4.728 6.412 
8 2.582 3.187 4.354 3.497 4.285 5.812 
9 2.454 3.031 4.143 3.240 3.972 5.389 
10 2.355 2.911 3.981 3.048 3.738 5.074 
11 2.275 2.815 3.852 2.898 3.556 4.829 
12 2.210 2.736 3.747 2.777 3.410 4.633 
13 2.155 2.671 3.659 2.677 3.290 4.472 
14 2.109 2.614 3.585 2.593 3.189 4.337 
1S 2.068 2.566 3.520 2.521 3.102 4.222 
16 2.033 2.524 3.464 2.459 3.028 4.123 
17 2.002 2.486 3.414 2.405 2.963 4.037 
18 1.974 2.453 3.370 2.357 2.905 3.960 
19 1.949 2.423 3.331 2.314 2.854 3.892 
20 1.926 2.396 3.295 2.276 2.808 3.832 
21 1.905 2.371 3.263 2.241 2.766 3.777 
22 1.886 2.349 3.233 2.209 2.729 3.727 
23 1.869 2.328 3.206 2.180 2.694 3.681 
24 1.853 2.309 3.181 2.154 2.662 3.640 
2S 1.838 2.292 3.158 2.129 2.633 3.601 
26 1.824 2.275 3.136 2.106 2.606 3.566 
27 1.811 2.260 3.116 2.085 2.581 3.533 
28 1.799 2.246 3.098 2.065 2.558 3.502 
29 1.788 2.232 3.080 2.047 2.536 3.473 
30 1.777 2.220 3.064 2.030 2.515 3.447 
3S 1.732 2.167 2.995 1.957 2.430 3.334 
40 1.697 2.125 2.941 1.902 2.364 3.249 
4S 1.669 2.092 2.898 1.857 2.312 3.180 
so 1.646 2.065 2.862 1.821 2.269 3.125 
SS 1.626 2.042 2.833 1.790 2.233 3.078 
60 1.609 2.022 2.807 1.764 2.202 3.038 
6S 1.594 2.005 2.785 1.741 2.176 3.004 
70 1.581 1.990 2.765 1.722 2.153 2.974 
7S 1.570 1.976 2.748 1.704 2.132 2.947 
80 1.559 1.964 2.733 1.688 2.114 2.924 
8S 1.550 1.954 2.719 1.674 2.097 2.902 
90 1.542 1.944 2.706 1.661 2.082 2.883 
9S 1.534 1.935 2.695 1.650 2.069 2.866 

100 1.527 1.927 2.684 1.639 2.056 2.850 

Source of algorithm used to compute table: Odeh & Owen (1980) 
Footnote. The notation n = 4(1)30(5)100 is a shorthand for n from 4 to 30 by unit steps, then 
from 35 to 100 by S's 
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Table 17-4. Minimum Coverage of Non-Parametric Upper Tolerance Limit for n 

4(1)30(5)100 

Maxi mu 2nd Largest 
n 1-a 0.9S 0.99 0.9S 0.99 

4 0.473 0.316 0.248 0.140 
s 0.549 0.398 0.342 0.222 
6 0.607 0.464 0.418 0.294 
7 0.652 0.518 0.479 0.356 
8 0.688 0.562 0.529 0.410 
9 0.717 0.599 0.570 0.455 
10 0.741 0.631 0.605 0.495 
11 0.762 0.658 0.635 0.530 
12 0.779 0.681 0.661 0.560 
13 0.794 0.702 0.683 0.587 
14 0.807 0.720 0.703 0.610 
1S 0.819 0.736 0.720 0.632 
16 0.829 0.750 0.736 0.651 
17 0.838 0.763 0.749 0.668 
18 0.847 0.774 0.762 0.683 
19 0.854 0.785 0.773 0.698 
20 0.861 0.794 0.783 0.711 
21 0.867 0.803 0.793 0.723 
22 0.873 0.811 0.801 0.734 
23 0.878 0.819 0.809 0.744 
24 0.883 0.825 0.817 0.753 
2S 0.887 0.832 0.823 0.762 
26 0.891 0.838 0.830 0.770 
27 0.895 0.843 0.836 0.778 
28 0.899 0.848 0.841 0.785 
29 0.902 0.853 0.846 0.792 
30 0.905 0.858 0.851 0.798 
3S 0.918 0.877 0.871 0.824 
40 0.928 0.891 0.886 0.845 
4S 0.936 0.903 0.898 0.861 
so 0.942 0.912 0.908 0.874 
SS 0.947 0.920 0.916 0.885 
60 0.951 0.926 0.923 0.894 
6S 0.955 0.932 0.929 0.902 
70 0.958 0.936 0.934 0.908 
7S 0.961 0.940 0.938 0.914 
80 0.963 0.944 0.942 0.919 
85 0.965 0.947 0.945 0.924 
90 0.967 0.950 0.948 0.928 
9S 0.969 0.953 0.951 0.932 
100 0.970 0.955 0.953 0.935 

Footnotes. Maximum, 2nd Largest refer to Largest and next largest sample values 
The notation n = 4(1)30(5)100 is a shorthand for n from 4 to 30 by unit steps, then from 35 to 
100 by S's 
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Table 17-5. Significance Levels (a) for Mann-Kendall Trend Test for n = 4(1)10 

n=4 n = 5 n=6 n=7 n=S n=9 n = 10 

s a s a s a s a s a s a s a 

0 0.6250 0 0.5920 1 0.5000 1 0.5000 0 0.5480 0 0.5400 1 0.5000 
2 0.3750 2 0.4080 3 0.3600 3 0.3860 2 0.4520 2 0.4600 3 0.4310 
4 0.1670 4 0.2420 5 0.2350 5 0.2810 4 0.3600 4 0.3810 5 0.3640 
6 0.0420 6 0.1170 7 0.1360 7 0.1910 6 0.2740 6 0.3060 7 0.3000 

8 0.0420 9 0.0680 9 0.1190 8 0.1990 8 0.2380 9 0.2420 
10 0.0083 11 0.0280 11 0.0680 10 0.1380 10 0.1790 11 0.1900 

13 0.0083 13 0.0350 12 0.0890 12 0.1300 13 0.1460 
15 0.0014 15 0.0150 14 0.0540 14 0.0900 15 0.1080 

17 0.0054 16 0.0310 16 0.0600 17 0.0780 
19 0.0014 18 0.0160 18 0.0380 19 0.0540 
21 0.0002 20 0.0071 20 0.0220 21 0.0360 

22 0.0028 22 0.0120 23 0.0230 
24 0.0009 24 0.0063 25 0.0140 
26 0.0002 26 0.0029 27 0.0083 
28 0.0000 28 0.0012 29 0.0046 

30 0.0004 31 0.0023 
32 0.0001 33 0.0011 
34 0.0000 35 0.0005 
36 0.0000 37 0.0002 

39 0.0001 
41 0.0000 
43 0.0000 
45 0.0000 

Source: Gilbert (1987) 
Footnote: Notation n = 4(1)10 is shorthand for n from 4 to 10 by unit steps 
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Table 18-1. Confidence Levels of Non-Parametric Prediction Limits for Next m Values (PL = jth Order Statistic) 
for n = 4(1)60 

j=n j = n-1 

n m=l m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 

4 0.800 0.667 0.571 0.500 0.600 0.400 0.286 
5 0.833 0.714 0.625 0.556 0.667 0.476 0.357 
6 0.857 0.750 0.667 0.600 0.714 0.536 0.417 
7 0.875 0.778 0.700 0.636 0.750 0.583 0.467 
8 0.889 0.800 0.727 0.667 0.778 0.622 0.509 
9 0.900 0.818 0.750 0.692 0.800 0.655 0.545 
10 0.909 0.833 0.769 0.714 0.818 0.682 0.577 
11 0.917 0.846 0.786 0.733 0.833 0.705 0.604 
12 0.923 0.857 0.800 0.750 0.846 0.725 0.629 
13 0.929 0.867 0.812 0.765 0.857 0.743 0.650 
14 0.933 0.875 0.824 0.778 0.867 0.758 0.669 
15 0.938 0.882 0.833 0.789 0.875 0.772 0.686 
16 0.941 0.889 0.842 0.800 0.882 0.784 0.702 
17 0.944 0.895 0.850 0.810 0.889 0.795 0.716 
18 0.947 0.900 0.857 0.818 0.895 0.805 0.729 
19 0.950 0.905 0.864 0.826 0.900 0.814 0.740 
20 0.952 0.909 0.870 0.833 0.905 0.823 0.751 
21 0.955 0.913 0.875 0.840 0.909 0.830 0.761 
22 0.957 0.917 0.880 0.846 0.913 0.837 0.770 
23 0.958 0.920 0.885 0.852 0.917 0.843 0.778 
24 0.960 0.923 0.889 0.857 0.920 0.849 0.786 
25 0.962 0.926 0.893 0.862 0.923 0.855 0.794 
26 0.963 0.929 0.897 0.867 0.926 0.860 0.800 
27 0.964 0.931 0.900 0.871 0.929 0.865 0.807 
28 0.966 0.933 0.903 0.875 0.931 0.869 0.813 
29 0.967 0.935 0.906 0.879 0.933 0.873 0.819 

Footnotes: Notation n = 4(1)60 is shorthand for n from 4 to 60 by unit steps 
PL = Prediction Limit 

D-28 

j = n-2 

m = 4 m=l m=2 m = 3 m = 4 

0.214 0.400 0.200 0.114 0.071 
0.278 0.500 0.286 0.179 0.119 
0.333 0.571 0.357 0.238 0.167 
0.382 0.625 0.417 0.292 0.212 
0.424 0.667 0.467 0.339 0.255 
0.462 0.700 0.509 0.382 0.294 
0.495 0.727 0.545 0.420 0.330 
0.524 0.750 0.577 0.453 0.363 
0.550 0.769 0.604 0.484 0.393 
0.574 0.786 0.629 0.511 0.421 
0.595 0.800 0.650 0.535 0.446 
0.614 0.812 0.669 0.558 0.470 
0.632 0.824 0.686 0.578 0.491 
0.648 0.833 0.702 0.596 0.511 
0.662 0.842 0.716 0.614 0.530 
0.676 0.850 0.729 0.629 0.547 
0.688 0.857 0.740 0.644 0.563 
0.700 0.864 0.751 0.657 0.578 
0.711 0.870 0.761 0.670 0.592 
0.721 0.875 0.770 0.681 0.605 
0.730 0.880 0.778 0.692 0.618 
0.739 0.885 0.786 0.702 0.629 
0.747 0.889 0.794 0.712 0.640 
0.755 0.893 0.800 0.720 0.651 
0.762 0.897 0.807 0.729 0.660 
0.769 0.900 0.813 0.737 0.670 
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Table 18-1. Confidence Levels of Non-Parametric Prediction Limits for Next m Values (PL = jth Order 

Statistic) for n = 4(1)60 

j=n j = n-1 j = n-2 

n m=l m = 2 m = 3 m = 4 m=l m = 2 m = 3 m = 4 m=l m=2 m = 3 m = 4 

30 0.968 0.938 0.909 0.882 0.935 0.877 0.824 0.775 0.903 0.819 0.744 0.678 
31 0.969 0.939 0.912 0.886 0.938 0.881 0.829 0.782 0.906 0.824 0.751 0.687 
32 0.970 0.941 0.914 0.889 0.939 0.884 0.834 0.787 0.909 0.829 0.758 0.695 
33 0.971 0.943 0.917 0.892 0.941 0.887 0.838 0.793 0.912 0.834 0.764 0.702 
34 0.971 0.944 0.919 0.895 0.943 0.890 0.842 0.798 0.914 0.838 0.770 0.709 
35 0.972 0.946 0.921 0.897 0.944 0.893 0.846 0.803 0.917 0.842 0.776 0.716 
36 0.973 0.947 0.923 0.900 0.946 0.896 0.850 0.808 0.919 0.846 0.781 0.723 
37 0.974 0.949 0.925 0.902 0.947 0.899 0.854 0.812 0.921 0.850 0.786 0.729 
38 0.974 0.950 0.927 0.905 0.949 0.901 0.857 0.816 0.923 0.854 0.791 0.735 
39 0.975 0.951 0.929 0.907 0.950 0.904 0.861 0.821 0.925 0.857 0.796 0.741 
40 0.976 0.952 0.930 0.909 0.951 0.906 0.864 0.825 0.927 0.861 0.801 0.746 
41 0.976 0.953 0.932 0.911 0.952 0.908 0.867 0.828 0.929 0.864 0.805 0.751 
42 0.977 0.955 0.933 0.913 0.953 0.910 0.870 0.832 0.930 0.867 0.809 0.756 
43 0.977 0.956 0.935 0.915 0.955 0.912 0.872 0.835 0.932 0.870 0.813 0.761 
44 0.978 0.957 0.936 0.917 0.956 0.914 0.875 0.839 0.933 0.872 0.817 0.766 
45 0.978 0.957 0.938 0.918 0.957 0.916 0.878 0.842 0.935 0.875 0.820 0.770 
46 0.979 0.958 0.939 0.920 0.957 0.918 0.880 0.845 0.936 0.878 0.824 0.774 
47 0.979 0.959 0.940 0.922 0.958 0.919 0.882 0.848 0.938 0.880 0.827 0.779 
48 0.980 0.960 0.941 0.923 0.959 0.921 0.885 0.851 0.939 0.882 0.831 0.783 
49 0.980 0.961 0.942 0.925 0.960 0.922 0.887 0.853 0.940 0.885 0.834 0.786 
50 0.980 0.962 0.943 0.926 0.961 0.924 0.889 0.856 0.941 0.887 0.837 0.790 
51 0.981 0.962 0.944 0.927 0.962 0.925 0.891 0.859 0.942 0.889 0.840 0.794 
52 0.981 0.963 0.945 0.929 0.962 0.927 0.893 0.861 0.943 0.891 0.842 0.797 
53 0.981 0.964 0.946 0.930 0.963 0.928 0.895 0.863 0.944 0.893 0.845 0.801 
54 0.982 0.964 0.947 0.931 0.964 0.929 0.897 0.866 0.945 0.895 0.848 0.804 
55 0.982 0.965 0.948 0.932 0.964 0.930 0.898 0.868 0.946 0.897 0.850 0.807 
56 0.982 0.966 0.949 0.933 0.965 0.932 0.900 0.870 0.947 0.898 0.853 0.810 
57 0.983 0.966 0.950 0.934 0.966 0.933 0.902 0.872 0.948 0.900 0.855 0.813 
58 0.983 0.967 0.951 0.935 0.966 0.934 0.903 0.874 0.949 0.902 0.857 0.816 
59 0.983 0.967 0.952 0.937 0.967 0.935 0.905 0.876 0.950 0.903 0.860 0.819 
60 0.984 0.968 0.952 0.938 0.967 0.936 0.906 0.878 0.951 0.905 0.862 0.821 

D-29 
March 2009 

EPAPAV0117531 



Appendix D. Chapters 10 to 18 Tables Unified Guidance 

This page intentionally left blank 

D-30 
March 2009 

EPAPAV0117532 



Appendix D. Chapters 10 to 18 Tables Unified Guidance 

Table 18-2. Confidence Levels for Non-Parametric Prediction Limit on Future 

Median of Order 3 (PL = jth Order Statistic) for n = 4(1)60 

n 

4 
s 
6 
7 
8 
9 
10 
11 
12 
13 
14 
1S 
16 
17 
18 
19 
20 
21 
22 
23 
24 
2S 
26 
27 
28 
29 
30 
31 
32 
33 
34 
3S 
36 
37 
38 
39 
40 
41 
42 
43 
44 
4S 
46 
47 
48 
49 
so 
Sl 
S2 
S3 
S4 
SS 
S6 
S7 
S8 
S9 
60 

j = n 

0.857 
0.893 
0.917 
0.933 
0.945 
0.955 
0.962 
0.967 
0.971 
0.975 
0.978 
0.980 
0.982 
0.984 
0.986 
0.987 
0.988 
0.989 
0.990 
0.991 
0.991 
0.992 
0.993 
0.993 
0.994 
0.994 
0.994 
0.995 
0.995 
0.995 
0.995 
0.996 
0.996 
0.996 
0.996 
0.997 
0.997 
0.997 
0.997 
0.997 
0.997 
0.997 
0.997 
0.998 
0.998 
0.998 
0.998 
0.998 
0.998 
0.998 
0.998 
0.998 
0.998 
0.998 
0.998 
0.998 
0.998 

j = n-1 

0.629 
0.714 
0.774 
0.817 
0.848 
0.873 
0.892 
0.907 
0.919 
0.929 
0.937 
0.944 
0.949 
0.954 
0.959 
0.962 
0.966 
0.968 
0.971 
0.973 
0.975 
0.977 
0.978 
0.980 
0.981 
0.982 
0.983 
0.984 
0.985 
0.986 
0.987 
0.987 
0.988 
0.989 
0.989 
0.990 
0.990 
0.991 
0.991 
0.991 
0.992 
0.992 
0.992 
0.993 
0.993 
0.993 
0.994 
0.994 
0.994 
0.994 
0.994 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 

j = n-2 

0.371 
0.500 
0.595 
0.667 
0.721 
0.764 
0.797 
0.824 
0.846 
0.864 
0.879 
0.892 
0.903 
0.912 
0.920 
0.927 
0.933 
0.939 
0.943 
0.948 
0.951 
0.955 
0.958 
0.961 
0.963 
0.965 
0.967 
0.969 
0.971 
0.973 
0.974 
0.975 
0.977 
0.978 
0.979 
0.980 
0.981 
0.982 
0.982 
0.983 
0.984 
0.985 
0.985 
0.986 
0.986 
0.987 
0.987 
0.988 
0.988 
0.989 
0.989 
0.989 
0.990 
0.990 
0.990 
0.991 
0.991 

Footnotes: Notation n = 4(1)60 is shorthand for n from 4 to 60 by unit steps;PL = Prediction Limit 
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D STATISTICAL TABLES 

D.2 TABLES FROM CHAPTER 19: INTERWELL PREDICTION LIMITS FOR FUTURE VALUES 

TABLE 19-1 K-Multipliers for 1-of-2 Interwell Prediction Limits on Observations .................. D-34 

TABLE 19-2 K-Multipliers for 1-of-3 Interwell Prediction Limits on Observations .................. D-43 

TABLE 19-3 K-Multipliers for 1-of-4 Interwell Prediction Limits on Observations ................... D-52 

TABLE 19-4 K-Multipliers for Mod. Cal. Interwell Prediction Limits on Observations .............. D-61 
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Table 19-1. K-Multi pliers for 1-of-2 Interwell Prediction Limits on Observations (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.78 0.67 0.61 O.S9 O.S7 O.S4 O.S3 O.S2 O.Sl O.Sl o.so o.so o.so o.so 0.49 0.49 0.49 0.49 0.49 0.49 
2 1.21 1.03 0.9S 0.90 0.88 0.84 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 0.77 0.77 0.77 0.76 0.76 0.76 
3 1.47 1.23 1.13 1.08 1.05 1.01 0.98 0.96 0.9S 0.94 0.94 0.93 0.93 0.92 0.92 0.92 0.91 0.91 0.91 0.91 
4 1.6S 1.37 1.26 1.20 1.16 1.12 1.09 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.02 1.01 1.01 1.01 1.00 1.00 
s 1.79 1.48 1.36 1.29 1.2S 1.20 1.17 1.1S 1.13 1.12 1.11 1.11 1.10 1.10 1.09 1.09 1.08 1.08 1.08 1.07 
8 2.09 1.71 1.S6 1.48 1.43 1.37 1.34 1.31 1.29 1.28 1.27 1.26 1.2S 1.2S 1.24 1.24 1.23 1.23 1.22 1.22 
12 2.34 1.90 1.73 1.64 1.58 1.Sl 1.47 1.44 1.42 1.40 1.39 1.39 1.38 1.37 1.36 1.36 1.3S 1.3S 1.34 1.34 
16 2.52 2.03 1.8S 1.75 1.68 1.61 1.S6 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 1.43 1.43 1.42 1.42 
20 2.65 2.14 1.94 1.83 1.76 1.68 1.64 1.60 1.S7 1.S6 1.S4 1.S3 1.S3 1.S2 1.Sl 1.50 1.50 1.49 1.49 1.48 
30 2.89 2.32 2.10 1.98 1.90 1.81 1.76 1.72 1.69 1.67 1.66 1.6S 1.64 1.63 1.62 1.61 1.60 1.60 1.S9 1.S9 
40 3.06 2.4S 2.21 2.08 2.00 1.90 1.8S 1.80 1.78 1.7S 1.74 1.73 1.72 1.70 1.69 1.69 1.68 1.67 1.67 1.66 
so 3.19 2.54 2.29 2.16 2.08 1.97 1.91 1.87 1.84 1.82 1.80 1.79 1.78 1.76 1.7S 1.74 1.74 1.73 1.72 1.72 
60 3.29 2.62 2.36 2.22 2.13 2.03 1.97 1.92 1.89 1.86 1.8S 1.83 1.82 1.81 1.80 1.79 1.78 1.78 1.77 1.76 
7S 3.41 2.71 2.44 2.30 2.21 2.10 2.03 1.98 1.9S 1.92 1.91 1.89 1.88 1.86 1.8S 1.84 1.84 1.83 1.82 1.81 

100 3.57 2.83 2.55 2.40 2.30 2.18 2.11 2.06 2.02 2.00 1.98 1.96 1.9S 1.94 1.92 1.91 1.91 1.90 1.89 1.88 
12S 3.69 2.92 2.63 2.47 2.37 2.2S 2.18 2.12 2.08 2.06 2.04 2.02 2.01 1.99 1.98 1.97 1.96 1.9S 1.94 1.93 
150 3.79 3.00 2.69 2.53 2.42 2.30 2.23 2.17 2.13 2.10 2.08 2.07 2.05 2.03 2.02 2.01 2.00 1.99 1.98 1.97 
17S 3.87 3.06 2.75 2.58 2.47 2.34 2.27 2.21 2.17 2.14 2.12 2.10 2.09 2.07 2.05 2.04 2.04 2.03 2.02 2.01 
200 3.93 3.11 2.79 2.62 2.51 2.38 2.30 2.24 2.20 2.17 2.1S 2.13 2.12 2.10 2.09 2.07 2.07 2.06 2.05 2.04 

Table 19-1. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Observations (1 coc, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.21 1.03 0.9S 0.90 0.88 0.84 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 0.77 0.77 0.77 0.76 0.76 0.76 
2 1.6S 1.37 1.26 1.20 1.16 1.12 1.09 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.02 1.01 1.01 1.01 1.00 1.00 
3 1.91 1.S7 1.44 1.37 1.32 1.27 1.24 1.21 1.19 1.18 1.18 1.17 1.16 1.16 1.1S 1.1S 1.14 1.14 1.14 1.13 
4 2.09 1.71 1.S6 1.48 1.43 1.37 1.34 1.31 1.29 1.28 1.27 1.26 1.2S 1.2S 1.24 1.24 1.23 1.23 1.22 1.22 
s 2.23 1.82 1.6S 1.S7 1.Sl 1.4S 1.41 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 1.30 1.30 1.30 1.29 1.29 
8 2.S2 2.03 1.8S 1.75 1.68 1.61 1.S6 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 1.43 1.43 1.42 1.42 
12 2.76 2.22 2.01 1.90 1.83 1.74 1.69 1.6S 1.63 1.61 1.60 1.S9 1.58 1.S7 1.S6 1.SS 1.SS 1.S4 1.S3 1.S3 
16 2.93 2.3S 2.12 2.00 1.93 1.83 1.78 1.74 1.71 1.69 1.68 1.67 1.66 1.64 1.63 1.63 1.62 1.62 1.61 1.60 
20 3.06 2.4S 2.21 2.08 2.00 1.90 1.8S 1.80 1.78 1.7S 1.74 1.73 1.72 1.70 1.69 1.69 1.68 1.67 1.67 1.66 
30 3.29 2.62 2.36 2.22 2.13 2.03 1.97 1.92 1.89 1.86 1.8S 1.83 1.82 1.81 1.80 1.79 1.78 1.78 1.77 1.76 
40 3.45 2.74 2.47 2.32 2.23 2.12 2.05 2.00 1.97 1.94 1.92 1.91 1.90 1.88 1.87 1.86 1.8S 1.8S 1.84 1.83 
so 3.57 2.83 2.SS 2.40 2.30 2.18 2.11 2.06 2.02 2.00 1.98 1.96 1.9S 1.94 1.92 1.91 1.91 1.90 1.89 1.88 
60 3.67 2.91 2.61 2.46 2.36 2.24 2.16 2.11 2.07 2.05 2.03 2.01 2.00 1.98 1.97 1.96 1.9S 1.94 1.93 1.92 
7S 3.79 3.00 2.69 2.S3 2.42 2.30 2.23 2.17 2.13 2.10 2.08 2.07 2.05 2.03 2.02 2.01 2.00 1.99 1.98 1.97 

100 3.93 3.11 2.79 2.62 2.Sl 2.38 2.30 2.24 2.20 2.17 2.1S 2.13 2.12 2.10 2.09 2.07 2.07 2.06 2.05 2.04 
12S 4.05 3.19 2.87 2.69 2.S8 2.44 2.36 2.30 2.26 2.23 2.21 2.19 2.17 2.1S 2.14 2.12 2.12 2.11 2.10 2.09 
150 4.14 3.26 2.93 2.75 2.63 2.49 2.41 2.3S 2.30 2.27 2.2S 2.23 2.22 2.19 2.18 2.17 2.16 2.1S 2.14 2.13 
17S 4.21 3.32 2.98 2.79 2.68 2.S4 2.4S 2.39 2.34 2.31 2.28 2.27 2.2S 2.23 2.21 2.20 2.19 2.18 2.17 2.16 
200 4.28 3.37 3.02 2.84 2.72 2.S7 2.49 2.42 2.37 2.34 2.32 2.30 2.28 2.26 2.24 2.23 2.22 2.21 2.20 2.19 
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Table 19-1. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Observations (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 1.6S 1.37 1.26 1.20 1.16 1.12 1.09 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.02 1.01 1.01 1.01 1.00 1.00 
2 2.09 1.71 1.S6 1.48 1.43 1.37 1.34 1.31 1.29 1.28 1.27 1.26 1.2S 1.2S 1.24 1.24 1.23 1.23 1.22 1.22 
3 2.34 1.90 1.73 1.64 1.58 1.Sl 1.47 1.44 1.42 1.40 1.39 1.39 1.38 1.37 1.36 1.36 1.3S 1.3S 1.34 1.34 
4 2.S2 2.03 1.85 1.7S 1.68 1.61 1.S6 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 1.43 1.43 1.42 1.42 
s 2.6S 2.14 1.94 1.83 1.76 1.68 1.64 1.60 1.S7 1.S6 1.S4 1.S3 1.S3 1.S2 1.Sl 1.50 1.50 1.49 1.49 1.48 
8 2.93 2.3S 2.12 2.00 1.93 1.83 1.78 1.74 1.71 1.69 1.68 1.67 1.66 1.64 1.63 1.63 1.62 1.62 1.61 1.60 
12 3.16 2.S2 2.28 2.15 2.06 1.96 1.90 1.86 1.83 1.80 1.79 1.78 1.77 1.7S 1.74 1.73 1.73 1.72 1.71 1.71 
16 3.33 2.6S 2.39 2.24 2.16 2.05 1.99 1.94 1.90 1.88 1.86 1.85 1.84 1.82 1.81 1.80 1.80 1.79 1.78 1.78 
20 3.45 2.74 2.47 2.32 2.23 2.12 2.05 2.00 1.97 1.94 1.92 1.91 1.90 1.88 1.87 1.86 1.85 1.85 1.84 1.83 
30 3.67 2.91 2.61 2.46 2.36 2.24 2.16 2.11 2.07 2.05 2.03 2.01 2.00 1.98 1.97 1.96 1.9S 1.94 1.93 1.92 
40 3.82 3.02 2.71 2.S5 2.44 2.32 2.24 2.19 2.1S 2.12 2.10 2.08 2.07 2.05 2.03 2.02 2.02 2.01 2.00 1.99 
so 3.93 3.11 2.79 2.62 2.Sl 2.38 2.30 2.24 2.20 2.17 2.1S 2.13 2.12 2.10 2.09 2.07 2.07 2.06 2.05 2.04 
60 4.03 3.18 2.8S 2.68 2.S7 2.43 2.3S 2.29 2.2S 2.22 2.20 2.18 2.16 2.14 2.13 2.12 2.11 2.10 2.09 2.08 
7S 4.14 3.26 2.93 2.7S 2.63 2.49 2.41 2.3S 2.30 2.27 2.2S 2.23 2.22 2.19 2.18 2.17 2.16 2.1S 2.14 2.13 

100 4.28 3.37 3.02 2.84 2.72 2.S7 2.49 2.42 2.37 2.34 2.32 2.30 2.28 2.26 2.24 2.23 2.22 2.21 2.20 2.19 
12S 4.39 3.45 3.10 2.90 2.78 2.63 2.S4 2.47 2.43 2.39 2.37 2.3S 2.33 2.31 2.29 2.28 2.27 2.26 2.24 2.23 
150 4.47 3.52 3.15 2.96 2.83 2.68 2.S9 2.S2 2.47 2.44 2.41 2.39 2.37 2.3S 2.33 2.32 2.31 2.30 2.28 2.27 
17S 4.54 3.57 3.20 3.00 2.87 2.72 2.63 2.S6 2.Sl 2.47 2.44 2.42 2.41 2.38 2.36 2.3S 2.34 2.33 2.31 2.30 
200 4.61 3.62 3.24 3.04 2.91 2.7S 2.66 2.S9 2.S4 2.SO 2.47 2.4S 2.44 2.41 2.39 2.38 2.37 2.36 2.34 2.33 

Table 19-1. K-Multipliers for 1-of-2 Interwell Prediction Limits on Observations (2 COCs, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.27 1.05 0.97 0.92 0.89 0.8S 0.83 0.81 0.80 0.79 0.79 0.78 0.78 0.78 0.77 0.77 0.77 0.77 0.76 0.76 
2 1.76 1.42 1.29 1.22 1.18 1.13 1.10 1.08 1.06 1.05 1.04 1.04 1.03 1.02 1.02 1.02 1.01 1.01 1.01 1.00 
3 2.05 1.63 1.48 1.39 1.34 1.28 1.2S 1.22 1.20 1.19 1.18 1.17 1.17 1.16 1.1S 1.1S 1.14 1.14 1.14 1.13 
4 2.27 1.78 1.61 1.Sl 1.4S 1.39 1.3S 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 1.24 1.23 1.23 1.23 1.22 
s 2.43 1.90 1.71 1.60 1.S4 1.47 1.42 1.39 1.37 1.3S 1.34 1.33 1.33 1.32 1.31 1.30 1.30 1.30 1.29 1.29 
8 2.79 2.1S 1.91 1.79 1.72 1.63 1.58 1.S4 1.S2 1.SO 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 1.43 1.43 1.42 
12 3.10 2.36 2.09 1.95 1.87 1.77 1.71 1.67 1.64 1.62 1.60 1.S9 1.58 1.S7 1.S6 1.55 1.SS 1.S4 1.S4 1.S3 
16 3.32 2.51 2.22 2.07 1.97 1.86 1.80 1.76 1.72 1.70 1.69 1.67 1.66 1.6S 1.64 1.63 1.62 1.62 1.61 1.61 
20 3.48 2.62 2.31 2.15 2.05 1.94 1.87 1.82 1.79 1.77 1.7S 1.73 1.72 1.71 1.70 1.69 1.68 1.68 1.67 1.66 
30 3.78 2.83 2.48 2.31 2.20 2.07 2.00 1.94 1.90 1.88 1.86 1.84 1.83 1.81 1.80 1.79 1.79 1.78 1.77 1.76 
40 3.99 2.97 2.60 2.41 2.30 2.16 2.08 2.02 1.98 1.96 1.93 1.92 1.91 1.89 1.87 1.86 1.86 1.8S 1.84 1.83 
so 4.15 3.08 2.70 2.50 2.37 2.23 2.1S 2.09 2.04 2.01 1.99 1.98 1.96 1.94 1.93 1.92 1.91 1.90 1.89 1.88 
60 4.28 3.17 2.77 2.56 2.44 2.29 2.20 2.14 2.09 2.06 2.04 2.02 2.01 1.99 1.97 1.96 1.9S 1.9S 1.93 1.93 
7S 4.43 3.27 2.86 2.65 2.51 2.36 2.27 2.20 2.1S 2.12 2.10 2.08 2.06 2.04 2.03 2.01 2.01 2.00 1.99 1.98 

100 4.63 3.41 2.97 2.75 2.61 2.44 2.3S 2.28 2.23 2.19 2.17 2.1S 2.13 2.11 2.09 2.08 2.07 2.06 2.05 2.04 
12S 4.78 3.51 3.06 2.83 2.68 2.51 2.41 2.34 2.28 2.2S 2.22 2.20 2.19 2.16 2.14 2.13 2.12 2.11 2.10 2.09 
150 4.90 3.60 3.13 2.89 2.74 2.56 2.46 2.38 2.33 2.29 2.27 2.2S 2.23 2.20 2.19 2.17 2.16 2.15 2.14 2.13 
17S 5.00 3.67 3.19 2.94 2.79 2.61 2.51 2.42 2.37 2.33 2.30 2.28 2.27 2.24 2.22 2.21 2.20 2.19 2.17 2.16 
200 5.08 3.73 3.24 2.99 2.83 2.65 2.54 2.46 2.40 2.37 2.34 2.31 2.30 2.27 2.2S 2.24 2.23 2.22 2.20 2.19 
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Table 19-1. K-Multipliers for 1-of-2 Interwell Prediction Limits on Observations (2 COCs, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.76 1.42 1.29 1.22 1.18 1.13 1.10 1.08 1.06 1.05 1.04 1.04 1.03 1.02 1.02 1.02 1.01 1.01 1.01 1.00 
2 2.27 1.78 1.61 1.Sl 1.4S 1.39 1.3S 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 1.24 1.23 1.23 1.23 1.22 
3 2.S7 2.00 1.79 1.68 1.61 1.S3 1.48 1.4S 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.36 1.3S 1.3S 1.34 1.34 
4 2.79 2.1S 1.91 1.79 1.72 1.63 1.58 1.S4 1.S2 1.SO 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 1.43 1.43 1.42 
s 2.96 2.27 2.01 1.88 1.80 1.71 1.6S 1.61 1.58 1.S7 1.55 1.S4 1.S3 1.S2 1.Sl 1.50 1.SO 1.49 1.49 1.48 
8 3.32 2.Sl 2.22 2.07 1.97 1.86 1.80 1.76 1.72 1.70 1.69 1.67 1.66 1.6S 1.64 1.63 1.62 1.62 1.61 1.61 
12 3.62 2.71 2.39 2.22 2.12 2.00 1.93 1.88 1.84 1.82 1.80 1.78 1.77 1.76 1.74 1.74 1.73 1.72 1.71 1.71 
16 3.83 2.86 2.Sl 2.33 2.22 2.09 2.02 1.96 1.92 1.89 1.88 1.86 1.8S 1.83 1.82 1.81 1.80 1.80 1.79 1.78 
20 3.99 2.97 2.60 2.41 2.30 2.16 2.08 2.02 1.98 1.96 1.93 1.92 1.91 1.89 1.87 1.86 1.86 1.85 1.84 1.83 
30 4.28 3.17 2.77 2.S6 2.44 2.29 2.20 2.14 2.09 2.06 2.04 2.02 2.01 1.99 1.97 1.96 1.9S 1.9S 1.93 1.93 
40 4.48 3.30 2.89 2.67 2.S3 2.38 2.29 2.21 2.17 2.14 2.11 2.09 2.08 2.06 2.04 2.03 2.02 2.01 2.00 1.99 
so 4.63 3.41 2.97 2.7S 2.61 2.44 2.3S 2.28 2.23 2.19 2.17 2.1S 2.13 2.11 2.09 2.08 2.07 2.06 2.05 2.04 
60 4.75 3.49 3.05 2.81. 2.67 2.SO 2.40 2.32 2.27 2.24 2.21 2.19 2.18 2.1S 2.14 2.12 2.11 2.10 2.09 2.08 
7S 4.90 3.60 3.13 2.89 2.74 2.S6 2.46 2.38 2.33 2.29 2.27 2.2S 2.23 2.20 2.19 2.17 2.16 2.1S 2.14 2.13 

100 5.08 3.73 3.24 2.99 2.83 2.6S 2.S4 2.46 2.40 2.37 2.34 2.31 2.30 2.27 2.2S 2.24 2.23 2.22 2.20 2.19 
12S 5.23 3.82 3.33 3.06 2.90 2.71 2.60 2.S2 2.46 2.42 2.39 2.37 2.3S 2.32 2.30 2.29 2.27 2.26 2.2S 2.24 
1SO 5.34 3.90 3.39 3.13 2.96 2.76 2.6S 2.S6 2.SO 2.46 2.43 2.41 2.39 2.36 2.34 2.32 2.31 2.30 2.29 2.27 
17S 5.43 3.97 3.45 3.18 3.01 2.81 2.69 2.60 2.S4 2.SO 2.47 2.44 2.42 2.39 2.37 2.36 2.3S 2.34 2.32 2.31 
200 5.52 4.03 3.50 3.22 3.05 2.85 2.73 2.64 2.S7 2.S3 2.SO 2.47 2.4S 2.42 2.40 2.39 2.37 2.36 2.3S 2.33 

Table 19-1. K-Multipliers for 1-of-2 Interwell Prediction Limits on Observations (2 COCs, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.27 1.79 1.61 1.Sl 1.4S 1.39 1.3S 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 1.24 1.23 1.23 1.23 1.22 
2 2.79 2.1S 1.91 1.79 1.72 1.63 1.58 1.S4 1.S2 1.SO 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 1.43 1.43 1.42 
3 3.10 2.36 2.09 1.95 1.87 1.77 1.71 1.67 1.64 1.62 1.60 1.S9 1.58 1.S7 1.S6 1.55 1.SS 1.S4 1.S4 1.S3 
4 3.32 2.Sl 2.22 2.07 1.97 1.86 1.80 1.7S 1.72 1.70 1.69 1.67 1.66 1.6S 1.64 1.63 1.62 1.62 1.61 1.61 
s 3.48 2.62 2.31 2.15 2.05 1.94 1.87 1.82 1.79 1.77 1.7S 1.73 1.72 1.71 1.70 1.69 1.68 1.68 1.67 1.66 
8 3.83 2.86 2.Sl 2.33 2.22 2.09 2.02 1.96 1.92 1.89 1.88 1.86 1.85 1.83 1.82 1.81 1.80 1.80 1.79 1.78 
12 4.12 3.06 2.68 2.48 2.36 2.22 2.14 2.07 2.03 2.00 1.98 1.97 1.9S 1.93 1.92 1.91 1.90 1.89 1.88 1.87 
16 4.32 3.20 2.80 2.S9 2.46 2.31 2.22 2.1S 2.11 2.08 2.06 2.04 2.02 2.00 1.99 1.98 1.97 1.96 1.9S 1.94 
20 4.48 3.30 2.89 2.67 2.S3 2.38 2.29 2.22 2.17 2.14 2.11 2.09 2.08 2.06 2.04 2.03 2.02 2.01 2.00 1.99 
30 4.75 3.49 3.05 2.81 2.67 2.SO 2.40 2.32 2.27 2.24 2.21 2.19 2.18 2.1S 2.14 2.12 2.11 2.10 2.09 2.08 
40 4.94 3.63 3.16 2.91 2.76 2.S8 2.48 2.40 2.3S 2.31 2.28 2.26 2.24 2.22 2.20 2.19 2.18 2.17 2.1S 2.14 
so 5.08 3.72 3.24 2.99 2.83 2.6S 2.S4 2.46 2.40 2.37 2.34 2.31 2.30 2.27 2.2S 2.24 2.23 2.22 2.20 2.19 
60 5.20 3.81 3.31 3.05 2.89 2.70 2.S9 2.Sl 2.4S 2.41 2.38 2.36 2.34 2.31 2.29 2.28 2.26 2.26 2.24 2.23 
7S 5.34 3.91 3.39 3.1.3 2.96 2.76 2.6S 2.S6 2.50 2.46 2.43 2.41 2.39 2.36 2.34 2.32 2.31 2.30 2.29 2.28 

100 5.52 4.03 3.50 3.22 3.05 2.8S 2.73 2.64 2.S7 2.S3 2.SO 2.47 2.4S 2.42 2.40 2.39 2.37 2.36 2.35 2.33 
12S 5.65 4.12 3.58 3.29 3.12 2.91 2.79 2.69 2.63 2.S8 2.5S 2.52 2.SO 2.47 2.4S 2.43 2.42 2.41 2.39 2.38 
1SO 5.76 4.20 3.64 3.35 3.17 2.96 2.83 2.74 2.67 2.63 2.S9 2.S6 2.S4 2.Sl 2.49 2.47 2.46 2.4S 2.43 2.41 
175 5.85 4.26 3.70 3.40 3.22 3.00 2.87 2.77 2.71 2.66 2.63 2.60 2.58 2.54 2.52 2.50 2.49 2.48 2.46 2.4S 
200 5.93 4.32 3.74 3.45 3.26 3.04 2.91 2.81 2.74 2.69 2.66 2.63 2.61 2.S7 2.S5 2.S3 2.S2 2.SO 2.48 2.47 
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Table 19-1. K-Multi pliers for 1-of-2 Interwel I Prediction Limits on Observations (5 COCs, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.02 1.58 1.42 1.33 1.28 1.22 1.18 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 1.09 1.09 1.08 1.08 1.08 
2 2.62 1.97 1.74 1.63 1.S6 1.48 1.43 1.40 1.37 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 1.30 1.30 1.29 1.29 
3 3.00 2.20 1.93 1.80 1.72 1.62 1.S7 1.S3 1.50 1.48 1.47 1.46 1.4S 1.44 1.43 1.42 1.42 1.42 1.41 1.40 
4 3.27 2.37 2.07 1.92 1.83 1.72 1.66 1.62 1.S9 1.S7 1.S6 1.S4 1.S4 1.S2 1.Sl 1.Sl 1.SO 1.SO 1.49 1.48 
s 3.49 2.51 2.18 2.01 1.91 1.80 1.74 1.69 1.66 1.64 1.62 1.61 1.60 1.S9 1.S7 1.S7 1.S6 1.S6 1.55 1.S4 
8 3.96 2.79 2.40 2.21 2.09 1.96 1.89 1.83 1.80 1.77 1.7S 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
12 4.37 3.03 2.59 2.38 2.2S 2.10 2.02 1.9S 1.91 1.89 1.86 1.8S 1.84 1.82 1.80 1.80 1.79 1.78 1.77 1.76 
16 4.66 3.20 2.73 2.49 2.3S 2.19 2.11 2.04 1.99 1.96 1.94 1.92 1.91 1.89 1.88 1.87 1.86 1.8S 1.84 1.83 
20 4.88 3.34 2.84 2.59 2.44 2.27 2.17 2.10 2.06 2.02 2.00 1.98 1.97 1.9S 1.93 1.92 1.91 1.91 1.89 1.89 
30 5.28 3.58 3.03 2.75 2.59 2.40 2.30 2.22 2.17 2.13 2.11 2.09 2.07 2.05 2.03 2.02 2.01 2.00 1.99 1.98 
40 5.56 3.75 3.16 2.87 2.69 2.49 2.38 2.30 2.24 2.21 2.18 2.16 2.14 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
so 5.77 3.88 3.26 2.96 2.77 2.57 2.45 2.36 2.30 2.26 2.23 2.21 2.19 2.17 2.1S 2.14 2.13 2.12 2.10 2.09 
60 5.94 3.98 3.35 3.03 2.84 2.62 2.50 2.41 2.3S 2.31 2.28 2.26 2.24 2.21 2.19 2.18 2.17 2.16 2.14 2.13 
7S 6.15 4.11 3.45 3.12 2.92 2.69 2.57 2.47 2.41 2.37 2.34 2.31 2.29 2.26 2.24 2.23 2.22 2.21 2.19 2.18 

100 6.42 4.27 3.58 3.23 3.02 2.78 2.65 2.55 2.48 2.44 2.40 2.38 2.36 2.33 2.31 2.29 2.28 2.27 2.2S 2.24 
12S 6.62 4.40 3.68 3.32 3.10 2.85 2.71 2.61 2.54 2.49 2.46 2.43 2.41 2.38 2.36 2.34 2.33 2.32 2.30 2.29 
1SO 6.79 4.50 3.75 3.39 3.16 2.91 2.77 2.66 2.59 2.54 2.50 2.47 2.45 2.42 2.40 2.38 2.37 2.3S 2.34 2.32 
17S 6.92 4.58 3.82 3.45 3.22 2.96 2.81 2.70 2.63 2.58 2.54 2.51 2.49 2.45 2.43 2.41 2.40 2.39 2.37 2.3S 
200 7.04 4.65 3.88 3.49 3.26 3.00 2.85 2.73 2.66 2.61 2.57 2.54 2.52 2.48 2.46 2.44 2.43 2.41 2.39 2.38 

Table 19-1. K-Multipliers for 1-of-2 Interwell Prediction Limits on Observations (5 COCs, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.62 1.97 1.74 1.63 1.S6 1.48 1.43 1.40 1.37 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 1.30 1.30 1.29 1.29 
2 3.27 2.37 2.07 1.92 1.83 1.72 1.66 1.62 1.S9 1.S7 1.S6 1.S4 1.S4 1.S2 1.Sl 1.Sl 1.SO 1.SO 1.49 1.48 
3 3.67 2.62 2.26 2.09 1.98 1.86 1.80 1.7S 1.71 1.69 1.67 1.66 1.6S 1.63 1.62 1.62 1.61 1.60 1.60 1.S9 
4 3.96 2.79 2.40 2.21 2.09 1.96 1.89 1.83 1.80 1.77 1.7S 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
s 4.18 2.92 2.Sl 2.30 2.18 2.04 1.96 1.90 1.86 1.83 1.82 1.80 1.79 1.77 1.76 1.7S 1.74 1.74 1.73 1.72 
8 4.66 3.20 2.73 2.49 2.3S 2.19 2.11 2.04 1.99 1.96 1.94 1.92 1.91 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
12 5.06 3.45 2.92 2.66 2.Sl 2.33 2.23 2.1S 2.11 2.07 2.05 2.03 2.01 1.99 1.98 1.97 1.96 1.9S 1.94 1.93 
16 5.34 3.62 3.06 2.78 2.61 2.42 2.32 2.24 2.19 2.1S 2.12 2.10 2.09 2.06 2.05 2.03 2.02 2.02 2.00 1.99 
20 5.56 3.75 3.16 2.87 2.69 2.49 2.38 2.30 2.24 2.21 2.18 2.16 2.14 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
30 5.94 3.98 3.35 3.03 2.84 2.62 2.SO 2.41 2.3S 2.31 2.28 2.26 2.24 2.21 2.19 2.18 2.17 2.16 2.14 2.13 
40 6.21 4.15 3.48 3.14 2.94 2.71 2.S9 2.49 2.43 2.38 2.3S 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.20 2.19 
so 6.42 4.27 3.58 3.23 3.02 2.78 2.6S 2.S5 2.48 2.44 2.40 2.38 2.36 2.33 2.31 2.29 2.28 2.27 2.2S 2.24 
60 6.59 4.37 3.66 3.30 3.09 2.84 2.70 2.60 2.S3 2.48 2.4S 2.42 2.40 2.37 2.3S 2.33 2.32 2.31 2.29 2.28 
7S 6.79 4.50 3.75 3.39 3.16 2.91 2.77 2.66 2.S9 2.S4 2.SO 2.47 2.4S 2.42 2.40 2.38 2.37 2.3S 2.34 2.32 

100 7.04 4.65 3.88 3.49 3.26 3.00 2.85 2.73 2.66 2.61 2.S7 2.S4 2.S2 2.48 2.46 2.44 2.43 2.41 2.39 2.38 
12S 7.23 4.77 3.98 3.58 3.34 3.06 2.91 2.79 2.72 2.66 2.62 2.S9 2.S7 2.S3 2.Sl 2.49 2.47 2.46 2.44 2.43 
1SO 7.38 4.87 4.05 3.65 3.40 3.12 2.96 2.84 2.76 2.70 2.66 2.63 2.61 2.S7 2.S4 2.S2 2.Sl 2.SO 2.48 2.46 
17S 7.52 4.95 4.12 3.70 3.45 3.17 3.00 2.88 2.80 2.74 2.70 2.67 2.64 2.60 2.S8 2.S6 2.S4 2.S3 2.Sl 2.49 
200 7.62 5.02 4.17 3.75 3.50 3.20 3.04 2.91 2.83 2.77 2.73 2.70 2.67 2.63 2.60 2.S8 2.S7 2.SS 2.S3 2.S2 
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Table 19-1. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Observations (5 COCs, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 3.27 2.37 2.07 1.92 1.83 1.72 1.66 1.62 1.S9 1.S7 1.S6 1.S4 1.S4 1.S2 1.Sl 1.Sl 1.50 1.50 1.49 1.48 
2 3.96 2.79 2.40 2.21 2.09 1.96 1.89 1.83 1.80 1.77 1.7S 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
3 4.37 3.03 2.S9 2.38 2.2S 2.10 2.02 1.9S 1.91 1.89 1.86 1.8S 1.84 1.82 1.80 1.80 1.79 1.78 1.77 1.76 
4 4.66 3.20 2.73 2.49 2.3S 2.19 2.11 2.04 1.99 1.96 1.94 1.92 1.91 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
s 4.88 3.34 2.84 2.S9 2.44 2.27 2.17 2.10 2.06 2.02 2.00 1.98 1.97 1.9S 1.93 1.92 1.91 1.91 1.89 1.89 
8 5.34 3.62 3.06 2.78 2.61 2.42 2.32 2.24 2.19 2.1S 2.12 2.10 2.09 2.06 2.05 2.03 2.02 2.02 2.00 1.99 
12 5.74 3.86 3.24 2.94 2.76 2.SS 2.44 2.3S 2.29 2.2S 2.22 2.20 2.19 2.16 2.14 2.13 2.12 2.11 2.09 2.08 
16 6.01 4.02 3.37 3.06 2.86 2.64 2.S2 2.43 2.37 2.33 2.30 2.27 2.2S 2.23 2.21 2.19 2.18 2.17 2.16 2.1S 
20 6.21 4.15 3.48 3.14 2.94 2.71 2.S9 2.49 2.43 2.38 2.3S 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.20 2.19 
30 6.59 4.37 3.66 3.30 3.09 2.84 2.70 2.60 2.S3 2.48 2.4S 2.42 2.40 2.37 2.3S 2.33 2.32 2.31 2.29 2.28 
40 6.84 4.53 3.78 3.41 3.19 2.93 2.79 2.68 2.60 2.S5 2.S2 2.49 2.47 2.43 2.41 2.39 2.38 2.37 2.3S 2.34 
so 7.04 4.65 3.88 3.49 3.26 3.00 2.8S 2.73 2.66 2.61 2.S7 2.S4 2.S2 2.48 2.46 2.44 2.43 2.41 2.39 2.38 
60 7.20 4.75 3.96 3.56 3.32 3.05 2.90 2.78 2.71 2.6S 2.61 2.S8 2.S6 2.S2 2.50 2.48 2.46 2.4S 2.43 2.42 
7S 7.38 4.87 4.05 3.65 3.40 3.12 2.96 2.84 2.76 2.70 2.66 2.63 2.61 2.S7 2.S4 2.S2 2.Sl 2.50 2.48 2.46 

100 7.62 5.02 4.17 3.75 3.50 3.20 3.04 2.91 2.83 2.77 2.73 2.70 2.67 2.63 2.60 2.S8 2.S7 2.S5 2.S3 2.S2 
12S 7.81 5.13 4.26 3.83 3.57 3.27 3.10 2.97 2.88 2.82 2.78 2.7S 2.72 2.68 2.6S 2.63 2.61 2.60 2.S8 2.S6 
150 7.96 5.23 4.34 3.90 3.63 3.32 3.15 3.02 2.93 2.87 2.82 2.79 2.76 2.72 2.69 2.67 2.6S 2.63 2.61 2.S9 
17S 8.09 5.30 4.40 3.95 3.68 3.37 3.19 3.05 2.96 2.90 2.86 2.82 2.79 2.7S 2.72 2.70 2.68 2.66 2.64 2.62 
200 8.19 5.37 4.45 4.00 3.72 3.41 3.23 3.09 3.00 2.93 2.89 2.8S 2.82 2.78 2.7S 2.72 2.70 2.69 2.67 2.6S 

Table 19-1. K-Multipliers for 1-of-2 Interwell Prediction Limits on Observations (10 COCs, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 2.69 1.99 1.76 1.64 1.S6 1.48 1.43 1.40 1.37 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 1.30 1.30 1.29 1.29 
2 3.43 2.42 2.09 1.93 1.84 1.73 1.67 1.62 1.S9 1.S7 1.S6 1.55 1.S4 1.S2 1.Sl 1.Sl 1.50 1.SO 1.49 1.48 
3 3.88 2.68 2.29 2.11 2.00 1.87 1.80 1.7S 1.71 1.69 1.68 1.66 1.6S 1.64 1.63 1.62 1.61 1.60 1.60 1.S9 
4 4.24 2.86 2.44 2.23 2.11 1.97 1.89 1.84 1.80 1.77 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
s 4.51 3.01 2.55 2.33 2.20 2.05 1.97 1.91 1.86 1.84 1.82 1.80 1.79 1.77 1.76 1.7S 1.74 1.74 1.73 1.72 
8 5.09 3.33 2.79 2.53 2.38 2.21 2.11 2.04 2.00 1.97 1.94 1.93 1.91 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
12 5.60 3.60 3.00 2.71 2.54 2.34 2.24 2.16 2.11 2.08 2.05 2.03 2.02 1.99 1.98 1.97 1.96 1.9S 1.94 1.93 
16 5.95 3.80 3.14 2.83 2.65 2.44 2.33 2.2S 2.19 2.1S 2.12 2.11 2.09 2.06 2.05 2.03 2.02 2.02 2.00 1.99 
20 6.23 3.96 3.26 2.93 2.73 2.51 2.40 2.31 2.2S 2.21 2.18 2.16 2.14 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
30 6.73 4.22 3.47 3.10 2.89 2.65 2.52 2.42 2.36 2.32 2.28 2.26 2.24 2.21 2.19 2.18 2.17 2.16 2.14 2.13 
40 7.08 4.42 3.61 3.23 3.00 2.74 2.61 2.50 2.44 2.39 2.3S 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.20 2.19 
so 7.35 4.56 3.72 3.32 3.08 2.82 2.67 2.56 2.49 2.45 2.41 2.38 2.36 2.33 2.31 2.29 2.28 2.27 2.2S 2.24 
60 7.58 4.69 3.81 3.40 3.15 2.88 2.73 2.61 2.54 2.49 2.45 2.43 2.40 2.37 2.3S 2.33 2.32 2.31 2.29 2.28 
7S 7.83 4.83 3.93 3.49 3.23 2.95 2.79 2.67 2.60 2.55 2.51 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.32 

100 8.17 5.02 4.07 3.61 3.34 3.04 2.88 2.75 2.67 2.62 2.58 2.55 2.52 2.49 2.46 2.44 2.43 2.42 2.40 2.38 
12S 8.43 5.16 4.17 3.70 3.42 3.11 2.94 2.81 2.73 2.67 2.63 2.60 2.57 2.54 2.51 2.49 2.47 2.46 2.44 2.43 
150 8.63 5.27 4.27 3.78 3.49 3.17 2.99 2.86 2.77 2.72 2.67 2.64 2.61 2.57 2.55 2.53 2.51 2.50 2.48 2.46 
17S 8.80 5.37 4.34 3.84 3.55 3.22 3.04 2.90 2.81 2.75 2.71 2,67 2.65 2.61 2.58 2.56 2.54 2.53 2.51 2.49 
200 8.94 5.46 4.40 3.89 3.60 3.26 3.08 2.94 2.85 2.79 2.74 2.70 2.68 2.64 2.61 2.59 2.57 2.56 2.53 2.52 
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Table 19-1. K-Multipliers for 1-of-2 Interwell Prediction Limits on Observations (10 COCs, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 3.43 2.42 2.09 1.93 1.84 1.73 1.67 1.62 1.S9 1.S7 1.S6 1.55 1.S4 1.S2 1.Sl 1.Sl 1.50 1.50 1.49 1.48 
2 4.24 2.86 2.44 2.23 2.11 1.97 1.89 1.84 1.80 1.77 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
3 4.72 3.13 2.6S 2.40 2.27 2.11 2.02 1.96 1.92 1.89 1.87 1.8S 1.84 1.82 1.81 1.80 1.79 1.78 1.77 1.76 
4 5.09 3.33 2.79 2.S3 2.38 2.21 2.11 2.04 2.00 1.97 1.94 1.93 1.91 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
s 5.37 3.48 2.90 2.63 2.46 2.28 2.18 2.11 2.06 2.03 2.00 1.99 1.97 1.9S 1.93 1.92 1.91 1.91 1.89 1.89 
8 5.95 3.80 3.14 2.83 2.6S 2.44 2.33 2.2S 2.19 2.1S 2.12 2.11 2.09 2.06 2.05 2.03 2.02 2.02 2.00 1.99 
12 6.46 4.08 3.35 3.01 2.80 2.S7 2.4S 2.36 2.30 2.26 2.23 2.21 2.19 2.16 2.14 2.13 2.12 2.11 2.09 2.08 
16 6.82 4.27 3.49 3.13 2.91 2.67 2.S4 2.44 2.38 2.33 2.30 2.28 2.26 2.23 2.21 2.19 2.18 2.17 2.16 2.1S 
20 7.08 4.42 3.61 3.23 3.00 2.74 2.61 2.SO 2.44 2.39 2.3S 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.20 2.19 
30 7.58 4.69 3.81 3.40 3.15 2.88 2.73 2.61 2.S4 2.49 2.4S 2.43 2.40 2.37 2.3S 2.33 2.32 2.31 2.29 2.28 
40 7.92 4.88 3.96 3.52 3.26 2.97 2.81 2.69 2.62 2.S6 2.S2 2.49 2.47 2.44 2.41 2.39 2.38 2.37 2.3S 2.34 
so 8.17 5.02 4.07 3.61 3.34 3.04 2.88 2.75 2.67 2.62 2.S8 2.S5 2.S2 2.49 2.46 2.44 2.43 2.42 2.40 2.38 
60 8.37 5.13 4.15 3.69 3.41 3.10 2.93 2.80 2.72 2.66 2.62 2.S9 2.S6 2.S2 2.50 2.48 2.46 2.4S 2.43 2.42 
7S 8.63 5.27 4.27 3.78 3.49 3.17 2.99 2.86 2.77 2.72 2.67 2.64 2.61 2.S7 2.S5 2.S3 2.Sl 2.50 2.48 2.46 

100 8.94 5.46 4.40 3.89 3.60 3.26 3.08 2.94 2.85 2.79 2.74 2.70 2.68 2.64 2.61 2.S9 2.S7 2.S6 2.S3 2.S2 
12S 9.19 5.60 4.51 3.98 3.68 3.33 3.14 3.00 2.90 2.84 2.79 2.76 2.73 2.68 2.6S 2.63 2.62 2.60 2.S8 2.S6 
150 9.39 5.70 4.59 4.06 3.74 3.39 3.19 3.04 2.95 2.88 2.83 2.79 2.77 2.72 2.69 2.67 2.6S 2.64 2.61 2.60 
17S 9.56 5.80 4.66 4.12 3.80 3.43 3.24 3.08 2.99 2.92 2.87 2.83 2.80 2.76 2.72 2.70 2.68 2.67 2.64 2.63 
200 9.70 5.88 4.73 4.17 3.85 3.48 3.27 3.12 3.02 2.95 2.90 2.86 2.83 2.78 2.75 2.73 2.71 2.69 2.67 2.6S 

Table 19-1. K-Multipliers for 1-of-2 Interwell Prediction Limits on Observations (10 COCs, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 4.24 2.86 2.44 2.23 2.11 1.97 1.89 1.84 1.80 1.77 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
2 5.09 3.33 2.79 2.S3 2.38 2.21 2.11 2.04 2.00 1.97 1.94 1.93 1.91 1.89 1.88 1.87 1.86 1.8S 1.84 1.83 
3 5.60 3.60 2.99 2.71 2.S4 2.34 2.24 2.16 2.11 2.08 2.05 2.03 2.02 1.99 1.98 1.97 1.96 1.9S 1.94 1.93 
4 5.94 3.80 3.15 2.83 2.6S 2.44 2.33 2.24 2.19 2.1S 2.12 2.11 2.09 2.06 2.05 2.04 2.03 2.02 2.00 1.99 
s 6.22 3.96 3.26 2.93 2.73 2.S2 2.40 2.31 2.2S 2.21 2.19 2.16 2.14 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
8 6.82 4.27 3.50 3.13 2.91 2.67 2.S4 2.44 2.38 2.33 2.30 2.28 2.26 2.23 2.21 2.19 2.18 2.17 2.16 2.1S 
12 7.30 4.55 3.70 3.30 3.06 2.80 2.66 2.S5 2.48 2.44 2.40 2.37 2.3S 2.32 2.30 2.28 2.27 2.26 2.24 2.23 
16 7.64 4.72 3.84 3.42 3.18 2.90 2.74 2.63 2.S6 2.Sl 2.47 2.44 2.42 2.39 2.36 2.3S 2.33 2.32 2.31 2.29 
20 7.92 4.88 3.96 3.52 3.26 2.97 2.81 2.69 2.62 2.S6 2.S2 2.49 2.47 2.44 2.41 2.39 2.38 2.37 2.3S 2.34 
30 8.37 5.14 4.15 3.69 3.41 3.10 2.93 2.80 2.72 2.66 2.62 2.S9 2.S6 2.S2 2.SO 2.48 2.46 2.4S 2.43 2.42 
40 8.71 5.31 4.29 3.80 3.52 3.19 3.01 2.88 2.79 2.73 2.69 2.6S 2.63 2.S9 2.S6 2.S4 2.S2 2.Sl 2.49 2.48 
so 8.94 5.46 4.41 3.90 3.60 3.26 3.08 2.94 2.8S 2.79 2.74 2.71 2.68 2.63 2.61 2.S9 2.S7 2.S6 2.S3 2.S2 
60 9.17 5.57 4.49 3.97 3.66 3.32 3.13 2.99 2.89 2.83 2.78 2.74 2.72 2.67 2.6S 2.62 2.61 2.S9 2.S7 2.SS 
7S 9.39 5.71 4.59 4.05 3.74 3.39 3.19 3.04 2.9S 2.88 2.83 2.79 2.77 2.72 2.69 2.67 2.6S 2.64 2.61 2.60 
100 9.68 5.88 4.72 4.17 3.84 3.47 3.28 3.12 3.02 2.9S 2.90 2.86 2.83 2.78 2.7S 2.73 2.71 2.69 2.67 2.6S 
12S 9.90 6.01 4.83 4.26 3.93 3.54 3.33 3.18 3.07 3.00 2.9S 2.91 2.88 2.83 2.79 2.77 2.7S 2.74 2.71 2.69 
150 10.13 6.11 4.92 4.33 3.98 3.60 3.39 3.22 3.12 3.04 2.99 2.9S 2.91 2.86 2.83 2.81 2.79 2.77 2.74 2.73 
17S 10.24 6.19 4.97 4.39 4.04 3.64 3.43 3.26 3.16 3.08 3.02 2.98 2.9S 2.90 2.86 2.84 2.82 2.80 2.77 2.76 
200 10.41 6.28 5.03 4.44 4.08 3.69 3.47 3.30 3.18 3.11 3.05 3.01 2.97 2.92 2.89 2.86 2.84 2.83 2.80 2.78 
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Table 19-1. K-Multipliers for 1-of-2 Interwell Prediction Limits on Observations (20 COCs, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.53 2.44 2.11 1.94 1.85 1.73 1.67 1.63 1.59 1.58 1.56 1.55 1.54 1.52 1.51 1.51 1.50 1.50 1.49 1.48 
2 4.41 2.91 2.46 2.24 2.11 1.97 1.89 1.84 1.80 1.77 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
3 5.00 3.20 2.67 2.43 2.28 2.11 2.03 1.96 1.92 1.89 1.87 1.85 1.84 1.82 1.81 1.80 1.79 1.78 1.77 1.76 
4 5.43 3.42 2.82 2.55 2.39 2.21 2.12 2.05 2.00 1.97 1.94 1.93 1.92 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
5 5.77 3.57 2.95 2.65 2.48 2.29 2.19 2.11 2.06 2.03 2.00 1.99 1.97 1.95 1.93 1.92 1.92 1.91 1.89 1.89 
8 6.50 3.93 3.20 2.86 2.67 2.45 2.33 2.25 2.19 2.16 2.13 2.11 2.09 2.06 2.05 2.04 2.03 2.02 2.00 1.99 
12 7.13 4.24 3.43 3.05 2.83 2.59 2.46 2.36 2.31 2.26 2.23 2.21 2.19 2.16 2.14 2.13 2.12 2.11 2.09 2.09 
16 7.58 4.46 3.59 3.18 2.94 2.69 2.55 2.45 2.38 2.33 2.31 2.28 2.26 2.23 2.21 2.20 2.18 2.17 2.16 2.15 
20 7.92 4.63 3.71 3.28 3.03 2.76 2.62 2.51 2.44 2.39 2.36 2.33 2.31 2.28 2.26 2.25 2.23 2.22 2.21 2.19 
30 8.54 4.95 3.94 3.47 3.20 2.90 2.74 2.62 2.55 2.50 2.46 2.43 2.41 2.37 2.35 2.33 2.32 2.31 2.29 2.28 
40 9.00 5.17 4.10 3.59 3.31 2.99 2.83 2.70 2.62 2.57 2.53 2.50 2.48 2.44 2.41 2.40 2.38 2.37 2.35 2.34 
50 9.34 5.34 4.22 3.70 3.40 3.07 2.89 2.76 2.68 2.62 2.58 2.55 2.52 2.49 2.46 2.44 2.43 2.42 2.40 2.38 
60 9.62 5.48 4.32 3.78 3.47 3.13 2.95 2.81 2.73 2.67 2.62 2.59 2.57 2.53 2.50 2.48 2.47 2.45 2.43 2.42 
75 9.96 5.65 4.44 3.88 3.56 3.20 3.01 2.87 2.78 2.72 2.68 2.64 2.62 2.57 2.55 2.53 2.51 2.50 2.48 2.46 

100 10.36 5.85 4.59 4.01 3.67 3.30 3.10 2.95 2.86 2.79 2.74 2.71 2.68 2.64 2.61 2.59 2.57 2.56 2.54 2.52 
125 10.70 6.02 4.72 4.11 3.76 3.37 3.17 3.01 2.91 2.84 2.80 2.76 2.73 2.69 2.66 2.63 2.62 2.60 2.58 2.56 
150 10.92 6.16 4.80 4.19 3.83 3.43 3.22 3.06 2.96 2.89 2.84 2.80 2.77 2.72 2.69 2.67 2.65 2.64 2.61 2.60 
175 11.15 6.28 4.89 4.25 3.89 3.48 3.26 3.10 3.00 2.92 2.87 2.84 2.80 2.76 2.72 2.70 2.68 2.67 2.64 2.62 
200 11.38 6.36 4.96 4.31 3.94 3.53 3.30 3.13 3.03 2.96 2.90 2.86 2.83 2.79 2.75 2.73 2.71 2.69 2.67 2.65 

Table 19-1. K-Multipliers for 1-of-2 Interwell Prediction Limits on Observations (20 COCs, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 4.41 2.91 2.46 2.24 2.11 1.97 1.89 1.84 1.80 1.77 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
2 5.43 3.42 2.82 2.55 2.39 2.21 2.12 2.05 2.00 1.97 1.94 1.93 1.92 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
3 6.05 3.71 3.05 2.73 2.55 2.35 2.25 2.16 2.11 2.08 2.05 2.03 2.02 1.99 1.98 1.97 1.96 1.95 1.94 1.93 
4 6.50 3.93 3.20 2.86 2.67 2.45 2.33 2.25 2.19 2.16 2.13 2.11 2.09 2.06 2.05 2.04 2.03 2.02 2.00 1.99 
5 6.84 4.10 3.32 2.96 2.76 2.52 2.40 2.31 2.26 2.21 2.19 2.16 2.14 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
8 7.58 4.46 3.59 3.18 2.94 2.69 2.55 2.45 2.38 2.33 2.31 2.28 2.26 2.23 2.21 2.20 2.18 2.17 2.16 2.15 
12 8.20 4.78 3.81 3.36 3.11 2.82 2.67 2.56 2.49 2.44 2.40 2.38 2.35 2.32 2.30 2.28 2.27 2.26 2.25 2.23 
16 8.66 5.00 3.97 3.49 3.22 2.92 2.76 2.64 2.56 2.51 2.48 2.44 2.42 2.39 2.37 2.35 2.33 2.32 2.31 2.29 
20 9.00 5.17 4.10 3.59 3.31 2.99 2.83 2.70 2.62 2.57 2.53 2.50 2.48 2.44 2.41 2.40 2.38 2.37 2.35 2.34 
30 9.62 5.48 4.32 3.78 3.47 3.13 2.95 2.81 2.73 2.67 2.62 2.59 2.57 2.53 2.50 2.48 2.47 2.45 2.43 2.42 
40 10.02 5.70 4.48 3.91 3.59 3.23 3.03 2.89 2.80 2.74 2.69 2.66 2.63 2.59 2.56 2.54 2.52 2.51 2.49 2.48 
50 10.36 5.85 4.59 4.01 3.67 3.30 3.10 2.95 2.86 2.79 2.74 2.71 2.68 2.64 2.61 2.59 2.57 2.56 2.54 2.52 
60 10.64 5.99 4.69 4.09 3.74 3.36 3.16 3.00 2.90 2.84 2.79 2.75 2.72 2.68 2.65 2.62 2.61 2.60 2.57 2.55 
75 10.92 6.16 4.80 4.19 3.83 3.43 3.22 3.06 2.96 2.89 2.84 2.80 2.77 2.72 2.69 2.67 2.65 2.64 2.61 2.60 
100 11.38 6.36 4.96 4.31 3.94 3.53 3.30 3.13 3.03 2.96 2.90 2.86 2.83 2.79 2.75 2.73 2.71 2.69 2.67 2.65 
125 11.66 6.53 5.09 4.41 4.03 3.60 3.37 3.20 3.08 3.01 2.96 2.91 2.88 2.83 2.80 Z.77 2.75 2.74 2.71 2.69 
150 11.88 6.65 5.17 4.49 4.10 3.66 3.42 3.24 3.13 3.05 3.00 2.95 2.92 2.87 2.83 2.81 2.79 2.77 2.74 2.73 
175 12.11 6.76 5.26 4.56 4.15 3.71 3.47 3.28 3.17 3.09 3.03 2.99 2.95 2.90 2.86 2.84 2.82 2.80 2.77 2.76 
200 12.28 6.84 5.31 4.61 4.20 3.75 3.50 3.32 3.20 3.12 3.06 3.02 2.98 2.93 2.89 2.86 2.84 2.83 2.80 2.78 
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Table 19-1. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Observations (20 COCs, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 5.43 3.42 2.82 2.SS 2.40 2.21 2.11 2.04 2.00 1.97 1.94 1.93 1.92 1.89 1.88 1.87 1.86 1.8S 1.8S 1.83 
2 6.50 3.93 3.20 2.86 2.67 2.4S 2.34 2.2S 2.19 2.16 2.13 2.11 2.09 2.06 2.04 2.04 2.03 2.02 2.00 1.99 
3 7.13 4.24 3.42 3.05 2.82 2.60 2.4S 2.37 2.30 2.26 2.23 2.21 2.19 2.16 2.14 2.13 2.11 2.11 2.09 2.09 
4 7.58 4.46 3.59 3.18 2.9S 2.68 2.SS 2.4S 2.38 2.33 2.31 2.28 2.26 2.23 2.21 2.19 2.19 2.17 2.16 2.14 
s 7.92 4.63 3.70 3.28 3.03 2.77 2.62 2.Sl 2.44 2.40 2.3S 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.21 2.19 
8 8.66 5.00 3.98 3.50 3.22 2.92 2.76 2.64 2.S7 2.Sl 2.48 2.4S 2.43 2.39 2.36 2.3S 2.33 2.33 2.31 2.29 
12 9.22 5.31 4.18 3.67 3.39 3.06 2.88 2.7S 2.67 2.61 2.S7 2.S4 2.Sl 2.48 2.4S 2.43 2.42 2.41 2.39 2.38 
16 9.68 5.54 4.35 3.81 3.50 3.15 2.96 2.83 2.74 2.68 2.64 2.61 2.S8 2.S4 2.S2 2.SO 2.48 2.47 2.4S 2.43 
20 10.02 5.71 4.46 3.90 3.59 3.23 3.03 2.89 2.80 2.74 2.69 2.66 2.63 2.S9 2.S6 2.S4 2.S2 2.Sl 2.49 2.48 
30 10.58 5.99 4.69 4.10 3.74 3.36 3.15 3.00 2.91 2.84 2.79 2.7S 2.72 2.68 2.6S 2.62 2.61 2.60 2.S7 2.SS 
40 11.04 6.22 4.86 4.21 3.86 3.46 3.23 3.08 2.98 2.91 2.8S 2.82 2.78 2.74 2.71 2.68 2.67 2.6S 2.62 2.61 
so 11.38 6.36 4.97 4.32 3.94 3.53 3.30 3.13 3.03 2.96 2.91 2.86 2.83 2.79 2.7S 2.73 2.71 2.69 2.67 2.6S 
60 11.60 6.50 5.06 4.39 4.01 3.59 3.36 3.18 3.08 3.00 2.9S 2.91 2.87 2.82 2.79 2.77 2.74 2.73 2.70 2.69 
7S 11.83 6.67 5.17 4.49 4.10 3.66 3.42 3.25 3.13 3.06 3.00 2.9S 2.92 2.87 2.84 2.81 2.79 2.77 2.74 2.72 

100 12.28 6.84 5.31 4.61 4.21 3.76 3.50 3.32 3.20 3.12 3.06 3.02 2.98 2.93 2.89 2.86 2.84 2.83 2.80 2.78 
12S 12.51 7.01 5.43 4.72 4.29 3.83 3.57 3.37 3.26 3.18 3.11 3.06 3.03 2.97 2.94 2.91 2.89 2.87 2.84 2.82 
1SO 12.73 7.13 5.54 4.78 4.35 3.88 3.62 3.42 3.30 3.22 3.15 3.11 3.06 3.01 2.97 2.94 2.92 2.90 2.87 2.8S 
17S 12.96 7.24 5.60 4.86 4.41 3.93 3.66 3.46 3.34 3.25 3.19 3.13 3.10 3.04 3.00 2.97 2.9S 2.93 2.90 2.88 
200 13.19 7.30 5.65 4.90 4.46 3.97 3.70 3.50 3.37 3.28 3.22 3.16 3.13 3.07 3.03 3.00 2.98 2.96 2.92 2.90 

Table 19-1. K-Multipliers for 1-of-2 Interwell Prediction Limits on Observations (40 COCs, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 4.56 2.92 2.48 2.24 2.12 1.98 1.89 1.84 1.80 1.77 1.7S 1.7S 1.73 1.71 1.70 1.69 1.68 1.68 1.67 1.67 
2 5.69 3.48 2.85 2.57 2.41 2.22 2.12 2.05 2.01 1.97 1.9S 1.93 1.91 1.89 1.88 1.87 1.87 1.86 1.84 1.83 
3 6.34 3.81 3.06 2.73 2.57 2.36 2.24 2.17 2.11 2.08 2.05 2.03 2.02 2.00 1.98 1.96 1.96 1.9S 1.94 1.93 
4 6.91 4.00 3.25 2.88 2.69 2.45 2.34 2.24 2.20 2.16 2.12 2.10 2.09 2.07 2.05 2.03 2.03 2.02 2.01 2.00 
s 7.38 4.19 3.37 2.99 2.78 2.52 2.41 2.31 2.2S 2.22 2.18 2.16 2.1S 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
8 8.31 4.61 3.62 3.20 2.97 2.69 2.55 2.45 2.38 2.34 2.30 2.28 2.27 2.23 2.21 2.20 2.18 2.17 2.16 2.1S 
12 9.06 4.94 3.91 3.39 3.13 2.83 2.69 2.57 2.49 2.44 2.41 2.38 2.36 2.32 2.30 2.29 2.28 2.27 2.24 2.23 
16 9.62 5.22 4.05 3.53 3.25 2.93 2.76 2.64 2.57 2.51 2.48 2.45 2.43 2.38 2.36 2.3S 2.34 2.32 2.30 2.29 
20 10.00 5.41 4.19 3.65 3.34 3.02 2.83 2.71 2.62 2.57 2.52 2.50 2.48 2.44 2.42 2.39 2.38 2.37 2.35 2.34 
30 10.75 5.78 4.42 3.86 3.51 3.16 2.96 2.82 2.73 2.66 2.63 2.59 2.57 2.52 2.50 2.48 2.46 2.45 2.43 2.42 
40 11.50 6.06 4.61 4.00 3.62 3.25 3.04 2.90 2.80 2.73 2.69 2.66 2.63 2.59 2.56 2.55 2.52 2.51 2.49 2.48 
so 11.88 6.25 4.75 4.09 3.72 3.32 3.11 2.96 2.86 2.79 2.75 2.71 2.69 2.64 2.61 2.59 2.57 2.56 2.54 2.52 
60 12.25 6.34 4.84 4.19 3.81 3.39 3.17 3.02 2.91 2.84 2.79 2.76 2.72 2.68 2.65 2.63 2.61 2.59 2.57 2.56 
7S 12.62 6.53 4.98 4.28 3.91 3.46 3.24 3.06 2.97 2.90 2.84 2.80 2.77 2.72 2.70 2.68 2.65 2.64 2.62 2.59 
100 13.00 6.81 5.17 4.42 4.00 3.55 3.32 3.16 3.04 2.97 2.91 2.86 2.83 2.78 2.76 2.73 2.71 2.70 2.66 2.65 
12S 13.38 7.00 5.31 4.54 4.09 3.65 3.39 3.20 3.10 3.02 2.96 2.92 2.89 2.83 2.80 2.77 2.76 2.73 2.71 2.69 
1SO 13.75 7.19 5.41 4.61 4.19 3.70 3.44 3.25 3.13 3.06 3.00 2.96 2.92 2.88 2.84 2.80 2.79 2.77 2.75 2.72 
17S 14.12 7.28 5.50 4.70 4.23 3.74 3.48 3.30 3.18 3.10 3.04 2.99 2.96 2.90 2.86 2.84 2.82 2.80 2.77 2.76 
200 14.31 7.38 5.59 4.75 4.30 3.79 3.53 3.34 3.21 3.13 3.06 3.02 2.98 2.93 2.90 2.86 2.84 2.82 2.79 2.78 
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Table 19-1. K-Multipliers for 1-of-2 Interwell Prediction Limits on Observations ( 40 COCs, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 5.69 3.48 2.85 2.S7 2.41 2.22 2.12 2.05 2.01 1.97 1.9S 1.93 1.91 1.89 1.88 1.87 1.87 1.86 1.84 1.83 
2 6.91 4.00 3.25 2.88 2.69 2.4S 2.34 2.24 2.20 2.16 2.12 2.10 2.09 2.07 2.05 2.03 2.03 2.02 2.01 2.00 
3 7.66 4.38 3.48 3.06 2.85 2.S9 2.46 2.36 2.31 2.27 2.23 2.21 2.20 2.16 2.1S 2.12 2.12 2.11 2.09 2.08 
4 8.31 4.61 3.62 3.20 2.97 2.69 2.S5 2.4S 2.38 2.34 2.30 2.28 2.27 2.23 2.21 2.20 2.18 2.17 2.16 2.1S 
s 8.69 4.80 3.77 3.32 3.06 2.78 2.62 2.Sl 2.44 2.39 2.36 2.34 2.31 2.29 2.27 2.24 2.23 2.22 2.21 2.20 
8 9.62 5.22 4.05 3.53 3.25 2.93 2.76 2.64 2.S7 2.Sl 2.48 2.4S 2.43 2.38 2.36 2.3S 2.34 2.32 2.30 2.29 
12 10.38 5.59 4.33 3.74 3.41 3.06 2.90 2.76 2.68 2.62 2.S7 2.S5 2.Sl 2.48 2.4S 2.43 2.42 2.41 2.38 2.37 
16 10.94 5.83 4.47 3.88 3.53 3.18 2.98 2.83 2.7S 2.69 2.64 2.61 2.S8 2.SS 2.Sl 2.SO 2.48 2.46 2.44 2.43 
20 11.50 6.06 4.61 4.00 3.62 3.25 3.04 2.90 2.80 2.73 2.69 2.66 2.63 2.S9 2.S6 2.S5 2.S2 2.Sl 2.49 2.48 
30 12.25 6.34 4.84 4.19 3.81 3.39 3.17 3.02 2.91 2.84 2.79 2.76 2.72 2.68 2.65 2.63 2.61 2.S9 2.S7 2.S6 
40 12.62 6.62 5.03 4.33 3.91 3.48 3.25 3.09 2.98 2.91 2.85 2.82 2.78 2.73 2.71 2.69 2.66 2.6S 2.63 2.61 
so 13.00 6.81 5.17 4.42 4.00 3.55 3.32 3.16 3.04 2.97 2.91 2.86 2.83 2.78 2.76 2.73 2.71 2.70 2.66 2.6S 
60 13.38 7.00 5.27 4.52 4.09 3.62 3.38 3.20 3.09 3.00 2.95 2.91 2.88 2.83 2.79 2.77 2.7S 2.73 2.70 2.69 
7S 13.75 7.19 5.41 4.61 4.19 3.70 3.44 3.25 3.13 3.06 3.00 2.96 2.92 2.88 2.84 2.80 2.79 2.77 2.7S 2.72 

100 14.31 7.38 5.59 4.75 4.30 3.79 3.53 3.34 3.21 3.13 3.06 3.02 2.98 2.93 2.90 2.86 2.84 2.82 2.79 2.78 
12S 14.88 7.56 5.69 4.84 4.38 3.88 3.60 3.39 3.27 3.18 3.12 3.06 3.03 2.98 2.93 2.91 2.89 2.88 2.84 2.82 
150 15.06 7.75 5.78 4.94 4.47 3.93 3.65 3.44 3.32 3.23 3.16 3.11 3.07 3.02 2.97 2.95 2.92 2.90 2.87 2.85 
17S 15.25 7.84 5.88 5.03 4.52 3.98 3.70 3.48 3.34 3.26 3.19 3.14 3.10 3.04 3.00 2.97 2.95 2.93 2.90 2.88 
200 15.62 7.94 5.97 5.08 4.56 4.02 3.74 3.52 3.39 3.30 3.23 3.17 3.13 3.07 3.03 3.00 2.98 2.96 2.92 2.90 

Table 19-1. K-Multipliers for 1-of-2 Interwell Prediction Limits on Observations ( 40 COCs, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 6.91 4.00 3.25 2.88 2.69 2.4S 2.34 2.24 2.20 2.16 2.12 2.10 2.09 2.07 2.05 2.03 2.03 2.02 2.01 2.00 
2 8.31 4.61 3.62 3.20 2.97 2.69 2.SS 2.4S 2.38 2.34 2.30 2.28 2.27 2.23 2.21 2.20 2.18 2.17 2.16 2.1S 
3 9.06 4.94 3.91 3.39 3.13 2.83 2.69 2.S7 2.49 2.44 2.41 2.38 2.36 2.32 2.30 2.29 2.28 2.27 2.24 2.23 
4 9.62 5.22 4.05 3.53 3.25 2.93 2.76 2.64 2.S7 2.Sl 2.48 2.4S 2.43 2.38 2.36 2.3S 2.34 2.32 2.30 2.29 
s 10.00 5.41 4.19 3.65 3.34 3.02 2.83 2.71 2.62 2.S7 2.S2 2.SO 2.48 2.44 2.42 2.39 2.38 2.37 2.3S 2.34 
8 10.94 5.83 4.47 3.88 3.53 3.18 2.98 2.83 2.7S 2.69 2.64 2.61 2.S8 2.S5 2.Sl 2.SO 2.48 2.46 2.44 2.43 
12 11.69 6.16 4.75 4.07 3.72 3.32 3.11 2.9S 2.8S 2.78 2.73 2.70 2.68 2.63 2.61 2.S8 2.S6 2.S5 2.SO 2.Sl 
16 12.25 6.44 4.89 4.21 3.84 3.41 3.18 3.03 2.92 2.8S 2.80 2.77 2.73 2.69 2.66 2.64 2.62 2.61 2.S8 2.S7 
20 12.62 6.62 5.03 4.33 3.91 3.48 3.25 3.09 2.98 2.91 2.8S 2.82 2.78 2.73 2.71 2.69 2.66 2.6S 2.63 2.61 
30 13.38 7.00 5.27 4.52 4.09 3.62 3.38 3.20 3.09 3.00 2.9S 2.91 2.88 2.83 2.79 2.77 2.7S 2.73 2.70 2.69 
40 13.94 7.19 5.45 4.66 4.21 3.72 3.46 3.27 3.16 3.07 3.02 2.97 2.93 2.89 2.8S 2.83 2.80 2.78 2.76 2.73 
so 14.31 7.38 5.59 4.75 4.30 3.79 3.53 3.34 3.21 3.13 3.06 3.02 2.98 2.93 2.90 2.86 2.84 2.82 2.79 2.78 
60 14.69 7.56 5.69 4.84 4.38 3.86 3.58 3.39 3.25 3.18 3.11 3.06 3.03 2.97 2.92 2.90 2.88 2.86 2.83 2.82 
7S 15.06 7.75 5.78 4.94 4.47 3.93 3.65 3.44 3.32 3.23 3.16 3.11 3.07 3.02 2.97 2.9S 2.92 2.90 2.87 2.8S 
100 15.62 7.94 5.97 5.08 4.56 4.02 3.74 3.52 3.39 3.30 3.23 3.17 3.13 3.07 3.03 3.00 2.98 2.96 2.92 2.90 
12S 16.00 8.12 6.11 5.17 4.66 4.09 3.81 3.58 3.44 3.34 3.27 3.21 3.18 3.12 3.07 3.04 3.02 3.00 2.97 2.9S 
150 16.19 8.31 6.20 5.27 4.75 4.16 3.86 3.62 3.48 3.39 3.31 3.26 3.21 3.16 3.11 3.07 3.05 3.03 2.99 2.97 
17S 16.38 8.41 6.25 5.34 4.80 4.21 3.91 3.67 3.52 3.41 3.34 3.30 3.25 3.18 3.13 3.11 3.07 3.06 3.03 3.00 
200 16.75 8.50 6.34 5.41 4.84 4.26 3.93 3.70 3.55 3.45 3.38 3.32 3.27 3.21 3.17 3.13 3.11 3.09 3.05 3.03 
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Table 19-2. K-Multipliers for 1-of-3 Interwell Prediction Limits on Observations (1 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 0.33 0.2S 0.21 0.18 0.17 0.1S 0.14 0.13 0.12 0.12 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 
2 0.67 O.S4 0.49 0.45 0.43 0.41 0.39 0.38 0.37 0.36 0.36 0.36 0.3S 0.3S 0.3S 0.34 0.34 0.34 0.34 0.34 
3 0.87 0.71 0.64 0.60 O.S8 O.S4 O.S3 O.Sl o.so 0.49 0.49 0.48 0.48 0.48 0.47 0.47 0.47 0.47 0.46 0.46 
4 1.01 0.82 0.7S 0.70 0.67 0.64 0.62 0.60 O.S9 O.S8 O.S8 O.S7 O.S7 O.S6 O.S6 O.S6 o.ss o.ss o.ss o.ss 
s 1.12 0.91 0.83 0.78 0.7S 0.71 0.69 0.67 0.66 0.6S 0.64 0.64 0.63 0.63 0.62 0.62 0.62 0.61 0.61 0.61 
8 1.34 1.09 0.99 0.93 0.90 0.8S 0.82 0.80 0.79 0.78 0.77 0.77 0.76 0.7S 0.7S 0.7S 0.74 0.74 0.74 0.73 
12 1.S4 1.2S 1.13 1.06 1.02 0.97 0.94 0.91 0.90 0.89 0.88 0.87 0.87 0.86 0.8S 0.8S 0.8S 0.84 0.84 0.84 
16 1.68 1.36 1.22 1.15 1.11 1.05 1.02 0.99 0.97 0.96 0.9S 0.94 0.94 0.93 0.92 0.92 0.92 0.91 0.91 0.91 
20 1.78 1.44 1.30 1.22 1.17 1.11 1.08 1.05 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.97 0.96 0.96 
30 1.97 1.58 1.43 1.34 1.29 1.22 1.18 1.1S 1.13 1.12 1.10 1.10 1.09 1.08 1.07 1.07 1.06 1.06 1.05 1.05 
40 2.10 1.69 1.S2 1.43 1.37 1.30 1.2S 1.22 1.20 1.18 1.17 1.16 1.16 1.14 1.14 1.13 1.13 1.12 1.12 1.11 
so 2.21 1.76 1.S9 1.49 1.43 1.3S 1.31 1.27 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.18 1.17 1.17 1.16 1.16 
60 2.29 1.83 1.64 1.S4 1.48 1.40 1.3S 1.32 1.29 1.28 1.26 1.2S 1.24 1.23 1.22 1.22 1.21 1.21 1.20 1.20 
7S 2.39 1.90 1.71 1.60 1.S4 1.46 1.41 1.37 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.26 1.26 1.2S 1.2S 1.24 

100 2.51 2.00 1.80 1.68 1.61 1.S3 1.48 1.44 1.41 1.39 1.37 1.36 1.3S 1.34 1.33 1.32 1.32 1.31 1.30 1.30 
12S 2.61 2.07 1.86 1.74 1.67 1.58 1.S3 1.49 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 1.36 1.36 1.3S 1.34 
150 2.68 2.13 1.91 1.79 1.72 1.62 1.S7 1.S3 1.SO 1.48 1.46 1.4S 1.44 1.42 1.41 1.40 1.40 1.39 1.38 1.38 
17S 2.75 2.18 1.96 1.83 1.76 1.66 1.60 1.S6 1.S3 1.Sl 1.49 1.48 1.47 1.4S 1.44 1.43 1.43 1.42 1.41 1.41 
200 2.80 2.22 1.99 1.87 1.79 1.69 1.63 1.S9 1.S6 1.S4 1.S2 1.Sl 1.SO 1.48 1.47 1.46 1.4S 1.4S 1.44 1.43 

Table 19-2. K-Multipliers for 1-of-3 Interwell Prediction Limits on Observations (1 coc, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 0.67 O.S4 0.49 0.45 0.43 0.41 0.39 0.38 0.37 0.36 0.36 0.36 0.3S 0.3S 0.3S 0.34 0.34 0.34 0.34 0.34 
2 1.01 0.82 0.7S 0.70 0.67 0.64 0.62 0.60 O.S9 O.S8 O.S8 O.S7 O.S7 O.S6 O.S6 O.S6 o.ss o.ss o.ss o.ss 
3 1.21 0.98 0.89 0.84 0.80 0.76 0.74 0.72 0.71 0.70 0.69 0.69 0.68 0.68 0.67 0.67 0.67 0.66 0.66 0.66 
4 1.34 1.09 0.99 0.93 0.90 0.8S 0.82 0.80 0.79 0.78 0.77 0.77 0.76 0.7S 0.7S 0.7S 0.74 0.74 0.74 0.73 
s 1.4S 1.18 1.07 1.00 0.96 0.92 0.89 0.87 0.8S 0.84 0.83 0.83 0.82 0.81 0.81 0.80 0.80 0.80 0.79 0.79 
8 1.68 1.36 1.22 1.15 1.11 1.05 1.02 0.99 0.97 0.96 0.9S 0.94 0.94 0.93 0.92 0.92 0.92 0.91 0.91 0.91 
12 1.87 1.SO 1.36 1.28 1.22 1.16 1.12 1.09 1.08 1.06 1.05 1.04 1.04 1.03 1.02 1.02 1.01 1.01 1.00 1.00 
16 2.00 1.61 1.4S 1.36 1.31 1.24 1.20 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.09 1.08 1.08 1.07 1.07 1.06 
20 2.10 1.69 1.S2 1.43 1.37 1.30 1.2S 1.22 1.20 1.18 1.17 1.16 1.16 1.14 1.14 1.13 1.13 1.12 1.12 1.11 
30 2.29 1.83 1.64 1.S4 1.48 1.40 1.3S 1.32 1.29 1.28 1.26 1.2S 1.24 1.23 1.22 1.22 1.21 1.21 1.20 1.20 
40 2.41 1.92 1.73 1.62 1.SS 1.47 1.42 1.38 1.36 1.34 1.33 1.32 1.31 1.29 1.28 1.28 1.27 1.27 1.26 1.2S 
so 2.51 2.00 1.80 1.68 1.61 1.S3 1.48 1.44 1.41 1.39 1.37 1.36 1.3S 1.34 1.33 1.32 1.32 1.31 1.30 1.30 
60 2.59 2.06 1.8S 1.73 1.66 1.S7 1.S2 1.48 1.4S 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.3S 1.3S 1.34 1.33 
7S 2.68 2.13 1.91 1.79 1.72 1.62 1.S7 1.S3 1.SO 1.48 1.46 1.4S 1.44 1.42 1.41 1.40 1.40 1.39 1.38 1.38 

100 2.80 2.22 1.99 1.87 1.79 1.69 1.63 1.S9 1.S6 1.S4 1.S2 1.Sl 1.50 1.48 1.47 1.46 1.4S 1.4S 1.44 1.43 
12S 2.90 2.29 2.06 1.93 1.84 1.74 1.68 1.64 1.60 1.58 1.S6 1.SS 1.S4 1.S2 1.Sl 1.50 1.50 1.49 1.48 1.47 
150 2.97 2.3S 2.11 1.97 1.89 1.79 1.72 1.67 1.64 1.62 1.60 1.S9 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 1.Sl 
17S 3.03 2.40 2.1S 2.01 1.93 1.82 1.76 1.71 1.67 1.6S 1.63 1.62 1.60 1.S9 1.S7 1.S7 1.S6 1.SS 1.S4 1.S3 
200 3.08 2.44 2.18 2.05 1.96 1.8S 1.79 1.73 1.70 1.68 1.66 1.64 1.63 1.61 1.60 1.S9 1.58 1.58 1.S7 1.S6 
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Table 19-2. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Observations (1 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.01 0.82 0.7S 0.70 0.67 0.64 0.62 0.60 O.S9 O.S8 O.S8 O.S7 O.S7 O.S6 O.S6 O.S6 o.ss o.ss o.ss o.ss 
2 1.34 1.09 0.99 0.93 0.90 0.8S 0.82 0.80 0.79 0.78 0.77 0.77 0.76 0.7S 0.7S 0.7S 0.74 0.74 0.74 0.73 
3 1.S4 1.2S 1.13 1.06 1.02 0.97 0.94 0.91 0.90 0.89 0.88 0.87 0.87 0.86 0.8S 0.8S 0.8S 0.84 0.84 0.84 
4 1.68 1.36 1.22 1.15 1.11 1.05 1.02 0.99 0.97 0.96 0.9S 0.94 0.94 0.93 0.92 0.92 0.92 0.91 0.91 0.91 
s 1.78 1.44 1.30 1.22 1.17 1.11 1.08 1.05 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.97 0.96 0.96 
8 2.00 1.61 1.4S 1.36 1.31 1.24 1.20 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.09 1.08 1.08 1.07 1.07 1.06 
12 2.19 1.7S 1.S7 1.48 1.42 1.34 1.30 1.26 1.24 1.23 1.21 1.20 1.20 1.18 1.18 1.17 1.17 1.16 1.1S 1.1S 
16 2.32 1.8S 1.66 1.S6 1.50 1.42 1.37 1.33 1.31 1.29 1.28 1.27 1.26 1.2S 1.24 1.23 1.23 1.22 1.21 1.21 
20 2.41 1.92 1.73 1.62 1.SS 1.47 1.42 1.38 1.36 1.34 1.33 1.32 1.31 1.29 1.28 1.28 1.27 1.27 1.26 1.2S 
30 2.S9 2.06 1.8S 1.73 1.66 1.S7 1.S2 1.48 1.4S 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.3S 1.3S 1.34 1.33 
40 2.71 2.1S 1.93 1.81 1.73 1.64 1.58 1.S4 1.Sl 1.49 1.47 1.46 1.4S 1.44 1.42 1.42 1.41 1.41 1.40 1.39 
so 2.80 2.22 1.99 1.87 1.79 1.69 1.63 1.S9 1.S6 1.S4 1.S2 1.Sl 1.50 1.48 1.47 1.46 1.4S 1.4S 1.44 1.43 
60 2.88 2.28 2.04 1.92 1.83 1.73 1.67 1.63 1.60 1.S7 1.S6 1.S4 1.S3 1.S2 1.SO 1.49 1.49 1.48 1.47 1.47 
7S 2.97 2.3S 2.11 1.97 1.89 1.79 1.72 1.67 1.64 1.62 1.60 1.S9 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 1.Sl 

100 3.08 2.44 2.18 2.05 1.96 1.8S 1.79 1.73 1.70 1.68 1.66 1.64 1.63 1.61 1.60 1.S9 1.58 1.58 1.S7 1.S6 
12S 3.17 2.50 2.24 2.10 2.01 1.90 1.83 1.78 1.74 1.72 1.70 1.68 1.67 1.6S 1.64 1.63 1.62 1.62 1.61 1.60 
150 3.24 2.S6 2.29 2.15 2.05 1.94 1.87 1.82 1.78 1.7S 1.73 1.72 1.71 1.69 1.67 1.66 1.66 1.6S 1.64 1.63 
17S 3.30 2.60 2.33 2.18 2.09 1.97 1.90 1.8S 1.81 1.78 1.76 1.7S 1.73 1.72 1.70 1.69 1.68 1.68 1.66 1.66 
200 3.35 2.64 2.37 2.22 2.12 2.00 1.93 1.87 1.84 1.81 1.79 1.77 1.76 1.74 1.73 1.71 1.71 1.70 1.69 1.68 

Table 19-2. K-Multipliers for 1-of-3 Interwell Prediction Limits on Observations (2 COCs, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.71 O.S7 o.so 0.46 0.44 0.41 0.39 0.38 0.37 0.37 0.36 0.36 0.3S 0.3S 0.3S 0.34 0.34 0.34 0.34 0.34 
2 1.08 0.86 0.77 0.72 0.69 0.6S 0.62 0.61 O.S9 O.S9 O.S8 O.S7 O.S7 O.S6 O.S6 O.S6 o.ss o.ss o.ss o.ss 
3 1.30 1.03 0.92 0.86 0.82 0.77 0.7S 0.73 0.71 0.70 0.70 0.69 0.69 0.68 0.67 0.67 0.67 0.67 0.66 0.66 
4 1.47 1.1S 1.02 0.96 0.91 0.86 0.83 0.81 0.79 0.78 0.78 0.77 0.76 0.76 0.7S 0.7S 0.74 0.74 0.74 0.74 
s 1.S9 1.24 1.11 1.03 0.99 0.93 0.90 0.87 0.86 0.84 0.84 0.83 0.82 0.82 0.81 0.81 0.80 0.80 0.79 0.79 
8 1.86 1.44 1.27 1.19 1.13 1.07 1.03 1.00 0.98 0.97 0.96 0.9S 0.94 0.93 0.93 0.92 0.92 0.92 0.91 0.91 
12 2.09 1.60 1.42 1.32 1.2S 1.18 1.14 1.11 1.08 1.07 1.06 1.05 1.04 1.03 1.02 1.02 1.01 1.01 1.00 1.00 
16 2.26 1.72 1.S2 1.41 1.34 1.26 1.21 1.18 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.08 1.08 1.07 1.06 
20 2.39 1.81 1.S9 1.48 1.41 1.32 1.27 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 1.13 1.13 1.12 1.12 1.11 
30 2.62 1.97 1.73 1.60 1.S2 1.43 1.38 1.33 1.31 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 1.22 1.21 1.20 1.20 
40 2.78 2.08 1.83 1.69 1.61 1.50 1.4S 1.40 1.37 1.3S 1.34 1.32 1.31 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
so 2.91 2.17 1.90 1.76 1.67 1.S6 1.50 1.4S 1.42 1.40 1.38 1.37 1.36 1.3S 1.34 1.33 1.32 1.32 1.31 1.30 
60 3.01 2.24 1.96 1.81 1.72 1.61 1.SS 1.SO 1.46 1.44 1.42 1.41 1.40 1.38 1.37 1.36 1.36 1.3S 1.34 1.34 
7S 3.13 2.33 2.03 1.88 1.78 1.67 1.60 1.SS 1.Sl 1.49 1.47 1.46 1.4S 1.43 1.42 1.41 1.40 1.40 1.39 1.38 

100 3.29 2.44 2.13 1.96 1.86 1.74 1.67 1.61 1.58 1.SS 1.S3 1.S2 1.50 1.49 1.47 1.46 1.46 1.4S 1.44 1.43 
12S 3.41 2.52 2.20 2.03 1.92 1.79 1.72 1.66 1.62 1.60 1.58 1.S6 1.SS 1.S3 1.S2 1.Sl 1.50 1.49 1.48 1.48 
150 3.50 2.59 2.25 2.08 1.97 1.84 1.76 1.70 1.66 1.63 1.61 1.60 1.S9 1.S7 1.SS 1.S4 1.S3 1.S3 1.S2 1.Sl 
17S 3.58 2.64 2.30 2.12 2.01 1.87 1.80 1.74 1.69 1.67 1.64 1.63 1.62 1.60 1.58 1.S7 1.S6 1.S6 1.S4 1.S4 
200 3.65 2.69 2.34 2.15 2.04 1.91 1.83 1.76 1.72 1.69 1.67 1.6S 1.64 1.62 1.61 1.60 1.S9 1.58 1.S7 1.S6 
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Table 19-2. K-Multipliers for 1-of-3 Interwell Prediction Limits on Observations (2 COCs, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.08 0.86 0.77 0.72 0.69 0.6S 0.62 0.61 O.S9 O.S9 O.S8 O.S7 O.S7 O.S6 O.S6 O.S6 o.ss o.ss o.ss o.ss 
2 1.47 1.1S 1.02 0.96 0.91 0.86 0.83 0.81 0.79 0.78 0.78 0.77 0.76 0.76 0.7S 0.7S 0.74 0.74 0.74 0.74 
3 1.70 1.32 1.17 1.09 1.04 0.98 0.9S 0.92 0.91 0.89 0.88 0.88 0.87 0.86 0.86 0.8S 0.8S 0.8S 0.84 0.84 
4 1.86 1.44 1.27 1.19 1.13 1.07 1.03 1.00 0.98 0.97 0.96 0.9S 0.94 0.93 0.93 0.92 0.92 0.92 0.91 0.91 
s 1.99 1.S3 1.3S 1.26 1.20 1.13 1.09 1.06 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
8 2.26 1.72 1.S2 1.41 1.34 1.26 1.21 1.18 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.08 1.08 1.07 1.06 
12 2.49 1.88 1.6S 1.S3 1.46 1.37 1.32 1.28 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 1.17 1.16 1.16 1.1S 
16 2.66 2.00 1.7S 1.62 1.S4 1.4S 1.39 1.3S 1.32 1.30 1.29 1.27 1.27 1.2S 1.24 1.23 1.23 1.22 1.22 1.21 
20 2.78 2.08 1.83 1.69 1.61 1.SO 1.4S 1.40 1.37 1.3S 1.34 1.32 1.31 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
30 3.01 2.24 1.96 1.81 1.72 1.61 1.SS 1.SO 1.46 1.44 1.42 1.41 1.40 1.38 1.37 1.36 1.36 1.3S 1.34 1.34 
40 3.17 2.3S 2.05 1.90 1.80 1.68 1.61 1.S6 1.S3 1.SO 1.48 1.47 1.46 1.44 1.43 1.42 1.41 1.41 1.40 1.39 
so 3.29 2.44 2.13 1.96 1.86 1.74 1.67 1.61 1.58 1.SS 1.S3 1.S2 1.50 1.49 1.47 1.46 1.46 1.4S 1.44 1.43 
60 3.38 2.50 2.18 2.01 1.91 1.78 1.71 1.6S 1.61 1.S9 1.S7 1.SS 1.S4 1.S2 1.Sl 1.SO 1.49 1.49 1.48 1.47 
7S 3.50 2.59 2.2S 2.08 1.97 1.84 1.76 1.70 1.66 1.63 1.61 1.60 1.S9 1.S7 1.SS 1.S4 1.S3 1.S3 1.S2 1.Sl 

100 3.65 2.69 2.34 2.16 2.04 1.91 1.83 1.76 1.72 1.69 1.67 1.6S 1.64 1.62 1.61 1.60 1.S9 1.58 1.S7 1.S6 
12S 3.77 2.77 2.41 2.22 2.10 1.96 1.88 1.81 1.77 1.74 1.72 1.70 1.68 1.66 1.6S 1.64 1.63 1.62 1.61 1.60 
150 3.86 2.84 2.47 2.27 2.1S 2.00 1.92 1.8S 1.81 1.77 1.7S 1.73 1.72 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 
17S 3.94 2.89 2.51 2.31 2.19 2.04 1.9S 1.88 1.84 1.81 1.78 1.76 1.7S 1.73 1.71 1.70 1.69 1.68 1.67 1.66 
200 4.00 2.94 2.55 2.35 2.22 2.07 1.98 1.91 1.86 1.83 1.81 1.79 1.77 1.7S 1.73 1.72 1.71 1.70 1.69 1.68 

Table 19-2. K-Multipliers for 1-of-3 Interwell Prediction Limits on Observations (2 COCs, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.47 1.1S 1.02 0.96 0.91 0.86 0.83 0.81 0.79 0.78 0.78 0.77 0.76 0.76 0.7S 0.7S 0.74 0.74 0.74 0.74 
2 1.86 1.44 1.27 1.19 1.13 1.07 1.03 1.00 0.98 0.97 0.96 0.9S 0.94 0.93 0.93 0.92 0.92 0.92 0.91 0.91 
3 2.09 1.60 1.42 1.32 1.2S 1.18 1.14 1.11 1.08 1.07 1.06 1.05 1.04 1.03 1.02 1.02 1.01 1.01 1.00 1.00 
4 2.26 1.72 1.S2 1.41 1.34 1.26 1.21 1.18 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.08 1.08 1.07 1.06 
s 2.39 1.81 1.S9 1.48 1.41 1.32 1.27 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 1.13 1.13 1.12 1.12 1.11 
8 2.66 2.00 1.7S 1.62 1.S4 1.4S 1.39 1.3S 1.32 1.30 1.29 1.27 1.27 1.2S 1.24 1.23 1.23 1.22 1.22 1.21 
12 2.88 2.16 1.89 1.75 1.66 1.SS 1.49 1.44 1.41 1.39 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 1.30 1.29 
16 3.04 2.27 1.98 1.83 1.74 1.63 1.S6 1.Sl 1.48 1.4S 1.44 1.42 1.41 1.40 1.39 1.38 1.37 1.37 1.36 1.3S 
20 3.17 2.3S 2.05 1.90 1.80 1.68 1.61 1.S6 1.S3 1.50 1.48 1.47 1.46 1.44 1.43 1.42 1.41 1.41 1.40 1.39 
30 3.38 2.SO 2.18 2.01 1.91 1.78 1.71 1.6S 1.61 1.S9 1.S7 1.SS 1.S4 1.S2 1.Sl 1.SO 1.49 1.49 1.48 1.47 
40 3.54 2.61 2.27 2.10 1.98 1.8S 1.78 1.72 1.68 1.6S 1.63 1.61 1.60 1.58 1.S6 1.SS 1.SS 1.S4 1.S3 1.S2 
so 3.65 2.69 2.34 2.16 2.04 1.91 1.83 1.76 1.72 1.69 1.67 1.6S 1.64 1.62 1.61 1.60 1.S9 1.58 1.S7 1.S6 
60 3.75 2.76 2.40 2.21 2.09 1.9S 1.87 1.80 1.76 1.73 1.71 1.69 1.68 1.66 1.64 1.63 1.62 1.61 1.60 1.S9 
7S 3.86 2.84 2.47 2.27 2.1S 2.00 1.92 1.8S 1.81 1.77 1.7S 1.73 1.72 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 

100 4.00 2.94 2.SS 2.35 2.22 2.07 1.98 1.91 1.86 1.83 1.81 1.79 1.77 1.7S 1.73 1.72 1.71 1.70 1.69 1.68 
12S 4.11 3.02 2.62 2.41 2.28 2.12 2.03 1.96 1.91 1.88 1.8S 1.83 1.81 1.79 1.77 1.76 1.7S 1.74 1.73 1.72 
150 4.20 3.08 2.67 2.46 2.32 2.16 2.07 1.99 1.9S 1.91 1.88 1.86 1.8S 1.82 1.81 1.79 1.78 1.77 1.76 1.7S 
17S 4.28 3.13 2.71 2.SO 2.36 2.20 2.10 2.03 1.98 1.94 1.91 1.89 1.88 1.8S 1.83 1.82 1.81 1.80 1.79 1.78 
200 4.34 3.17 2.7S 2.S3 2.39 2.23 2.13 2.05 2.00 1.97 1.94 1.92 1.90 1.87 1.86 1.84 1.83 1.82 1.81 1.80 
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Table 19-2. K-Multipliers for 1-of-3 Interwell Prediction Limits on Observations (5 COCs, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.27 0.98 0.87 0.81 0.77 0.72 0.70 0.68 0.66 0.6S 0.6S 0.64 0.64 0.63 0.62 0.62 0.62 0.62 0.61 0.61 
2 1.71 1.29 1.13 1.05 1.00 0.94 0.90 0.88 0.86 0.8S 0.84 0.83 0.83 0.82 0.81 0.81 0.80 0.80 0.80 0.79 
3 1.99 1.47 1.28 1.19 1.13 1.06 1.02 0.99 0.97 0.9S 0.94 0.94 0.93 0.92 0.91 0.91 0.90 0.90 0.90 0.89 
4 2.19 1.60 1.39 1.29 1.22 1.14 1.10 1.07 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
s 2.35 1.70 1.48 1.36 1.29 1.21 1.16 1.12 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 1.02 1.01 1.01 
8 2.70 1.92 1.6S 1.S2 1.43 1.34 1.28 1.24 1.22 1.20 1.18 1.17 1.16 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
12 3.00 2.11 1.81 1.65 1.S6 1.4S 1.39 1.34 1.31 1.29 1.28 1.26 1.2S 1.24 1.23 1.22 1.22 1.21 1.20 1.20 
16 3.22 2.24 1.91 1.75 1.6S 1.S3 1.46 1.41 1.38 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
20 3.39 2.35 2.00 1.82 1.71 1.S9 1.S2 1.47 1.43 1.41 1.39 1.38 1.37 1.3S 1.34 1.33 1.32 1.32 1.31 1.30 
30 3.70 2.54 2.1S 1.95 1.83 1.70 1.62 1.S6 1.S2 1.50 1.48 1.46 1.4S 1.43 1.42 1.41 1.40 1.40 1.39 1.38 
40 3.92 2.67 2.25 2.05 1.92 1.77 1.69 1.63 1.S9 1.S6 1.S4 1.S2 1.Sl 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 
so 4.08 2.77 2.34 2.12 1.98 1.83 1.7S 1.68 1.64 1.61 1.S9 1.S7 1.S6 1.S4 1.S2 1.Sl 1.50 1.50 1.48 1.48 
60 4.22 2.86 2.40 2.18 2.04 1.88 1.79 1.72 1.68 1.6S 1.62 1.61 1.S9 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 
7S 4.38 2.96 2.48 2.25 2.10 1.94 1.84 1.77 1.73 1.69 1.67 1.6S 1.64 1.61 1.60 1.S9 1.58 1.S7 1.S6 1.SS 

100 4.59 3.09 2.59 2.34 2.18 2.01 1.91 1.84 1.79 1.7S 1.73 1.71 1.69 1.67 1.6S 1.64 1.63 1.62 1.61 1.60 
12S 4.75 3.19 2.67 2.41 2.25 2.07 1.96 1.88 1.83 1.80 1.77 1.7S 1.73 1.71 1.69 1.68 1.67 1.66 1.6S 1.64 
150 4.88 3.27 2.73 2.46 2.30 2.11 2.01 1.92 1.87 1.83 1.81 1.79 1.77 1.74 1.73 1.71 1.70 1.70 1.68 1.67 
17S 4.99 3.33 2.79 2.51 2.34 2.15 2.04 1.96 1.90 1.87 1.84 1.82 1.80 1.77 1.76 1.74 1.73 1.72 1.71 1.70 
200 5.09 3.39 2.83 2.55 2.38 2.18 2.07 1.99 1.93 1.89 1.86 1.84 1.82 1.80 1.78 1.77 1.76 1.7S 1.73 1.72 

Table 19-2. K-Multipliers for 1-of-3 Interwell Prediction Limits on Observations (5 COCs, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.71 1.29 1.13 1.05 1.00 0.94 0.90 0.88 0.86 0.8S 0.84 0.83 0.83 0.82 0.81 0.81 0.80 0.80 0.80 0.79 
2 2.19 1.60 1.39 1.29 1.22 1.14 1.10 1.06 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
3 2.49 1.79 1.SS 1.42 1.3S 1.26 1.21 1.17 1.1S 1.13 1.11 1.10 1.10 1.09 1.08 1.07 1.07 1.06 1.06 1.05 
4 2.70 1.92 1.6S 1.S2 1.43 1.34 1.28 1.24 1.22 1.20 1.18 1.17 1.16 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
s 2.87 2.03 1.74 1.S9 1.50 1.40 1.34 1.30 1.27 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.18 1.17 1.17 1.16 
8 3.22 2.2S 1.91 1.75 1.6S 1.S3 1.46 1.41 1.38 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
12 3.53 2.43 2.07 1.88 1.77 1.64 1.S6 1.Sl 1.47 1.4S 1.43 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 1.34 1.34 
16 3.75 2.57 2.17 1.97 1.8S 1.71 1.64 1.58 1.S4 1.Sl 1.49 1.48 1.46 1.4S 1.43 1.42 1.42 1.41 1.40 1.39 
20 3.92 2.67 2.2S 2.05 1.92 1.77 1.69 1.63 1.S9 1.S6 1.S4 1.S2 1.Sl 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 
30 4.22 2.86 2.40 2.18 2.04 1.88 1.79 1.72 1.68 1.6S 1.62 1.61 1.S9 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 
40 4.43 2.99 2.51 2.27 2.12 1.9S 1.86 1.79 1.74 1.71 1.68 1.66 1.6S 1.63 1.61 1.60 1.S9 1.58 1.S7 1.S6 
so 4.59 3.09 2.59 2.34 2.19 2.01 1.91 1.84 1.79 1.7S 1.73 1.71 1.69 1.67 1.6S 1.64 1.63 1.62 1.61 1.60 
60 4.73 3.17 2.65 2.39 2.24 2.06 1.9S 1.88 1.82 1.79 1.76 1.74 1.73 1.70 1.69 1.67 1.66 1.66 1.64 1.63 
7S 4.88 3.27 2.73 2.46 2.30 2.11 2.01 1.92 1.87 1.83 1.81 1.79 1.77 1.74 1.73 1.71 1.70 1.70 1.68 1.67 

100 5.09 3.39 2.83 2.55 2.38 2.18 2.07 1.99 1.93 1.89 1.86 1.84 1.82 1.80 1.78 1.77 1.76 1.7S 1.73 1.72 
12S 5.24 3.49 2.91 2.62 2.44 2.24 2.12 2.03 1.98 1.94 1.91 1.88 1.87 1.84 1.82 1.80 1.79 1.79 1.77 1.76 
150 5.37 3.56 2.97 2.67 2.49 2.28 2.16 2.07 2.01 1.97 1.94 1.92 1.90 1.87 1.8S 1.84 1.82 1.82 1.80 1.79 
17S 5.47 3.63 3.02 2.72 2.53 2.32 2.20 2.11 2.05 2.00 1.97 1.9S 1.93 1.90 1.88 1.86 1.8S 1.84 1.83 1.81 
200 5.56 3.69 3.07 2.76 2.57 2.3S 2.23 2.13 2.07 2.03 2.00 1.97 1.9S 1.92 1.90 1.89 1.87 1.86 1.8S 1.84 
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Table 19-2. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Observations (5 COCs, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.19 1.60 1.39 1.29 1.22 1.14 1.10 1.06 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
2 2.70 1.92 1.6S 1.S2 1.43 1.34 1.28 1.24 1.22 1.20 1.18 1.17 1.16 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
3 3.00 2.11 1.81 1.6S 1.S6 1.4S 1.39 1.34 1.31 1.29 1.28 1.26 1.2S 1.24 1.23 1.22 1.22 1.21 1.20 1.20 
4 3.22 2.2S 1.91 1.75 1.6S 1.S3 1.46 1.41 1.38 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
s 3.39 2.3S 2.00 1.82 1.71 1.S9 1.S2 1.47 1.43 1.41 1.39 1.38 1.37 1.3S 1.34 1.33 1.32 1.32 1.31 1.30 
8 3.75 2.S7 2.17 1.97 1.8S 1.71 1.64 1.58 1.S4 1.Sl 1.49 1.48 1.46 1.4S 1.43 1.42 1.42 1.41 1.40 1.39 
12 4.05 2.7S 2.32 2.10 1.97 1.82 1.74 1.67 1.63 1.60 1.58 1.S6 1.SS 1.S3 1.Sl 1.50 1.50 1.49 1.48 1.47 
16 4.27 2.89 2.43 2.20 2.06 1.90 1.81 1.74 1.69 1.66 1.64 1.62 1.60 1.58 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 
20 4.43 2.99 2.Sl 2.27 2.12 1.9S 1.86 1.79 1.74 1.71 1.68 1.66 1.6S 1.63 1.61 1.60 1.S9 1.58 1.S7 1.S6 
30 4.73 3.17 2.6S 2.39 2.24 2.06 1.9S 1.88 1.82 1.79 1.76 1.74 1.73 1.70 1.69 1.67 1.66 1.66 1.64 1.63 
40 4.93 3.30 2.7S 2.48 2.32 2.13 2.02 1.94 1.89 1.8S 1.82 1.80 1.78 1.76 1.74 1.73 1.72 1.71 1.69 1.68 
so 5.09 3.39 2.83 2.S5 2.38 2.18 2.07 1.99 1.93 1.89 1.86 1.84 1.82 1.80 1.78 1.77 1.76 1.7S 1.73 1.72 
60 5.21 3.47 2.90 2.61 2.43 2.23 2.11 2.03 1.97 1.93 1.90 1.88 1.86 1.83 1.81 1.80 1.79 1.78 1.76 1.7S 
7S 5.37 3.56 2.97 2.67 2.49 2.28 2.16 2.07 2.01 1.97 1.94 1.92 1.90 1.87 1.8S 1.84 1.82 1.82 1.80 1.79 

100 5.56 3.69 3.07 2.76 2.S7 2.3S 2.23 2.13 2.07 2.03 2.00 1.97 1.9S 1.92 1.90 1.89 1.87 1.86 1.8S 1.84 
12S 5.71 3.78 3.14 2.82 2.63 2.41 2.28 2.18 2.12 2.07 2.04 2.01 1.99 1.96 1.94 1.92 1.91 1.90 1.88 1.87 
150 5.83 3.85 3.20 2.88 2.68 2.4S 2.32 2.22 2.1S 2.11 2.07 2.05 2.03 1.99 1.97 1.9S 1.94 1.93 1.91 1.90 
17S 5.93 3.92 3.25 2.92 2.72 2.49 2.3S 2.2S 2.18 2.14 2.10 2.07 2.05 2.02 2.00 1.98 1.97 1.96 1.94 1.93 
200 6.02 3.97 3.30 2.96 2.76 2.S2 2.38 2.28 2.21 2.16 2.13 2.10 2.08 2.04 2.02 2.00 1.99 1.98 1.96 1.9S 

Table 19-2. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Observations (10 COCs, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.76 1.31 1.14 1.06 1.00 0.94 0.91 0.88 0.86 0.8S 0.84 0.83 0.83 0.82 0.81 0.81 0.80 0.80 0.80 0.79 
2 2.29 1.63 1.41 1.30 1.23 1.1S 1.10 1.07 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
3 2.62 1.83 1.S7 1.44 1.3S 1.26 1.21 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 1.05 
4 2.87 1.97 1.68 1.S3 1.4S 1.3S 1.29 1.2S 1.22 1.20 1.18 1.17 1.16 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
s 3.07 2.08 1.77 1.61 1.S2 1.41 1.3S 1.30 1.27 1.2S 1.24 1.22 1.22 1.20 1.19 1.18 1.18 1.17 1.17 1.16 
8 3.50 2.33 1.9S 1.77 1.66 1.S4 1.47 1.42 1.38 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
12 3.88 2.54 2.12 1.91 1.79 1.6S 1.S7 1.Sl 1.48 1.4S 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.3S 1.3S 1.34 
16 4.15 2.69 2.23 2.01 1.88 1.73 1.6S 1.58 1.S4 1.Sl 1.49 1.48 1.47 1.4S 1.43 1.42 1.42 1.41 1.40 1.39 
20 4.36 2.81 2.32 2.08 1.9S 1.79 1.70 1.63 1.S9 1.S6 1.S4 1.S2 1.Sl 1.49 1.48 1.47 1.46 1.46 1.44 1.44 
30 4.75 3.02 2.49 2.22 2.07 1.90 1.80 1.73 1.68 1.6S 1.63 1.61 1.S9 1.S7 1.S6 1.55 1.S4 1.S3 1.S2 1.Sl 
40 5.02 3.17 2.60 2.32 2.16 1.97 1.87 1.79 1.7S 1.71 1.69 1.67 1.6S 1.63 1.61 1.60 1.S9 1.58 1.S7 1.S6 
so 5.22 3.29 2.69 2.40 2.23 2.03 1.93 1.84 1.79 1.76 1.73 1.71 1.69 1.67 1.6S 1.64 1.63 1.62 1.61 1.60 
60 5.39 3.38 2.76 2.46 2.28 2.08 1.97 1.89 1.83 1.79 1.77 1.7S 1.73 1.71 1.69 1.68 1.67 1.66 1.64 1.63 
7S 5.61 3.50 2.85 2.53 2.35 2.14 2.02 1.94 1.88 1.84 1.81 1.79 1.77 1.7S 1.73 1.72 1.71 1.70 1.68 1.67 

100 5.86 3.64 2.96 2.63 2.44 2.21 2.09 2.00 1.94 1.90 1.87 1.8S 1.83 1.80 1.78 1.77 1.76 1.7S 1.73 1.72 
12S 6.06 3.76 3.05 2.71 2.50 2.27 2.14 2.05 1.99 1.94 1.91 1.89 1.87 1.84 1.82 1.81 1.80 1.79 1.77 1.76 
150 6.23 3.85 3.12 2.77 2.56 2.32 2.19 2.09 2.03 1.98 1.9S 1.92 1.90 1.87 1.8S 1.84 1.83 1.82 1.80 1.79 
17S 6.37 3.93 3.18 2.82 2.60 2.36 2.22 2.12 2.06 2.01 1.98 1.9S 1.93 1.90 1.88 1.87 1.8S 1.84 1.83 1.82 
200 6.48 3.99 3.23 2.86 2.64 2.39 2.26 2.15 2.08 2.04 2.00 1.98 1.96 1.93 1.90 1.89 1.88 1.87 1.8S 1.84 
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Table 19-2. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Observations (10 COCs, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.29 1.63 1.41 1.29 1.23 1.1S 1.10 1.07 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
2 2.87 1.97 1.68 1.S3 1.4S 1.3S 1.29 1.2S 1.22 1.20 1.18 1.17 1.16 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
3 3.23 2.18 1.84 1.67 1.S7 1.46 1.39 1.3S 1.32 1.29 1.28 1.27 1.26 1.24 1.23 1.22 1.22 1.21 1.20 1.20 
4 3.50 2.32 1.9S 1.77 1.66 1.S4 1.47 1.42 1.38 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
s 3.70 2.44 2.04 1.85 1.73 1.60 1.S3 1.47 1.44 1.41 1.39 1.38 1.37 1.3S 1.34 1.33 1.32 1.32 1.31 1.30 
8 4.14 2.69 2.23 2.01 1.88 1.73 1.6S 1.58 1.S4 1.Sl 1.49 1.48 1.47 1.4S 1.44 1.43 1.42 1.41 1.40 1.39 
12 4.53 2.90 2.39 2.15 2.00 1.84 1.7S 1.68 1.63 1.60 1.58 1.S6 1.SS 1.S3 1.Sl 1.50 1.SO 1.49 1.48 1.47 
16 4.80 3.06 2.51 2.25 2.09 1.91 1.82 1.74 1.70 1.66 1.64 1.62 1.61 1.58 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 
20 5.02 3.17 2.60 2.32 2.16 1.97 1.87 1.79 1.7S 1.71 1.69 1.67 1.6S 1.63 1.61 1.60 1.S9 1.58 1.S7 1.S6 
30 5.39 3.38 2.76 2.46 2.28 2.08 1.97 1.88 1.83 1.79 1.77 1.7S 1.73 1.71 1.69 1.67 1.67 1.66 1.64 1.63 
40 5.66 3.53 2.88 2.56 2.37 2.16 2.04 1.9S 1.89 1.8S 1.82 1.80 1.78 1.76 1.74 1.73 1.72 1.71 1.69 1.68 
so 5.86 3.64 2.96 2.63 2.44 2.21 2.09 2.00 1.94 1.90 1.87 1.8S 1.83 1.80 1.78 1.77 1.76 1.7S 1.73 1.72 
60 6.04 3.74 3.03 2.69 2.49 2.26 2.14 2.04 1.98 1.94 1.90 1.88 1.86 1.83 1.81 1.80 1.79 1.78 1.76 1.7S 
7S 6.23 3.85 3.12 2.76 2.56 2.32 2.19 2.09 2.02 1.98 1.9S 1.92 1.90 1.88 1.8S 1.84 1.83 1.82 1.80 1.79 

100 6.48 3.99 3.23 2.86 2.64 2.39 2.26 2.1S 2.08 2.04 2.00 1.98 1.96 1.93 1.90 1.89 1.88 1.87 1.8S 1.84 
12S 6.68 4.10 3.32 2.93 2.71 2.45 2.31 2.20 2.13 2.08 2.05 2.02 2.00 1.97 1.94 1.93 1.91 1.90 1.88 1.87 
1SO 6.84 4.19 3.38 2.99 2.76 2.50 2.3S 2.24 2.17 2.12 2.08 2.05 2.03 2.00 1.97 1.96 1.94 1.93 1.91 1.90 
17S 6.97 4.27 3.44 3.04 2.80 2.53 2.39 2.27 2.20 2.1S 2.11 2.08 2.06 2.02 2.00 1.98 1.97 1.96 1.94 1.93 
200 7.07 4.34 3.49 3.08 2.84 2.57 2.41 2.30 2.22 2.17 2.13 2.10 2.08 2.05 2.02 2.00 1.99 1.98 1.96 1.9S 

Table 19-2. K-Multipliers for 1-of-3 Interwell Prediction Limits on Observations (10 COCs, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.87 1.97 1.68 1.S3 1.4S 1.3S 1.29 1.2S 1.22 1.20 1.18 1.17 1.16 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
2 3.50 2.32 1.9S 1.77 1.66 1.S4 1.47 1.42 1.38 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
3 3.88 2.S4 2.11 1.91 1.79 1.6S 1.S7 1.Sl 1.48 1.4S 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.3S 1.3S 1.34 
4 4.14 2.69 2.23 2.01 1.88 1.73 1.6S 1.58 1.S4 1.Sl 1.49 1.48 1.47 1.4S 1.44 1.43 1.42 1.41 1.40 1.39 
s 4.36 2.81 2.32 2.08 1.9S 1.79 1.70 1.64 1.S9 1.S6 1.S4 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.46 1.44 1.44 
8 4.80 3.06 2.Sl 2.25 2.09 1.91 1.82 1.74 1.70 1.66 1.64 1.62 1.61 1.58 1.S7 1.S6 1.55 1.S4 1.S3 1.S2 
12 5.19 3.27 2.67 2.38 2.21 2.02 1.92 1.84 1.78 1.7S 1.72 1.70 1.69 1.66 1.6S 1.63 1.63 1.62 1.60 1.60 
16 5.45 3.42 2.79 2.48 2.30 2.10 1.98 1.90 1.8S 1.81 1.78 1.76 1.74 1.72 1.70 1.69 1.68 1.67 1.66 1.6S 
20 5.66 3.53 2.88 2.S6 2.37 2.16 2.04 1.95 1.89 1.8S 1.82 1.80 1.78 1.76 1.74 1.73 1.72 1.71 1.69 1.68 
30 6.04 3.74 3.03 2.69 2.49 2.26 2.14 2.04 1.98 1.94 1.90 1.88 1.86 1.83 1.81 1.80 1.79 1.78 1.76 1.7S 
40 6.29 3.88 3.14 2.79 2.S8 2.34 2.20 2.10 2.04 1.99 1.96 1.94 1.92 1.89 1.87 1.8S 1.84 1.83 1.81 1.80 
so 6.48 3.99 3.23 2.86 2.64 2.39 2.26 2.15 2.08 2.04 2.00 1.98 1.96 1.93 1.90 1.89 1.88 1.87 1.8S 1.84 
60 6.64 4.08 3.30 2.92 2.70 2.44 2.30 2.19 2.12 2.07 2.04 2.01 1.99 1.96 1.94 1.92 1.91 1.90 1.88 1.87 
7S 6.84 4.19 3.38 2.99 2.76 2.SO 2.3S 2.24 2.17 2.12 2.08 2.05 2.03 2.00 1.97 1.96 1.94 1.93 1.91 1.90 

100 7.07 4.34 3.49 3.08 2.84 2.S7 2.41 2.30 2.22 2.17 2.13 2.10 2.08 2.05 2.02 2.00 1.99 1.98 1.96 1.9S 
12S 7.27 4.44 3.57 3.15 2.91 2.62 2.47 2.3S 2.27 2.22 2.18 2.1S 2.12 2.08 2.06 2.04 2.03 2.02 2.00 1.98 
1SO 7.42 4.52 3.64 3.21 2.96 2.67 2.Sl 2.39 2.30 2.2S 2.21 2.18 2.15 2.12 2.09 2.07 2.06 2.05 2.02 2.01 
17S 7.54 4.60 3.70 3.26 3.00 2.71 2.S4 2.42 2.34 2.28 2.24 2.21 2.18 2.14 2.12 2.10 2.08 2.07 2.05 2.03 
200 7.66 4.66 3.75 3.30 3.04 2.74 2.S7 2.44 2.36 2.30 2.26 2.23 2.20 2.17 2.14 2.12 2.10 2.09 2.07 2.05 

D-48 March 2009 

EPAPAV0117550 



Appendix D. Chapter 19 Interwell K-Tables for Observations Unified Guidance 

Table 19-2. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Observations (20 COCs, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.34 1.6S 1.42 1.30 1.23 1.1S 1.10 1.07 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
2 2.99 2.00 1.69 1.S4 1.4S 1.3S 1.29 1.2S 1.22 1.20 1.19 1.17 1.16 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
3 3.40 2.22 1.86 1.68 1.58 1.46 1.40 1.3S 1.32 1.29 1.28 1.27 1.26 1.24 1.23 1.22 1.22 1.21 1.21 1.20 
4 3.71 2.38 1.98 1.78 1.67 1.S4 1.47 1.42 1.38 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
s 3.95 2.50 2.07 1.87 1.74 1.61 1.S3 1.47 1.44 1.41 1.39 1.38 1.37 1.3S 1.34 1.33 1.32 1.32 1.31 1.30 
8 4.48 2.77 2.27 2.03 1.89 1.73 1.6S 1.S9 1.55 1.S2 1.SO 1.48 1.47 1.4S 1.44 1.43 1.42 1.41 1.40 1.39 
12 4.96 3.01 2.44 2.18 2.02 1.8S 1.7S 1.68 1.64 1.60 1.58 1.S6 1.SS 1.S3 1.S2 1.50 1.SO 1.49 1.48 1.47 
16 5.29 3.18 2.57 2.28 2.11 1.92 1.82 1.7S 1.70 1.67 1.64 1.62 1.61 1.S9 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 
20 5.57 3.32 2.67 2.36 2.18 1.98 1.88 1.80 1.7S 1.71 1.69 1.67 1.6S 1.63 1.61 1.60 1.S9 1.58 1.S7 1.S6 
30 6.04 3.55 2.84 2.50 2.31 2.09 1.98 1.89 1.84 1.80 1.77 1.7S 1.73 1.71 1.69 1.68 1.67 1.66 1.64 1.64 
40 6.39 3.73 2.97 2.61 2.40 2.17 2.05 1.96 1.90 1.86 1.83 1.80 1.79 1.76 1.74 1.73 1.72 1.71 1.69 1.68 
so 6.64 3.87 3.07 2.69 2.47 2.23 2.10 2.01 1.9S 1.90 1.87 1.8S 1.83 1.80 1.78 1.77 1.76 1.7S 1.73 1.72 
60 6.86 3.97 3.14 2.75 2.53 2.28 2.15 2.05 1.98 1.94 1.91 1.88 1.86 1.84 1.82 1.80 1.79 1.78 1.76 1.7S 
7S 7.11 4.10 3.24 2.84 2.60 2.34 2.20 2.10 2.03 1.98 1.9S 1.93 1.91 1.88 1.86 1.84 1.83 1.82 1.80 1.79 

100 7.46 4.27 3.36 2.94 2.69 2.42 2.27 2.16 2.09 2.04 2.01 1.98 1.96 1.93 1.91 1.89 1.88 1.87 1.8S 1.84 
12S 7.70 4.40 3.46 3.02 2.76 2.48 2.32 2.21 2.14 2.09 2.05 2.02 2.00 1.97 1.94 1.93 1.91 1.90 1.88 1.87 
1SO 7.91 4.51 3.54 3.08 2.82 2.53 2.37 2.25 2.18 2.12 2.08 2.06 2.03 2.00 1.98 1.96 1.94 1.93 1.92 1.90 
17S 8.09 4.59 3.60 3.13 2.87 2.57 2.40 2.28 2.21 2.15 2.11 2.08 2.06 2.03 2.00 1.98 1.97 1.96 1.94 1.93 
200 8.24 4.67 3.66 3.18 2.91 2.60 2.44 2.31 2.23 2.18 2.14 2.11 2.08 2.05 2.02 2.01 1.99 1.98 1.96 1.9S 

Table 19-2. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Observations (20 COCs, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.99 2.00 1.69 1.S4 1.4S 1.3S 1.29 1.2S 1.22 1.20 1.19 1.17 1.16 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
2 3.71 2.38 1.98 1.78 1.67 1.S4 1.47 1.42 1.38 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
3 4.16 2.61 2.1S 1.93 1.80 1.66 1.58 1.S2 1.48 1.4S 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.3S 1.3S 1.34 
4 4.48 2.77 2.27 2.03 1.89 1.73 1.6S 1.S9 1.55 1.S2 1.SO 1.48 1.47 1.4S 1.44 1.43 1.42 1.41 1.40 1.39 
s 4.75 2.91 2.36 2.11 1.96 1.80 1.71 1.64 1.S9 1.S6 1.S4 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.46 1.44 1.44 
8 5.29 3.18 2.57 2.28 2.11 1.92 1.82 1.7S 1.70 1.67 1.64 1.62 1.61 1.S9 1.S7 1.S6 1.55 1.S4 1.S3 1.S2 
12 5.78 3.43 2.74 2.43 2.24 2.04 1.92 1.84 1.79 1.7S 1.72 1.70 1.69 1.67 1.6S 1.64 1.63 1.62 1.60 1.60 
16 6.11 3.59 2.87 2.53 2.33 2.11 1.99 1.91 1.8S 1.81 1.78 1.76 1.74 1.72 1.70 1.69 1.68 1.67 1.66 1.6S 
20 6.39 3.73 2.97 2.61 2.40 2.17 2.05 1.96 1.90 1.86 1.83 1.80 1.79 1.76 1.74 1.73 1.72 1.71 1.69 1.68 
30 6.86 3.97 3.14 2.75 2.53 2.28 2.1S 2.05 1.98 1.94 1.91 1.88 1.86 1.84 1.82 1.80 1.79 1.78 1.76 1.7S 
40 7.19 4.14 3.27 2.86 2.62 2.36 2.22 2.11 2.04 2.00 1.96 1.94 1.92 1.89 1.87 1.8S 1.84 1.83 1.81 1.80 
so 7.46 4.27 3.36 2.94 2.69 2.42 2.27 2.16 2.09 2.04 2.01 1.98 1.96 1.93 1.91 1.89 1.88 1.87 1.8S 1.84 
60 7.66 4.38 3.44 3.00 2.75 2.47 2.31 2.20 2.13 2.08 2.04 2.01 1.99 1.96 1.94 1.92 1.91 1.90 1.88 1.87 
7S 7.91 4.51 3.54 3.08 2.82 2.53 2.37 2.2S 2.18 2.12 2.08 2.06 2.03 2.00 1.98 1.96 1.94 1.93 1.92 1.90 

100 8.24 4.67 3.66 3.18 2.91 2.60 2.44 2.31 2.23 2.18 2.14 2.11 2.08 2.05 2.02 2.01 1.99 1.98 1.96 1.9S 
12S 8.48 4.79 3.75 3.26 2.98 2.66 2.49 2.36 2.28 2.22 2.18 2.1S 2.12 2.09 2.06 2.04 2.03 2.02 2.00 1.98 
1SO 8.67 4.90 3.83 3.33 3.03 2.71 2.53 2.40 2.32 2.26 2.21 2.18 2.16 2.12 2.09 2.07 2.06 2.05 2.03 2.01 
17S 8.83 4.98 3.89 3.38 3.08 2.75 2.57 2.43 2.3S 2.29 2.24 2.21 2.19 2.1S 2.12 2.10 2.08 2.07 2.05 2.03 
200 8.98 5.06 3.95 3.42 3.12 2.78 2.60 2.46 2.37 2.31 2.27 2.23 2.21 2.17 2.14 2.12 2.10 2.09 2.07 2.06 
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Table 19-2. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Observations (20 COCs, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 3.71 2.38 1.98 1.78 1.67 1.S4 1.47 1.42 1.38 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
2 4.48 2.77 2.27 2.03 1.89 1.73 1.6S 1.S9 1.55 1.S2 1.SO 1.48 1.47 1.4S 1.44 1.43 1.42 1.41 1.40 1.39 
3 4.96 3.01 2.44 2.18 2.02 1.8S 1.7S 1.68 1.64 1.60 1.58 1.S6 1.55 1.S3 1.S2 1.SO 1.SO 1.49 1.48 1.47 
4 5.29 3.18 2.S7 2.28 2.11 1.92 1.82 1.7S 1.70 1.67 1.64 1.62 1.61 1.S9 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 
s 5.57 3.32 2.67 2.36 2.18 1.98 1.88 1.80 1.7S 1.71 1.69 1.67 1.6S 1.63 1.61 1.60 1.S9 1.58 1.S7 1.S6 
8 6.11 3.59 2.87 2.S3 2.33 2.11 1.99 1.91 1.8S 1.81 1.78 1.76 1.74 1.72 1.70 1.69 1.68 1.67 1.66 1.6S 
12 6.60 3.84 3.05 2.68 2.46 2.22 2.09 2.00 1.94 1.89 1.86 1.84 1.82 1.79 1.77 1.76 1.7S 1.74 1.73 1.72 
16 6.93 4.00 3.17 2.78 2.S5 2.30 2.16 2.06 2.00 1.9S 1.92 1.89 1.88 1.8S 1.83 1.81 1.80 1.79 1.77 1.76 
20 7.19 4.14 3.27 2.86 2.62 2.36 2.22 2.11 2.04 2.00 1.96 1.94 1.92 1.89 1.87 1.8S 1.84 1.83 1.81 1.80 
30 7.66 4.38 3.44 3.00 2.7S 2.47 2.31 2.20 2.13 2.08 2.04 2.01 1.99 1.96 1.94 1.92 1.91 1.90 1.88 1.87 
40 7.97 4.54 3.56 3.11 2.84 2.S4 2.38 2.26 2.19 2.14 2.10 2.07 2.04 2.01 1.99 1.97 1.96 1.94 1.93 1.91 
so 8.24 4.67 3.66 3.18 2.91 2.60 2.44 2.31 2.23 2.18 2.14 2.11 2.08 2.05 2.02 2.01 1.99 1.98 1.96 1.9S 
60 8.44 4.78 3.73 3.25 2.96 2.6S 2.48 2.3S 2.27 2.21 2.17 2.14 2.12 2.08 2.06 2.04 2.02 2.01 1.99 1.98 
7S 8.67 4.90 3.83 3.33 3.03 2.71 2.S3 2.40 2.32 2.26 2.21 2.18 2.16 2.12 2.09 2.07 2.06 2.05 2.03 2.01 

100 8.98 5.06 3.95 3.42 3.12 2.78 2.60 2.46 2.37 2.31 2.27 2.23 2.21 2.17 2.14 2.12 2.10 2.09 2.07 2.06 
12S 9.22 5.18 4.03 3.50 3.19 2.84 2.6S 2.Sl 2.42 2.36 2.31 2.28 2.2S 2.21 2.18 2.16 2.14 2.13 2.10 2.09 
1SO 9.41 5.28 4.11 3.56 3.24 2.89 2.70 2.SS 2.4S 2.39 2.34 2.31 2.28 2.24 2.21 2.19 2.17 2.16 2.13 2.12 
17S 9.57 5.37 4.17 3.61 3.29 2.93 2.73 2.S8 2.49 2.42 2.37 2.33 2.30 2.26 2.23 2.21 2.19 2.18 2.16 2.14 
200 9.69 5.44 4.23 3.66 3.33 2.96 2.76 2.61 2.Sl 2.44 2.40 2.36 2.33 2.29 2.2S 2.23 2.21 2.20 2.18 2.16 

Table 19-2. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Observations (40 COCs, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 3.05 2.03 1.70 1.SS 1.4S 1.3S 1.29 1.2S 1.22 1.20 1.18 1.17 1.16 1.1S 1.14 1.14 1.13 1.13 1.12 1.12 
2 3.84 2.41 1.99 1.79 1.68 1.SS 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.29 1.28 1.27 1.27 1.26 
3 4.36 2.65 2.16 1.94 1.81 1.66 1.58 1.S2 1.48 1.4S 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.36 1.3S 1.34 
4 4.72 2.83 2.29 2.04 1.90 1.74 1.6S 1.S9 1.SS 1.S2 1.SO 1.48 1.47 1.4S 1.44 1.42 1.42 1.41 1.40 1.40 
s 5.05 2.97 2.39 2.12 1.97 1.80 1.71 1.64 1.S9 1.S7 1.S4 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 
8 5.70 3.27 2.61 2.30 2.12 1.93 1.83 1.7S 1.70 1.67 1.64 1.62 1.61 1.S9 1.S7 1.56 1.SS 1.S4 1.S3 1.S2 
12 6.30 3.54 2.79 2.45 2.26 2.04 1.93 1.84 1.79 1.7S 1.72 1.70 1.69 1.66 1.6S 1.64 1.63 1.62 1.60 1.S9 
16 6.74 3.73 2.93 2.56 2.35 2.12 2.00 1.91 1.8S 1.81 1.79 1.76 1.7S 1.72 1.70 1.69 1.68 1.67 1.66 1.6S 
20 7.07 3.90 3.04 2.64 2.42 2.18 2.05 1.96 1.90 1.86 1.83 1.81 1.79 1.76 1.74 1.73 1.72 1.71 1.69 1.68 
30 7.67 4.17 3.23 2.80 2.56 2.29 2.16 2.05 1.98 1.94 1.91 1.89 1.86 1.83 1.82 1.80 1.79 1.78 1.77 1.7S 
40 8.11 4.36 3.37 2.91 2.65 2.37 2.22 2.11 2.05 2.00 1.96 1.94 1.92 1.89 1.87 1.8S 1.84 1.83 1.81 1.80 
so 8.44 4.51 3.46 3.00 2.72 2.44 2.28 2.17 2.09 2.05 2.01 1.98 1.96 1.93 1.91 1.89 1.88 1.87 1.8S 1.84 
60 8.71 4.64 3.56 3.06 2.79 2.48 2.33 2.21 2.13 2.08 2.05 2.02 1.99 1.96 1.94 1.92 1.91 1.90 1.88 1.87 
7S 8.98 4.79 3.65 3.15 2.86 2.54 2.38 2.26 2.18 2.12 2.09 2.06 2.03 2.00 1.98 1.96 1.9S 1.93 1.92 1.90 

100 9.42 4.98 3.79 3.26 2.96 2.63 2.45 2.32 2.24 2.18 2.14 2.11 2.09 2.05 2.03 2.01 1.99 1.98 1.96 1.9S 
12S 9.75 5.13 3.90 3.34 3.03 2.69 2.50 2.37 2.29 2.23 2.18 2.15 2.13 2.09 2.06 2.05 2.03 2.02 2.00 1.98 
1SO 10.02 5.24 3.98 3.41 3.09 2.74 2.55 2.41 2.32 2.26 2.22 2.19 2.16 2.12 2.09 2.07 2.06 2.05 2.03 2.01 
17S 10.24 5.35 4.06 3.47 3.14 2.78 2.59 2.44 2.35 2.29 2.25 2.21 2.19 2.15 2.12 2.10 2.08 2.07 2.05 2.04 
200 10.41 5.43 4.12 3.52 3.19 2.81 2.62 2.47 2.38 2.32 2.27 2.24 2.21 2.17 2.14 2.12 2.10 2.09 2.07 2.06 
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Table 19-2. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Observations ( 40 COCs, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 3.84 2.41 1.99 1.79 1.68 1.SS 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.29 1.28 1.27 1.27 1.26 
2 4.72 2.83 2.29 2.04 1.90 1.74 1.6S 1.S9 1.55 1.S2 1.SO 1.48 1.47 1.4S 1.44 1.42 1.42 1.41 1.40 1.40 
3 5.29 3.09 2.48 2.19 2.03 1.8S 1.7S 1.68 1.64 1.60 1.58 1.S6 1.55 1.S3 1.S2 1.51 1.SO 1.49 1.48 1.47 
4 5.70 3.27 2.61 2.30 2.12 1.93 1.83 1.7S 1.70 1.67 1.64 1.62 1.61 1.S9 1.S7 1.56 1.SS 1.S4 1.S3 1.S2 
s 6.03 3.42 2.71 2.38 2.20 1.99 1.88 1.80 1.7S 1.71 1.69 1.67 1.6S 1.63 1.62 1.60 1.S9 1.58 1.S7 1.S6 
8 6.74 3.73 2.93 2.56 2.3S 2.12 2.00 1.91 1.8S 1.81 1.79 1.76 1.7S 1.72 1.70 1.69 1.68 1.67 1.66 1.6S 
12 7.34 4.01 3.12 2.71 2.48 2.23 2.10 2.00 1.94 1.90 1.86 1.84 1.82 1.79 1.78 1.76 1.7S 1.74 1.72 1.72 
16 7.78 4.20 3.26 2.83 2.58 2.31 2.17 2.07 2.00 1.96 1.92 1.90 1.88 1.8S 1.83 1.81 1.80 1.79 1.78 1.77 
20 8.11 4.36 3.37 2.91 2.65 2.37 2.22 2.11 2.05 2.00 1.96 1.94 1.92 1.89 1.87 1.8S 1.84 1.83 1.81 1.80 
30 8.71 4.64 3.56 3.06 2.79 2.48 2.33 2.21 2.13 2.08 2.05 2.02 1.99 1.96 1.94 1.92 1.91 1.90 1.88 1.87 
40 9.09 4.83 3.69 3.17 2.89 2.57 2.39 2.27 2.19 2.14 2.10 2.07 2.05 2.01 1.99 1.97 1.96 1.94 1.93 1.91 
so 9.42 4.98 3.79 3.26 2.96 2.63 2.45 2.32 2.24 2.18 2.14 2.11 2.09 2.05 2.03 2.01 1.99 1.98 1.96 1.9S 
60 9.70 5.10 3.88 3.32 3.02 2.67 2.50 2.36 2.28 2.22 2.18 2.1S 2.12 2.08 2.06 2.04 2.02 2.01 1.99 1.98 
7S 10.02 5.24 3.98 3.41 3.09 2.74 2.55 2.41 2.32 2.26 2.22 2.19 2.16 2.12 2.09 2.07 2.06 2.05 2.03 2.01 
100 10.41 5.43 4.12 3.52 3.19 2.81 2.62 2.47 2.38 2.32 2.27 2.24 2.21 2.17 2.14 2.12 2.10 2.09 2.07 2.06 
12S 10.73 5.59 4.23 3.61 3.26 2.87 2.67 2.52 2.43 2.36 2.31 2.28 2.2S 2.21 2.18 2.16 2.14 2.13 2.10 2.09 
1SO 10.95 5.70 4.31 3.68 3.32 2.93 2.72 2.56 2.46 2.39 2.3S 2.31 2.28 2.24 2.21 2.19 2.17 2.16 2.13 2.12 
17S 11.17 5.81 4.38 3.73 3.37 2.97 2.75 2.59 2.49 2.43 2.37 2.34 2.31 2.26 2.23 2.21 2.19 2.18 2.16 2.14 
200 11.39 5.89 4.43 3.78 3.41 3.00 2.78 2.62 2.52 2.45 2.40 2.36 2.33 2.29 2.2S 2.23 2.21 2.20 2.18 2.16 

Table 19-2. K-Multipliers for 1-of-3 Interwell Prediction Limits on Observations ( 40 COCs, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 4.72 2.83 2.29 2.04 1.90 1.74 1.6S 1.S9 1.SS 1.S2 1.50 1.48 1.47 1.4S 1.44 1.42 1.42 1.41 1.40 1.40 
2 5.70 3.27 2.61 2.30 2.12 1.93 1.83 1.7S 1.70 1.67 1.64 1.62 1.61 1.S9 1.S7 1.56 1.SS 1.S4 1.S3 1.S2 
3 6.30 3.54 2.79 2.4S 2.26 2.04 1.93 1.84 1.79 1.7S 1.72 1.70 1.69 1.66 1.6S 1.64 1.63 1.62 1.60 1.S9 
4 6.74 3.73 2.93 2.S6 2.3S 2.12 2.00 1.91 1.85 1.81 1.79 1.76 1.7S 1.72 1.70 1.69 1.68 1.67 1.66 1.6S 
s 7.07 3.90 3.04 2.64 2.42 2.18 2.05 1.96 1.90 1.86 1.83 1.81 1.79 1.76 1.74 1.73 1.72 1.71 1.69 1.68 
8 7.78 4.20 3.26 2.83 2.S8 2.31 2.17 2.07 2.00 1.96 1.92 1.90 1.88 1.8S 1.83 1.81 1.80 1.79 1.78 1.77 
12 8.38 4.49 3.45 2.98 2.72 2.42 2.27 2.16 2.09 2.04 2.00 1.97 1.9S 1.92 1.90 1.88 1.87 1.86 1.84 1.83 
16 8.77 4.68 3.58 3.09 2.80 2.SO 2.34 2.22 2.1S 2.09 2.06 2.03 2.00 1.97 1.9S 1.93 1.92 1.91 1.89 1.88 
20 9.09 4.83 3.69 3.17 2.89 2.S7 2.39 2.27 2.19 2.14 2.10 2.07 2.05 2.01 1.99 1.97 1.96 1.94 1.93 1.91 
30 9.70 5.10 3.88 3.32 3.02 2.67 2.SO 2.36 2.28 2.22 2.18 2.1S 2.12 2.08 2.06 2.04 2.02 2.01 1.99 1.98 
40 10.08 5.29 4.01 3.43 3.11 2.76 2.S7 2.42 2.33 2.27 2.23 2.20 2.17 2.13 2.10 2.08 2.07 2.06 2.04 2.02 
so 10.41 5.43 4.12 3.52 3.19 2.81 2.62 2.47 2.38 2.32 2.27 2.24 2.21 2.17 2.14 2.12 2.10 2.09 2.07 2.06 
60 10.68 5.57 4.20 3.59 3.24 2.87 2.66 2.Sl 2.42 2.3S 2.31 2.27 2.24 2.20 2.17 2.1S 2.13 2.12 2.10 2.08 
7S 10.95 5.70 4.31 3.68 3.32 2.93 2.72 2.S6 2.46 2.39 2.3S 2.31 2.28 2.24 2.21 2.19 2.17 2.16 2.13 2.12 

100 11.39 5.89 4.43 3.78 3.41 3.00 2.78 2.62 2.S2 2.4S 2.40 2.36 2.33 2.29 2.2S 2.23 2.21 2.20 2.18 2.16 
12S 11.66 6.03 4.54 3.86 3.48 3.06 2.84 2.67 2.S7 2.49 2.44 2.40 2.37 2.32 2.29 2.27 2.2S 2.23 2.21 2.19 
1SO 11.94 6.14 4.61 3.93 3.54 3.11 2.88 2.71 2.60 2.S3 2.47 2.43 2.40 2.3S 2.32 2.30 2.28 2.26 2.24 2.22 
17S 12.10 6.25 4.69 3.98 3.58 3.15 2.91 2.74 2.63 2.S6 2.SO 2.46 2.43 2.38 2.3S 2.32 2.30 2.29 2.26 2.24 
200 12.27 6.30 4.75 4.04 3.63 3.19 2.95 2.77 2.66 2.S8 2.S2 2.48 2.4S 2.40 2.37 2.34 2.32 2.31 2.28 2.26 
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Table 19-3. K-Multipliers for 1-of-4 Interwell Prediction Limits on Observations (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.06 -0.01 -0.04 -0.07 -0.08 -0.10 -0.11 -0.12 -0.13 -0.13 -0.13 -0.14 -0.14 -0.14 -0.14 -0.lS -0.lS -0.lS -0.lS -0.lS 
2 0.36 0.2S 0.21 0.18 0.16 0.13 0.12 0.11 0.10 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 
3 O.S2 0.40 0.34 0.31 0.29 0.26 0.24 0.23 0.22 0.21 0.21 0.20 0.20 0.20 0.19 0.19 0.19 0.19 0.18 0.18 
4 0.64 o.so 0.44 0.40 0.37 0.34 0.32 0.31 0.30 0.29 0.29 0.28 0.28 0.27 0.27 0.27 0.27 0.26 0.26 0.26 
s 0.73 O.S8 O.Sl 0.47 0.44 0.41 0.39 0.37 0.36 0.3S 0.3S 0.34 0.34 0.33 0.33 0.33 0.32 0.32 0.32 0.32 
8 0.92 0.73 0.6S 0.60 O.S7 O.S3 O.Sl 0.49 0.48 0.47 0.46 0.46 0.4S 0.4S 0.44 0.44 0.44 0.44 0.43 0.43 
12 1.08 0.86 0.77 0.72 0.68 0.64 0.61 O.S9 O.S8 O.S7 O.S6 o.ss o.ss O.S4 O.S4 O.S3 O.S3 O.S3 O.S2 O.S2 
16 1.19 0.9S 0.8S 0.79 0.76 0.71 0.68 0.66 0.64 0.63 0.63 0.62 0.61 0.61 0.60 0.60 O.S9 O.S9 O.S9 O.S8 
20 1.28 1.02 0.91 0.85 0.81 0.76 0.73 0.71 0.69 0.68 0.67 0.67 0.66 0.66 0.6S 0.6S 0.64 0.64 0.63 0.63 
30 1.44 1.1S 1.03 0.96 0.91 0.86 0.83 0.80 0.78 0.77 0.76 0.7S 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 0.71 
40 1.SS 1.23 1.10 1.03 0.98 0.93 0.89 0.86 0.84 0.83 0.82 0.81 0.81 0.80 0.79 0.79 0.78 0.78 0.77 0.77 
so 1.63 1.30 1.16 1.09 1.04 0.98 0.94 0.91 0.89 0.88 0.87 0.86 0.8S 0.84 0.83 0.83 0.83 0.82 0.82 0.81 
60 1.70 1.3S 1.21 1.13 1.08 1.02 0.98 0.9S 0.93 0.91 0.90 0.89 0.89 0.88 0.87 0.86 0.86 0.86 0.8S 0.8S 
7S 1.78 1.42 1.27 1.19 1.13 1.07 1.03 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.91 0.91 0.90 0.90 0.89 0.89 

100 1.89 1.50 1.34 1.26 1.20 1.13 1.09 1.05 1.03 1.01 1.00 0.99 0.98 0.97 0.96 0.96 0.9S 0.9S 0.94 0.94 
12S 1.97 1.S6 1.40 1.31 1.2S 1.18 1.13 1.10 1.07 1.06 1.04 1.03 1.03 1.01 1.01 1.00 0.99 0.99 0.98 0.98 
150 2.03 1.61 1.44 1.35 1.29 1.21 1.17 1.13 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.01 1.01 
17S 2.09 1.66 1.48 1.39 1.32 1.2S 1.20 1.16 1.14 1.12 1.11 1.10 1.09 1.07 1.06 1.06 1.05 1.05 1.04 1.03 
200 2.14 1.69 1.Sl 1.42 1.3S 1.27 1.23 1.19 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.08 1.07 1.06 1.06 

Table 19-3. K-Multipliers for 1-of-4 Interwel I Prediction Limits on Observations (1 coc, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.36 0.2S 0.21 0.18 0.16 0.13 0.12 0.11 0.10 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 
2 0.64 o.so 0.44 0.40 0.37 0.34 0.32 0.31 0.30 0.29 0.29 0.28 0.28 0.27 0.27 0.27 0.27 0.26 0.26 0.26 
3 0.80 0.64 O.S6 O.S2 0.49 0.46 0.43 0.42 0.41 0.40 0.39 0.39 0.38 0.38 0.37 0.37 0.37 0.37 0.36 0.36 
4 0.92 0.73 0.6S 0.60 O.S7 O.S3 O.Sl 0.49 0.48 0.47 0.46 0.46 0.4S 0.4S 0.44 0.44 0.44 0.44 0.43 0.43 
s 1.01 0.80 0.72 0.66 0.63 O.S9 O.S7 o.ss O.S3 O.S2 O.S2 O.Sl O.Sl o.so o.so 0.49 0.49 0.49 0.48 0.48 
8 1.19 0.9S 0.8S 0.79 0.76 0.71 0.68 0.66 0.64 0.63 0.63 0.62 0.61 0.61 0.60 0.60 O.S9 O.S9 O.S9 O.S8 
12 1.3S 1.08 0.97 0.90 0.86 0.81 0.78 0.7S 0.74 0.72 0.71 0.71 0.70 0.69 0.69 0.68 0.68 0.68 0.67 0.67 
16 1.46 1.17 1.04 0.98 0.93 0.87 0.84 0.82 0.80 0.78 0.78 0.77 0.76 0.7S 0.7S 0.74 0.74 0.74 0.73 0.73 
20 1.SS 1.23 1.10 1.03 0.98 0.93 0.89 0.86 0.84 0.83 0.82 0.81 0.81 0.80 0.79 0.79 0.78 0.78 0.77 0.77 
30 1.70 1.3S 1.21 1.13 1.08 1.02 0.98 0.9S 0.93 0.91 0.90 0.89 0.89 0.88 0.87 0.86 0.86 0.86 0.8S 0.8S 
40 1.81 1.44 1.29 1.20 1.1S 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 0.90 
so 1.89 1.SO 1.34 1.26 1.20 1.13 1.09 1.05 1.03 1.01 1.00 0.99 0.98 0.97 0.96 0.96 0.9S 0.9S 0.94 0.94 
60 1.9S 1.SS 1.39 1.30 1.24 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.98 0.97 
7S 2.03 1.61 1.44 1.35 1.29 1.21 1.17 1.13 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.01 1.01 

100 2.14 1.69 1.Sl 1.42 1.3S 1.27 1.23 1.19 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.08 1.07 1.06 1.06 
12S 2.21 1.7S 1.S7 1.47 1.40 1.32 1.27 1.23 1.20 1.18 1.17 1.16 1.1S 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
150 2.28 1.80 1.61 1.Sl 1.44 1.3S 1.30 1.26 1.24 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 1.14 1.14 1.13 1.12 
17S 2.33 1.84 1.6S 1.S4 1.47 1.38 1.33 1.29 1.26 1.24 1.23 1.22 1.21 1.19 1.18 1.17 1.17 1.16 1.1S 1.1S 
200 2.37 1.88 1.68 1.S7 1.SO 1.41 1.36 1.32 1.29 1.27 1.2S 1.24 1.23 1.22 1.20 1.20 1.19 1.19 1.18 1.17 
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Table 19-3. K-Multipliers for 1-of-4 Interwel I Prediction Limits on Observations (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.64 o.so 0.44 0.40 0.37 0.34 0.32 0.31 0.30 0.29 0.29 0.28 0.28 0.27 0.27 0.27 0.27 0.26 0.26 0.26 
2 0.92 0.73 0.6S 0.60 O.S7 O.S3 O.Sl 0.49 0.48 0.47 0.46 0.46 0.4S 0.4S 0.44 0.44 0.44 0.44 0.43 0.43 
3 1.08 0.86 0.77 0.72 0.68 0.64 0.61 O.S9 O.S8 O.S7 O.S6 o.ss o.ss O.S4 O.S4 O.S3 O.S3 O.S3 O.S2 O.S2 
4 1.19 0.9S 0.8S 0.79 0.76 0.71 0.68 0.66 0.64 0.63 0.63 0.62 0.61 0.61 0.60 0.60 O.S9 O.S9 O.S9 O.S8 
s 1.28 1.02 0.91 0.85 0.81 0.76 0.73 0.71 0.69 0.68 0.67 0.67 0.66 0.66 0.6S 0.6S 0.64 0.64 0.63 0.63 
8 1.46 1.17 1.04 0.98 0.93 0.87 0.84 0.82 0.80 0.78 0.78 0.77 0.76 0.7S 0.7S 0.74 0.74 0.74 0.73 0.73 
12 1.62 1.29 1.1S 1.08 1.03 0.97 0.93 0.90 0.88 0.87 0.86 0.8S 0.84 0.83 0.83 0.82 0.82 0.81 0.81 0.80 
16 1.72 1.37 1.23 1.15 1.10 1.03 0.99 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.88 0.88 0.87 0.87 0.86 0.86 
20 1.81 1.44 1.29 1.20 1.1S 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 0.90 
30 1.9S 1.SS 1.39 1.30 1.24 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.98 0.97 
40 2.06 1.63 1.46 1.36 1.30 1.23 1.18 1.14 1.12 1.10 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 1.02 
so 2.14 1.69 1.Sl 1.42 1.3S 1.27 1.23 1.19 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.08 1.07 1.06 1.06 
60 2.20 1.74 1.S6 1.46 1.39 1.31 1.26 1.22 1.20 1.18 1.16 1.1S 1.14 1.13 1.12 1.11 1.11 1.10 1.09 1.09 
7S 2.28 1.80 1.61 1.Sl 1.44 1.3S 1.30 1.26 1.24 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 1.14 1.14 1.13 1.12 

100 2.37 1.88 1.68 1.S7 1.SO 1.41 1.36 1.32 1.29 1.27 1.2S 1.24 1.23 1.22 1.20 1.20 1.19 1.19 1.18 1.17 
12S 2.4S 1.94 1.73 1.62 1.S4 1.4S 1.40 1.36 1.33 1.31 1.29 1.28 1.27 1.2S 1.24 1.23 1.23 1.22 1.21 1.20 
150 2.Sl 1.98 1.77 1.66 1.58 1.49 1.43 1.39 1.36 1.34 1.32 1.31 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 1.23 
17S 2.S6 2.02 1.81 1.69 1.61 1.S2 1.46 1.42 1.39 1.36 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 1.27 1.26 1.26 
200 2.60 2.06 1.84 1.72 1.64 1.S4 1.49 1.44 1.41 1.39 1.37 1.36 1.34 1.33 1.32 1.31 1.30 1.29 1.28 1.28 

Table 19-3. K-Multi pliers for 1-of-4 Interwel I Prediction Limits on Observations (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 0.39 0.28 0.22 0.19 0.17 0.14 0.12 0.11 0.10 0.10 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 
2 0.70 O.S3 0.46 0.41 0.39 0.3S 0.33 0.31 0.30 0.30 0.29 0.29 0.28 0.28 0.27 0.27 0.27 0.27 0.26 0.26 
3 0.88 0.67 O.S9 O.S4 o.so 0.47 0.44 0.42 0.41 0.40 0.40 0.39 0.39 0.38 0.38 0.37 0.37 0.37 0.36 0.36 
4 1.01 0.78 0.68 0.62 O.S9 O.S4 O.S2 o.so 0.48 0.47 0.47 0.46 0.46 0.4S 0.4S 0.44 0.44 0.44 0.43 0.43 
5 1.12 0.8S 0.7S 0.69 0.6S 0.60 O.S8 o.ss O.S4 O.S3 O.S2 O.S2 O.Sl o.so o.so 0.49 0.49 0.49 0.48 0.48 
8 1.33 1.02 0.89 0.82 0.78 0.72 0.69 0.67 0.6S 0.64 0.63 0.62 0.62 0.61 0.60 0.60 0.60 O.S9 O.S9 O.S9 

12 1.S2 1.16 1.01 0.93 0.88 0.82 0.79 0.76 0.74 0.73 0.72 0.71 0.71 0.70 0.69 0.69 0.68 0.68 0.67 0.67 
16 1.66 1.26 1.10 1.01 0.96 0.89 0.86 0.83 0.81 0.79 0.78 0.77 0.77 0.76 0.7S 0.74 0.74 0.74 0.73 0.73 
20 1.76 1.33 1.16 1.07 1.02 0.9S 0.91 0.87 0.8S 0.84 0.83 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 0.77 
30 1.9S 1.47 1.28 1.18 1.12 1.04 1.00 0.96 0.94 0.92 0.91 0.90 0.89 0.88 0.87 0.87 0.86 0.86 0.8S 0.8S 
40 2.09 1.S6 1.36 1.26 1.19 1.11 1.06 1.02 1.00 0.98 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 0.90 
50 2.19 1.64 1.43 1.31 1.24 1.16 1.11 1.07 1.04 1.02 1.01 1.00 0.99 0.98 0.97 0.96 0.96 0.9S 0.9S 0.94 
60 2.27 1.70 1.48 1.36 1.29 1.20 1.1S 1.11 1.08 1.06 1.04 1.03 1.02 1.01 1.00 1.00 0.99 0.99 0.98 0.97 
75 2.37 1.77 1.S4 1.42 1.34 1.2S 1.19 1.1S 1.12 1.10 1.09 1.08 1.07 1.05 1.04 1.03 1.03 1.02 1.02 1.01 

100 2.50 1.86 1.62 1.49 1.41 1.31 1.2S 1.21 1.18 1.16 1.14 1.13 1.12 1.10 1.09 1.08 1.08 1.07 1.07 1.06 
125 2.60 1.93 1.68 1.S4 1.46 1.36 1.30 1.2S 1.22 1.20 1.18 1.17 1.16 1.14 1.13 1.12 1.12 1.11 1.10 1.10 
150 2.68 1.99 1.73 1.S9 1.SO 1.40 1.33 1.29 1.2S 1.23 1.21 1.20 1.19 1.17 1.16 1.1S 1.1S 1.14 1.13 1.13 
175 2.75 2.04 1.77 1.63 1.S4 1.43 1.37 1.32 1.28 1.26 1.24 1.23 1.22 1.20 1.19 1.18 1.17 1.17 1.16 1.1S 
200 2.81 2.08 1.81 1.66 1.S7 1.46 1.39 1.34 1.31 1.28 1.26 1.2S 1.24 1.22 1.21 1.20 1.19 1.19 1.18 1.17 
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Table 19-3. K-Multipliers for 1-of-4 Interwel I Prediction Limits on Observations (2 coc, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 0.70 O.S3 0.46 0.41 0.39 0.3S 0.33 0.31 0.30 0.30 0.29 0.29 0.28 0.28 0.27 0.27 0.27 0.27 0.26 0.26 
2 1.01 0.78 0.68 0.62 O.S9 O.S4 O.S2 o.so 0.48 0.47 0.47 0.46 0.46 0.4S 0.4S 0.44 0.44 0.44 0.43 0.43 
3 1.20 0.92 0.80 0.74 0.70 0.6S 0.62 0.60 O.S8 O.S7 O.S6 O.S6 o.ss o.ss O.S4 O.S4 O.S3 O.S3 O.S3 O.S2 
4 1.33 1.02 0.89 0.82 0.78 0.72 0.69 0.67 0.6S 0.64 0.63 0.62 0.62 0.61 0.60 0.60 0.60 O.S9 O.S9 O.S9 
s 1.44 1.10 0.96 0.88 0.84 0.78 0.7S 0.72 0.70 0.69 0.68 0.67 0.67 0.66 0.6S 0.6S 0.64 0.64 0.64 0.63 
8 1.66 1.26 1.10 1.01 0.96 0.89 0.86 0.83 0.81 0.79 0.78 0.77 0.77 0.76 0.7S 0.74 0.74 0.74 0.73 0.73 
12 1.8S 1.39 1.22 1.12 1.06 0.99 0.9S 0.91 0.89 0.88 0.86 0.86 0.8S 0.84 0.83 0.82 0.82 0.82 0.81 0.81 
16 1.98 1.49 1.30 1.20 1.13 1.06 1.01 0.98 0.9S 0.94 0.92 0.91 0.91 0.89 0.89 0.88 0.87 0.87 0.86 0.86 
20 2.09 1.S6 1.36 1.26 1.19 1.11 1.06 1.02 1.00 0.98 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 0.90 
30 2.27 1.70 1.48 1.36 1.29 1.20 1.1S 1.11 1.08 1.06 1.04 1.03 1.02 1.01 1.00 1.00 0.99 0.99 0.98 0.97 
40 2.40 1.79 1.S6 1.43 1.36 1.26 1.21 1.16 1.13 1.11 1.10 1.09 1.08 1.06 1.05 1.05 1.04 1.04 1.03 1.02 
so 2.50 1.86 1.62 1.49 1.41 1.31 1.2S 1.21 1.18 1.16 1.14 1.13 1.12 1.10 1.09 1.08 1.08 1.07 1.07 1.06 
60 2.59 1.92 1.67 1.S3 1.4S 1.3S 1.29 1.24 1.21 1.19 1.17 1.16 1.1S 1.14 1.12 1.12 1.11 1.10 1.10 1.09 
7S 2.68 1.99 1.73 1.S9 1.SO 1.40 1.33 1.29 1.2S 1.23 1.21 1.20 1.19 1.17 1.16 1.1S 1.1S 1.14 1.13 1.13 

100 2.81 2.08 1.81 1.66 1.S7 1.46 1.39 1.34 1.31 1.28 1.26 1.2S 1.24 1.22 1.21 1.20 1.19 1.19 1.18 1.17 
12S 2.91 2.1S 1.86 1.71 1.62 1.SO 1.44 1.38 1.3S 1.32 1.30 1.29 1.28 1.26 1.2S 1.24 1.23 1.22 1.21 1.21 
150 2.99 2.20 1.91 1.76 1.66 1.S4 1.47 1.42 1.38 1.3S 1.34 1.32 1.31 1.29 1.28 1.27 1.26 1.2S 1.24 1.24 
17S 3.05 2.2S 1.9S 1.79 1.69 1.S7 1.50 1.44 1.41 1.38 1.36 1.3S 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 
200 3.11 2.29 1.98 1.82 1.72 1.60 1.S3 1.47 1.43 1.40 1.38 1.37 1.36 1.34 1.32 1.31 1.31 1.30 1.29 1.28 

Table 19-3. K-Multipliers for 1-of-4 Interwel I Prediction Limits on Observations (2 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.01 0.78 0.68 0.62 O.S9 O.S4 O.S2 o.so 0.48 0.47 0.47 0.46 0.46 0.4S 0.4S 0.44 0.44 0.44 0.43 0.43 
2 1.33 1.02 0.89 0.82 0.78 0.72 0.69 0.67 0.6S 0.64 0.63 0.62 0.62 0.61 0.60 0.60 0.60 O.S9 O.S9 O.S9 
3 1.S2 1.16 1.01 0.93 0.88 0.82 0.79 0.76 0.74 0.73 0.72 0.71 0.71 0.70 0.69 0.69 0.68 0.68 0.67 0.67 
4 1.66 1.26 1.10 1.01 0.96 0.89 0.86 0.83 0.81 0.79 0.78 0.77 0.77 0.76 0.7S 0.74 0.74 0.74 0.73 0.73 
s 1.76 1.33 1.16 1.07 1.02 0.9S 0.91 0.87 0.8S 0.84 0.83 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 0.77 
8 1.98 1.49 1.30 1.20 1.13 1.06 1.01 0.98 0.9S 0.94 0.92 0.91 0.91 0.89 0.89 0.88 0.87 0.87 0.86 0.86 
12 2.17 1.62 1.42 1.30 1.23 1.1S 1.10 1.06 1.03 1.02 1.00 0.99 0.98 0.97 0.96 0.9S 0.9S 0.9S 0.94 0.93 
16 2.30 1.72 1.50 1.38 1.30 1.21 1.16 1.12 1.09 1.07 1.06 1.05 1.04 1.02 1.01 1.01 1.00 1.00 0.99 0.98 
20 2.40 1.79 1.S6 1.43 1.36 1.26 1.21 1.16 1.13 1.11 1.10 1.09 1.08 1.06 1.05 1.05 1.04 1.04 1.03 1.02 
30 2.59 1.92 1.67 1.S3 1.4S 1.3S 1.29 1.24 1.21 1.19 1.17 1.16 1.1S 1.14 1.12 1.12 1.11 1.10 1.10 1.09 
40 2.71 2.01 1.7S 1.61 1.S2 1.41 1.3S 1.30 1.27 1.24 1.23 1.21 1.20 1.18 1.17 1.16 1.16 1.1S 1.14 1.14 
so 2.81 2.08 1.81 1.66 1.S7 1.46 1.39 1.34 1.31 1.28 1.26 1.2S 1.24 1.22 1.21 1.20 1.19 1.19 1.18 1.17 
60 2.89 2.13 1.8S 1.70 1.61 1.49 1.43 1.37 1.34 1.32 1.30 1.28 1.27 1.2S 1.24 1.23 1.22 1.22 1.21 1.20 
7S 2.99 2.20 1.91 1.76 1.66 1.S4 1.47 1.42 1.38 1.3S 1.34 1.32 1.31 1.29 1.28 1.27 1.26 1.2S 1.24 1.24 

100 3.11 2.29 1.98 1.82 1.72 1.60 1.S3 1.47 1.43 1.40 1.38 1.37 1.36 1.34 1.32 1.31 1.31 1.30 1.29 1.28 
12S 3.20 2.3S 2.04 1.87 1.77 1.64 1.S7 1.Sl 1.47 1.44 1.42 1.41 1.39 1.37 1.36 1.3S 1.34 1.33 1.32 1.31 
150 3.28 2.41 2.09 1.92 1.81 1.68 1.60 1.S4 1.SO 1.47 1.4S 1.44 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 1.34 
17S 3.34 2.4S 2.13 1.9S 1.84 1.71 1.63 1.S7 1.S3 1.50 1.48 1.46 1.4S 1.43 1.41 1.40 1.39 1.38 1.37 1.36 
200 3.39 2.49 2.16 1.98 1.87 1.74 1.66 1.S9 1.SS 1.S2 1.SO 1.48 1.47 1.4S 1.43 1.42 1.41 1.40 1.39 1.38 
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Table 19-3. K-Multipliers for 1-of-4 Interwell Prediction Limits on Observations (5 coc, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.8S 0.63 O.S4 0.49 0.46 0.42 0.40 0.38 0.37 0.36 0.3S 0.3S 0.34 0.34 0.33 0.33 0.33 0.32 0.32 0.32 
2 1.21 0.89 0.77 0.70 0.66 0.61 O.S8 O.S6 O.S4 O.S3 O.S2 O.S2 O.Sl o.so o.so o.so 0.49 0.49 0.49 0.48 
3 1.43 1.04 0.90 0.82 0.77 0.72 0.68 0.66 0.64 0.63 0.62 0.61 0.61 0.60 O.S9 O.S9 O.S8 O.S8 O.S8 O.S7 
4 1.S9 1.1S 0.99 0.91 0.8S 0.79 0.7S 0.72 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.64 0.64 0.64 0.63 
s 1.71 1.24 1.06 0.97 0.91 0.8S 0.81 0.78 0.76 0.74 0.73 0.72 0.72 0.71 0.70 0.70 0.69 0.69 0.68 0.68 
8 1.99 1.42 1.21 1.11 1.04 0.96 0.92 0.88 0.86 0.84 0.83 0.82 0.81 0.80 0.80 0.79 0.79 0.78 0.78 0.77 
12 2.24 1.58 1.34 1.22 1.1S 1.06 1.01 0.97 0.9S 0.93 0.91 0.90 0.90 0.88 0.88 0.87 0.86 0.86 0.8S 0.8S 
16 2.41 1.69 1.43 1.30 1.22 1.13 1.07 1.03 1.00 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
20 2.55 1.77 1.50 1.36 1.28 1.18 1.12 1.08 1.05 1.03 1.02 1.00 0.99 0.98 0.97 0.96 0.96 0.9S 0.9S 0.94 
30 2.80 1.93 1.63 1.48 1.38 1.27 1.21 1.16 1.13 1.11 1.09 1.08 1.07 1.06 1.04 1.04 1.03 1.03 1.02 1.01 
40 2.97 2.04 1.72 1.S6 1.46 1.34 1.27 1.22 1.19 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
so 3.11 2.13 1.79 1.62 1.Sl 1.39 1.32 1.27 1.23 1.21 1.19 1.17 1.16 1.1S 1.13 1.13 1.12 1.11 1.10 1.10 
60 3.22 2.20 1.8S 1.67 1.S6 1.43 1.36 1.30 1.27 1.24 1.22 1.21 1.20 1.18 1.17 1.16 1.1S 1.14 1.13 1.13 
7S 3.36 2.28 1.91 1.73 1.61 1.48 1.40 1.3S 1.31 1.28 1.26 1.2S 1.23 1.22 1.20 1.19 1.19 1.18 1.17 1.16 

100 3.53 2.39 2.00 1.80 1.68 1.S4 1.46 1.40 1.36 1.33 1.31 1.30 1.28 1.26 1.2S 1.24 1.23 1.23 1.22 1.21 
12S 3.67 2.47 2.07 1.86 1.74 1.S9 1.Sl 1.44 1.40 1.37 1.3S 1.33 1.32 1.30 1.29 1.28 1.27 1.26 1.2S 1.24 
150 3.77 2.54 2.12 1.91 1.78 1.63 1.SS 1.48 1.44 1.41 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 1.27 
17S 3.86 2.60 2.17 1.95 1.82 1.66 1.58 1.Sl 1.46 1.43 1.41 1.39 1.38 1.36 1.34 1.33 1.32 1.32 1.30 1.30 
200 3.94 2.65 2.21 1.99 1.8S 1.69 1.60 1.S3 1.49 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.34 1.32 1.32 

Table 19-3. K-Multipliers for 1-of-4 Interwel I Prediction Limits on Observations (5 coc, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.21 0.89 0.77 0.70 0.66 0.61 O.S8 O.S6 O.S4 O.S3 O.S2 O.S2 O.Sl o.so o.so o.so 0.49 0.49 0.49 0.48 
2 1.S9 1.1S 0.99 0.91 0.8S 0.79 0.7S 0.72 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.64 0.64 0.64 0.63 
3 1.82 1.31 1.12 1.02 0.96 0.89 0.8S 0.82 0.80 0.78 0.77 0.76 0.76 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 
4 1.99 1.42 1.21 1.11 1.04 0.96 0.92 0.88 0.86 0.84 0.83 0.82 0.81 0.80 0.80 0.79 0.79 0.78 0.78 0.77 
s 2.13 1.SO 1.28 1.17 1.10 1.02 0.97 0.93 0.91 0.89 0.88 0.87 0.86 0.8S 0.84 0.83 0.83 0.83 0.82 0.81 
8 2.41 1.69 1.43 1.30 1.22 1.13 1.07 1.03 1.00 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
12 2.66 1.84 1.S6 1.41 1.33 1.22 1.16 1.12 1.09 1.07 1.05 1.04 1.03 1.01 1.00 1.00 0.99 0.99 0.98 0.97 
16 2.84 1.9S 1.6S 1.49 1.40 1.29 1.22 1.18 1.14 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
20 2.97 2.04 1.72 1.S6 1.46 1.34 1.27 1.22 1.19 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
30 3.22 2.20 1.8S 1.67 1.S6 1.43 1.36 1.30 1.27 1.24 1.22 1.21 1.20 1.18 1.17 1.16 1.1S 1.14 1.13 1.13 
40 3.40 2.30 1.93 1.74 1.63 1.49 1.42 1.36 1.32 1.29 1.27 1.26 1.2S 1.23 1.21 1.20 1.20 1.19 1.18 1.17 
so 3.53 2.39 2.00 1.80 1.68 1.S4 1.46 1.40 1.36 1.33 1.31 1.30 1.28 1.26 1.2S 1.24 1.23 1.23 1.22 1.21 
60 3.64 2.46 2.06 1.8S 1.73 1.58 1.SO 1.44 1.40 1.37 1.34 1.33 1.31 1.30 1.28 1.27 1.26 1.26 1.24 1.24 
7S 3.77 2.54 2.12 1.91 1.78 1.63 1.SS 1.48 1.44 1.41 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 1.27 

100 3.94 2.65 2.21 1.99 1.8S 1.69 1.60 1.S3 1.49 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.34 1.32 1.32 
12S 4.07 2.73 2.27 2.04 1.90 1.74 1.6S 1.58 1.S3 1.50 1.47 1.4S 1.44 1.41 1.40 1.39 1.38 1.37 1.36 1.3S 
150 4.18 2.79 2.33 2.09 1.9S 1.78 1.68 1.61 1.S6 1.S3 1.SO 1.48 1.47 1.44 1.43 1.41 1.41 1.40 1.38 1.38 
17S 4.27 2.85 2.37 2.13 1.98 1.81 1.71 1.64 1.S9 1.SS 1.S3 1.Sl 1.49 1.47 1.4S 1.44 1.43 1.42 1.41 1.40 
200 4.34 2.90 2.41 2.17 2.02 1.84 1.74 1.66 1.61 1.58 1.SS 1.S3 1.Sl 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
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Table 19-3. K-Multipliers for 1-of-4 Interwel I Prediction Limits on Observations (5 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.S9 1.1S 0.99 0.91 0.8S 0.79 0.7S 0.72 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.64 0.64 0.64 0.63 
2 1.99 1.42 1.21 1.11 1.04 0.96 0.92 0.88 0.86 0.84 0.83 0.82 0.81 0.80 0.80 0.79 0.79 0.78 0.78 0.77 
3 2.24 1.58 1.34 1.22 1.1S 1.06 1.01 0.97 0.9S 0.93 0.91 0.90 0.90 0.88 0.88 0.87 0.86 0.86 0.8S 0.8S 
4 2.41 1.69 1.43 1.30 1.22 1.13 1.07 1.03 1.00 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
s 2.SS 1.77 1.50 1.36 1.28 1.18 1.12 1.08 1.05 1.03 1.02 1.00 0.99 0.98 0.97 0.96 0.96 0.9S 0.9S 0.94 
8 2.84 1.9S 1.6S 1.49 1.40 1.29 1.22 1.18 1.14 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
12 3.09 2.11 1.78 1.61 1.50 1.38 1.31 1.26 1.22 1.20 1.18 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
16 3.26 2.22 1.87 1.68 1.S7 1.44 1.37 1.31 1.28 1.2S 1.23 1.22 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 1.14 
20 3.40 2.30 1.93 1.74 1.63 1.49 1.42 1.36 1.32 1.29 1.27 1.26 1.2S 1.23 1.21 1.20 1.20 1.19 1.18 1.17 
30 3.64 2.46 2.06 1.8S 1.73 1.58 1.SO 1.44 1.40 1.37 1.34 1.33 1.31 1.30 1.28 1.27 1.26 1.26 1.24 1.24 
40 3.81 2.S6 2.14 1.93 1.80 1.6S 1.S6 1.49 1.4S 1.42 1.39 1.38 1.36 1.34 1.33 1.32 1.31 1.30 1.29 1.28 
so 3.94 2.65 2.21 1.99 1.8S 1.69 1.60 1.S3 1.49 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.34 1.32 1.32 
60 4.05 2.71 2.26 2.03 1.89 1.73 1.64 1.S7 1.S2 1.49 1.46 1.4S 1.43 1.41 1.39 1.38 1.37 1.36 1.3S 1.34 
7S 4.18 2.79 2.33 2.09 1.9S 1.78 1.68 1.61 1.S6 1.S3 1.50 1.48 1.47 1.44 1.43 1.41 1.41 1.40 1.38 1.38 

100 4.34 2.90 2.41 2.17 2.02 1.84 1.74 1.66 1.61 1.58 1.SS 1.S3 1.Sl 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
12S 4.47 2.97 2.48 2.22 2.07 1.89 1.78 1.70 1.6S 1.61 1.S9 1.S7 1.SS 1.S2 1.Sl 1.49 1.48 1.47 1.46 1.4S 
150 4.57 3.04 2.S3 2.27 2.11 1.92 1.82 1.74 1.68 1.64 1.62 1.S9 1.58 1.SS 1.S3 1.S2 1.Sl 1.50 1.49 1.48 
17S 4.66 3.09 2.57 2.31 2.14 1.96 1.8S 1.76 1.71 1.67 1.64 1.62 1.60 1.S7 1.S6 1.S4 1.S3 1.S2 1.Sl 1.50 
200 4.73 3.14 2.61 2.34 2.17 1.98 1.87 1.79 1.73 1.69 1.66 1.64 1.62 1.60 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 

Table 19-3. K-Multipliers for 1-of-4 Interwel I Prediction Limits on Observations (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.24 0.91 0.78 0.71 0.67 0.61 O.S8 O.S6 O.S4 O.S3 O.S2 O.S2 O.Sl O.Sl o.so o.so 0.49 0.49 0.49 0.48 
2 1.66 1.18 1.01 0.91 0.86 0.79 0.76 0.73 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.6S 0.64 0.64 0.63 
3 1.92 1.34 1.14 1.03 0.97 0.90 0.8S 0.82 0.80 0.78 0.77 0.76 0.76 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 
4 2.11 1.46 1.23 1.12 1.05 0.97 0.92 0.88 0.86 0.84 0.83 0.82 0.82 0.80 0.80 0.79 0.79 0.78 0.78 0.77 
s 2.27 1.SS 1.31 1.18 1.11 1.02 0.97 0.93 0.91 0.89 0.88 0.87 0.86 0.8S 0.84 0.83 0.83 0.83 0.82 0.81 
8 2.61 1.7S 1.46 1.32 1.23 1.13 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
12 2.91 1.92 1.60 1.44 1.34 1.23 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
16 3.13 2.05 1.70 1.52 1.42 1.30 1.23 1.18 1.1S 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
20 3.30 2.14 1.77 1.59 1.48 1.3S 1.28 1.23 1.19 1.17 1.1S 1.14 1.12 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
30 3.61 2.32 1.91 1.70 1.58 1.44 1.37 1.31 1.27 1.24 1.22 1.21 1.20 1.18 1.17 1.16 1.1S 1.14 1.13 1.13 
40 3.83 2.44 2.00 1.79 1.66 1.Sl 1.43 1.37 1.32 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
so 4.00 2.54 2.08 1.85 1.72 1.S6 1.47 1.41 1.37 1.34 1.32 1.30 1.29 1.27 1.2S 1.24 1.23 1.23 1.22 1.21 
60 4.14 2.62 2.14 1.90 1.76 1.60 1.51 1.44 1.40 1.37 1.3S 1.33 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 
7S 4.31 2.71 2.21 1.97 1.82 1.6S 1.S6 1.49 1.44 1.41 1.39 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 1.27 

100 4.52 2.84 2.31 2.05 1.89 1.72 1.62 1.S4 1.50 1.46 1.44 1.42 1.40 1.38 1.37 1.3S 1.34 1.34 1.32 1.32 
12S 4.69 2.93 2.38 2.11. 1.9S 1.77 1.66 1.S9 1.S4 1.50 1.48 1.46 1.44 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 
150 4.83 3.01 2.44 2.16 2.00 1.81 1.70 1.62 1.S7 1.S3 1.Sl 1.49 1.47 1.4S 1.43 1.42 1.41 1.40 1.39 1.38 
17S 4.94 3.07 2.49 2.21 2.04 1.84 1.73 1.6S 1.60 1.S6 1.S3 1.Sl 1.49 1.47 1.4S 1.44 1.43 1.42 1.41 1.40 
200 5.04 3.13 2.54 2.24 2.07 1.87 1.76 1.68 1.62 1.58 1.SS 1.S3 1.S2 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
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Table 19-3. K-Multipliers for 1-of-4 Interwel I Prediction Limits on Observations (10 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.66 1.18 1.01 0.91 0.86 0.79 0.76 0.73 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.6S 0.64 0.64 0.63 
2 2.11 1.46 1.23 1.12 1.05 0.97 0.92 0.88 0.86 0.84 0.83 0.82 0.82 0.80 0.80 0.79 0.79 0.78 0.78 0.77 
3 2.40 1.63 1.37 1.24 1.16 1.07 1.01 0.97 0.9S 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.86 0.86 0.8S 0.8S 
4 2.61 1.7S 1.46 1.32 1.23 1.13 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
s 2.77 1.84 1.54 1.39 1.29 1.19 1.13 1.08 1.05 1.03 1.02 1.01 1.00 0.98 0.97 0.96 0.96 0.9S 0.9S 0.94 
8 3.13 2.05 1.70 1.S2 1.42 1.30 1.23 1.18 1.1S 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
12 3.44 2.22 1.83 1.64 1.S2 1.39 1.32 1.26 1.23 1.20 1.18 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
16 3.66 2.35 1.93 1.72 1.60 1.46 1.38 1.32 1.28 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
20 3.83 2.44 2.00 1.79 1.66 1.Sl 1.43 1.37 1.32 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
30 4.14 2.62 2.14 1.90 1.76 1.60 1.Sl 1.44 1.40 1.37 1.3S 1.33 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 
40 4.36 2.74 2.24 1.99 1.84 1.67 1.S7 1.50 1.4S 1.42 1.40 1.38 1.37 1.34 1.33 1.32 1.31 1.30 1.29 1.28 
so 4.52 2.84 2.31 2.05 1.89 1.72 1.62 1.S4 1.50 1.46 1.44 1.42 1.40 1.38 1.37 1.3S 1.34 1.34 1.32 1.32 
60 4.66 2.92 2.37 2.10 1.94 1.76 1.66 1.58 1.S3 1.49 1.47 1.4S 1.43 1.41 1.39 1.38 1.37 1.37 1.3S 1.34 
7S 4.83 3.01 2.44 2.16 2.00 1.81 1.70 1.62 1.S7 1.S3 1.Sl 1.49 1.47 1.4S 1.43 1.42 1.41 1.40 1.39 1.38 

100 5.04 3.13 2.54 2.24 2.07 1.87 1.76 1.68 1.62 1.58 1.SS 1.S3 1.S2 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
12S 5.20 3.22 2.61 2.31 2.13 1.92 1.80 1.72 1.66 1.62 1.S9 1.S7 1.SS 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.4S 
150 5.34 3.30 2.67 2.36 2.17 1.96 1.84 1.7S 1.69 1.6S 1.62 1.60 1.58 1.SS 1.S4 1.S2 1.Sl 1.50 1.49 1.48 
17S 5.45 3.36 2.71 2.40 2.21 1.99 1.87 1.78 1.72 1.68 1.6S 1.62 1.61 1.58 1.S6 1.S4 1.S3 1.S2 1.Sl 1.50 
200 5.54 3.42 2.76 2.43 2.24 2.02 1.90 1.80 1.74 1.70 1.67 1.6S 1.63 1.60 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 

Table 19-3. K-Multi pliers for 1-of-4 Interwell Prediction Limits on Observations (10 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.11 1.46 1.23 1.12 1.05 0.97 0.92 0.88 0.86 0.84 0.83 0.82 0.82 0.80 0.80 0.79 0.79 0.78 0.78 0.77 
2 2.61 1.7S 1.46 1.32 1.23 1.13 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
3 2.91 1.92 1.60 1.44 1.34 1.23 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
4 3.13 2.05 1.70 1.S2 1.42 1.30 1.23 1.18 1.1S 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
s 3.30 2.14 1.77 1.S9 1.48 1.3S 1.28 1.23 1.19 1.17 1.1S 1.14 1.12 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
8 3.66 2.3S 1.93 1.72 1.60 1.46 1.38 1.32 1.28 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
12 3.97 2.S2 2.06 1.84 1.71 1.SS 1.47 1.40 1.36 1.33 1.31 1.29 1.28 1.26 1.2S 1.24 1.23 1.22 1.21 1.20 
16 4.19 2.65 2.16 1.92 1.78 1.62 1.S3 1.46 1.41 1.38 1.36 1.34 1.33 1.31 1.29 1.28 1.27 1.27 1.26 1.2S 
20 4.36 2.74 2.24 1.99 1.84 1.67 1.S7 1.SO 1.4S 1.42 1.40 1.38 1.37 1.34 1.33 1.32 1.31 1.30 1.29 1.28 
30 4.66 2.92 2.37 2.10 1.94 1.76 1.66 1.58 1.S3 1.49 1.47 1.4S 1.43 1.41 1.39 1.38 1.37 1.37 1.3S 1.34 
40 4.88 3.04 2.46 2.18 2.01 1.82 1.71 1.63 1.58 1.S4 1.S2 1.50 1.48 1.46 1.44 1.43 1.42 1.41 1.39 1.39 
so 5.04 3.13 2.S4 2.24 2.07 1.87 1.76 1.68 1.62 1.58 1.SS 1.S3 1.S2 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
60 5.17 3.21 2.59 2.29 2.11 1.91 1.80 1.71 1.6S 1.61 1.S9 1.S6 1.SS 1.S2 1.SO 1.49 1.48 1.47 1.4S 1.44 
7S 5.34 3.30 2.67 2.36 2.17 1.96 1.84 1.7S 1.69 1.6S 1.62 1.60 1.58 1.SS 1.S4 1.S2 1.Sl 1.50 1.49 1.48 

100 5.54 3.42 2.76 2.43 2.24 2.02 1.90 1.80 1.74 1.70 1.67 1.6S 1.63 1.60 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 
12S 5.70 3.51 2.83 2.SO 2.30 2.07 1.94 1.8S 1.78 1.74 1.71 1.68 1.66 1.63 1.61 1.60 1.58 1.58 1.S6 1.SS 
150 5.83 3.58 2.88 2.S4 2.34 2.11 1.98 1.88 1.81 1.77 1.74 1.71 1.69 1.66 1.64 1.62 1.61 1.60 1.58 1.S7 
17S 5.94 3.64 2.93 2.59 2.38 2.14 2.01 1.91 1.84 1.79 1.76 1.73 1.71 1.68 1.66 1.64 1.63 1.62 1.60 1.S9 
200 6.03 3.70 2.97 2.62 2.41 2.17 2.03 1.93 1.86 1.82 1.78 1.7S 1.73 1.70 1.68 1.66 1.6S 1.64 1.62 1.61 
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Table 19-3. K-Multipliers for 1-of-4 Interwel I Prediction Limits on Observations (20 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.70 1.19 1.01 0.92 0.86 0.80 0.76 0.73 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.6S 0.64 0.64 0.63 
2 2.20 1.48 1.2S 1.13 1.05 0.97 0.92 0.89 0.86 0.8S 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 
3 2.51 1.66 1.38 1.2S 1.16 1.07 1.02 0.98 0.9S 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.86 0.86 0.8S 0.8S 
4 2.75 1.79 1.48 1.33 1.24 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
s 2.94 1.89 1.S6 1.40 1.30 1.19 1.13 1.08 1.05 1.03 1.02 1.01 1.00 0.98 0.97 0.97 0.96 0.96 0.9S 0.94 
8 3.36 2.11 1.72 1.54 1.43 1.30 1.24 1.18 1.1S 1.13 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
12 3.74 2.30 1.87 1.66 1.S4 1.40 1.32 1.27 1.23 1.20 1.18 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
16 4.01 2.44 1.97 1.75 1.62 1.47 1.39 1.32 1.28 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
20 4.22 2.55 2.05 1.82 1.68 1.S2 1.43 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
30 4.61 2.75 2.20 1.94 1.78 1.61 1.S2 1.4S 1.40 1.37 1.3S 1.33 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 
40 4.88 2.89 2.30 2.03 1.86 1.68 1.58 1.Sl 1.46 1.42 1.40 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 
so 5.10 3.00 2.39 2.09 1.92 1.73 1.63 1.SS 1.50 1.46 1.44 1.42 1.40 1.38 1.37 1.3S 1.34 1.34 1.32 1.32 
60 5.27 3.09 2.45 2.15 1.97 1.77 1.67 1.58 1.S3 1.50 1.47 1.4S 1.43 1.41 1.39 1.38 1.37 1.37 1.3S 1.34 
7S 5.49 3.20 2.53 2.22 2.03 1.82 1.71 1.63 1.S7 1.S4 1.Sl 1.49 1.47 1.4S 1.43 1.42 1.41 1.40 1.39 1.38 

100 5.76 3.34 2.64 2.30 2.11 1.89 1.77 1.68 1.63 1.S9 1.S6 1.S4 1.S2 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
12S 5.97 3.45 2.72 2.37 2.17 1.94 1.82 1.73 1.67 1.63 1.60 1.S7 1.SS 1.S3 1.Sl 1.49 1.48 1.48 1.46 1.4S 
150 6.14 3.54 2.78 2.42 2.22 1.98 1.86 1.76 1.70 1.66 1.63 1.60 1.58 1.S6 1.S4 1.S2 1.Sl 1.50 1.49 1.48 
17S 6.28 3.61 2.84 2.47 2.26 2.02 1.89 1.79 1.73 1.68 1.6S 1.63 1.61 1.58 1.S6 1.S4 1.S3 1.S2 1.Sl 1.50 
200 6.41 3.68 2.88 2.51 2.29 2.05 1.91 1.81 1.7S 1.71 1.67 1.6S 1.63 1.60 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 

Table 19-3. K-Multipliers for 1-of-4 Interwel I Prediction Limits on Observations (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.20 1.48 1.2S 1.13 1.05 0.97 0.92 0.89 0.86 0.8S 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 
2 2.75 1.79 1.48 1.33 1.24 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
3 3.11 1.98 1.62 1.45 1.3S 1.24 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
4 3.36 2.11 1.72 1.S4 1.43 1.30 1.24 1.18 1.1S 1.13 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
s 3.57 2.21 1.80 1.61 1.49 1.36 1.28 1.23 1.19 1.17 1.1S 1.14 1.13 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
8 4.01 2.44 1.97 1.75 1.62 1.47 1.39 1.32 1.28 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
12 4.39 2.64 2.12 1.87 1.72 1.S6 1.47 1.41 1.36 1.33 1.31 1.29 1.28 1.26 1.2S 1.24 1.23 1.22 1.21 1.20 
16 4.67 2.78 2.22 1.96 1.80 1.63 1.S3 1.46 1.42 1.38 1.36 1.34 1.33 1.31 1.29 1.28 1.27 1.27 1.26 1.2S 
20 4.88 2.89 2.30 2.03 1.86 1.68 1.58 1.Sl 1.46 1.42 1.40 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 
30 5.27 3.09 2.45 2.15 1.97 1.77 1.67 1.58 1.S3 1.50 1.47 1.4S 1.43 1.41 1.39 1.38 1.37 1.37 1.3S 1.34 
40 5.55 3.23 2.56 2.24 2.05 1.84 1.73 1.64 1.S9 1.SS 1.S2 1.50 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 
so 5.76 3.34 2.64 2.30 2.11 1.89 1.77 1.68 1.63 1.S9 1.S6 1.S4 1.S2 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
60 5.93 3.43 2.70 2.36 2.16 1.93 1.81 1.72 1.66 1.62 1.S9 1.S7 1.SS 1.S2 1.SO 1.49 1.48 1.47 1.4S 1.44 
7S 6.14 3.54 2.78 2.42 2.22 1.98 1.86 1.76 1.70 1.66 1.63 1.60 1.58 1.S6 1.S4 1.S2 1.Sl 1.50 1.49 1.48 

100 6.41 3.68 2.88 2.51 2.29 2.05 1.91 1.81 1.7S 1.71 1.67 1.6S 1.63 1.60 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 
12S 6.61 3.78 2.96 2.58 2.35 2.10 1.96 1.86 1.79 1.74 1.71 1.68 1.66 1.63 1.61 1.60 1.S9 1.58 1.S6 1.SS 
150 6.78 3.87 3.03 2.63 2.40 2.14 2.00 1.89 1.82 1.77 1.74 1.71 1.69 1.66 1.64 1.62 1.61 1.60 1.58 1.S7 
17S 6.92 3.94 3.08 2.68 2.44 2.17 2.03 1.92 1.8S 1.80 1.76 1.74 1.72 1.68 1.66 1.6S 1.63 1.62 1.61 1.S9 
200 7.04 4.00 3.13 2.71 2.47 2.20 2.06 1.94 1.87 1.82 1.79 1.76 1.74 1.70 1.68 1.67 1.6S 1.64 1.62 1.61 
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Table 19-3. K-Multi pliers for 1-of-4 Interwel I Prediction Limits on Observations (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.75 1.79 1.48 1.33 1.24 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
2 3.36 2.11 1.72 1.S4 1.43 1.30 1.24 1.18 1.1S 1.13 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
3 3.74 2.30 1.87 1.66 1.S4 1.40 1.32 1.27 1.23 1.20 1.18 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
4 4.01 2.44 1.97 1.75 1.62 1.47 1.39 1.32 1.28 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
s 4.22 2.S5 2.05 1.82 1.68 1.S2 1.43 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
8 4.67 2.78 2.22 1.96 1.80 1.63 1.S3 1.46 1.42 1.38 1.36 1.34 1.33 1.31 1.29 1.28 1.27 1.27 1.26 1.2S 
12 5.06 2.98 2.37 2.08 1.91 1.72 1.62 1.S4 1.49 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 
16 5.34 3.12 2.47 2.17 1.99 1.79 1.68 1.60 1.S4 1.Sl 1.48 1.46 1.4S 1.42 1.41 1.39 1.38 1.38 1.36 1.3S 
20 5.55 3.23 2.56 2.24 2.05 1.84 1.73 1.64 1.S9 1.55 1.S2 1.SO 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 
30 5.93 3.43 2.70 2.36 2.16 1.93 1.81 1.72 1.66 1.62 1.S9 1.S7 1.SS 1.S2 1.SO 1.49 1.48 1.47 1.4S 1.44 
40 6.20 3.57 2.81 2.44 2.23 2.00 1.87 1.77 1.71 1.67 1.64 1.61 1.S9 1.S7 1.55 1.S3 1.S2 1.Sl 1.50 1.49 
so 6.41 3.68 2.88 2.Sl 2.29 2.05 1.91 1.81 1.7S 1.71 1.67 1.6S 1.63 1.60 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 
60 6.57 3.76 2.95 2.56 2.34 2.09 1.9S 1.8S 1.78 1.74 1.70 1.68 1.66 1.63 1.61 1.S9 1.58 1.S7 1.55 1.S4 
7S 6.78 3.87 3.03 2.63 2.40 2.14 2.00 1.89 1.82 1.77 1.74 1.71 1.69 1.66 1.64 1.62 1.61 1.60 1.58 1.S7 

100 7.04 4.00 3.13 2.71 2.47 2.20 2.06 1.94 1.87 1.82 1.79 1.76 1.74 1.70 1.68 1.67 1.6S 1.64 1.62 1.61 
12S 7.24 4.11 3.21 2.78 2.S3 2.2S 2.10 1.98 1.91 1.86 1.82 1.79 1.77 1.74 1.71 1.70 1.68 1.67 1.6S 1.64 
150 7.40 4.19 3.27 2.83 2.58 2.29 2.14 2.02 1.94 1.89 1.8S 1.82 1.80 1.76 1.74 1.72 1.71 1.70 1.68 1.67 
17S 7.54 4.26 3.32 2.88 2.62 2.33 2.17 2.05 1.97 1.92 1.88 1.8S 1.82 1.79 1.76 1.74 1.73 1.72 1.70 1.69 
200 7.66 4.32 3.37 2.92 2.65 2.36 2.19 2.07 1.99 1.94 1.90 1.87 1.84 1.81 1.78 1.76 1.7S 1.74 1.72 1.70 

Table 19-3. K-Multipliers for 1-of-4 Interwel I Prediction Limits on Observations (40 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.25 1.49 1.2S 1.13 1.05 0.97 0.92 0.89 0.86 0.8S 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 
2 2.85 1.81 1.49 1.34 1.2S 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
3 3.25 2.01 1.64 1.46 1.3S 1.24 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
4 3.54 2.15 1.74 1.SS 1.44 1.31 1.24 1.18 1.1S 1.13 1.11 1.10 1.09 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
s 3.78 2.27 1.82 1.62 1.SO 1.36 1.29 1.23 1.19 1.17 1.1S 1.14 1.13 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
8 4.30 2.51 2.00 1.76 1.62 1.47 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
12 4.77 2.73 2,16 1.89 1.74 1.57 1.48 1.41 1.36 1.33 1.31 1.29 1.28 1.26 1.2S 1.24 1.23 1.22 1.21 1.20 
16 5.11 2.89 2.27 1.98 1.82 1.64 1.S4 1.46 1.42 1.39 1.36 1.34 1.33 1.31 1.29 1.28 1.27 1.27 1.26 1.2S 
20 5.37 3.01 2.35 2.05 1.88 1.69 1.58 1.Sl 1.46 1.43 1.40 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 
30 5.86 3.23 2.51 2.18 1.99 1.78 1.67 1.S9 1.S4 1.50 1.47 1.4S 1.44 1.41 1.40 1.38 1.37 1.37 1.3S 1.34 
40 6.21 3.39 2.63 2.27 2.07 1.8S 1.73 1.64 1.S9 1.SS 1.S2 1.SO 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 
so 6.47 3.52 2.71 2.34 2.13 1.90 1.78 1.69 1.63 1.S9 1.S6 1.S4 1.S2 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
60 6.70 3.62 2.79 2.40 2.19 1.95 1.82 1.72 1.66 1.62 1.S9 1.S7 1.SS 1.S2 1.SO 1.49 1.48 1.47 1.46 1.44 
7S 6.95 3.75 2.87 2.48 2.25 2.00 1.87 1.77 1.70 1.66 1.63 1.60 1.58 1.S6 1.S4 1.S2 1.Sl 1.50 1.49 1.48 

100 7.30 3.91 2.99 2.57 2.33 2.07 1.92 1.82 1.7S 1.71 1.67 1.6S 1.63 1.60 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 
12S 7.58 4.03 3.08 2.64 2.39 2.12 1.97 1.86 1.79 1.7S 1.71 1.69 1.67 1.63 1.61 1.60 1.S9 1.58 1.S6 1.SS 
150 7.79 4.13 3.15 2.70 2.44 2.16 2.01 1.90 1.83 1.78 1.74 1.72 1.69 1.66 1.64 1.62 1.61 1.60 1.58 1.S7 
17S 7.97 4.22 3.21 2.75 2.48 2.19 2.04 1.93 1.8S 1.80 1.77 1.74 1.72 1.69 1.66 1.6S 1.63 1.62 1.61 1.S9 
200 8.12 4.29 3.26 2.79 2.52 2.23 2.07 1.95 1.88 1.83 1.79 1.76 1.74 1.71 1.68 1.67 1.6S 1.64 1.62 1.61 
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Table 19-3. K-Multipliers for 1-of-4 Interwel I Prediction Limits on Observations ( 40 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.85 1.81 1.49 1.34 1.2S 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
2 3.54 2.1S 1.74 1.55 1.44 1.31 1.24 1.18 1.1S 1.13 1.11 1.10 1.09 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
3 3.98 2.36 1.89 1.67 1.55 1.40 1.33 1.27 1.23 1.20 1.19 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
4 4.30 2.51 2.00 1.76 1.62 1.47 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
s 4.56 2.63 2.08 1.83 1.69 1.S2 1.44 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
8 5.11 2.89 2.27 1.98 1.82 1.64 1.S4 1.46 1.42 1.39 1.36 1.34 1.33 1.31 1.29 1.28 1.27 1.27 1.26 1.2S 
12 5.59 3.11 2.42 2.11 1.93 1.73 1.62 1.S4 1.49 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 
16 5.94 3.27 2.54 2.20 2.01 1.80 1.68 1.60 1.55 1.Sl 1.48 1.46 1.4S 1.42 1.41 1.39 1.38 1.38 1.36 1.3S 
20 6.21 3.39 2.63 2.27 2.07 1.8S 1.73 1.64 1.S9 1.55 1.S2 1.SO 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 
30 6.70 3.62 2.79 2.40 2.19 1.9S 1.82 1.72 1.66 1.62 1.S9 1.S7 1.SS 1.S2 1.SO 1.49 1.48 1.47 1.46 1.44 
40 7.03 3.78 2.90 2.50 2.27 2.01 1.88 1.78 1.71 1.67 1.64 1.61 1.S9 1.S7 1.55 1.S3 1.S2 1.Sl 1.50 1.49 
so 7.30 3.91 2.99 2.57 2.33 2.07 1.92 1.82 1.7S 1.71 1.67 1.6S 1.63 1.60 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 
60 7.52 4.01 3.06 2.63 2.38 2.11 1.96 1.8S 1.79 1.74 1.71 1.68 1.66 1.63 1.61 1.S9 1.58 1.S7 1.55 1.S4 
7S 7.79 4.13 3.15 2.70 2.44 2.16 2.01 1.90 1.83 1.78 1.74 1.72 1.69 1.66 1.64 1.62 1.61 1.60 1.58 1.S7 

100 8.12 4.29 3.26 2.79 2.52 2.23 2.07 1.9S 1.88 1.83 1.79 1.76 1.74 1.71 1.68 1.67 1.6S 1.64 1.62 1.61 
12S 8.38 4.41 3.34 2.86 2.58 2.28 2.11 1.99 1.92 1.86 1.82 1.80 1.77 1.74 1.72 1.70 1.68 1.67 1.6S 1.64 
150 8.59 4.51 3.42 2.92 2.63 2.32 2.1S 2.03 1.9S 1.89 1.8S 1.82 1.80 1.77 1.74 1.72 1.71 1.70 1.68 1.67 
17S 8.77 4.59 3.48 2.97 2.68 2.36 2.18 2.06 1.98 1.92 1.88 1.8S 1.82 1.79 1.76 1.74 1.73 1.72 1.70 1.69 
200 8.91 4.67 3.53 3.01 2.71 2.39 2.21 2.08 2.00 1.94 1.90 1.87 1.84 1.81 1.78 1.76 1.7S 1.74 1.72 1.70 

Table 19-3. K-Multi pliers for 1-of-4 Interwel I Prediction Limits on Observations ( 40 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 3.54 2.1S 1.74 1.SS 1.44 1.31 1.24 1.18 1.1S 1.13 1.11 1.10 1.09 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
2 4.30 2.Sl 2.00 1.76 1.62 1.47 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
3 4.77 2.73 2.16 1.89 1.74 1.S7 1.48 1.41 1.36 1.33 1.31 1.29 1.28 1.26 1.2S 1.24 1.23 1.22 1.21 1.20 
4 5.11 2.89 2.27 1.98 1.82 1.64 1.S4 1.46 1.42 1.39 1.36 1.34 1.33 1.31 1.29 1.28 1.27 1.27 1.26 1.2S 
s 5.37 3.01 2.3S 2.05 1.88 1.69 1.58 1.Sl 1.46 1.43 1.40 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 
8 5.94 3.27 2.S4 2.20 2.01 1.80 1.68 1.60 1.55 1.Sl 1.48 1.46 1.4S 1.42 1.41 1.39 1.38 1.38 1.36 1.3S 
12 6.43 3.50 2.70 2.33 2.12 1.89 1.77 1.68 1.62 1.58 1.SS 1.S3 1.Sl 1.49 1.47 1.46 1.4S 1.44 1.42 1.41 
16 6.78 3.66 2.81 2.42 2.20 1.96 1.83 1.73 1.67 1.63 1.60 1.58 1.S6 1.S3 1.Sl 1.50 1.49 1.48 1.46 1.4S 
20 7.03 3.78 2.90 2.SO 2.27 2.01 1.88 1.78 1.71 1.67 1.64 1.61 1.S9 1.S7 1.55 1.S3 1.S2 1.Sl 1.SO 1.49 
30 7.52 4.01 3.06 2.63 2.38 2.11 1.96 1.8S 1.79 1.74 1.71 1.68 1.66 1.63 1.61 1.S9 1.58 1.S7 1.55 1.S4 
40 7.85 4.17 3.17 2.72 2.46 2.18 2.02 1.91 1.84 1.79 1.7S 1.72 1.70 1.67 1.6S 1.63 1.62 1.61 1.S9 1.58 
so 8.12 4.29 3.26 2.79 2.S2 2.23 2.07 1.9S 1.88 1.83 1.79 1.76 1.74 1.71 1.68 1.67 1.6S 1.64 1.62 1.61 
60 8.34 4.39 3.33 2.85 2.57 2.27 2.11 1.98 1.91 1.86 1.82 1.79 1.77 1.73 1.71 1.69 1.68 1.67 1.6S 1.64 
7S 8.59 4.51 3.42 2.92 2.63 2.32 2.1S 2.03 1.9S 1.89 1.8S 1.82 1.80 1.77 1.74 1.72 1.71 1.70 1.68 1.67 

100 8.91 4.67 3.53 3.01 2.71 2.39 2.21 2.08 2.00 1.94 1.90 1.87 1.84 1.81 1.78 1.76 1.7S 1.74 1.72 1.70 
12S 9.16 4.79 3.61 3.08 2.77 2.44 2.26 2.12 2.04 1.98 1.94 1.90 1.88 1.84 1.81 1.79 1.78 1.77 1.7S 1.73 
150 9.38 4.88 3.68 3.13 2.82 2.48 2.29 2.16 2.07 2.01 1.97 1.93 1.91 1.87 1.84 1.82 1.80 1.79 1.77 1.76 
17S 9.53 4.96 3.74 3.18 2.87 2.Sl 2.33 2.19 2.10 2.03 1.99 1.96 1.93 1.89 1.86 1.84 1.82 1.81 1.79 1.78 
200 9.69 5.03 3.79 3.23 2.90 2.54 2.3S 2.21 2.12 2.06 2.01 1.98 1.9S 1.91 1.88 1.86 1.84 1.83 1.81 1.79 
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Appendix D. Chapter 19 Interwell K-Tables for Observations Unified Guidance 

Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.71 O.S9 O.S3 o.so 0.48 0.4S 0.44 0.43 0.42 0.41 0.41 0.41 0.40 0.40 0.40 0.40 0.39 0.39 0.39 0.39 
2 1.07 0.88 0.81 0.76 0.73 0.70 0.68 0.66 0.6S 0.64 0.64 0.63 0.63 0.62 0.62 0.62 0.61 0.61 0.61 0.61 
3 1.28 1.05 0.96 0.90 0.87 0.83 0.80 0.78 0.77 0.76 0.76 0.7S 0.7S 0.74 0.74 0.73 0.73 0.73 0.72 0.72 
4 1.43 1.17 1.06 1.00 0.96 0.92 0.89 0.87 0.8S 0.84 0.84 0.83 0.83 0.82 0.81 0.81 0.81 0.81 0.80 0.80 
s 1.S4 1.26 1.14 1.07 1.03 0.98 0.9S 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.87 0.87 0.87 0.86 0.86 0.86 
8 1.78 1.44 1.30 1.23 1.18 1.12 1.09 1.06 1.04 1.03 1.02 1.01 1.01 1.00 0.99 0.99 0.98 0.98 0.97 0.97 
12 1.98 1.S9 1.44 1.35 1.30 1.23 1.20 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 1.08 1.08 1.08 1.07 1.07 
16 2.11 1.70 1.S3 1.44 1.38 1.31 1.27 1.24 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.14 1.13 1.13 
20 2.22 1.78 1.60 1.Sl 1.44 1.37 1.33 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 1.18 
30 2.41 1.92 1.73 1.62 1.S6 1.48 1.43 1.39 1.36 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 1.28 1.28 1.27 1.26 
40 2.S4 2.02 1.82 1.71 1.63 1.SS 1.50 1.46 1.43 1.41 1.40 1.38 1.38 1.36 1.3S 1.34 1.34 1.33 1.33 1.32 
so 2.64 2.10 1.88 1.77 1.69 1.60 1.SS 1.Sl 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 1.38 1.38 1.37 1.37 
60 2.72 2.16 1.94 1.82 1.74 1.6S 1.S9 1.SS 1.S2 1.50 1.48 1.47 1.46 1.4S 1.43 1.43 1.42 1.42 1.41 1.40 
7S 2.81 2.23 2.00 1.88 1.80 1.70 1.64 1.60 1.S7 1.SS 1.S3 1.S2 1.Sl 1.49 1.48 1.47 1.46 1.46 1.4S 1.44 

100 2.93 2.32 2.08 1.9S 1.87 1.77 1.71 1.66 1.63 1.61 1.S9 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 1.50 1.50 
12S 3.03 2.39 2.1S 2.01 1.93 1.82 1.76 1.71 1.67 1.6S 1.63 1.62 1.61 1.S9 1.58 1.S7 1.S6 1.S6 1.S4 1.S4 
150 3.10 2.4S 2.20 2.06 1.97 1.86 1.80 1.7S 1.71 1.69 1.67 1.6S 1.64 1.62 1.61 1.60 1.S9 1.S9 1.58 1.S7 
17S 3.16 2.SO 2.24 2.10 2.01 1.90 1.83 1.78 1.74 1.72 1.70 1.68 1.67 1.6S 1.64 1.63 1.62 1.62 1.61 1.60 
200 3.21 2.S4 2.27 2.13 2.04 1.93 1.86 1.81 1.77 1.74 1.72 1.71 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 1.62 

Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (1 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.07 0.88 0.81 0.76 0.73 0.70 0.68 0.66 0.6S 0.64 0.64 0.63 0.63 0.62 0.62 0.62 0.61 0.61 0.61 0.61 
2 1.43 1.17 1.06 1.00 0.96 0.92 0.89 0.87 0.8S 0.84 0.84 0.83 0.83 0.82 0.81 0.81 0.81 0.81 0.80 0.80 
3 1.63 1.33 1.20 1.13 1.09 1.04 1.01 0.98 0.97 0.9S 0.9S 0.94 0.93 0.93 0.92 0.92 0.91 0.91 0.90 0.90 
4 1.78 1.44 1.30 1.23 1.18 1.12 1.09 1.06 1.04 1.03 1.02 1.01 1.01 1.00 0.99 0.99 0.98 0.98 0.97 0.97 
s 1.89 1.S2 1.38 1.30 1.2S 1.18 1.1S 1.12 1.10 1.09 1.08 1.07 1.06 1.05 1.05 1.04 1.04 1.03 1.03 1.02 
8 2.11 1.70 1.S3 1.44 1.38 1.31 1.27 1.24 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.14 1.13 1.13 
12 2.31 1.84 1.66 1.S6 1.50 1.42 1.37 1.34 1.31 1.30 1.28 1.27 1.26 1.2S 1.24 1.24 1.23 1.23 1.22 1.22 
16 2.44 1.94 1.7S 1.64 1.S7 1.49 1.44 1.40 1.38 1.36 1.3S 1.34 1.33 1.31 1.31 1.30 1.29 1.29 1.28 1.28 
20 2.S4 2.02 1.82 1.71 1.63 1.SS 1.SO 1.46 1.43 1.41 1.40 1.38 1.38 1.36 1.3S 1.34 1.34 1.33 1.33 1.32 
30 2.72 2.16 1.94 1.82 1.74 1.6S 1.S9 1.SS 1.S2 1.50 1.48 1.47 1.46 1.4S 1.43 1.43 1.42 1.42 1.41 1.40 
40 2.84 2.2S 2.02 1.89 1.81 1.72 1.66 1.61 1.58 1.S6 1.S4 1.S3 1.S2 1.50 1.49 1.48 1.48 1.47 1.46 1.46 
so 2.93 2.32 2.08 1.9S 1.87 1.77 1.71 1.66 1.63 1.61 1.S9 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 1.50 1.50 
60 3.01 2.38 2.13 2.00 1.92 1.81 1.7S 1.70 1.67 1.64 1.62 1.61 1.60 1.58 1.S7 1.S6 1.SS 1.SS 1.S4 1.S3 
7S 3.10 2.4S 2.20 2.06 1.97 1.86 1.80 1.7S 1.71 1.69 1.67 1.6S 1.64 1.62 1.61 1.60 1.S9 1.S9 1.58 1.S7 

100 3.21 2.S4 2.27 2.13 2.04 1.93 1.86 1.81 1.77 1.74 1.72 1.71 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 1.62 
12S 3.30 2.61 2.33 2.19 2.09 1.98 1.91 1.8S 1.81 1.79 1.77 1.7S 1.74 1.72 1.71 1.70 1.69 1.68 1.67 1.66 
150 3.37 2.66 2.38 2.23 2.13 2.02 1.9S 1.89 1.8S 1.82 1.80 1.79 1.77 1.7S 1.74 1.73 1.72 1.71 1.70 1.69 
17S 3.43 2.70 2.42 2.27 2.17 2.05 1.98 1.92 1.88 1.8S 1.83 1.81 1.80 1.78 1.77 1.76 1.7S 1.74 1.73 1.72 
200 3.48 2.74 2.46 2.30 2.20 2.08 2.00 1.9S 1.91 1.88 1.86 1.84 1.83 1.80 1.79 1.78 1.77 1.76 1.7S 1.74 
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Appendix D. Chapter 19 Interwell K-Tables for Observations Unified Guidance 

Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (1 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.43 1.17 1.06 1.00 0.96 0.92 0.89 0.87 0.8S 0.84 0.84 0.83 0.83 0.82 0.81 0.81 0.81 0.81 0.80 0.80 
2 1.78 1.44 1.30 1.23 1.18 1.12 1.09 1.06 1.04 1.03 1.02 1.01 1.01 1.00 0.99 0.99 0.98 0.98 0.97 0.97 
3 1.98 1.S9 1.44 1.3S 1.30 1.23 1.20 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 1.08 1.08 1.08 1.07 1.07 
4 2.11 1.70 1.S3 1.44 1.38 1.31 1.27 1.24 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.14 1.13 1.13 
s 2.22 1.78 1.60 1.Sl 1.44 1.37 1.33 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 1.18 
8 2.44 1.94 1.7S 1.64 1.S7 1.49 1.44 1.40 1.38 1.36 1.3S 1.34 1.33 1.31 1.31 1.30 1.29 1.29 1.28 1.28 
12 2.62 2.08 1.87 1.76 1.68 1.S9 1.S4 1.50 1.47 1.4S 1.43 1.42 1.41 1.40 1.39 1.38 1.38 1.37 1.36 1.36 
16 2.74 2.18 1.96 1.83 1.76 1.66 1.61 1.S6 1.S3 1.Sl 1.SO 1.48 1.47 1.46 1.4S 1.44 1.43 1.43 1.42 1.41 
20 2.84 2.2S 2.02 1.89 1.81 1.72 1.66 1.61 1.58 1.S6 1.S4 1.S3 1.S2 1.50 1.49 1.48 1.48 1.47 1.46 1.46 
30 3.01 2.38 2.13 2.00 1.92 1.81 1.7S 1.70 1.67 1.64 1.62 1.61 1.60 1.58 1.S7 1.S6 1.SS 1.SS 1.S4 1.S3 
40 3.13 2.47 2.21 2.07 1.99 1.88 1.81 1.76 1.73 1.70 1.68 1.67 1.6S 1.64 1.62 1.61 1.61 1.60 1.S9 1.58 
so 3.21 2.S4 2.27 2.13 2.04 1.93 1.86 1.81 1.77 1.74 1.72 1.71 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 1.62 
60 3.29 2.S9 2.32 2.18 2.08 1.97 1.90 1.84 1.81 1.78 1.76 1.74 1.73 1.71 1.70 1.69 1.68 1.67 1.66 1.6S 
7S 3.37 2.66 2.38 2.23 2.13 2.02 1.9S 1.89 1.8S 1.82 1.80 1.79 1.77 1.7S 1.74 1.73 1.72 1.71 1.70 1.69 

100 3.48 2.74 2.46 2.30 2.20 2.08 2.00 1.9S 1.91 1.88 1.86 1.84 1.83 1.80 1.79 1.78 1.77 1.76 1.7S 1.74 
12S 3.57 2.81 2.Sl 2.3S 2.2S 2.12 2.05 1.99 1.9S 1.92 1.90 1.88 1.87 1.84 1.83 1.82 1.81 1.80 1.79 1.78 
150 3.63 2.86 2.S6 2.40 2.29 2.16 2.09 2.02 1.98 1.9S 1.93 1.91 1.90 1.88 1.86 1.8S 1.84 1.83 1.82 1.81 
17S 3.69 2.90 2.60 2.43 2.32 2.19 2.12 2.05 2.01 1.98 1.96 1.94 1.93 1.90 1.89 1.87 1.86 1.86 1.84 1.83 
200 3.74 2.94 2.63 2.46 2.3S 2.22 2.14 2.08 2.04 2.01 1.98 1.96 1.9S 1.93 1.91 1.90 1.89 1.88 1.86 1.8S 

Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.14 0.92 0.83 0.78 0.74 0.71 0.68 0.66 0.6S 0.64 0.64 0.63 0.63 0.62 0.62 0.62 0.61 0.61 0.61 0.61 
2 1.SS 1.22 1.09 1.02 0.98 0.93 0.90 0.88 0.86 0.8S 0.84 0.83 0.83 0.82 0.82 0.81 0.81 0.81 0.80 0.80 
3 1.79 1.40 1.2S 1.16 1.11 1.05 1.02 0.99 0.97 0.96 0.9S 0.94 0.94 0.93 0.92 0.92 0.91 0.91 0.91 0.90 
4 1.97 1.S2 1.3S 1.26 1.20 1.14 1.10 1.07 1.05 1.04 1.02 1.02 1.01 1.00 0.99 0.99 0.99 0.98 0.98 0.97 
s 2.10 1.62 1.43 1.34 1.27 1.20 1.16 1.13 1.11 1.09 1.08 1.07 1.07 1.06 1.05 1.04 1.04 1.04 1.03 1.02 
8 2.39 1.81 1.60 1.49 1.42 1.34 1.29 1.2S 1.23 1.21 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.14 1.13 
12 2.63 1.98 1.74 1.62 1.S4 1.4S 1.39 1.3S 1.32 1.30 1.29 1.28 1.27 1.26 1.2S 1.24 1.24 1.23 1.22 1.22 
16 2.80 2.10 1.84 1.71 1.62 1.S2 1.47 1.42 1.39 1.37 1.36 1.34 1.33 1.32 1.31 1.30 1.30 1.29 1.28 1.28 
20 2.93 2.19 1.92 1.78 1.69 1.58 1.S2 1.47 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.3S 1.34 1.34 1.33 1.32 
30 3.16 2.3S 2.06 1.90 1.80 1.69 1.62 1.S7 1.S4 1.Sl 1.49 1.48 1.47 1.4S 1.44 1.43 1.42 1.42 1.41 1.40 
40 3.32 2.46 2.1S 1.99 1.88 1.76 1.69 1.64 1.60 1.S7 1.SS 1.S4 1.S3 1.Sl 1.50 1.49 1.48 1.47 1.46 1.46 
so 3.44 2.SS 2.22 2.05 1.94 1.82 1.74 1.69 1.6S 1.62 1.60 1.S9 1.S7 1.SS 1.S4 1.S3 1.S2 1.S2 1.Sl 1.50 
60 3.54 2.62 2.28 2.10 1.99 1.86 1.79 1.73 1.69 1.66 1.64 1.62 1.61 1.S9 1.58 1.S7 1.S6 1.SS 1.S4 1.S3 
7S 3.66 2.70 2.3S 2.17 2.05 1.92 1.84 1.78 1.73 1.71 1.68 1.67 1.6S 1.63 1.62 1.61 1.60 1.S9 1.58 1.S7 

100 3.81 2.81 2.44 2.2S 2.13 1.99 1.90 1.84 1.79 1.76 1.74 1.72 1.71 1.69 1.67 1.66 1.6S 1.6S 1.63 1.62 
12S 3.93 2.89 2.Sl 2.31 2.19 2.04 1.9S 1.89 1.84 1.81 1.79 1.77 1.7S 1.73 1.71 1.70 1.69 1.69 1.67 1.66 
150 4.02 2.95 2.57 2.36 2.23 2.08 1.99 1.92 1.88 1.8S 1.82 1.80 1.79 1.76 1.7S 1.74 1.73 1.72 1.70 1.70 
17S 4.10 3.01 2.61 2.40 2.27 2.12 2.03 1.96 1.91 1.88 1.8S 1.83 1.82 1.79 1.78 1.76 1.7S 1.74 1.73 1.72 
200 4.17 3.06 2.65 2.44 2.31 2.1S 2.06 1.98 1.94 1.90 1.88 1.86 1.84 1.82 1.80 1.79 1.78 1.77 1.7S 1.74 
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Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (2 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.SS 1.22 1.09 1.02 0.98 0.93 0.90 0.88 0.86 0.8S 0.84 0.83 0.83 0.82 0.82 0.81 0.81 0.81 0.80 0.80 
2 1.97 1.S2 1.3S 1.26 1.20 1.14 1.10 1.07 1.05 1.04 1.02 1.02 1.01 1.00 0.99 0.99 0.99 0.98 0.98 0.97 
3 2.21 1.69 1.50 1.40 1.33 1.2S 1.21 1.18 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 1.09 1.08 1.08 1.07 1.07 
4 2.39 1.81 1.60 1.49 1.42 1.34 1.29 1.2S 1.23 1.21 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.14 1.13 
s 2.S2 1.91 1.68 1.S6 1.49 1.40 1.3S 1.31 1.28 1.26 1.2S 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.18 1.18 
8 2.80 2.10 1.84 1.71 1.62 1.S2 1.47 1.42 1.39 1.37 1.36 1.34 1.33 1.32 1.31 1.30 1.30 1.29 1.28 1.28 
12 3.03 2.26 1.98 1.83 1.74 1.63 1.S7 1.S2 1.49 1.46 1.4S 1.43 1.42 1.41 1.39 1.39 1.38 1.37 1.37 1.36 
16 3.20 2.38 2.08 1.92 1.82 1.70 1.64 1.58 1.SS 1.S3 1.Sl 1.49 1.48 1.46 1.4S 1.44 1.44 1.43 1.42 1.42 
20 3.32 2.46 2.1S 1.99 1.88 1.76 1.69 1.64 1.60 1.S7 1.SS 1.S4 1.S3 1.Sl 1.50 1.49 1.48 1.47 1.46 1.46 
30 3.54 2.62 2.28 2.10 1.99 1.86 1.79 1.73 1.69 1.66 1.64 1.62 1.61 1.S9 1.58 1.S7 1.S6 1.SS 1.S4 1.S3 
40 3.70 2.73 2.37 2.19 2.07 1.93 1.8S 1.79 1.7S 1.72 1.70 1.68 1.67 1.6S 1.63 1.62 1.61 1.61 1.S9 1.S9 
so 3.81 2.81 2.44 2.25 2.13 1.99 1.90 1.84 1.79 1.76 1.74 1.72 1.71 1.69 1.67 1.66 1.6S 1.6S 1.63 1.62 
60 3.91 2.87 2.50 2.30 2.18 2.03 1.94 1.88 1.83 1.80 1.78 1.76 1.74 1.72 1.71 1.69 1.69 1.68 1.67 1.66 
7S 4.02 2.95 2.S7 2.36 2.23 2.08 1.99 1.92 1.88 1.8S 1.82 1.80 1.79 1.76 1.7S 1.74 1.73 1.72 1.70 1.70 

100 4.17 3.06 2.6S 2.44 2.31 2.1S 2.06 1.98 1.94 1.90 1.88 1.86 1.84 1.82 1.80 1.79 1.78 1.77 1.7S 1.74 
12S 4.28 3.13 2.72 2.SO 2.36 2.20 2.11 2.03 1.98 1.94 1.92 1.90 1.88 1.86 1.84 1.83 1.81 1.81 1.79 1.78 
150 4.37 3.19 2.77 2.SS 2.41 2.24 2.14 2.07 2.02 1.98 1.9S 1.93 1.91 1.89 1.87 1.86 1.8S 1.84 1.82 1.81 
17S 4.44 3.25 2.82 2.S9 2.4S 2.28 2.18 2.10 2.05 2.01 1.98 1.96 1.94 1.92 1.90 1.88 1.87 1.86 1.8S 1.84 
200 4.51 3.29 2.85 2.62 2.48 2.31 2.20 2.13 2.07 2.03 2.01 1.98 1.97 1.94 1.92 1.91 1.89 1.89 1.87 1.86 

Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (2 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.97 1.S2 1.3S 1.26 1.20 1.14 1.10 1.07 1.05 1.04 1.02 1.02 1.01 1.00 0.99 0.99 0.99 0.98 0.98 0.97 
2 2.39 1.81 1.60 1.49 1.42 1.34 1.29 1.2S 1.23 1.21 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.14 1.13 
3 2.63 1.98 1.74 1.62 1.S4 1.4S 1.39 1.3S 1.32 1.30 1.29 1.28 1.27 1.26 1.2S 1.24 1.24 1.23 1.22 1.22 
4 2.80 2.10 1.84 1.71 1.62 1.S2 1.47 1.42 1.39 1.37 1.36 1.34 1.33 1.32 1.31 1.30 1.30 1.29 1.28 1.28 
s 2.93 2.19 1.92 1.78 1.69 1.58 1.S2 1.47 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.3S 1.34 1.34 1.33 1.32 
8 3.20 2.38 2.08 1.92 1.82 1.70 1.64 1.58 1.SS 1.S3 1.Sl 1.49 1.48 1.46 1.4S 1.44 1.44 1.43 1.42 1.42 
12 3.42 2.S3 2.21 2.04 1.93 1.81 1.73 1.68 1.64 1.61 1.S9 1.58 1.S6 1.SS 1.S3 1.S2 1.S2 1.Sl 1.50 1.49 
16 3.58 2.64 2.30 2.12 2.01 1.88 1.80 1.74 1.70 1.67 1.6S 1.64 1.62 1.60 1.S9 1.58 1.S7 1.S6 1.SS 1.S4 
20 3.70 2.73 2.37 2.19 2.07 1.93 1.8S 1.79 1.7S 1.72 1.70 1.68 1.67 1.6S 1.63 1.62 1.61 1.61 1.S9 1.S9 
30 3.91 2.87 2.SO 2.30 2.18 2.03 1.94 1.88 1.83 1.80 1.78 1.76 1.74 1.72 1.71 1.69 1.69 1.68 1.67 1.66 
40 4.06 2.98 2.S9 2.38 2.2S 2.10 2.01 1.94 1.89 1.86 1.83 1.81 1.80 1.78 1.76 1.7S 1.74 1.73 1.72 1.71 
so 4.17 3.06 2.6S 2.44 2.31 2.1S 2.06 1.98 1.94 1.90 1.88 1.86 1.84 1.82 1.80 1.79 1.78 1.77 1.7S 1.74 
60 4.26 3.12 2.71 2.49 2.3S 2.19 2.10 2.02 1.97 1.94 1.91 1.89 1.87 1.8S 1.83 1.82 1.81 1.80 1.78 1.77 
7S 4.37 3.19 2.77 2.SS 2.41 2.24 2.14 2.07 2.02 1.98 1.9S 1.93 1.91 1.89 1.87 1.86 1.8S 1.84 1.82 1.81 

100 4.51 3.29 2.8S 2.62 2.48 2.31 2.20 2.13 2.07 2.03 2.01 1.98 1.97 1.94 1.92 1.91 1.89 1.89 1.87 1.86 
12S 4.61 3.37 2.92 2.68 2.S3 2.3S 2.2S 2.17 2.12 2.08 2.05 2.02 2.01 1.98 1.96 1.94 1.93 1.92 1.91 1.89 
150 4.69 3.43 2.97 2.73 2.S8 2.39 2.29 2.21 2.1S 2.11 2.08 2.06 2.04 2.01 1.99 1.97 1.96 1.9S 1.93 1.92 
17S 4.77 3.48 3.01 2.76 2.61 2.43 2.32 2.24 2.18 2.14 2.11 2.08 2.06 2.04 2.01 2.00 1.99 1.98 1.96 1.9S 
200 4.83 3.52 3.05 2.80 2.64 2.46 2.3S 2.26 2.20 2.16 2.13 2.11 2.09 2.06 2.04 2.02 2.01 2.00 1.98 1.97 
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Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (5 coc, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.80 1.36 1.20 1.12 1.07 1.01 0.97 0.94 0.93 0.91 0.90 0.90 0.89 0.88 0.88 0.87 0.87 0.87 0.86 0.86 
2 2.30 1.69 1.47 1.36 1.29 1.21 1.17 1.13 1.11 1.10 1.08 1.08 1.07 1.06 1.05 1.04 1.04 1.04 1.03 1.03 
3 2.62 1.88 1.63 1.SO 1.42 1.33 1.28 1.24 1.22 1.20 1.18 1.17 1.17 1.1S 1.14 1.14 1.13 1.13 1.12 1.12 
4 2.84 2.02 1.74 1.60 1.S2 1.41 1.36 1.32 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
s 3.02 2.13 1.83 1.68 1.S9 1.48 1.42 1.37 1.34 1.32 1.30 1.29 1.28 1.27 1.26 1.2S 1.2S 1.24 1.23 1.23 
8 3.39 2.36 2.01 1.84 1.73 1.61 1.S4 1.49 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.34 1.34 1.33 1.32 
12 3.71 2.S6 2.17 1.97 1.8S 1.72 1.64 1.58 1.SS 1.S2 1.50 1.49 1.47 1.46 1.44 1.43 1.43 1.42 1.41 1.40 
16 3.94 2.69 2.28 2.07 1.94 1.80 1.71 1.6S 1.61 1.58 1.S6 1.SS 1.S3 1.Sl 1.SO 1.49 1.48 1.48 1.47 1.46 
20 4.11 2.80 2.36 2.14 2.01 1.86 1.77 1.70 1.66 1.63 1.61 1.S9 1.58 1.S6 1.SS 1.S3 1.S3 1.S2 1.Sl 1.50 
30 4.43 2.99 2.Sl 2.27 2.13 1.96 1.87 1.80 1.7S 1.72 1.69 1.68 1.66 1.64 1.62 1.61 1.60 1.60 1.58 1.58 
40 4.64 3.12 2.62 2.37 2.21 2.04 1.94 1.86 1.81 1.78 1.7S 1.73 1.72 1.69 1.68 1.67 1.66 1.6S 1.64 1.63 
so 4.81 3.22 2.70 2.44 2.28 2.09 1.99 1.91 1.86 1.82 1.80 1.78 1.76 1.74 1.72 1.71 1.70 1.69 1.67 1.67 
60 4.94 3.31 2.76 2.49 2.33 2.14 2.03 1.9S 1.90 1.86 1.83 1.81 1.80 1.77 1.7S 1.74 1.73 1.72 1.71 1.70 
7S 5.10 3.40 2.84 2.56 2.39 2.20 2.09 2.00 1.94 1.91 1.88 1.86 1.84 1.81 1.79 1.78 1.77 1.76 1.7S 1.74 

100 5.31 3.53 2.95 2.65 2.47 2.27 2.1S 2.06 2.00 1.96 1.93 1.91 1.89 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
12S 5.46 3.63 3.02 2.72 2.54 2.32 2.20 2.11 2.05 2.01 1.98 1.9S 1.93 1.90 1.88 1.87 1.86 1.8S 1.83 1.82 
150 5.59 3.71 3.09 2.78 2.59 2.37 2.24 2.1S 2.09 2.04 2.01 1.99 1.97 1.94 1.92 1.90 1.89 1.88 1.86 1.8S 
17S 5.69 3.77 3.14 2.82 2.63 2.41 2.28 2.18 2.12 2.07 2.04 2.01 1.99 1.96 1.94 1.93 1.91 1.90 1.89 1.88 
200 5.79 3.83 3.18 2.86 2.67 2.44 2.31 2.21 2.1S 2.10 2.07 2.04 2.02 1.99 1.97 1.9S 1.94 1.93 1.91 1.90 

Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (5 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 2.30 1.69 1.47 1.36 1.29 1.21 1.17 1.13 1.11 1.10 1.08 1.08 1.07 1.06 1.05 1.04 1.04 1.04 1.03 1.03 
2 2.84 2.02 1.74 1.60 1.S2 1.41 1.36 1.32 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
3 3.16 2.22 1.90 1.74 1.64 1.S3 1.47 1.42 1.38 1.36 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 1.28 1.27 1.27 
4 3.39 2.36 2.01 1.84 1.73 1.61 1.S4 1.49 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.34 1.34 1.33 1.32 
s 3.57 2.47 2.10 1.91 1.80 1.67 1.60 1.S4 1.SO 1.48 1.46 1.4S 1.43 1.42 1.41 1.40 1.39 1.38 1.37 1.37 
8 3.94 2.69 2.28 2.07 1.94 1.80 1.71 1.6S 1.61 1.58 1.S6 1.SS 1.S3 1.Sl 1.SO 1.49 1.48 1.48 1.47 1.46 
12 4.26 2.88 2.43 2.20 2.06 1.90 1.81 1.7S 1.70 1.67 1.6S 1.63 1.62 1.60 1.58 1.S7 1.S6 1.SS 1.S4 1.S3 
16 4.47 3.02 2.S4 2.29 2.1S 1.98 1.88 1.81 1.76 1.73 1.71 1.69 1.67 1.6S 1.64 1.62 1.62 1.61 1.60 1.S9 
20 4.64 3.12 2.62 2.37 2.21 2.04 1.94 1.86 1.81 1.78 1.7S 1.73 1.72 1.69 1.68 1.67 1.66 1.6S 1.64 1.63 
30 4.94 3.31 2.76 2.49 2.33 2.14 2.03 1.9S 1.90 1.86 1.83 1.81 1.80 1.77 1.7S 1.74 1.73 1.72 1.71 1.70 
40 5.15 3.43 2.87 2.S8 2.41 2.21 2.10 2.01 1.96 1.92 1.89 1.87 1.8S 1.82 1.80 1.79 1.78 1.77 1.76 1.7S 
so 5.31 3.53 2.95 2.65 2.47 2.27 2.1S 2.06 2.00 1.96 1.93 1.91 1.89 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
60 5.43 3.61 3.01 2.71 2.S3 2.31 2.19 2.10 2.04 2.00 1.97 1.94 1.93 1.90 1.88 1.86 1.8S 1.84 1.82 1.81 
7S 5.59 3.71 3.09 2.78 2.S9 2.37 2.24 2.1S 2.09 2.04 2.01 1.99 1.97 1.94 1.92 1.90 1.89 1.88 1.86 1.8S 

100 5.79 3.83 3.18 2.86 2.67 2.44 2.31 2.21 2.1S 2.10 2.07 2.04 2.02 1.99 1.97 1.9S 1.94 1.93 1.91 1.90 
12S 5.94 3.92 3.26 2.93 2.73 2.49 2.36 2.26 2.19 2.14 2.11 2.08 2.06 2.03 2.00 1.99 1.97 1.96 1.9S 1.93 
150 6.05 4.00 3.32 2.98 2.77 2.S4 2.40 2.29 2.23 2.18 2.14 2.11 2.09 2.06 2.04 2.02 2.00 1.99 1.97 1.96 
17S 6.16 4.06 3.37 3.02 2.82 2.S7 2.43 2.33 2.26 2.21 2.17 2.14 2.12 2.08 2.06 2.04 2.03 2.02 2.00 1.99 
200 6.24 4.11 3.41 3.06 2.85 2.60 2.46 2.3S 2.28 2.23 2.19 2.17 2.14 2.11 2.08 2.07 2.05 2.04 2.02 2.01 
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Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (5 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.84 2.02 1.74 1.60 1.S2 1.41 1.36 1.32 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
2 3.39 2.36 2.01 1.84 1.73 1.61 1.S4 1.49 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.34 1.34 1.33 1.32 
3 3.71 2.S6 2.17 1.97 1.8S 1.72 1.64 1.58 1.55 1.S2 1.SO 1.49 1.47 1.46 1.44 1.43 1.43 1.42 1.41 1.40 
4 3.94 2.69 2.28 2.07 1.94 1.80 1.71 1.6S 1.61 1.58 1.S6 1.55 1.S3 1.Sl 1.SO 1.49 1.48 1.48 1.47 1.46 
s 4.11 2.80 2.36 2.14 2.01 1.86 1.77 1.70 1.66 1.63 1.61 1.S9 1.58 1.S6 1.55 1.S3 1.S3 1.S2 1.Sl 1.SO 
8 4.47 3.02 2.S4 2.29 2.1S 1.98 1.88 1.81 1.76 1.73 1.71 1.69 1.67 1.6S 1.64 1.62 1.62 1.61 1.60 1.S9 
12 4.78 3.20 2.68 2.42 2.27 2.08 1.98 1.90 1.8S 1.82 1.79 1.77 1.7S 1.73 1.71 1.70 1.69 1.68 1.67 1.66 
16 4.99 3.33 2.79 2.Sl 2.3S 2.16 2.05 1.97 1.91 1.87 1.8S 1.82 1.81 1.78 1.76 1.7S 1.74 1.73 1.72 1.71 
20 5.15 3.43 2.87 2.S8 2.41 2.21 2.10 2.01 1.96 1.92 1.89 1.87 1.8S 1.82 1.80 1.79 1.78 1.77 1.76 1.7S 
30 5.43 3.61 3.01 2.71 2.S3 2.31 2.19 2.10 2.04 2.00 1.97 1.94 1.93 1.90 1.88 1.86 1.8S 1.84 1.82 1.81 
40 5.63 3.73 3.11 2.79 2.60 2.38 2.26 2.16 2.10 2.06 2.02 2.00 1.98 1.9S 1.93 1.91 1.90 1.89 1.87 1.86 
so 5.79 3.83 3.18 2.86 2.67 2.44 2.31 2.21 2.1S 2.10 2.07 2.04 2.02 1.99 1.97 1.9S 1.94 1.93 1.91 1.90 
60 5.91 3.90 3.25 2.92 2.71 2.48 2.3S 2.2S 2.18 2.13 2.10 2.07 2.05 2.02 2.00 1.98 1.97 1.96 1.94 1.93 
7S 6.05 4.00 3.32 2.98 2.77 2.S4 2.40 2.29 2.23 2.18 2.14 2.11 2.09 2.06 2.04 2.02 2.00 1.99 1.97 1.96 

100 6.24 4.11 3.41 3.06 2.8S 2.60 2.46 2.3S 2.28 2.23 2.19 2.17 2.14 2.11 2.08 2.07 2.05 2.04 2.02 2.01 
12S 6.39 4.20 3.49 3.13 2.91 2.66 2.Sl 2.40 2.33 2.27 2.23 2.20 2.18 2.1S 2.12 2.10 2.09 2.08 2.05 2.04 
1SO 6.50 4.27 3.54 3.18 2.96 2.70 2.SS 2.44 2.36 2.31 2.27 2.24 2.21 2.18 2.1S 2.13 2.12 2.10 2.08 2.07 
17S 6.60 4.33 3.59 3.22 3.00 2.73 2.S8 2.47 2.39 2.34 2.30 2.26 2.24 2.20 2.18 2.16 2.14 2.13 2.11 2.09 
200 6.68 4.39 3.64 3.26 3.03 2.76 2.61 2.49 2.42 2.36 2.32 2.29 2.26 2.22 2.20 2.18 2.16 2.1S 2.13 2.11 

Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.40 1.72 1.49 1.37 1.30 1.22 1.17 1.14 1.11 1.10 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.04 1.03 1.03 
2 3.01 2.08 1.77 1.62 1.S3 1.42 1.36 1.32 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
3 3.40 2.29 1.94 1.76 1.66 1.S4 1.47 1.42 1.39 1.37 1.3S 1.34 1.33 1.31 1.30 1.29 1.29 1.28 1.27 1.27 
4 3.68 2.44 2.05 1.86 1.7S 1.62 1.55 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.3S 1.34 1.33 1.32 
s 3.89 2.S7 2.1S 1.94 1.82 1.68 1.60 1.55 1.Sl 1.48 1.46 1.4S 1.44 1.42 1.41 1.40 1.39 1.39 1.38 1.37 
8 4.36 2.82 2.34 2.11 1.97 1.81 1.72 1.66 1.62 1.S9 1.S6 1.55 1.S4 1.S2 1.SO 1.49 1.48 1.48 1.47 1.46 
12 4.76 3.04 2.Sl 2.25 2.09 1.92 1.83 1.7S 1.71 1.67 1.6S 1.63 1.62 1.60 1.58 1.S7 1.S6 1.S6 1.S4 1.S4 
16 5.04 3.20 2.62 2.35 2.18 2.00 1.90 1.82 1.77 1.74 1.71 1.69 1.68 1.6S 1.64 1.63 1.62 1.61 1.60 1.S9 
20 5.26 3.32 2.72 2.43 2.2S 2.06 1.9S 1.87 1.82 1.78 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 
30 5.65 3.53 2.88 2.56 2.38 2.17 2.05 1.96 1.91 1.87 1.84 1.82 1.80 1.77 1.7S 1.74 1.73 1.72 1.71 1.70 
40 5.92 3.69 3.00 2.66 2.47 2.24 2.12 2.03 1.97 1.93 1.90 1.87 1.8S 1.83 1.81 1.79 1.78 1.77 1.76 1.7S 
so 6.13 3.80 3.08 2.74 2.53 2.30 2.17 2.08 2.01 1.97 1.94 1.91 1.90 1.87 1.8S 1.83 1.82 1.81 1.80 1.78 
60 6.30 3.90 3.16 2.80 2.59 2.3S 2.22 2.12 2.05 2.01 1.97 1.9S 1.93 1.90 1.88 1.86 1.8S 1.84 1.83 1.81 
7S 6.50 4.01 3.24 2.87 2.66 2.41 2.27 2.17 2.10 2.05 2.02 1.99 1.97 1.94 1.92 1.90 1.89 1.88 1.86 1.8S 

100 6.76 4.15 3.36 2.97 2.74 2.48 2.34 2.23 2.16 2.11 2.07 2.05 2.02 1.99 1.97 1.9S 1.94 1.93 1.91 1.90 
12S 6.96 4.27 3.44 3.04 2.81 2.54 2.39 2.28 2.20 2.1S 2.12 2.09 2.06 2.03 2.01 1.99 1.98 1.97 1.9S 1.93 
1SO 7.12 4.35 3.51 3.10 2.86 2.58 2.43 2.32 2.24 2.19 2.1S 2.12 2.10 2.06 2.04 2.02 2.01 2.00 1.98 1.96 
17S 7.25 4.43 3.57 3.15 2.90 2.62 2.47 2.3S 2.27 2.22 2.18 2.1S 2.12 2.09 2.06 2.05 2.03 2.02 2.00 1.99 
200 7.36 4.49 3.62 3.19 2.94 2.66 2.SO 2.38 2.30 2.24 2.20 2.17 2.1S 2.11 2.09 2.07 2.05 2.04 2.02 2.01 
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Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (10 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 3.01 2.08 1.77 1.62 1.S3 1.42 1.36 1.32 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
2 3.68 2.44 2.05 1.86 1.7S 1.62 1.55 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.3S 1.34 1.33 1.32 
3 4.08 2.66 2.22 2.00 1.88 1.73 1.6S 1.S9 1.55 1.S2 1.SO 1.49 1.48 1.46 1.44 1.43 1.43 1.42 1.41 1.40 
4 4.36 2.82 2.34 2.11 1.97 1.81 1.72 1.66 1.62 1.S9 1.S6 1.55 1.S4 1.S2 1.SO 1.49 1.48 1.48 1.47 1.46 
s 4.58 2.94 2.43 2.18 2.04 1.87 1.78 1.71 1.67 1.64 1.61 1.S9 1.58 1.S6 1.55 1.S4 1.S3 1.S2 1.Sl 1.SO 
8 5.04 3.20 2.62 2.3S 2.18 2.00 1.90 1.82 1.77 1.74 1.71 1.69 1.68 1.6S 1.64 1.63 1.62 1.61 1.60 1.S9 
12 5.44 3.41 2.79 2.49 2.31 2.11 2.00 1.91 1.86 1.82 1.79 1.77 1.76 1.73 1.71 1.70 1.69 1.68 1.67 1.66 
16 5.71 3.57 2.91 2.S9 2.40 2.18 2.07 1.98 1.92 1.88 1.8S 1.83 1.81 1.78 1.77 1.7S 1.74 1.73 1.72 1.71 
20 5.92 3.69 3.00 2.66 2.47 2.24 2.12 2.03 1.97 1.93 1.90 1.87 1.8S 1.83 1.81 1.79 1.78 1.77 1.76 1.7S 
30 6.30 3.90 3.16 2.80 2.S9 2.3S 2.22 2.12 2.05 2.01 1.97 1.9S 1.93 1.90 1.88 1.86 1.8S 1.84 1.83 1.81 
40 6.56 4.04 3.27 2.90 2.67 2.42 2.29 2.18 2.11 2.07 2.03 2.00 1.98 1.9S 1.93 1.91 1.90 1.89 1.87 1.86 
so 6.76 4.15 3.36 2.97 2.74 2.48 2.34 2.23 2.16 2.11 2.07 2.05 2.02 1.99 1.97 1.9S 1.94 1.93 1.91 1.90 
60 6.92 4.25 3.43 3.03 2.79 2.S3 2.38 2.27 2.20 2.14 2.11 2.08 2.06 2.02 2.00 1.98 1.97 1.96 1.94 1.93 
7S 7.12 4.35 3.51 3.10 2.86 2.S8 2.43 2.32 2.24 2.19 2.1S 2.12 2.10 2.06 2.04 2.02 2.01 2.00 1.98 1.96 

100 7.36 4.49 3.62 3.19 2.94 2.66 2.SO 2.38 2.30 2.24 2.20 2.17 2.1S 2.11 2.09 2.07 2.05 2.04 2.02 2.01 
12S 7 .55 4.60 3.70 3.27 3.01 2.71 2.SS 2.42 2.34 2.29 2.24 2.21 2.19 2.1S 2.12 2.10 2.09 2.08 2.06 2.04 
1SO 7.71 4.69 3.77 3.32 3.06 2.76 2.S9 2.46 2.38 2.32 2.28 2.2S 2.22 2.18 2.1S 2.13 2.12 2.11 2.08 2.07 
17S 7.83 4.76 3.82 3.37 3.10 2.80 2.62 2.49 2.41 2.3S 2.31 2.27 2.2S 2.21 2.18 2.16 2.14 2.13 2.11 2.09 
200 7.94 4.82 3.87 3.41 3.14 2.83 2.6S 2.S2 2.44 2.38 2.33 2.30 2.27 2.23 2.20 2.18 2.16 2.1S 2.13 2.11 

Table 19-4. K-Multi pliers for Modified Calif. Interwell Prediction Limits on Observations (10 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 3.68 2.44 2.05 1.86 1.7S 1.62 1.SS 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.3S 1.34 1.33 1.32 
2 4.36 2.82 2.34 2.11 1.97 1.81 1.72 1.66 1.62 1.S9 1.S6 1.55 1.S4 1.S2 1.SO 1.49 1.48 1.48 1.47 1.46 
3 4.76 3.04 2.Sl 2.2S 2.09 1.92 1.83 1.7S 1.71 1.67 1.6S 1.63 1.62 1.60 1.58 1.S7 1.S6 1.S6 1.S4 1.S4 
4 5.04 3.20 2.62 2.35 2.18 2.00 1.90 1.82 1.77 1.74 1.71 1.69 1.68 1.6S 1.64 1.63 1.62 1.61 1.60 1.S9 
s 5.26 3.32 2.72 2.43 2.2S 2.06 1.9S 1.87 1.82 1.78 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 
8 5.71 3.57 2.91 2.S9 2.40 2.18 2.07 1.98 1.92 1.88 1.8S 1.83 1.81 1.78 1.77 1.7S 1.74 1.73 1.72 1.71 
12 6.09 3.78 3.07 2.72 2.S2 2.29 2.16 2.07 2.01 1.96 1.93 1.91 1.89 1.86 1.84 1.83 1.81 1.80 1.79 1.78 
16 6.36 3.93 3,18 2.82 2.61 2.37 2.23 2.13 2.07 2.02 1.99 1.96 1.94 1.91 1.89 1.88 1.86 1.8S 1.84 1.83 
20 6.56 4.04 3.27 2.90 2.67 2.42 2.29 2.18 2.11 2.07 2.03 2.00 1.98 1.9S 1.93 1.91 1.90 1.89 1.87 1.86 
30 6.92 4.25 3.43 3.03 2.79 2.S3 2.38 2.27 2.20 2.14 2.11 2.08 2.06 2.02 2.00 1.98 1.97 1.96 1.94 1.93 
40 7.17 4.39 3.53 3.12 2.88 2.60 2.4S 2.33 2.2S 2.20 2.16 2.13 2.11 2.07 2.05 2.03 2.02 2.01 1.99 1.97 
so 7.36 4.49 3.62 3.19 2.94 2.66 2.SO 2.38 2.30 2.24 2.20 2.17 2.1S 2.11 2.09 2.07 2.05 2.04 2.02 2.01 
60 7.52 4.58 3.69 3.25 2.99 2.70 2.S4 2.41 2.33 2.28 2.24 2.21 2.18 2.14 2.12 2.10 2.08 2.07 2.05 2.04 
7S 7.71 4.69 3.77 3.32 3.06 2.76 2.S9 2.46 2.38 2.32 2.28 2.2S 2.22 2.18 2.1S 2.13 2.12 2.11 2.08 2.07 

100 7.94 4.82 3.87 3.41 3.14 2.83 2.6S 2.S2 2.44 2.38 2.33 2.30 2.27 2.23 2.20 2.18 2.16 2.1S 2.13 2.11 
12S 8.12 4.93 3.95 3.48 3.20 2.88 2.70 2.S7 2.48 2.42 2.37 2.34 2.31 2.27 2.24 2.22 2.20 2.19 2.16 2.1S 
1SO 8.27 5.01 4.02 3.54 3.25 2.93 2.74 2.60 2.Sl 2.4S 2.40 2.37 2.34 2.30 2.27 2.24 2.23 2.21 2.19 2.17 
17S 8.38 5.08 4.07 3.58 3.29 2.96 2.78 2.64 2.S4 2.48 2.43 2.39 2.37 2.32 2.29 2.27 2.2S 2.24 2.21 2.20 
200 8.49 5.14 4.12 3.62 3.33 2.99 2.81 2.66 2.S7 2.SO 2.46 2.42 2.39 2.34 2.31 2.29 2.27 2.26 2.23 2.22 
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Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (20 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 3.13 2.11 1.79 1.63 1.S3 1.42 1.37 1.32 1.29 1.27 1.26 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
2 3.89 2.SO 2.08 1.88 1.76 1.62 1.55 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.3S 1.34 1.33 1.32 
3 4.36 2.74 2.2S 2.02 1.89 1.74 1.6S 1.S9 1.55 1.S2 1.SO 1.49 1.48 1.46 1.44 1.44 1.43 1.42 1.41 1.40 
4 4.71 2.91 2.38 2.13 1.98 1.82 1.73 1.66 1.62 1.S9 1.S7 1.55 1.S4 1.S2 1.SO 1.49 1.48 1.48 1.47 1.46 
s 4.98 3.05 2.48 2.21 2.05 1.88 1.79 1.71 1.67 1.64 1.61 1.60 1.58 1.S6 1.55 1.S4 1.S3 1.S2 1.Sl 1.SO 
8 5.56 3.34 2.69 2.38 2.21 2.01 1.90 1.82 1.77 1.74 1.71 1.69 1.68 1.6S 1.64 1.63 1.62 1.61 1.60 1.S9 
12 6.06 3.59 2.87 2.53 2.34 2.12 2.01 1.92 1.86 1.82 1.80 1.77 1.76 1.73 1.71 1.70 1.69 1.68 1.67 1.66 
16 6.42 3.76 3.00 2.64 2.43 2.20 2.08 1.98 1.92 1.88 1.8S 1.83 1.81 1.79 1.77 1.7S 1.74 1.73 1.72 1.71 
20 6.69 3.90 3.10 2.72 2.50 2.26 2.13 2.03 1.97 1.93 1.90 1.87 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.7S 
30 7.19 4.15 3.28 2.87 2.63 2.37 2.23 2.12 2.06 2.01 1.98 1.9S 1.93 1.90 1.88 1.86 1.8S 1.84 1.83 1.82 
40 7.53 4.32 3.40 2.97 2.73 2.4S 2.30 2.19 2.12 2.07 2.03 2.01 1.99 1.9S 1.93 1.91 1.90 1.89 1.87 1.86 
so 7.79 4.45 3.50 3.05 2.80 2.51 2.3S 2.24 2.17 2.11 2.08 2.05 2.03 1.99 1.97 1.9S 1.94 1.93 1.91 1.90 
60 8.00 4.56 3.58 3.12 2.85 2.56 2.40 2.28 2.20 2.1S 2.11 2.08 2.06 2.03 2.00 1.98 1.97 1.96 1.94 1.93 
7S 8.25 4.69 3.67 3.20 2.92 2.62 2.4S 2.33 2.2S 2.19 2.1S 2.12 2.10 2.06 2.04 2.02 2.01 2.00 1.98 1.96 

100 8.58 4.86 3.80 3.30 3.01 2.70 2.52 2.39 2.31 2.2S 2.21 2.18 2.1S 2.11 2.09 2.07 2.05 2.04 2.02 2.01 
12S 8.83 4.98 3.89 3.38 3.08 2.75 2.57 2.44 2.3S 2.29 2.2S 2.22 2.19 2.1S 2.13 2.11 2.09 2.08 2.06 2.04 
1SO 9.02 5.09 3.97 3.44 3.14 2.80 2.62 2.48 2.39 2.33 2.28 2.2S 2.22 2.18 2.16 2.14 2.12 2.11 2.09 2.07 
17S 9.19 5.17 4.03 3.50 3.19 2.84 2.65 2.51 2.42 2.36 2.31 2.28 2.2S 2.21 2.18 2.16 2.14 2.13 2.11 2.09 
200 9.33 5.25 4.09 3.54 3.23 2.88 2.68 2.54 2.4S 2.38 2.34 2.30 2.27 2.23 2.20 2.18 2.17 2.1S 2.13 2.11 

Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 3.89 2.SO 2.08 1.88 1.76 1.62 1.55 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.3S 1.34 1.33 1.32 
2 4.71 2.91 2.38 2.13 1.98 1.82 1.73 1.66 1.62 1.S9 1.S7 1.SS 1.S4 1.S2 1.SO 1.49 1.48 1.48 1.47 1.46 
3 5.21 3.16 2.S6 2.28 2.11 1.93 1.83 1.76 1.71 1.68 1.6S 1.63 1.62 1.60 1.58 1.57 1.S6 1.S6 1.S4 1.S4 
4 5.56 3.34 2.69 2.38 2.21 2.01 1.90 1.82 1.77 1.74 1.71 1.69 1.68 1.6S 1.64 1.63 1.62 1.61 1.60 1.S9 
s 5.84 3.47 2.79 2.46 2.28 2.07 1.96 1.88 1.82 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 
8 6.42 3.76 3.00 2.64 2.43 2.20 2.08 1.98 1.92 1.88 1.8S 1.83 1.81 1.79 1.77 1.7S 1.74 1.73 1.72 1.71 
12 6.91 4.01 3.18 2.79 2.S6 2.31 2.18 2.08 2.01 1.97 1.93 1.91 1.89 1.86 1.84 1.83 1.81 1.81 1.79 1.78 
16 7.26 4.19 3.30 2.89 2.6S 2.39 2.2S 2.14 2.07 2.03 1.99 1.96 1.94 1.91 1.89 1.88 1.86 1.8S 1.84 1.83 
20 7.53 4.32 3.40 2.97 2.73 2.4S 2.30 2.19 2.12 2.07 2.03 2.01 1.99 1.9S 1.93 1.91 1.90 1.89 1.87 1.86 
30 8.00 4.56 3.58 3.12 2.85 2.S6 2.40 2.28 2.20 2.1S 2.11 2.08 2.06 2.03 2.00 1.98 1.97 1.96 1.94 1.93 
40 8.33 4.73 3.70 3.22 2.94 2.64 2.47 2.34 2.26 2.21 2.17 2.14 2.11 2.08 2.05 2.03 2.02 2.01 1.99 1.97 
so 8.58 4.86 3.80 3.30 3.01 2.70 2.S2 2.39 2.31 2.2S 2.21 2.18 2.1S 2.11 2.09 2.07 2.05 2.04 2.02 2.01 
60 8.78 4.96 3.87 3.37 3.07 2.74 2.S6 2.43 2.3S 2.29 2.24 2.21 2.18 2.1S 2.12 2.10 2.08 2.07 2.05 2.04 
7S 9.02 5.09 3.97 3.44 3.14 2.80 2.62 2.48 2.39 2.33 2.28 2.2S 2.22 2.18 2.16 2.14 2.12 2.11 2.09 2.07 
100 9.33 5.25 4.09 3.54 3.23 2.88 2.68 2.S4 2.4S 2.38 2.34 2.30 2.27 2.23 2.20 2.18 2.17 2.1S 2.13 2.11 
12S 9.57 5.37 4.18 3.62 3.30 2.93 2.74 2.S9 2.49 2.43 2.38 2.34 2.31 2.27 2.24 2.22 2.20 2.19 2.16 2.1S 
1SO 9.77 5.47 4.25 3.68 3.35 2.98 2.78 2.63 2.S3 2.46 2.41 2.37 2.34 2.30 2.27 2.2S 2.23 2.22 2.19 2.17 
17S 9.93 5.55 4.31 3.73 3.40 3.02 2.81 2.66 2.S6 2.49 2.44 2.40 2.37 2.33 2.29 2.27 2.2S 2.24 2.21 2.20 
200 10.06 5.62 4.37 3.78 3.44 3.05 2.85 2.69 2.S9 2.S2 2.46 2.43 2.39 2.3S 2.32 2.29 2.27 2.26 2.23 2.22 
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Table 19-4. K-Multi pliers for Modified Calif. Interwell Prediction Limits on Observations (20 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 4.72 2.92 2.38 2.13 1.98 1.82 1.73 1.66 1.62 1.59 1.57 1.55 1.54 1.52 1.50 1.49 1.48 1.48 1.47 1.46 
2 5.57 3.33 2.69 2.38 2.21 2.01 1.90 1.82 1.77 1.74 1.71 1.69 1.68 1.66 1.64 1.63 1.62 1.61 1.60 1.59 
3 6.06 3.59 2.87 2.53 2.34 2.12 2.01 1.92 1.86 1.82 1.79 1.77 1.76 1.73 1.71 1.70 1.69 1.68 1.67 1.66 
4 6.42 3.76 3.00 2.64 2.43 2.20 2.08 1.98 1.92 1.88 1.85 1.83 1.81 1.79 1.77 1.75 1.74 1.73 1.72 1.71 
5 6.69 3.90 3.10 2.72 2.50 2.26 2.13 2.03 1.97 1.93 1.90 1.88 1.85 1.83 1.81 1.79 1.78 1.77 1.76 1.75 
8 7.27 4.19 3.30 2.89 2.66 2.39 2.25 2.14 2.07 2.03 1.99 1.96 1.94 1.91 1.89 1.88 1.86 1.85 1.84 1.83 
12 7.73 4.42 3.48 3.04 2.78 2.50 2.34 2.23 2.16 2.11 2.07 2.04 2.02 1.99 1.96 1.95 1.93 1.92 1.90 1.89 
16 8.09 4.60 3.60 3.14 2.87 2.58 2.41 2.29 2.22 2.16 2.12 2.09 2.07 2.04 2.01 2.00 1.98 1.97 1.95 1.94 
20 8.32 4.73 3.70 3.22 2.94 2.64 2.47 2.34 2.26 2.21 2.17 2.14 2.11 2.08 2.05 2.03 2.02 2.01 1.99 1.97 
30 8.79 4.97 3.87 3.37 3.07 2.74 2.56 2.43 2.35 2.29 2.24 2.21 2.18 2.15 2.12 2.10 2.08 2.07 2.05 2.04 
40 9.08 5.13 3.99 3.46 3.16 2.82 2.63 2.49 2.40 2.34 2.30 2.26 2.24 2.20 2.17 2.15 2.13 2.12 2.09 2.08 
50 9.35 5.24 4.09 3.54 3.23 2.87 2.68 2.54 2.45 2.38 2.34 2.30 2.27 2.23 2.20 2.18 2.17 2.15 2.13 2.11 
60 9.52 5.35 4.16 3.60 3.28 2.92 2.73 2.58 2.48 2.42 2.37 2.33 2.31 2.26 2.23 2.21 2.19 2.18 2.16 2.14 
75 9.76 5.46 4.25 3.68 3.35 2.98 2.78 2.63 2.53 2.46 2.41 2.37 2.34 2.30 2.27 2.25 2.23 2.22 2.19 2.17 

100 10.08 5.62 4.37 3.78 3.44 3.05 2.85 2.69 2.59 2.52 2.46 2.42 2.39 2.35 2.32 2.29 2.27 2.26 2.23 2.22 
125 10.28 5.74 4.45 3.85 3.50 3.11 2.90 2.73 2.63 2.56 2.50 2.46 2.43 2.38 2.35 2.33 2.31 2.29 2.27 2.25 
150 10.49 5.84 4.53 3.91 3.56 3.16 2.94 2.77 2.67 2.59 2.54 2.50 2.46 2.42 2.38 2.35 2.34 2.32 2.29 2.27 
175 10.63 5.92 4.58 3.96 3.60 3.20 2.97 2.80 2.70 2.62 2.57 2.52 2.49 2.44 2.40 2.38 2.36 2.34 2.32 2.30 
200 10.75 5.99 4.64 4.01 3.64 3.23 3.00 2.83 2.72 2.64 2.59 2.55 2.51 2.46 2.43 2.40 2.38 2.36 2.33 2.32 

Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations ( 40 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 4.02 2.53 2.09 1.88 1.76 1.63 1.55 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.35 1.35 1.34 1.33 1.32 
2 4.97 2.97 2.40 2.14 1.99 1.82 1.73 1.66 1.62 1.59 1.57 1.55 1.54 1.52 1.50 1.49 1.48 1.48 1.47 1.46 
3 5.56 3.24 2.59 2.29 2.12 1.94 1.83 1.76 1.71 1.68 1.65 1.63 1.62 1.60 1.58 1.57 1.56 1.56 1.54 1.54 
4 5.99 3.43 2.73 2.40 2.22 2.02 1.91 1.83 1.77 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
5 6.34 3.58 2.83 2.49 2.29 2.08 1.96 1.88 1.82 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.65 1.64 1.63 
8 7.06 3.91 3.06 2.67 2.45 2.21 2.08 1.99 1.93 1.89 1.85 1.83 1.81 1.79 1.77 1.75 1.74 1.73 1.72 1.71 
12 7.70 4.19 3.26 2.83 2.59 2.32 2.18 2.08 2.01 1.97 1.94 1.91 1.89 1.86 1.84 1.83 1.81 1.81 1.79 1.78 
16 8.14 4.40 3.40 2.94 2.68 2.40 2.26 2.14 2.08 2.03 1.99 1.97 1.95 1.91 1.89 1.88 1.86 1.85 1.84 1.83 
20 8.49 4.56 3.50 3.03 2.76 2.47 2.31 2.19 2.12 2.07 2.04 2.01 1.99 1.95 1.93 1.92 1.90 1.89 1.87 1.86 
30 9.10 4.83 3.70 3.19 2.90 2.58 2.41 2.29 2.21 2.15 2.11 2.08 2.06 2.03 2.00 1.98 1.97 1.96 1.94 1.93 
40 9.53 5.03 3.84 3.30 2.99 2.66 2.48 2.35 2.27 2.21 2.17 2.14 2.11 2.08 2.05 2.03 2.02 2.01 1.99 1.97 
50 9.86 5.19 3.95 3.39 3.07 2.72 2.54 2.40 2.31 2.25 2.21 2.18 2.15 2.12 2.09 2.07 2.06 2.04 2.02 2.01 
60 10.13 5.31 4.03 3.45 3.13 2.77 2.58 2.44 2.35 2.29 2.25 2.21 2.19 2.15 2.12 2.10 2.08 2.07 2.05 2.04 
75 10.45 5.46 4.14 3.54 3.20 2.83 2.64 2.49 2.40 2.33 2.29 2.25 2.23 2.19 2.16 2.14 2.12 2.11 2.09 2.07 

100 10.86 5.65 4.27 3.65 3.30 2.91 2.71 2.55 2.46 2.39 2.34 2.31 2.28 2.23 2.20 2.18 2.17 2.15 2.13 2.11 
125 11.17 5.80 4.38 3.74 3.37 2.97 2.76 2.60 2.50 2.43 2.38 2.34 2.32 2.27 2.24 2.22 2.20 2.19 2.16 2.15 
150 11.43 5.92 4.46 3.80 3.43 3.02 2.80 2.64 2.54 2.47 2.42 2.38 2.35 2.30 2.27 2.25 2.23 2.22 2.19 2.17 
175 11.63 6.02 4.53 3.86 3.48 3.06 2.84 2.67 2.57 2.50 2.45 2.41 2.37 2.33 2.30 2.27 2.25 2.24 2.21 2.20 
200 11.82 6.10 4.59 3.91 3.52 3.10 2.87 2.70 2.60 2.52 2.47 2.43 2.40 2.35 2.32 2.29 2.27 2.26 2.23 2.22 
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Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations (40 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 4.97 2.97 2.40 2.14 1.99 1.82 1.73 1.66 1.62 1.59 1.57 1.55 1.54 1.52 1.50 1.49 1.48 1.48 1.47 1.46 
2 5.99 3.43 2.73 2.40 2.22 2.02 1.91 1.83 1.77 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
3 6.62 3.71 2.92 2.56 2.35 2.13 2.01 1.92 1.86 1.82 1.80 1.77 1.76 1.73 1.72 1.70 1.69 1.68 1.67 1.66 
4 7.06 3.91 3.06 2.67 2.45 2.21 2.08 1.99 1.93 1.89 1.85 1.83 1.81 1.79 1.77 1.75 1.74 1.73 1.72 1.71 
5 7.41 4.07 3.17 2.76 2.53 2.27 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.75 
8 8.14 4.40 3.40 2.94 2.68 2.40 2.26 2.14 2.08 2.03 1.99 1.97 1.95 1.91 1.89 1.88 1.86 1.85 1.84 1.83 
12 8.76 4.68 3.59 3.10 2.82 2.52 2.36 2.24 2.16 2.11 2.07 2.04 2.02 1.99 1.96 1.95 1.93 1.92 1.90 1.89 
16 9.20 4.88 3.73 3.21 2.92 2.60 2.43 2.30 2.22 2.17 2.13 2.10 2.07 2.04 2.01 2.00 1.98 1.97 1.95 1.94 
20 9.53 5.03 3.84 3.30 2.99 2.66 2.48 2.35 2.27 2.21 2.17 2.14 2.11 2.08 2.05 2.03 2.02 2.01 1.99 1.97 
30 10.13 5.31 4.03 3.45 3.13 2.77 2.58 2.44 2.35 2.29 2.25 2.21 2.19 2.15 2.12 2.10 2.08 2.07 2.05 2.04 
40 10.54 5.50 4.17 3.56 3.22 2.85 2.65 2.50 2.41 2.35 2.30 2.27 2.24 2.20 2.17 2.15 2.13 2.12 2.10 2.08 
50 10.86 5.65 4.27 3.65 3.30 2.91 2.71 2.55 2.46 2.39 2.34 2.31 2.28 2.23 2.20 2.18 2.17 2.15 2.13 2.11 
60 11.11 5.77 4.36 3.72 3.36 2.96 2.75 2.59 2.49 2.42 2.38 2.34 2.31 2.27 2.23 2.21 2.19 2.18 2.16 2.14 
75 11.43 5.92 4.46 3.80 3.43 3.02 2.80 2.64 2.54 2.47 2.42 2.38 2.35 2.30 2.27 2.25 2.23 2.22 2.19 2.17 

100 11.82 6.10 4.59 3.91 3.52 3.10 2.87 2.70 2.60 2.52 2.47 2.43 2.40 2.35 2.32 2.29 2.27 2.26 2.23 2.22 
125 12.11 6.24 4.69 3.99 3.59 3.16 2.92 2.75 2.64 2.57 2.51 2.47 2.44 2.39 2.35 2.33 2.31 2.29 2.27 2.25 
150 12.35 6.36 4.78 4.06 3.65 3.21 2.97 2.79 2.68 2.60 2.54 2.50 2.47 2.42 2.38 2.36 2.34 2.32 2.29 2.28 
175 12.56 6.46 4.84 4.12 3.70 3.25 3.00 2.82 2.71 2.63 2.57 2.53 2.49 2.44 2.41 2.38 2.36 2.34 2.32 2.30 
200 12.73 6.53 4.90 4.17 3.75 3.28 3.04 2.85 2.73 2.65 2.60 2.55 2.52 2.46 2.43 2.40 2.38 2.36 2.34 2.32 

Table 19-4. K-Multipliers for Modified Calif. Interwell Prediction Limits on Observations ( 40 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 5.99 3.43 2.73 2.40 2.22 2.02 1.91 1.83 1.77 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
2 7.06 3.91 3.06 2.67 2.45 2.21 2.08 1.99 1.93 1.89 1.85 1.83 1.81 1.79 1.77 1.75 1.74 1.73 1.72 1.71 
3 7.70 4.19 3.26 2.83 2.59 2.32 2.18 2.08 2.01 1.97 1.94 1.91 1.89 1.86 1.84 1.83 1.81 1.81 1.79 1.78 
4 8.14 4.40 3.40 2.94 2.68 2.40 2.26 2.14 2.08 2.03 1.99 1.97 1.95 1.91 1.89 1.88 1.86 1.85 1.84 1.83 
5 8.49 4.56 3.50 3.03 2.76 2.47 2.31 2.19 2.12 2.07 2.04 2.01 1.99 1.95 1.93 1.92 1.90 1.89 1.87 1.86 
8 9.20 4.88 3.73 3.21 2.92 2.60 2.43 2.30 2.22 2.17 2.13 2.10 2.07 2.04 2.01 2.00 1.98 1.97 1.95 1.94 
12 9.80 5.16 3.93 3.37 3.05 2.71 2.53 2.39 2.31 2.25 2.20 2.17 2.15 2.11 2.08 2.06 2.05 2.04 2.02 2.00 
16 10.21 5.35 4.06 3.48 3.15 2.79 2.60 2.45 2.36 2.30 2.26 2.22 2.20 2.16 2.13 2.11 2.10 2.08 2.06 2.05 
20 10.54 5.50 4.17 3.56 3.22 2.85 2.65 2.50 2.41 2.35 2.30 2.27 2.24 2.20 2.17 2.15 2.13 2.12 2.10 2.08 
30 11.11 5.77 4.36 3.72 3.36 2.96 2.75 2.59 2.49 2.42 2.38 2.34 2.31 2.27 2.23 2.21 2.19 2.18 2.16 2.14 
40 11.50 5.96 4.49 3.83 3.45 3.04 2.82 2.65 2.55 2.48 2.43 2.39 2.36 2.31 2.28 2.26 2.24 2.23 2.20 2.18 
50 11.82 6.10 4.59 3.91 3.52 3.10 2.87 2.70 2.60 2.52 2.47 2.43 2.40 2.35 2.32 2.29 2.27 2.26 2.23 2.22 
60 12.05 6.22 4.68 3.98 3.58 3.15 2.92 2.74 2.63 2.56 2.50 2.46 2.43 2.38 2.35 2.32 2.30 2.29 2.26 2.24 
75 12.35 6.36 4.78 4.06 3.65 3.21 2.97 2.79 2.68 2.60 2.54 2.50 2.47 2.42 2.38 2.36 2.34 2.32 2.29 2.28 
100 12.73 6.53 4.90 4.17 3.75 3.28 3.04 2.85 2.73 2.65 2.60 2.55 2.52 2.46 2.43 2.40 2.38 2.36 2.34 2.32 
125 13.01 6.67 5.00 4.25 3.82 3.34 3.09 2.90 2.78 2.70 2.64 2.59 2.55 2.50 2.46 2.43 2.41 2.40 2.37 2.35 
150 13.24 6.78 5.08 4.31 3.87 3.39 3.13 2.94 2.81 2.73 2.67 2.62 2.58 2.53 2.49 2.46 2.44 2.42 2.39 2.37 
175 13.44 6.88 5.15 4.37 3.92 3.43 3.17 2.97 2.84 2.76 2.70 2.65 2.61 2.55 2.51 2.49 2.46 2.45 2.42 2.40 
200 13.61 6.95 5.21 4.41 3.96 3.47 3.20 3.00 2.87 2.78 2.72 2.67 2.63 2.58 2.54 2.51 2.48 2.47 2.43 2.41 
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Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.42 1.21 1.12 1.07 1.04 1.01 0.98 0.97 0.96 0.9S 0.94 0.94 0.94 0.93 0.93 0.93 0.92 0.92 0.92 0.92 
2 1.89 1.58 1.4S 1.38 1.34 1.29 1.26 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.18 1.18 1.18 1.18 1.17 1.17 
3 2.17 1.79 1.64 1.S6 1.Sl 1.4S 1.41 1.39 1.37 1.36 1.3S 1.34 1.34 1.33 1.32 1.32 1.31 1.31 1.31 1.30 
4 2.37 1.94 1.77 1.68 1.62 1.S6 1.S2 1.49 1.47 1.4S 1.44 1.44 1.43 1.42 1.41 1.41 1.40 1.40 1.40 1.39 
s 2.S2 2.05 1.87 1.77 1.71 1.64 1.60 1.S6 1.S4 1.S3 1.S2 1.Sl 1.SO 1.49 1.48 1.48 1.47 1.47 1.46 1.46 
8 2.83 2.28 2.07 1.96 1.89 1.80 1.76 1.72 1.69 1.68 1.66 1.6S 1.64 1.63 1.62 1.62 1.61 1.61 1.60 1.60 
12 3.09 2.48 2.24 2.12 2.04 1.94 1.89 1.8S 1.82 1.80 1.78 1.77 1.76 1.7S 1.74 1.73 1.73 1.72 1.71 1.71 
16 3.27 2.61 2.36 2.22 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.8S 1.84 1.83 1.82 1.81 1.80 1.80 1.79 1.78 
20 3.40 2.71 2.4S 2.31 2.22 2.11 2.05 2.00 1.97 1.94 1.93 1.91 1.90 1.89 1.88 1.87 1.86 1.86 1.8S 1.84 
30 3.64 2.89 2.61 2.45 2.36 2.24 2.17 2.12 2.08 2.06 2.04 2.02 2.01 1.99 1.98 1.97 1.96 1.96 1.9S 1.94 
40 3.81 3.02 2.72 2.SS 2.4S 2.33 2.26 2.20 2.16 2.13 2.11 2.10 2.09 2.07 2.05 2.04 2.04 2.03 2.02 2.01 
so 3.93 3.11 2.80 2.63 2.S2 2.40 2.32 2.26 2.22 2.19 2.17 2.16 2.14 2.12 2.11 2.10 2.09 2.08 2.07 2.06 
60 4.03 3.19 2.87 2.69 2.S8 2.4S 2.37 2.31 2.27 2.24 2.22 2.20 2.19 2.17 2.1S 2.14 2.13 2.13 2.11 2.11 
7S 4.15 3.28 2.9S 2.77 2.6S 2.S2 2.43 2.37 2.33 2.30 2.28 2.26 2.24 2.22 2.21 2.19 2.19 2.18 2.17 2.16 

100 4.31 3.40 3.05 2.86 2.74 2.60 2.Sl 2.4S 2.40 2.37 2.3S 2.33 2.31 2.29 2.27 2.26 2.2S 2.24 2.23 2.22 
12S 4.42 3.48 3.13 2.93 2.81 2.66 2.S7 2.Sl 2.46 2.43 2.40 2.38 2.37 2.34 2.32 2.31 2.30 2.29 2.28 2.27 
150 4.51 3.55 3.19 2.99 2.86 2.71 2.62 2.SS 2.SO 2.47 2.44 2.42 2.41 2.38 2.37 2.3S 2.34 2.33 2.32 2.31 
17S 4.59 3.61 3.24 3.04 2.91 2.76 2.66 2.S9 2.S4 2.Sl 2.48 2.46 2.44 2.42 2.40 2.39 2.38 2.37 2.3S 2.34 
200 4.66 3.66 3.28 3.08 2.9S 2.79 2.70 2.62 2.S8 2.S4 2.Sl 2.49 2.47 2.4S 2.43 2.42 2.41 2.40 2.38 2.37 

Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (1 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 1.89 1.58 1.4S 1.38 1.34 1.29 1.26 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.18 1.18 1.18 1.18 1.17 1.17 
2 2.37 1.94 1.77 1.68 1.62 1.S6 1.S2 1.49 1.47 1.4S 1.44 1.44 1.43 1.42 1.41 1.41 1.40 1.40 1.40 1.39 
3 2.64 2.14 1.9S 1.84 1.78 1.70 1.66 1.62 1.60 1.S9 1.S7 1.S6 1.S6 1.SS 1.S4 1.S3 1.S3 1.S2 1.S2 1.Sl 
4 2.83 2.28 2.07 1.96 1.89 1.80 1.76 1.72 1.69 1.68 1.66 1.6S 1.64 1.63 1.62 1.62 1.61 1.61 1.60 1.60 
s 2.97 2.39 2.17 2.05 1.97 1.88 1.83 1.79 1.76 1.74 1.73 1.72 1.71 1.70 1.69 1.68 1.67 1.67 1.66 1.66 
8 3.27 2.61 2.36 2.22 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.8S 1.84 1.83 1.82 1.81 1.80 1.80 1.79 1.78 
12 3.51 2.79 2.S2 2.37 2.28 2.17 2.10 2.05 2.02 2.00 1.98 1.96 1.9S 1.94 1.92 1.92 1.91 1.90 1.89 1.89 
16 3.68 2.92 2.63 2.48 2.38 2.26 2.19 2.14 2.10 2.07 2.06 2.04 2.03 2.01 2.00 1.99 1.98 1.98 1.96 1.96 
20 3.81 3.02 2.72 2.SS 2.4S 2.33 2.26 2.20 2.16 2.13 2.11 2.10 2.09 2.07 2.05 2.04 2.04 2.03 2.02 2.01 
30 4.03 3.19 2.87 2.69 2.S8 2.4S 2.37 2.31 2.27 2.24 2.22 2.20 2.19 2.17 2.1S 2.14 2.13 2.13 2.11 2.11 
40 4.19 3.31 2.97 2.79 2.67 2.S3 2.4S 2.39 2.3S 2.31 2.29 2.27 2.26 2.24 2.22 2.21 2.20 2.19 2.18 2.17 
so 4.31 3.40 3.05 2.86 2.74 2.60 2.Sl 2.4S 2.40 2.37 2.3S 2.33 2.31 2.29 2.27 2.26 2.2S 2.24 2.23 2.22 
60 4.40 3.47 3.11 2.92 2.80 2.6S 2.S6 2.49 2.4S 2.42 2.39 2.37 2.36 2.33 2.32 2.30 2.29 2.28 2.27 2.26 
7S 4.51 3.55 3.19 2.99 2.86 2.71 2.62 2.SS 2.SO 2.47 2.44 2.42 2.41 2.38 2.37 2.3S 2.34 2.33 2.32 2.31 

100 4.66 3.66 3.28 3.08 2.9S 2.79 2.70 2.62 2.S8 2.S4 2.Sl 2.49 2.47 2.4S 2.43 2.42 2.41 2.40 2.38 2.37 
12S 4.77 3.75 3.36 3.15 3.01 2.8S 2.76 2.68 2.63 2.S9 2.S6 2.S4 2.S3 2.SO 2.48 2.46 2.4S 2.44 2.43 2.42 
150 4.85 3.81 3.42 3.20 3.07 2.90 2.80 2.73 2.67 2.63 2.61 2.S8 2.S7 2.S4 2.S2 2.SO 2.49 2.48 2.47 2.4S 
17S 4.93 3.87 3.47 3.25 3.11 2.94 2.84 2.76 2.71 2.67 2.64 2.62 2.60 2.S7 2.SS 2.S4 2.S2 2.Sl 2.SO 2.49 
200 4.99 3.92 3.51 3.29 3.1S 2.98 2.88 2.79 2.74 2.70 2.67 2.6S 2.63 2.60 2.S8 2.S6 2.SS 2.S4 2.S2 2.Sl 
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Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.37 1.94 1.77 1.68 1.62 1.S6 1.S2 1.49 1.47 1.4S 1.44 1.44 1.43 1.42 1.41 1.41 1.40 1.40 1.40 1.39 
2 2.83 2.28 2.07 1.96 1.89 1.80 1.76 1.72 1.69 1.68 1.66 1.6S 1.64 1.63 1.62 1.62 1.61 1.61 1.60 1.60 
3 3.09 2.48 2.24 2.12 2.04 1.94 1.89 1.85 1.82 1.80 1.78 1.77 1.76 1.7S 1.74 1.73 1.73 1.72 1.71 1.71 
4 3.27 2.61 2.36 2.22 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.8S 1.84 1.83 1.82 1.81 1.80 1.80 1.79 1.78 
s 3.40 2.71 2.4S 2.31 2.22 2.11 2.05 2.00 1.97 1.94 1.93 1.91 1.90 1.89 1.88 1.87 1.86 1.86 1.8S 1.84 
8 3.68 2.92 2.63 2.48 2.38 2.26 2.19 2.14 2.10 2.07 2.06 2.04 2.03 2.01 2.00 1.99 1.98 1.98 1.96 1.96 
12 3.91 3.10 2.78 2.62 2.Sl 2.38 2.31 2.2S 2.21 2.18 2.16 2.1S 2.13 2.11 2.10 2.09 2.08 2.07 2.06 2.05 
16 4.07 3.22 2.89 2.71 2.60 2.47 2.39 2.33 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.1S 2.14 2.13 2.12 
20 4.19 3.31 2.97 2.79 2.67 2.S3 2.4S 2.39 2.3S 2.31 2.29 2.27 2.26 2.24 2.22 2.21 2.20 2.19 2.18 2.17 
30 4.40 3.47 3.11 2.92 2.80 2.6S 2.S6 2.49 2.4S 2.42 2.39 2.37 2.36 2.33 2.32 2.30 2.29 2.28 2.27 2.26 
40 4.55 3.58 3.21 3.01 2.88 2.73 2.64 2.S7 2.S2 2.49 2.46 2.44 2.42 2.40 2.38 2.37 2.36 2.3S 2.33 2.32 
so 4.66 3.66 3.28 3.08 2.9S 2.79 2.70 2.62 2.S8 2.S4 2.Sl 2.49 2.47 2.4S 2.43 2.42 2.41 2.40 2.38 2.37 
60 4.75 3.73 3.34 3.13 3.00 2.84 2.7S 2.67 2.62 2.S8 2.S6 2.S3 2.S2 2.49 2.47 2.46 2.44 2.44 2.42 2.41 
7S 4.85 3.81 3.42 3.20 3.07 2.90 2.80 2.73 2.67 2.63 2.61 2.S8 2.S7 2.S4 2.S2 2.SO 2.49 2.48 2.47 2.4S 

100 4.99 3.92 3.Sl 3.29 3.1S 2.98 2.88 2.79 2.74 2.70 2.67 2.6S 2.63 2.60 2.S8 2.S6 2.S5 2.S4 2.S2 2.Sl 
12S 5.09 4.00 3.S8 3.3S 3.21 3.03 2.93 2.8S 2.79 2.7S 2.72 2.70 2.68 2.6S 2.63 2.61 2.60 2.S9 2.S7 2.S6 
1SO 5.18 4.06 3.63 3.40 3.26 3.08 2.98 2.89 2.83 2.79 2.76 2.74 2.72 2.69 2.67 2.6S 2.64 2.63 2.61 2.S9 
17S 5.24 4.11 3.68 3.4S 3.30 3.12 3.01 2.93 2.87 2.83 2.80 2.77 2.7S 2.72 2.70 2.68 2.67 2.66 2.64 2.62 
200 5.30 4.16 3.72 3.49 3.34 3.1S 3.04 2.96 2.90 2.86 2.82 2.80 2.78 2.7S 2.72 2.71 2.69 2.68 2.66 2.6S 

Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.01 1.63 1.48 1.41 1.36 1.30 1.27 1.2S 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 1.18 1.18 1.17 1.17 
2 2.S7 2.02 1.82 1.71 1.6S 1.S7 1.S3 1.50 1.48 1.46 1.4S 1.44 1.43 1.42 1.42 1.41 1.41 1.40 1.40 1.39 
3 2.90 2.2S 2.01 1.89 1.81 1.72 1.67 1.64 1.61 1.S9 1.58 1.S7 1.S6 1.55 1.S4 1.S4 1.S3 1.S3 1.S2 1.S2 
4 3.14 2.41 2.1S 2.01 1.93 1.83 1.77 1.73 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 1.62 1.61 1.61 1.60 1.60 
s 3.33 2.S4 2.2S 2.10 2.01 1.91 1.8S 1.80 1.77 1.7S 1.74 1.72 1.72 1.70 1.69 1.68 1.68 1.67 1.67 1.66 
8 3.71 2.79 2.47 2.30 2.19 2.07 2.00 1.9S 1.92 1.89 1.87 1.86 1.8S 1.83 1.82 1.81 1.81 1.80 1.79 1.79 
12 4.03 3.01 2.6S 2.46 2.3S 2.21 2.13 2.07 2.04 2.01 1.99 1.97 1.96 1.94 1.93 1.92 1.91 1.91 1.90 1.89 
16 4.25 3.16 2.78 2.S7 2.4S 2.31 2.22 2.16 2.12 2.09 2.07 2.05 2.04 2.02 2.00 1.99 1.99 1.98 1.97 1.96 
20 4.42 3.28 2.87 2.66 2.S3 2.38 2.29 2.23 2.18 2.1S 2.13 2.11 2.10 2.08 2.06 2.05 2.04 2.03 2.02 2.01 
30 4.72 3.48 3.04 2.82 2.68 2.Sl 2.42 2.34 2.29 2.26 2.23 2.22 2.20 2.18 2.16 2.1S 2.14 2.13 2.12 2.11 
40 4.93 3.63 3.16 2.92 2.77 2.60 2.SO 2.42 2.37 2.34 2.31 2.29 2.27 2.2S 2.23 2.22 2.21 2.20 2.18 2.17 
so 5.08 3.74 3.26 3.0l 2.8S 2.67 2.S7 2.48 2.43 2.39 2.37 2.34 2.33 2.30 2.28 2.27 2.26 2.2S 2.23 2.22 
60 5.21 3.82 3.33 3.07 2.91 2.73 2.62 2.S3 2.48 2.44 2.41 2.39 2.37 2.34 2.32 2.31 2.30 2.29 2.27 2.26 
7S 5.36 3.93 3.42 3.15 2.99 2.79 2.68 2.S9 2.S4 2.SO 2.47 2.44 2.42 2.40 2.38 2.36 2.3S 2.34 2.32 2.31 

100 5.55 4.06 3.53 3.25 3.08 2.88 2.76 2.67 2.61 2.S7 2.S4 2.Sl 2.49 2.46 2.44 2.43 2.41 2.40 2.39 2.37 
12S 5.70 4.16 3.61 3.33 3.15 2.94 2.82 2.73 2.67 2.62 2.S9 2.S6 2.S4 2.Sl 2.49 2.47 2.46 2.4S 2.43 2.42 
1SO 5.82 4.24 3.68 3.39 3.21 3.00 2.87 2.78 2.71 2.67 2.63 2.61 2.S9 2.SS 2.S3 2.Sl 2.SO 2.49 2.47 2.46 
17S 5.91 4.31 3.74 3.44 3.26 3.04 2.92 2.82 2.7S 2.70 2.67 2.64 2.62 2.S9 2.S6 2.S5 2.S3 2.S2 2.SO 2.49 
200 6.00 4.37 3.79 3.49 3.30 3.08 2.9S 2.8S 2.78 2.74 2.70 2.67 2.6S 2.62 2.S9 2.S8 2.S6 2.SS 2.S3 2.S2 
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Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (2 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 2.S7 2.02 1.82 1.71 1.6S 1.S7 1.S3 1.50 1.48 1.46 1.4S 1.44 1.43 1.42 1.42 1.41 1.41 1.40 1.40 1.39 
2 3.14 2.41 2.1S 2.01 1.93 1.83 1.77 1.73 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 1.62 1.61 1.61 1.60 1.60 
3 3.47 2.64 2.34 2.18 2.08 1.97 1.91 1.86 1.83 1.81 1.79 1.78 1.77 1.7S 1.74 1.73 1.73 1.72 1.71 1.71 
4 3.71 2.79 2.47 2.30 2.19 2.07 2.00 1.9S 1.92 1.89 1.87 1.86 1.85 1.83 1.82 1.81 1.81 1.80 1.79 1.79 
s 3.88 2.91 2.S7 2.39 2.28 2.1S 2.08 2.02 1.98 1.96 1.94 1.92 1.91 1.89 1.88 1.87 1.87 1.86 1.8S 1.84 
8 4.25 3.16 2.78 2.S7 2.4S 2.31 2.22 2.16 2.12 2.09 2.07 2.05 2.04 2.02 2.00 1.99 1.99 1.98 1.97 1.96 
12 4.56 3.37 2.9S 2.73 2.60 2.44 2.3S 2.28 2.23 2.20 2.18 2.16 2.14 2.12 2.11 2.09 2.09 2.08 2.07 2.06 
16 4.77 3.52 3.07 2.84 2.70 2.S3 2.43 2.36 2.31 2.28 2.2S 2.23 2.22 2.19 2.18 2.16 2.1S 2.1S 2.13 2.12 
20 4.93 3.63 3.16 2.92 2.77 2.60 2.SO 2.42 2.37 2.34 2.31 2.29 2.27 2.2S 2.23 2.22 2.21 2.20 2.18 2.17 
30 5.21 3.82 3,33 3.07 2.91 2.73 2.62 2.S3 2.48 2.44 2.41 2.39 2.37 2.34 2.32 2.31 2.30 2.29 2.27 2.26 
40 5.40 3.96 3.44 3.17 3.01 2.81 2.70 2.61 2.S5 2.Sl 2.48 2.46 2.44 2.41 2.39 2.38 2.36 2.3S 2.34 2.33 
so 5.55 4.06 3.53 3.25 3.08 2.88 2.76 2.67 2.61 2.S7 2.S4 2.Sl 2.49 2.46 2.44 2.43 2.41 2.40 2.39 2.37 
60 5.67 4.14 3.60 3.32 3.14 2.93 2.81 2.72 2.66 2.61 2.S8 2.S5 2.S3 2.50 2.48 2.47 2.4S 2.44 2.42 2.41 
7S 5.82 4.24 3.68 3.39 3.21 3.00 2.87 2.78 2.71 2.67 2.63 2.61 2.S9 2.S5 2.S3 2.Sl 2.SO 2.49 2.47 2.46 

100 6.00 4.37 3.79 3.49 3.30 3.08 2.9S 2.8S 2.78 2.74 2.70 2.67 2.6S 2.62 2.S9 2.S8 2.S6 2.S5 2.S3 2.S2 
12S 6.13 4.47 3.87 3.56 3.37 3.14 3.01 2.91 2.84 2.79 2.7S 2.72 2.70 2.67 2.64 2.62 2.61 2.60 2.S8 2.S6 
150 6.24 4.54 3.94 3.62 3.43 3.19 3.06 2.9S 2.88 2.83 2.79 2.76 2.74 2.71 2.68 2.66 2.6S 2.63 2.61 2.60 
17S 6.34 4.61 3.99 3.67 3.47 3.24 3.10 2.99 2.92 2.87 2.83 2.80 2.77 2.74 2.71 2.69 2.68 2.67 2.64 2.63 
200 6.42 4.66 4.04 3.72 3.51 3.27 3.13 3.02 2.9S 2.90 2.86 2.83 2.80 2.77 2.74 2.72 2.70 2.69 2.67 2.6S 

Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (2 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 3.14 2.41 2.15 2.01 1.93 1.83 1.77 1.73 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 1.62 1.61 1.61 1.60 1.60 
2 3.71 2.79 2.47 2.30 2.19 2.07 2.00 1.9S 1.92 1.89 1.87 1.86 1.85 1.83 1.82 1.81 1.81 1.80 1.79 1.79 
3 4.03 3.01 2.6S 2.46 2.3S 2.21 2.13 2.07 2.04 2.01 1.99 1.97 1.96 1.94 1.93 1.92 1.91 1.91 1.90 1.89 
4 4.25 3.16 2.78 2.S7 2.4S 2.31 2.22 2.16 2.12 2.09 2.07 2.05 2.04 2.02 2.00 1.99 1.99 1.98 1.97 1.96 
s 4.42 3.28 2.87 2.66 2.S3 2.38 2.29 2.23 2.18 2.1S 2.13 2.11 2.10 2.08 2.06 2.05 2.04 2.03 2.02 2.01 
8 4.77 3.S2 3.07 2.84 2.70 2.S3 2.43 2.36 2.31 2.28 2.2S 2.23 2.22 2.19 2.18 2.16 2.1S 2.1S 2.13 2.12 
12 5.06 3.72 3.24 2.99 2.84 2.66 2.S5 2.47 2.42 2.38 2.36 2.33 2.32 2.29 2.27 2.26 2.2S 2.24 2.23 2.22 
16 5.25 3.85 3.3S 3.09 2.93 2.7S 2.64 2.S5 2.SO 2.46 2.43 2.40 2.39 2.36 2.34 2.33 2.31 2.31 2.29 2.28 
20 5.40 3.96 3.44 3.17 3.01 2.81 2.70 2.61 2.S5 2.Sl 2.48 2.46 2.44 2.41 2.39 2.38 2.36 2.3S 2.34 2.33 
30 5.67 4.14 3.60 3.32 3.14 2.93 2.81 2.72 2.66 2.61 2.S8 2.S5 2.S3 2.50 2.48 2.47 2.4S 2.44 2.42 2.41 
40 5.86 4.27 3.71 3.41 3.23 3.02 2.89 2.79 2.73 2.68 2.6S 2.62 2.60 2.S7 2.SS 2.S3 2.Sl 2.50 2.48 2.47 
so 6.00 4.37 3.79 3.49 3.30 3.08 2.9S 2.8S 2.78 2.74 2.70 2.67 2.6S 2.62 2.S9 2.S8 2.S6 2.SS 2.S3 2.S2 
60 6.10 4.45 3.86 3.SS 3.36 3.13 3.00 2.90 2.83 2.78 2.74 2.71 2.69 2.66 2.63 2.61 2.60 2.S9 2.S7 2.S5 
7S 6.24 4.54 3.94 3.62 3.43 3.19 3.06 2.9S 2.88 2.83 2.79 2.76 2.74 2.71 2.68 2.66 2.6S 2.63 2.61 2.60 

100 6.42 4.66 4.04 3.72 3.Sl 3.27 3.13 3.02 2.9S 2.90 2.86 2.83 2.80 2.77 2.74 2.72 2.70 2.69 2.67 2.6S 
12S 6.55 4.76 4.12 3.79 3.S8 3.33 3.19 3.08 3.00 2.9S 2.91 2.88 2.8S 2.81 2.79 2.77 2.7S 2.74 2.71 2.70 
150 6.65 4.83 4.18 3.84 3.63 3.38 3.24 3.12 3.04 2.99 2.9S 2.92 2.89 2.8S 2.82 2.80 2.79 2.77 2.7S 2.73 
17S 6.74 4.89 4.23 3.89 3.68 3.42 3.28 3.16 3.08 3.02 2.98 2.9S 2.92 2.88 2.8S 2.83 2.82 2.80 2.78 2.76 
200 6.82 4.94 4.28 3.93 3.72 3.46 3.31 3.19 3.11 3.05 3.01 2.98 2.9S 2.91 2.88 2.86 2.84 2.83 2.80 2.79 
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Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (5 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 2.97 2.22 1.97 1.84 1.76 1.67 1.62 1.58 1.S6 1.S4 1.S3 1.S2 1.Sl 1.50 1.49 1.48 1.48 1.47 1.47 1.46 
2 3.68 2.66 2.32 2.15 2.04 1.93 1.86 1.81 1.78 1.76 1.74 1.73 1.72 1.70 1.69 1.69 1.68 1.67 1.67 1.66 
3 4.12 2.92 2.S2 2.33 2.21 2.07 2.00 1.94 1.91 1.88 1.86 1.8S 1.84 1.82 1.81 1.80 1.79 1.79 1.78 1.77 
4 4.43 3.10 2.67 2.45 2.32 2.18 2.09 2.03 1.99 1.96 1.94 1.93 1.92 1.90 1.88 1.88 1.87 1.86 1.85 1.84 
s 4.68 3.25 2.78 2.SS 2.41 2.2S 2.17 2.10 2.06 2.03 2.01 1.99 1.98 1.96 1.94 1.93 1.93 1.92 1.91 1.90 
8 5.19 3.55 3.02 2.75 2.60 2.42 2.32 2.24 2.20 2.16 2.14 2.12 2.10 2.08 2.06 2.05 2.04 2.04 2.02 2.02 
12 5.62 3.81 3.22 2.93 2.7S 2.S6 2.4S 2.36 2.31 2.27 2.2S 2.22 2.21 2.18 2.17 2.1S 2.14 2.13 2.12 2.11 
16 5.92 3.99 3.36 3.05 2.86 2.6S 2.54 2.4S 2.39 2.3S 2.32 2.30 2.28 2.2S 2.23 2.22 2.21 2.20 2.19 2.18 
20 6.15 4.12 3.47 3.14 2.9S 2.73 2.61 2.Sl 2.4S 2.41 2.38 2.3S 2.34 2.31 2.29 2.27 2.26 2.2S 2.24 2.23 
30 6.55 4.37 3.66 3.31 3,10 2.86 2.73 2.63 2.S6 2.Sl 2.48 2.4S 2.43 2.40 2.38 2.37 2.3S 2.34 2.33 2.32 
40 6.83 4.54 3.80 3.43 3.21 2.96 2.81 2.71 2.64 2.S9 2.S5 2.S3 2.50 2.47 2.4S 2.43 2.42 2.41 2.39 2.38 
so 7.04 4.67 3.90 3.52 3.29 3.03 2.88 2.77 2.70 2.6S 2.61 2.58 2.S6 2.S2 2.SO 2.48 2.47 2.46 2.44 2.42 
60 7.21 4.77 3.98 3.59 3.36 3.09 2.93 2.82 2.74 2.69 2.6S 2.62 2.60 2.S6 2.S4 2.S2 2.Sl 2.50 2.48 2.46 
7S 7.42 4.90 4.08 3.68 3.44 3.16 3.00 2.88 2.80 2.7S 2.71 2.67 2.6S 2.61 2.S9 2.S7 2.S5 2.S4 2.S2 2.Sl 

100 7.68 5.06 4.21 3.79 3.54 3.25 3.08 2.96 2.87 2.82 2.77 2.74 2.72 2.68 2.6S 2.63 2.61 2.60 2.S8 2.57 
12S 7.88 5.18 4.31 3.88 3.62 3.31 3.15 3.02 2.93 2.87 2.83 2.79 2.77 2.73 2.70 2.68 2.66 2.6S 2.63 2.61 
150 8.04 5.28 4.39 3.95 3.68 3.37 3.20 3.06 2.98 2.92 2.87 2.84 2.81 2.77 2.74 2.72 2.70 2.69 2.66 2.6S 
17S 8.17 5.36 4.45 4.00 3.73 3.42 3.24 3.10 3.01 2.95 2.91 2.87 2.84 2.80 2.77 2.7S 2.73 2.72 2.69 2.68 
200 8.28 5.43 4.51 4.05 3.78 3.46 3.28 3.14 3.05 2.98 2.94 2.90 2.87 2.83 2.80 2.78 2.76 2.74 2.72 2.70 

Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Li mi ts on Means of Order 2 (5 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 3.68 2.66 2.32 2.15 2.04 1.93 1.86 1.81 1.78 1.76 1.74 1.73 1.72 1.70 1.69 1.69 1.68 1.67 1.67 1.66 
2 4.43 3.10 2.67 2.45 2.32 2.18 2.09 2.03 1.99 1.96 1.94 1.93 1.92 1.90 1.88 1.88 1.87 1.86 1.85 1.84 
3 4.88 3.37 2.87 2.63 2.48 2.32 2.23 2.16 2.11 2.08 2.06 2.04 2.03 2.01 1.99 1.98 1.97 1.97 1.9S 1.9S 
4 5.19 3.55 3.02 2.75 2.60 2.42 2.32 2.24 2.20 2.16 2.14 2.12 2.10 2.08 2.06 2.05 2.04 2.04 2.02 2.02 
s 5.42 3.69 3.13 2.85 2.68 2.49 2.39 2.31 2.26 2.22 2.20 2.18 2.16 2.14 2.12 2.11 2.10 2.09 2.08 2.07 
8 5.92 3.99 3.36 3.05 2.86 2.6S 2.S4 2.4S 2.39 2.3S 2.32 2.30 2.28 2.2S 2.23 2.22 2.21 2.20 2.19 2.18 
12 6.33 4.23 3.56 3.22 3.02 2.79 2.66 2.56 2.SO 2.46 2.42 2.40 2.38 2.3S 2.33 2.32 2.30 2.29 2.28 2.27 
16 6.61 4.41 3.69 3.34 3.13 2.88 2.75 2.64 2.58 2.S3 2.50 2.47 2.4S 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
20 6.83 4.54 3.80 3.43 3.21 2.96 2.81 2.71 2.64 2.S9 2.S5 2.53 2.SO 2.47 2.4S 2.43 2.42 2.41 2.39 2.38 
30 7.21 4.77 3.98 3.59 3.36 3.09 2.93 2.82 2.74 2.69 2.6S 2.62 2.60 2.S6 2.S4 2.S2 2.Sl 2.50 2.48 2.46 
40 7.48 4.94 4.11 3.70 3.46 3.18 3.02 2.90 2.82 2.76 2.72 2.69 2.67 2.63 2.60 2.58 2.S7 2.S6 2.S3 2.S2 
so 7.68 5.06 4.21 3.79 3.54 3.2S 3.08 2.96 2.87 2.82 2.77 2.74 2.72 2.68 2.65 2.63 2.61 2.60 2.S8 2.57 
60 7.84 5.16 4.29 3.86 3.60 3.30 3.13 3.00 2.92 2.86 2.82 2.78 2.76 2.72 2.69 2.67 2.6S 2.64 2.62 2.60 
7S 8.04 5.28 4.39 3.95 3.68 3.37 3.20 3.06 2.98 2.92 2.87 2.84 2.81 2.77 2.74 2.72 2.70 2.69 2.66 2.6S 

100 8.28 5.43 4.51 4.05 3.78 3.46 3.28 3.14 3.05 2.98 2.94 2.90 2.87 2.83 2.80 2.78 2.76 2.74 2.72 2.70 
12S 8.47 5.55 4.61 4.14 3.85 3.52 3.34 3.20 3.10 3.04 2.99 2.9S 2.92 2.88 2.84 2.82 2.80 2.79 2.76 2.74 
150 8.62 5.64 4.68 4.20 3.91 3.58 3.39 3.24 3.1S 3.08 3.03 2.99 2.96 2.91 2.88 2.86 2.84 2.82 2.80 2.78 
17S 8.75 5.72 4.74 4.26 3.96 3.62 3.43 3.28 3.18 3.12 3.06 3.02 2.99 2.9S 2.91 2.89 2.87 2.8S 2.83 2.81 
200 8.85 5.79 4.80 4.31 4.01 3.66 3.47 3.31 3.22 3.1S 3.09 3.05 3.02 2.97 2.94 2.91 2.90 2.88 2.8S 2.83 
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Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (5 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 4.43 3.10 2.67 2.45 2.32 2.18 2.09 2.03 1.99 1.96 1.94 1.93 1.92 1.90 1.88 1.88 1.87 1.86 1.85 1.84 
2 5.19 3.55 3.02 2.75 2.60 2.42 2.32 2.24 2.20 2.16 2.14 2.12 2.10 2.08 2.06 2.05 2.04 2.04 2.02 2.02 
3 5.62 3.81 3.22 2.93 2.75 2.56 2.45 2.36 2.31 2.27 2.25 2.22 2.21 2.18 2.17 2.15 2.14 2.13 2.12 2.11 
4 5.92 3.99 3.36 3.05 2.86 2.65 2.54 2.45 2.39 2.35 2.32 2.30 2.28 2.25 2.23 2.22 2.21 2.20 2.19 2.18 
5 6.15 4.12 3.47 3.14 2.95 2.73 2.61 2.51 2.45 2.41 2.38 2.35 2.34 2.31 2.29 2.27 2.26 2.25 2.24 2.23 
8 6.61 4.41 3.69 3.34 3.13 2.88 2.75 2.64 2.58 2.53 2.50 2.47 2.45 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
12 7.00 4.65 3.88 3.50 3.28 3.01 2.87 2.76 2.69 2.63 2.60 2.57 2.55 2.51 2.49 2.47 2.46 2.45 2.43 2.42 
16 7.27 4.81 4.01 3.62 3.38 3.11 2.95 2.84 2.76 2.71 2.67 2.64 2.61 2.58 2.55 2.53 2.52 2.51 2.49 2.48 
20 7.48 4.94 4.11 3.70 3.46 3.18 3.02 2.90 2.82 2.76 2.72 2.69 2.67 2.63 2.60 2.58 2.57 2.56 2.53 2.52 
30 7.84 5.16 4.29 3.86 3.60 3.30 3.13 3.00 2.92 2.86 2.82 2.78 2.76 2.72 2.69 2.67 2.65 2.64 2.62 2.60 
40 8.09 5.32 4.42 3.97 3.70 3.39 3.21 3.08 2.99 2.93 2.89 2.85 2.82 2.78 2.75 2.73 2.71 2.70 2.67 2.66 
50 8.28 5.43 4.51 4.05 3.78 3.46 3.28 3.14 3.05 2.98 2.94 2.90 2.87 2.83 2.80 2.78 2.76 2.74 2.72 2.70 
60 8.43 5.53 4.59 4.12 3.84 3.51 3.33 3.19 3.09 3.03 2.98 2.94 2.91 2.87 2.84 2.81 2.79 2.78 2.75 2.74 
75 8.62 5.64 4.68 4.20 3.91 3.58 3.39 3.24 3.15 3.08 3.03 2.99 2.96 2.91 2.88 2.86 2.84 2.82 2.80 2.78 

100 8.85 5.79 4.80 4.31 4.01 3.66 3.47 3.31 3.22 3.15 3.09 3.05 3.02 2.97 2.94 2.91 2.90 2.88 2.85 2.83 
125 9.03 5.90 4.89 4.38 4.08 3.73 3.53 3.37 3.27 3.20 3.14 3.10 3.07 3.02 2.99 2.96 2.94 2.92 2.89 2.87 
150 9.18 5.99 4.96 4.45 4.14 3.78 3.57 3.42 3.31 3.24 3.18 3.14 3.11 3.06 3.02 2.99 2.97 2.96 2.93 2.91 
175 9.29 6.07 5.02 4.50 4.19 3.82 3.62 3.45 3.35 3.27 3.22 3.17 3.14 3.09 3.05 3.02 3.00 2.99 2.96 2.94 
200 9.40 6.13 5.07 4.55 4.23 3.86 3.65 3.49 3.38 3.30 3.25 3.20 3.17 3.12 3.08 3.05 3.03 3.01 2.98 2.96 

Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.86 2.71 2.34 2.16 2.06 1.93 1.87 1.82 1.78 1.76 1.74 1.73 1.72 1.71 1.69 1.69 1.68 1.68 1.67 1.66 
2 4.75 3.20 2.71 2.48 2.34 2.19 2.10 2.04 2.00 1.97 1.95 1.93 1.92 1.90 1.89 1.88 1.87 1.86 1.85 1.84 
3 5.29 3.49 2.93 2.66 2.51 2.33 2.24 2.16 2.12 2.08 2.06 2.04 2.03 2.01 1.99 1.98 1.97 1.97 1.95 1.95 
4 5.68 3.69 3.09 2.80 2.62 2.43 2.33 2.25 2.20 2.17 2.14 2.12 2.10 2.08 2.07 2.05 2.04 2.04 2.02 2.02 
5 5.99 3.86 3.21 2.90 2.72 2.51 2.40 2.32 2.26 2.23 2.20 2.18 2.16 2.14 2.12 2.11 2.10 2.09 2.08 2.07 
8 6.62 4.20 3.46 3.11 2.91 2.68 2.55 2.46 2.40 2.35 2.32 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
12 7.16 4.49 3.68 3.29 3.07 2.82 2.68 2.57 2.51 2.46 2.43 2.40 2.38 2.35 2.33 2.32 2.31 2.30 2.28 2.27 
16 7.54 4.69 3.83 3.42 3.18 2.91 2.77 2.66 2.59 2.54 2.50 2.48 2.45 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
20 7.83 4.85 3.95 3.52 3.27 2.99 2.84 2.72 2.65 2.60 2.56 2.53 2.51 2.47 2.45 2.43 2.42 2.41 2.39 2.38 
30 8.33 5.13 4.17 3.70 3.43 3.13 2.96 2.84 2.76 2.70 2.66 2.63 2.60 2.57 2.54 2.52 2.51 2.50 2.48 2.46 
40 8.69 5.33 4.31 3.83 3.54 3.22 3.05 2.92 2.83 2.77 2.73 2.70 2.67 2.63 2.61 2.59 2.57 2.56 2.54 2.52 
50 8.95 5.48 4.43 3.92 3.63 3.30 3.12 2.98 2.89 2.83 2.78 2.75 2.72 2.68 2.65 2.63 2.62 2.60 2.58 2.57 
60 9.17 5.60 4.52 4.00 3.70 3.36 3.16 3.03 2.94 2.81 2.83 2.79 2.76 2.72 2.69 2.67 2.66 2.64 2.62 2.60 
75 9.43 5.74 4.63 4.10 3.78 3.43 3.24 3.09 2.99 2.93 2.88 2.84 2.81 2.77 2.74 2.72 2.70 2.69 2.66 2.65 
100 9.76 5.93 4.77 4.22 3.89 3.52 3.32 3.17 3.07 3.00 2.95 2.91 2.88 2.83 2.80 2.78 2.76 2.75 2.72 2.70 
125 10.01 6.07 4.88 4.31 3.97 3.59 3.39 3.23 3.12 3.05 3.00 2.96 2.93 2.88 2.85 2.82 2.81 2.79 2.76 2.75 
150 10.21 6.18 4.97 4.38 4.04 3.65 3.44 3.27 3.17 3.10 3.04 3.00 2.97 2.92 2.89 2.86 2.84 2.83 2.80 2.78 
175 10.37 6.28 5.04 4.45 4.10 3.70 3.48 3.32 3.21 3.13 3.08 3.04 3.00 2.95 2.92 2.89 2.87 2.86 2.83 2.81 
200 10.52 6.36 5.10 4.50 4.15 3.74 3.52 3.35 3.24 3.16 3.11 3.07 3.03 2.98 2.95 2.92 2.90 2.88 2.85 2.83 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (10 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 4.75 3.20 2.71 2.48 2.34 2.19 2.10 2.04 2.00 1.97 1.9S 1.93 1.92 1.90 1.89 1.88 1.87 1.86 1.8S 1.84 
2 5.68 3.69 3.09 2.80 2.62 2.43 2.33 2.2S 2.20 2.17 2.14 2.12 2.10 2.08 2.07 2.05 2.04 2.04 2.02 2.02 
3 6.23 3.99 3.31 2.98 2.79 2.S8 2.46 2.37 2.32 2.28 2.2S 2.23 2.21 2.18 2.17 2.1S 2.14 2.14 2.12 2.11 
4 6.62 4.20 3.46 3.11 2.91 2.68 2.SS 2.46 2.40 2.3S 2.32 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
s 6.92 4.36 3.58 3.21 3.00 2.7S 2.62 2.S2 2.46 2.41 2.38 2.36 2.34 2.31 2.29 2.27 2.26 2.2S 2.24 2.23 
8 7.54 4.69 3.83 3.42 3.18 2.91 2.77 2.66 2.S9 2.S4 2.SO 2.48 2.4S 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
12 8.06 4.98 4.05 3.60 3.34 3.05 2.89 2.77 2.70 2.64 2.60 2.S7 2.SS 2.S2 2.49 2.47 2.46 2.4S 2.43 2.42 
16 8.42 5.18 4.20 3.73 3.46 3.1S 2.98 2.8S 2.77 2.72 2.68 2.64 2.62 2.S8 2.S6 2.S4 2.S2 2.Sl 2.49 2.48 
20 8.69 5.33 4.31 3.83 3.54 3.22 3.05 2.92 2.83 2.77 2.73 2.70 2.67 2.63 2.61 2.S9 2.S7 2.S6 2.S4 2.S2 
30 9.17 5.60 4.52 4.00 3.70 3.36 3.16 3.03 2.94 2.81 2.83 2.79 2.76 2.72 2.69 2.67 2.66 2.64 2.62 2.60 
40 9.50 5.78 4.66 4.12 3.81 3.45 3.2S 3.11 3.01 2.94 2.90 2.86 2.83 2.79 2.76 2.73 2.71 2.70 2.68 2.66 
so 9.76 5.93 4.77 4.22 3.89 3.52 3.32 3.17 3.07 3.00 2.9S 2.91 2.88 2.83 2.80 2.78 2.76 2.7S 2.72 2.70 
60 9.96 6.04 4.86 4.29 3.96 3.58 3.37 3.22 3.11 3.04 2.99 2.9S 2.92 2.87 2.84 2.82 2.80 2.78 2.76 2.74 
7S 10.21 6.18 4.97 4.38 4.04 3.65 3.44 3.27 3.17 3.10 3.04 3.00 2.97 2.92 2.89 2.86 2.84 2.83 2.80 2.78 

100 10.52 6.36 5.10 4.50 4.15 3.74 3.52 3.35 3.24 3.16 3.11 3.07 3.03 2.98 2.9S 2.92 2.90 2.88 2.8S 2.83 
12S 10.76 6.49 5.21 4.59 4.23 3.81 3.58 3.41 3.30 3.22 3.16 3.12 3.08 3.03 2.99 2.96 2.94 2.93 2.90 2.88 
150 10.95 6.60 5.29 4.66 4.29 3.87 3.64 3.46 3.34 3.26 3.20 3.16 3.12 3.07 3.03 3.00 2.98 2.96 2.93 2.91 
17S 11.10 6.69 5.36 4.72 4.35 3.92 3.68 3.50 3.38 3.30 3.24 3.19 3.1S 3.10 3.06 3.03 3.01 2.99 2.96 2.94 
200 11.24 6.77 5.42 4.77 4.39 3.96 3.72 3.53 3.41 3.33 3.27 3.22 3.18 3.12 3.09 3.06 3.03 3.02 2.98 2.96 

Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (10 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 5.68 3.69 3.09 2.80 2.62 2.43 2.33 2.2S 2.20 2.17 2.14 2.12 2.10 2.08 2.07 2.05 2.04 2.04 2.02 2.02 
2 6.62 4.20 3.46 3.11 2.91 2.68 2.S5 2.46 2.40 2.3S 2.32 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
3 7.16 4.49 3.68 3.29 3.07 2.82 2.68 2.S7 2.Sl 2.46 2.43 2.40 2.38 2.3S 2.33 2.32 2.31 2.30 2.28 2.27 
4 7.54 4.69 3.83 3.42 3.18 2.91 2.77 2.66 2.S9 2.S4 2.SO 2.48 2.4S 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
s 7.83 4.85 3.95 3.S2 3.27 2.99 2.84 2.72 2.6S 2.60 2.S6 2.S3 2.Sl 2.47 2.4S 2.43 2.42 2.41 2.39 2.38 
8 8.42 5.18 4.20 3.73 3.46 3.1S 2.98 2.85 2.77 2.72 2.68 2.64 2.62 2.S8 2.S6 2.S4 2.S2 2.Sl 2.49 2.48 
12 8.91 5.45 4.41 3.91 3.61 3.28 3.10 2.97 2.88 2.82 2.77 2.74 2.71 2.67 2.6S 2.62 2.61 2.60 2.S7 2.S6 
16 9.25 5.64 4.55 4.03 3.72 3.38 3.19 3.05 2.9S 2.89 2.84 2.81 2.78 2.74 2.71 2.69 2.67 2.66 2.63 2.62 
20 9.50 5.78 4.66 4.12 3.81 3.4S 3.2S 3.11 3.01 2.94 2.90 2.86 2.83 2.79 2.76 2.73 2.71 2.70 2.68 2.66 
30 9.96 6.04 4.86 4.29 3.96 3.58 3.37 3.22 3.11 3.04 2.99 2.9S 2.92 2.87 2.84 2.82 2.80 2.78 2.76 2.74 
40 10.28 6.22 5.00 4.41 4.06 3.67 3.46 3.29 3.19 3.11 3.06 3.02 2.98 2.93 2.90 2.87 2.8S 2.84 2.81 2.79 
so 10.52 6.36 5.10 4.50 4.15 3.74 3.S2 3.3S 3.24 3.16 3.11 3.07 3.03 2.98 2.9S 2.92 2.90 2.88 2.8S 2.83 
60 10.71 6.47 5.19 4.57 4.21 3.80 3.S7 3.40 3.29 3.21 3.1S 3.11 3.07 3.02 2.98 2.96 2.93 2.92 2.89 2.87 
7S 10.95 6.60 5.29 4.66 4.29 3.87 3.64 3.46 3.34 3.26 3.20 3.16 3.12 3.07 3.03 3.00 2.98 2.96 2.93 2.91 
100 11.24 6.77 5.42 4.77 4.39 3.96 3.72 3.S3 3.41 3.33 3.27 3.22 3.18 3.12 3.09 3.06 3.03 3.02 2.98 2.96 
12S 11.47 6.90 5.52 4.86 4.47 4.02 3.78 3.59 3.46 3.38 3.32 3.27 3.23 3.17 3.13 3.10 3.08 3.06 3.02 3.00 
150 11.65 7.00 5.60 4.93 4.53 4.08 3.83 3.63 3.Sl 3.42 3.36 3.31 3.27 3.21 3.17 3.13 3.11 3.09 3.06 3.03 
17S 11.80 7.09 5.67 4.99 4.58 4.12 3.87 3.67 3.S4 3.46 3.39 3.34 3.30 3.24 3.20 3.16 3.14 3.12 3.09 3.06 
200 11.93 7.16 5.73 5.04 4.63 4.16 3.90 3.71 3.58 3.49 3.42 3.37 3.33 3.26 3.22 3.19 3.16 3.14 3.11 3.09 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (20 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 4.97 3.25 2.74 2.49 2.3S 2.19 2.10 2.04 2.00 1.97 1.9S 1.93 1.92 1.90 1.89 1.88 1.87 1.86 1.8S 1.84 
2 6.07 3.79 3.13 2.82 2.64 2.44 2.33 2.2S 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.05 2.04 2.02 2.02 
3 6.75 4.12 3.36 3.01 2.81 2.S9 2.47 2.38 2.32 2.28 2.2S 2.23 2.21 2.19 2.17 2.1S 2.14 2.14 2.12 2.11 
4 7.24 4.35 3.53 3.15 2.93 2.69 2.S6 2.46 2.40 2.36 2.33 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
s 7.62 4.54 3.66 3.26 3.02 2.77 2.63 2.S3 2.46 2.42 2.38 2.36 2.34 2.31 2.29 2.28 2.26 2.2S 2.24 2.23 
8 8.41 4.92 3.94 3.48 3.22 2.93 2.78 2.66 2.S9 2.S4 2.Sl 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
12 9.09 5.26 4.18 3.68 3.39 3.08 2.91 2.78 2.70 2.6S 2.61 2.S8 2.SS 2.S2 2.49 2.47 2.46 2.4S 2.43 2.42 
16 9.57 5.49 4.34 3.81 3.51 3.18 3.00 2.86 2.78 2.72 2.68 2.6S 2.62 2.S8 2.S6 2.S4 2.S2 2.Sl 2.49 2.48 
20 9.93 5.67 4.47 3.92 3.60 3.25 3.07 2.93 2.84 2.78 2.73 2.70 2.67 2.63 2.61 2.S9 2.S7 2.S6 2.S4 2.S2 
30 10.57 5.99 4.71 4.11 3.77 3.39 3.19 3.04 2.95 2.88 2.83 2.80 2.77 2.72 2.70 2.67 2.66 2.64 2.62 2.60 
40 11.01 6.22 4.87 4.25 3.89 3.49 3.28 3.12 3.02 2.95 2.90 2.86 2.83 2.79 2.76 2.73 2.72 2.70 2.68 2.66 
so 11.35 6.39 5.00 4.35 3.98 3.57 3.35 3.18 3.08 3.01 2.95 2.89 2.88 2.84 2.80 2.78 2.76 2.7S 2.72 2.70 
60 11.62 6.53 5.10 4.43 4.05 3.63 3.40 3.23 3.13 3.05 3.00 2.96 2.92 2.88 2.84 2.82 2.80 2.78 2.76 2.74 
7S 11.95 6.69 5.22 4.54 4.14 3.71 3.47 3.30 3.18 3.11 3.05 3.01 2.97 2.92 2.89 2.86 2.84 2.83 2.80 2.78 

100 12.36 6.91 5.38 4.67 4.26 3.80 3.56 3.37 3.26 3.18 3.12 3.07 3.04 2.98 2.95 2.92 2.90 2.88 2.8S 2.84 
12S 12.68 7.07 5.50 4.77 4.34 3.88 3.62 3.43 3.31 3.23 3.17 3.12 3.09 3.03 2.99 2.97 2.94 2.93 2.90 2.88 
150 12.93 7.20 5.59 4.85 4.42 3.94 3.68 3.48 3.36 3.27 3.21 3.16 3.13 3.07 3.03 3.00 2.98 2.96 2.93 2.91 
17S 13.14 7.31 5.67 4.91 4.48 3.99 3.72 3.52 3.40 3.31 3.25 3.20 3.16 3.10 3.06 3.03 3.01 2.99 2.96 2.94 
200 13.32 7.40 5.74 4.97 4.53 4.03 3.76 3.56 3.43 3.34 3.28 3.23 3.19 3.13 3.09 3.06 3.04 3.02 2.98 2.96 

Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 6.07 3.79 3.13 2.82 2.64 2.44 2.33 2.2S 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.05 2.04 2.02 2.02 
2 7.24 4.35 3.53 3.1S 2.93 2.69 2.S6 2.46 2.40 2.36 2.33 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
3 7.93 4.69 3.77 3.34 3.10 2.83 2.69 2.S8 2.Sl 2.47 2.43 2.41 2.39 2.36 2.33 2.32 2.31 2.30 2.28 2.27 
4 8.41 4.92 3.94 3.48 3.22 2.93 2.78 2.66 2.S9 2.S4 2.Sl 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
s 8.79 5.11 4.07 3.59 3.31 3.01 2.8S 2.73 2.6S 2.60 2.S6 2.S3 2.Sl 2.48 2.4S 2.43 2.42 2.41 2.39 2.38 
8 9.57 5.49 4.34 3.81 3.51 3.18 3.00 2.86 2.78 2.72 2.68 2.6S 2.62 2.S8 2.S6 2.S4 2.S2 2.Sl 2.49 2.48 
12 10.22 5.82 4.58 4.01 3.68 3.32 3.12 2.98 2.89 2.82 2.78 2.74 2.72 2.68 2.6S 2.63 2.61 2.60 2.S7 2.S6 
16 10.67 6.04 4.74 4.14 3.80 3.42 3.21 3.06 2.96 2.90 2.8S 2.81 2.78 2.74 2.71 2.69 2.67 2.66 2.63 2.62 
20 11.01 6.22 4.87 4.25 3.89 3.49 3.28 3.12 3.02 2.9S 2.90 2.86 2.83 2.79 2.76 2.73 2.72 2.70 2.68 2.66 
30 11.62 6.53 5.10 4.43 4.05 3.63 3.40 3.23 3.13 3.05 3.00 2.96 2.92 2.88 2.84 2.82 2.80 2.78 2.76 2.74 
40 12.04 6.74 5.25 4.57 4.17 3.73 3.49 3.31 3.20 3.12 3.07 3.02 2.99 2.94 2.90 2.88 2.86 2.84 2.81 2.79 
so 12.36 6.91 5.38 4.67 4.26 3.80 3.56 3.37 3.26 3.18 3.12 3.07 3.04 2.98 2.9S 2.92 2.90 2.88 2.8S 2.84 
60 12.62 7.04 5.47 4.75 4.33 3.86 3.61 3.42 3.30 3.22 3.16 3.11 3.08 3.02 2.99 2.96 2.94 2.92 2.89 2.87 
7S 12.93 7.20 5.59 4.85 4.42 3.94 3.68 3.48 3.36 3.27 3.21 3.16 3.13 3.07 3.03 3.00 2.98 2.96 2.93 2.91 
100 13.32 7.40 5.74 4.97 4.53 4.03 3.76 3.56 3.43 3.34 3.28 3.23 3.19 3.13 3.09 3.06 3.04 3.02 2.98 2.96 
12S 13.62 7.56 5.86 5.07 4.61 4.10 3.83 3.62 3.49 3.39 3.33 3.28 3.24 3.18 3.13 3.10 3.08 3.06 3.03 3.00 
150 13.86 7.68 5.95 5.15 4.68 4.16 3.88 3.67 3.53 3.44 3.37 3.32 3.27 3.21 3.17 3.14 3.11 3.09 3.06 3.04 
17S 14.06 7.79 6.03 5.21 4.74 4.21 3.93 3.71 3.57 3.47 3.40 3.35 3.31 3.24 3.20 3.17 3.14 3.12 3.09 3.06 
200 14.23 7.88 6.10 5.27 4.79 4.26 3.96 3.74 3.60 3.50 3.43 3.38 3.33 3.27 3.23 3.19 3.17 3.1S 3.11 3.09 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 7.24 4.35 3.53 3.15 2.93 2.69 2.56 2.46 2.40 2.36 2.33 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
2 8.41 4.92 3.94 3.48 3.22 2.93 2.78 2.66 2.59 2.54 2.51 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
3 9.09 5.26 4.18 3.68 3.39 3.08 2.91 2.78 2.70 2.65 2.61 2.58 2.55 2.52 2.49 2.47 2.46 2.45 2.43 2.42 
4 9.57 5.49 4.34 3.81 3.51 3.18 3.00 2.86 2.78 2.72 2.68 2.65 2.62 2.58 2.56 2.54 2.52 2.51 2.49 2.48 
5 9.93 5.67 4.47 3.92 3.60 3.25 3.07 2.93 2.84 2.78 2.73 2.70 2.67 2.63 2.61 2.59 2.57 2.56 2.54 2.52 
8 10.67 6.04 4.74 4.14 3.80 3.42 3.21 3.06 2.96 2.90 2.85 2.81 2.78 2.74 2.71 2.69 2.67 2.66 2.63 2.62 
12 11.29 6.36 4.97 4.33 3.96 3.56 3.34 3.17 3.07 3.00 2.94 2.91 2.87 2.83 2.80 2.77 2.75 2.74 2.71 2.70 
16 11.72 6.57 5.13 4.46 4.08 3.65 3.42 3.25 3.14 3.07 3.01 2.97 2.94 2.89 2.86 2.83 2.81 2.80 2.77 2.75 
20 12.04 6.74 5.25 4.57 4.17 3.73 3.49 3.31 3.20 3.12 3.07 3.02 2.99 2.94 2.90 2.88 2.86 2.84 2.81 2.79 
30 12.62 7.04 5.47 4.75 4.33 3.86 3.61 3.42 3.30 3.22 3.16 3.11 3.08 3.02 2.99 2.96 2.94 2.92 2.89 2.87 
40 13.02 7.24 5.63 4.87 4.44 3.96 3.70 3.50 3.38 3.29 3.23 3.18 3.14 3.08 3.04 3.01 2.99 2.97 2.94 2.92 
50 13.32 7.40 5.74 4.97 4.53 4.03 3.76 3.56 3.43 3.34 3.28 3.23 3.19 3.13 3.09 3.06 3.04 3.02 2.98 2.96 
60 13.56 7.53 5.84 5.05 4.60 4.09 3.82 3.61 3.48 3.39 3.32 3.27 3.23 3.17 3.13 3.09 3.07 3.05 3.02 3.00 
75 13.86 7.68 5.95 5.15 4.68 4.16 3.88 3.67 3.53 3.44 3.37 3.32 3.27 3.21 3.17 3.14 3.11 3.09 3.06 3.04 

100 14.23 7.88 6.10 5.27 4.79 4.26 3.96 3.74 3.60 3.50 3.43 3.38 3.33 3.27 3.23 3.19 3.17 3.15 3.11 3.09 
125 14.52 8.03 6.21 5.36 4.87 4.33 4.03 3.80 3.66 3.56 3.48 3.43 3.38 3.32 3.27 3.23 3.21 3.19 3.15 3.13 
150 14.74 8.15 6.30 5.44 4.94 4.38 4.08 3.85 3.70 3.60 3.52 3.46 3.42 3.35 3.30 3.27 3.24 3.22 3.18 3.16 
175 14.94 8.25 6.37 5.50 5.00 4.43 4.12 3.89 3.74 3.63 3.56 3.50 3.45 3.38 3.33 3.30 3.27 3.25 3.21 3.18 
200 15.10 8.33 6.44 5.55 5.04 4.47 4.16 3.92 3.77 3.66 3.59 3.53 3.48 3.41 3.36 3.32 3.30 3.27 3.23 3.21 

Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 (40 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 6.34 3.85 3.15 2.83 2.65 2.45 2.34 2.26 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.05 2.04 2.02 2.02 
2 7.72 4.46 3.57 3.17 2.94 2.70 2.56 2.46 2.40 2.36 2.33 2.30 2.29 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
3 8.57 4.83 3.83 3.37 3.12 2.84 2.69 2.58 2.52 2.47 2.43 2.41 2.39 2.36 2.33 2.32 2.31 2.30 2.28 2.27 
4 9.18 5.10 4.01 3.52 3.24 2.94 2.79 2.67 2.59 2.54 2.51 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
5 9.66 5.30 4.15 3.63 3.34 3.02 2.86 2.73 2.66 2.60 2.56 2.53 2.51 2.48 2.45 2.43 2.42 2.41 2.39 2.38 
8 10.66 5.75 4.45 3.87 3.55 3.19 3.01 2.87 2.78 2.72 2.68 2.65 2.62 2.58 2.56 2.54 2.52 2.51 2.49 2.48 
12 11.51 6.13 4.71 4.08 3.72 3.34 3.14 2.99 2.89 2.83 2.78 2.75 2.72 2.68 2.65 2.63 2.61 2.60 2.57 2.56 
16 12.11 6.39 4.90 4.22 3.85 3.44 3.23 3.07 2.97 2.90 2.85 2.81 2.78 2.74 2.71 2.69 2.67 2.66 2.63 2.62 
20 12.56 6.60 5.04 4.34 3.95 3.52 3.30 3.13 3.03 2.96 2.90 2.87 2.83 2.79 2.76 2.73 2.72 2.70 2.68 2.66 
30 13.37 6.97 5.29 4.54 4.12 3.66 3.42 3.24 3.13 3.06 3.00 2.96 2.93 2.88 2.84 2.82 2.80 2.78 2.76 2.74 
40 13.93 7.22 5.47 4.69 4.25 3.77 3.51 3.33 3.21 3.13 3.07 3.03 2.99 2.94 2.90 2.88 2.86 2.84 2.81 2.79 
50 14.35 7.42 5.61 4.80 4.34 3.85 3.58 3.32 3.27 3.18 3.12 3.08 3.04 2.99 2.95 2.92 2.90 2.88 2.86 2.84 
60 14.70 7.58 5.72 4.89 4.42 3.91 3.64 3.44 3.31 3.23 3.16 3.12 3.08 3.03 2.99 2.96 2.94 2.92 2.89 2.87 
75 15.11 7.77 5.86 5.00 4.51 3.99 3.71 3.50 3.37 3.28 3.22 3.17 3.13 3.07 3.03 3.00 2.98 2.96 2.93 2.91 
100 15.63 8.02 6.03 5.14 4.64 4.09 3.80 3.58 3.44 3.35 3.28 3.23 3.19 3.13 3.09 3.06 3.04 3.02 2.99 2.96 
125 16.02 8.20 6.16 5.25 4.73 4.16 3.86 3.64 3.50 3.40 3.33 3.28 3.24 3.18 3.14 3.10 3.08 3.06 3.03 3.00 
150 16.34 8.35 6.27 5.33 4.80 4.23 3.92 3.69 3.55 3.45 3.38 3.32 3.28 3.22 3.17 3.14 3.11 3.09 3.06 3.04 
175 16.61 8.48 6.36 5.41 4.87 4.28 3.97 3.73 3.59 3.48 3.41 3.36 3.31 3.25 3.20 3.17 3.14 3.12 3.09 3.06 
200 16.84 8.59 6.44 5.47 4.92 4.33 4.01 3.77 3.62 3.52 3.44 3.38 3.34 3.27 3.23 3.19 3.17 3.15 3.11 3.09 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 2 ( 40 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 7.72 4.46 3.57 3.17 2.94 2.70 2.S6 2.46 2.40 2.36 2.33 2.30 2.29 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
2 9.18 5.10 4.01 3.52 3.24 2.94 2.79 2.67 2.S9 2.S4 2.Sl 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
3 10.05 5.48 4.27 3.72 3.42 3.09 2.92 2.79 2.71 2.6S 2.61 2.S8 2.S5 2.S2 2.49 2.48 2.46 2.4S 2.43 2.42 
4 10.66 5.75 4.45 3.87 3.55 3.19 3.01 2.87 2.78 2.72 2.68 2.6S 2.62 2.S8 2.S6 2.S4 2.S2 2.Sl 2.49 2.48 
s 11.13 5.95 4.59 3.99 3.64 3.27 3.08 2.93 2.84 2.78 2.74 2.70 2.68 2.64 2.61 2.S9 2.S7 2.S6 2.S4 2.S2 
8 12.11 6.39 4.90 4.22 3.85 3.44 3.23 3.07 2.97 2.90 2.8S 2.81 2.78 2.74 2.71 2.69 2.67 2.66 2.63 2.62 
12 12.93 6.76 5.15 4.43 4.02 3.59 3.35 3.18 3.08 3.00 2.9S 2.91 2.88 2.83 2.80 2.77 2.7S 2.74 2.71 2.70 
16 13.50 7.03 5.33 4.58 4.15 3.69 3.44 3.26 3.1S 3.07 3.02 2.97 2.94 2.89 2.86 2.83 2.81 2.80 2.77 2.7S 
20 13.93 7.22 5.47 4.69 4.25 3.77 3.51 3.33 3.21 3.13 3.07 3.03 2.99 2.94 2.90 2.88 2.86 2.84 2.81 2.79 
30 14.70 7.58 5.72 4.89 4.42 3.91 3.64 3.44 3.31 3.23 3.16 3.12 3.08 3.03 2.99 2.96 2.94 2.92 2.89 2.87 
40 15.23 7.83 5.90 5.03 4.54 4.01 3.73 3.52 3.39 3.30 3.23 3.18 3.14 3.09 3.05 3.02 2.99 2.98 2.94 2.92 
so 15.63 8.02 6.03 5.14 4.64 4.09 3.80 3.58 3.44 3.35 3.28 3.23 3.19 3.13 3.09 3.06 3.04 3.02 2.99 2.96 
60 15.95 8.17 6.14 5.23 4.71 4.15 3.85 3.63 3.49 3.39 3.32 3.27 3.23 3.17 3.13 3.10 3.07 3.05 3.02 3.00 
7S 16.34 8.35 6.27 5.33 4.80 4.23 3.92 3.69 3.55 3.45 3.38 3.32 3.28 3.22 3.17 3.14 3.11 3.09 3.06 3.04 

100 16.84 8.59 6.44 5.47 4.92 4.33 4.01 3.77 3.62 3.52 3.44 3.38 3.34 3.27 3.23 3.19 3.17 3.1S 3.11 3.09 
12S 17.21 8.77 6.56 5.57 5.01 4.40 4.07 3.83 3.67 3.57 3.49 3.43 3.39 3.32 3.27 3.24 3.21 3.19 3.1S 3.13 
150 17.52 8.91 6.67 5.66 5.09 4.46 4.13 3.88 3.72 3.61 3.53 3.47 3.43 3.36 3.31 3.27 3.24 3.22 3.18 3.16 
17S 17.77 9.03 6.75 5.73 5.15 4.51 4.17 3.92 3.76 3.65 3.57 3.51 3.46 3.39 3.34 3.30 3.27 3.2S 3.21 3.18 
200 17.99 9.14 6.83 5.79 5.20 4.56 4.21 3.95 3.79 3.68 3.60 3.53 3.49 3.41 3.36 3.33 3.30 3.27 3.23 3.21 

Table 19-5. K-Multipliers for 1-of-1 Interwell Prediction Li mi ts on Means of Order 2 ( 40 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 9.18 5.10 4.01 3.S2 3.24 2.94 2.79 2.67 2.S9 2.S4 2.Sl 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
2 10.66 5. 75 4.45 3.87 3.SS 3.19 3.01 2.87 2.78 2.72 2.68 2.6S 2.62 2.S8 2.S6 2.S4 2.S2 2.Sl 2.49 2.48 
3 11.51 6.13 4.71 4.08 3.72 3.34 3.14 2.99 2.89 2.83 2.78 2.7S 2.72 2.68 2.6S 2.63 2.61 2.60 2.S7 2.S6 
4 12.11 6.39 4.90 4.22 3.85 3.44 3.23 3.07 2.97 2.90 2.8S 2.81 2.78 2.74 2.71 2.69 2.67 2.66 2.63 2.62 
s 12.56 6.60 5.04 4.34 3.95 3.S2 3.30 3.13 3.03 2.96 2.90 2.87 2.83 2.79 2.76 2.73 2.72 2.70 2.68 2.66 
8 13.50 7.03 5.33 4.58 4.15 3.69 3.44 3.26 3.1S 3.07 3.02 2.97 2.94 2.89 2.86 2.83 2.81 2.80 2.77 2.7S 
12 14.28 7.39 5.59 4.78 4.32 3.83 3.S7 3.38 3.26 3.17 3.11 3.07 3.03 2.98 2.94 2.91 2.89 2.88 2.8S 2.83 
16 14.82 7.64 5.76 4.92 4.45 3.93 3.66 3.46 3.33 3.24 3.18 3.13 3.09 3.04 3.00 2.97 2.9S 2.93 2.90 2.87 
20 15.23 7.83 5.90 5.03 4.54 4.01 3.73 3.S2 3.39 3.30 3.23 3.18 3.14 3.09 3.05 3.02 2.99 2.98 2.94 2.92 
30 15.95 8.17 6.14 5.23 4.71 4.15 3.85 3.63 3.49 3.39 3.32 3.27 3.23 3.17 3.13 3.10 3.07 3.05 3.02 3.00 
40 16.46 8.41 6.31 5.36 4.83 4.25 3.94 3.71 3.S6 3.46 3.39 3.34 3.29 3.23 3.18 3.1S 3.13 3.11 3.07 3.05 
so 16.84 8.59 6.44 5.47 4.92 4.33 4.01 3.77 3.62 3.S2 3.44 3.38 3.34 3.27 3.23 3.19 3.17 3.1S 3.11 3.09 
60 17.15 8.73 6.54 5.55 5.00 4.39 4.06 3.82 3.66 3.S6 3.48 3.42 3.38 3.31 3.26 3.23 3.20 3.18 3.14 3.12 
7S 17.52 8.91 6.67 5.66 5.09 4.46 4.13 3.88 3.72 3.61 3.S3 3.47 3.43 3.36 3.31 3.27 3.24 3.22 3.18 3.16 
100 17.99 9.14 6.83 5.79 5.20 4.56 4.21 3.95 3.79 3.68 3.60 3.S3 3.49 3.41 3.36 3.33 3.30 3.27 3.23 3.21 
12S 18.34 9.31 6.95 5.89 5.29 4.63 4.28 4.01 3.85 3.73 3.65 3.58 3.S3 3.46 3.41 3.37 3.34 3.31 3.27 3.2S 
150 18.63 9.44 7.05 5.97 5.36 4.69 4.33 4.06 3.89 3.77 3.69 3.62 3.S7 3.49 3.44 3.40 3.37 3.3S 3.30 3.28 
17S 18.88 9.56 7.13 6.04 5.42 4.74 4.38 4.10 3.93 3.81 3.72 3.65 3.60 3.S2 3.47 3.43 3.40 3.37 3.33 3.30 
200 19.08 9.66 7.21 6.10 5.47 4.79 4.42 4.14 3.96 3.84 3.75 3.68 3.63 3.S5 3.49 3.4S 3.42 3.40 3.3S 3.33 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-6. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 2 (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.69 O.S6 o.so 0.47 0.4S 0.42 0.40 0.39 0.38 0.37 0.37 0.37 0.36 0.36 0.36 0.3S 0.3S 0.3S 0.3S 0.3S 
2 1.02 0.83 0.7S 0.70 0.67 0.64 0.62 0.60 O.S9 O.S8 O.S7 O.S7 O.S6 O.S6 o.ss o.ss o.ss o.ss O.S4 O.S4 
3 1.21 0.98 0.89 0.83 0.80 0.76 0.73 0.71 0.70 0.69 0.68 0.68 0.67 0.66 0.66 0.66 0.6S 0.6S 0.6S 0.64 
4 1.34 1.09 0.98 0.92 0.88 0.84 0.81 0.79 0.77 0.76 0.7S 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 0.72 0.71 
s 1.44 1.17 1.05 0.99 0.9S 0.90 0.87 0.84 0.83 0.82 0.81 0.80 0.80 0.79 0.78 0.78 0.78 0.77 0.77 0.77 
8 1.6S 1.33 1.20 1.12 1.08 1.02 0.99 0.96 0.94 0.93 0.92 0.91 0.90 0.90 0.89 0.88 0.88 0.88 0.87 0.87 
12 1.83 1.47 1.32 1.24 1.19 1.12 1.08 1.05 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.9S 
16 1.9S 1.S6 1.40 1.32 1.26 1.19 1.1S 1.12 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.03 1.02 1.01 1.01 
20 2.05 1.63 1.47 1.38 1.32 1.24 1.20 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.07 1.06 1.05 
30 2.21 1.76 1.58 1.48 1.42 1.34 1.29 1.2S 1.23 1.21 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.13 1.13 
40 2.33 1.8S 1.66 1.SS 1.49 1.40 1.3S 1.31 1.29 1.27 1.26 1.24 1.24 1.22 1.21 1.21 1.20 1.20 1.19 1.18 
so 2.41 1.92 1.72 1.61 1.S4 1.4S 1.40 1.36 1.33 1.31 1.30 1.29 1.28 1.26 1.2S 1.2S 1.24 1.24 1.23 1.22 
60 2.48 1.97 1.77 1.65 1.58 1.49 1.44 1.40 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 1.27 1.27 1.26 1.2S 
7S 2.S7 2.03 1.82 1.71 1.63 1.S4 1.48 1.44 1.41 1.39 1.37 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 1.30 1.29 

100 2.68 2.12 1.90 1.77 1.70 1.60 1.S4 1.50 1.47 1.44 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.36 1.3S 1.34 
12S 2.76 2.18 1.9S 1.83 1.74 1.6S 1.S9 1.S4 1.Sl 1.48 1.47 1.4S 1.44 1.43 1.41 1.41 1.40 1.39 1.38 1.38 
150 2.82 2.23 2.00 1.87 1.78 1.68 1.62 1.S7 1.S4 1.S2 1.50 1.49 1.47 1.46 1.44 1.44 1.43 1.42 1.41 1.40 
17S 2.88 2.27 2.03 1.90 1.82 1.71 1.6S 1.60 1.S7 1.S4 1.S3 1.Sl 1.50 1.48 1.47 1.46 1.4S 1.4S 1.44 1.43 
200 2.92 2.31 2.06 1.93 1.8S 1.74 1.68 1.63 1.S9 1.S7 1.SS 1.S3 1.S2 1.Sl 1.49 1.48 1.47 1.47 1.46 1.4S 

Table 19-6. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Means of Order 2 (1 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.02 0.83 0.7S 0.70 0.67 0.64 0.62 0.60 O.S9 O.S8 O.S7 O.S7 O.S6 O.S6 o.ss o.ss o.ss o.ss O.S4 O.S4 
2 1.34 1.09 0.98 0.92 0.88 0.84 0.81 0.79 0.77 0.76 0.7S 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 0.72 0.71 
3 1.S2 1.23 1.11 1.04 1.00 0.94 0.91 0.89 0.87 0.86 0.8S 0.84 0.84 0.83 0.83 0.82 0.82 0.81 0.81 0.81 
4 1.6S 1.33 1.20 1.12 1.08 1.02 0.99 0.96 0.94 0.93 0.92 0.91 0.90 0.90 0.89 0.88 0.88 0.88 0.87 0.87 
s 1.7S 1.41 1.26 1.19 1.14 1.08 1.04 1.01 0.99 0.98 0.97 0.96 0.9S 0.94 0.94 0.93 0.93 0.93 0.92 0.92 
8 1.9S 1.S6 1.40 1.32 1.26 1.19 1.1S 1.12 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.03 1.02 1.01 1.01 
12 2.12 1.69 1.S2 1.42 1.36 1.29 1.24 1.21 1.18 1.17 1.1S 1.14 1.14 1.12 1.12 1.11 1.10 1.10 1.09 1.09 
16 2.24 1.78 1.60 1.SO 1.43 1.3S 1.31 1.27 1.24 1.23 1.21 1.20 1.19 1.18 1.17 1.16 1.16 1.1S 1.1S 1.14 
20 2.33 1.8S 1.66 1.SS 1.49 1.40 1.3S 1.31 1.29 1.27 1.26 1.24 1.24 1.22 1.21 1.21 1.20 1.20 1.19 1.18 
30 2.48 1.97 1.77 1.65 1.58 1.49 1.44 1.40 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 1.27 1.27 1.26 1.2S 
40 2.S9 2.05 1.84 1.72 1.6S 1.SS 1.50 1.4S 1.42 1.40 1.39 1.37 1.36 1.3S 1.34 1.33 1.32 1.32 1.31 1.30 
so 2.68 2.12 1.90 1.77 1.70 1.60 1.S4 1.50 1.47 1.44 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.36 1.3S 1.34 
60 2.74 2.17 1.94 1.82 1.74 1.64 1.58 1.S3 1.SO 1.48 1.46 1.4S 1.44 1.42 1.41 1.40 1.39 1.39 1.38 1.37 
7S 2.82 2.23 2.00 1.87 1.78 1.68 1.62 1.S7 1.S4 1.S2 1.50 1.49 1.47 1.46 1.44 1.44 1.43 1.42 1.41 1.40 

100 2.92 2.31 2.06 1.93 1.8S 1.74 1.68 1.63 1.S9 1.S7 1.SS 1.S3 1.S2 1.Sl 1.49 1.48 1.47 1.47 1.46 1.4S 
12S 3.00 2.37 2.12 1.98 1.89 1.78 1.72 1.67 1.63 1.61 1.S9 1.S7 1.S6 1.S4 1.S3 1.S2 1.Sl 1.SO 1.49 1.48 
150 3.06 2.41 2.16 2.02 1.93 1.82 1.7S 1.70 1.66 1.64 1.62 1.60 1.S9 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 
17S 3.11 2.4S 2.19 2.05 1.96 1.8S 1.78 1.73 1.69 1.66 1.64 1.63 1.62 1.60 1.58 1.S7 1.S6 1.S6 1.S4 1.S4 
200 3.16 2.49 2.23 2.08 1.99 1.87 1.81 1.7S 1.71 1.69 1.67 1.6S 1.64 1.62 1.60 1.S9 1.58 1.58 1.S6 1.S6 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-6. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 2 (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 1.34 1.09 0.98 0.92 0.88 0.84 0.81 0.79 0.77 0.76 0.7S 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 0.72 0.71 
2 1.6S 1.33 1.20 1.12 1.08 1.02 0.99 0.96 0.94 0.93 0.92 0.91 0.90 0.90 0.89 0.88 0.88 0.88 0.87 0.87 
3 1.83 1.47 1.32 1.24 1.19 1.12 1.08 1.05 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.9S 
4 1.9S 1.S6 1.40 1.32 1.26 1.19 1.1S 1.12 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.03 1.02 1.01 1.01 
s 2.05 1.63 1.47 1.38 1.32 1.24 1.20 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.07 1.06 1.05 
8 2.24 1.78 1.60 1.SO 1.43 1.3S 1.31 1.27 1.24 1.23 1.21 1.20 1.19 1.18 1.17 1.16 1.16 1.1S 1.1S 1.14 
12 2.40 1.90 1.71 1.60 1.S3 1.44 1.39 1.3S 1.32 1.31 1.29 1.28 1.27 1.26 1.2S 1.24 1.23 1.23 1.22 1.21 
16 2.Sl 1.99 1.78 1.67 1.60 1.Sl 1.4S 1.41 1.38 1.36 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 1.28 1.27 1.26 
20 2.S9 2.05 1.84 1.72 1.6S 1.SS 1.50 1.4S 1.42 1.40 1.39 1.37 1.36 1.3S 1.34 1.33 1.32 1.32 1.31 1.30 
30 2.74 2.17 1.94 1.82 1.74 1.64 1.58 1.S3 1.SO 1.48 1.46 1.4S 1.44 1.42 1.41 1.40 1.39 1.39 1.38 1.37 
40 2.8S 2.2S 2.01 1.88 1.80 1.70 1.64 1.S9 1.SS 1.S3 1.Sl 1.50 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 1.41 
so 2.92 2.31 2.06 1.93 1.8S 1.74 1.68 1.63 1.S9 1.S7 1.SS 1.S3 1.S2 1.Sl 1.49 1.48 1.47 1.47 1.46 1.4S 
60 2.99 2.36 2.11 1.97 1.88 1.78 1.71 1.66 1.63 1.60 1.58 1.S7 1.SS 1.S4 1.S2 1.Sl 1.50 1.50 1.49 1.48 
7S 3.06 2.41 2.16 2.02 1.93 1.82 1.7S 1.70 1.66 1.64 1.62 1.60 1.S9 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 

100 3.16 2.49 2.23 2.08 1.99 1.87 1.81 1.7S 1.71 1.69 1.67 1.6S 1.64 1.62 1.60 1.S9 1.58 1.58 1.S6 1.S6 
12S 3.23 2.S4 2.28 2.13 2.03 1.92 1.8S 1.79 1.7S 1.72 1.70 1.69 1.67 1.6S 1.64 1.63 1.62 1.61 1.60 1.S9 
150 3.29 2.S9 2.32 2.17 2.07 1.9S 1.88 1.82 1.78 1.7S 1.73 1.72 1.70 1.68 1.67 1.6S 1.64 1.64 1.62 1.62 
17S 3.34 2.63 2.3S 2.20 2.10 1.98 1.91 1.8S 1.81 1.78 1.76 1.74 1.73 1.70 1.69 1.68 1.67 1.66 1.6S 1.64 
200 3.38 2.66 2.38 2.22 2.12 2.00 1.93 1.87 1.83 1.80 1.78 1.76 1.7S 1.72 1.71 1.70 1.69 1.68 1.67 1.66 

Table 19-6. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Means of Order 2 (2 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.10 0.87 0.77 0.72 0.69 0.6S 0.62 0.60 O.S9 O.S8 O.S8 O.S7 O.S7 O.S6 O.S6 o.ss o.ss o.ss o.ss O.S4 
2 1.47 1.14 1.02 0.95 0.90 0.8S 0.82 0.79 0.78 0.77 0.76 0.7S 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 0.72 
3 1.69 1.30 1.1S 1.07 1.02 0.96 0.93 0.90 0.88 0.87 0.86 0.8S 0.84 0.83 0.83 0.82 0.82 0.82 0.81 0.81 
4 1.8S 1.42 1.2S 1.16 1.10 1.04 1.00 0.97 0.9S 0.93 0.92 0.92 0.91 0.90 0.89 0.89 0.88 0.88 0.87 0.87 
s 1.97 1.50 1.32 1.23 1.17 1.10 1.05 1.02 1.00 0.99 0.97 0.97 0.96 0.9S 0.94 0.94 0.93 0.93 0.92 0.92 
8 2.22 1.68 1.48 1.37 1.30 1.22 1.17 1.13 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.02 1.01 
12 2.44 1.83 1.60 1.48 1.41 1.32 1.26 1.22 1.20 1.18 1.16 1.1S 1.14 1.13 1.12 1.11 1.11 1.10 1.10 1.09 
16 2.S9 1.94 1.69 1.S6 1.48 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.20 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
20 2.71 2.02 1.76 1.63 1.S4 1.44 1.38 1.33 1.30 1.28 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.18 
30 2.91 2.16 1.88 1.74 1.64 1.S3 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.2S 
40 3.05 2.26 1.97 1.81 1.72 1.60 1.S3 1.48 1.44 1.42 1.40 1.38 1.37 1.36 1.34 1.33 1.33 1.32 1.31 1.30 
so 3.16 2.34 2.03 1.87 1.77 1.6S 1.58 1.S2 1.49 1.46 1.44 1.43 1.41 1.40 1.38 1.37 1.37 1.36 1.3S 1.34 
60 3.25 2.40 2.08 1.92 1.81 1.69 1.62 1.S6 1.S2 1.49 1.47 1.46 1.4S 1.43 1.41 1.40 1.40 1.39 1.38 1.37 
7S 3.35 2.47 2.1S 1.98 1.87 1.74 1.66 1.60 1.S6 1.S4 1.Sl 1.50 1.49 1.47 1.4S 1.44 1.43 1.43 1.41 1.41 

100 3.49 2.S7 2.23 2.05 1.93 1.80 1.72 1.66 1.62 1.S9 1.S7 1.SS 1.S4 1.Sl 1.50 1.49 1.48 1.47 1.46 1.4S 
12S 3.59 2.64 2.29 2.10 1.99 1.8S 1.77 1.70 1.66 1.63 1.61 1.S9 1.S7 1.SS 1.S4 1.S3 1.S2 1.Sl 1.SO 1.49 
150 3.67 2.69 2.34 2.15 2.03 1.89 1.80 1.74 1.69 1.66 1.64 1.62 1.60 1.58 1.S7 1.SS 1.SS 1.S4 1.S2 1.S2 
17S 3.74 2.74 2.38 2.18 2.06 1.92 1.83 1.76 1.72 1.69 1.66 1.64 1.63 1.61 1.S9 1.58 1.S7 1.S6 1.SS 1.S4 
200 3.80 2.78 2.41 2.22 2.09 1.94 1.86 1.79 1.74 1.71 1.69 1.67 1.6S 1.63 1.61 1.60 1.S9 1.58 1.S7 1.S6 
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Table 19-6. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Means of Order 2 (2 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.47 1.14 1.02 0.95 0.90 0.8S 0.82 0.79 0.78 0.77 0.76 0.7S 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 0.72 
2 1.8S 1.42 1.2S 1.16 1.10 1.04 1.00 0.97 0.9S 0.93 0.92 0.92 0.91 0.90 0.89 0.89 0.88 0.88 0.87 0.87 
3 2.07 1.S7 1.38 1.28 1.22 1.14 1.10 1.07 1.04 1.03 1.01 1.01 1.00 0.99 0.98 0.97 0.97 0.97 0.96 0.9S 
4 2.22 1.68 1.48 1.37 1.30 1.22 1.17 1.13 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.02 1.01 
s 2.34 1.76 1.SS 1.43 1.36 1.27 1.22 1.18 1.16 1.14 1.12 1.11 1.11 1.09 1.08 1.08 1.07 1.07 1.06 1.06 
8 2.S9 1.94 1.69 1.S6 1.48 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.20 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
12 2.80 2.08 1.82 1.68 1.S9 1.48 1.42 1.37 1.34 1.32 1.30 1.29 1.28 1.26 1.2S 1.24 1.24 1.23 1.22 1.22 
16 2.94 2.18 1.90 1.75 1.66 1.SS 1.48 1.43 1.40 1.37 1.36 1.34 1.33 1.32 1.30 1.29 1.29 1.28 1.27 1.27 
20 3.05 2.26 1.97 1.81 1.72 1.60 1.S3 1.48 1.44 1.42 1.40 1.38 1.37 1.36 1.34 1.33 1.33 1.32 1.31 1.30 
30 3.25 2.40 2.08 1.92 1.81 1.69 1.62 1.S6 1.S2 1.49 1.47 1.46 1.4S 1.43 1.41 1.40 1.40 1.39 1.38 1.37 
40 3.38 2.49 2.17 1.99 1.88 1.7S 1.68 1.62 1.58 1.SS 1.S3 1.Sl 1.50 1.48 1.46 1.4S 1.44 1.44 1.43 1.42 
so 3.49 2.S7 2.23 2.05 1.93 1.80 1.72 1.66 1.62 1.S9 1.S7 1.SS 1.S4 1.Sl 1.SO 1.49 1.48 1.47 1.46 1.4S 
60 3.57 2.62 2.28 2.09 1.98 1.84 1.76 1.69 1.6S 1.62 1.60 1.58 1.S7 1.SS 1.S3 1.S2 1.Sl 1.50 1.49 1.48 
7S 3.67 2.69 2.34 2.15 2.03 1.89 1.80 1.74 1.69 1.66 1.64 1.62 1.60 1.58 1.S7 1.SS 1.SS 1.S4 1.S2 1.S2 

100 3.80 2.78 2.41 2.22 2.09 1.94 1.86 1.79 1.74 1.71 1.69 1.67 1.6S 1.63 1.61 1.60 1.S9 1.58 1.S7 1.S6 
12S 3.90 2.8S 2.47 2.27 2.14 1.99 1.90 1.83 1.78 1.7S 1.72 1.70 1.69 1.66 1.6S 1.63 1.62 1.62 1.60 1.S9 
150 3.97 2.91 2.S2 2.31 2.18 2.03 1.94 1.86 1.82 1.78 1.7S 1.73 1.72 1.69 1.68 1.66 1.6S 1.64 1.63 1.62 
17S 4.04 2.95 2.S6 2.35 2.22 2.06 1.96 1.89 1.84 1.81 1.78 1.76 1.74 1.72 1.70 1.69 1.68 1.67 1.6S 1.64 
200 4.09 2.99 2.S9 2.38 2.24 2.08 1.99 1.92 1.87 1.83 1.80 1.78 1.76 1.74 1.72 1.71 1.70 1.69 1.67 1.66 

Table 19-6. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 2 (2 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.8S 1.42 1.2S 1.16 1.10 1.04 1.00 0.97 0.9S 0.93 0.92 0.92 0.91 0.90 0.89 0.89 0.88 0.88 0.87 0.87 
2 2.22 1.68 1.48 1.37 1.30 1.22 1.17 1.13 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.02 1.01 
3 2.44 1.83 1.60 1.48 1.41 1.32 1.26 1.22 1.20 1.18 1.16 1.1S 1.14 1.13 1.12 1.11 1.11 1.10 1.10 1.09 
4 2.S9 1.94 1.69 1.S6 1.48 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.20 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
s 2.71 2.02 1.76 1.63 1.S4 1.44 1.38 1.33 1.30 1.28 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.18 
8 2.94 2.18 1.90 1.75 1.66 1.SS 1.48 1.43 1.40 1.37 1.36 1.34 1.33 1.32 1.30 1.29 1.29 1.28 1.27 1.27 
12 3.14 2.32 2.02 1.86 1.76 1.64 1.S7 1.Sl 1.48 1.4S 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.3S 1.34 1.33 
16 3.28 2.42 2.10 1.93 1.83 1.70 1.63 1.S7 1.S3 1.Sl 1.49 1.47 1.46 1.44 1.42 1.41 1.41 1.40 1.39 1.38 
20 3.38 2.49 2.17 1.99 1.88 1.7S 1.68 1.62 1.58 1.SS 1.S3 1.Sl 1.SO 1.48 1.46 1.4S 1.44 1.44 1.43 1.42 
30 3.57 2.62 2.28 2.09 1.98 1.84 1.76 1.69 1.6S 1.62 1.60 1.58 1.S7 1.SS 1.S3 1.S2 1.Sl 1.50 1.49 1.48 
40 3.70 2.71 2.3S 2.16 2.04 1.90 1.81 1.7S 1.70 1.67 1.6S 1.63 1.61 1.S9 1.58 1.S6 1.S6 1.SS 1.S3 1.S3 
so 3.80 2.78 2.41 2.22 2.09 1.94 1.86 1.79 1.74 1.71 1.69 1.67 1.6S 1.63 1.61 1.60 1.S9 1.58 1.S7 1.S6 
60 3.88 2.84 2.46 2.26 2.13 1.98 1.89 1.82 1.78 1.74 1.72 1.70 1.68 1.66 1.64 1.63 1.62 1.61 1.60 1.S9 
7S 3.97 2.91 2.S2 2.31 2.18 2.03 1.94 1.86 1.82 1.78 1.7S 1.73 1.72 1.69 1.68 1.66 1.6S 1.64 1.63 1.62 

100 4.09 2.99 2.S9 2.38 2.24 2.08 1.99 1.92 1.87 1.83 1.80 1.78 1.76 1.74 1.72 1.71 1.70 1.69 1.67 1.66 
12S 4.19 3.06 2.6S 2.43 2.29 2.13 2.03 1.9S 1.90 1.87 1.84 1.82 1.80 1.77 1.7S 1.74 1.73 1.72 1.70 1.69 
150 4.26 3.11 2.69 2.47 2.33 2.16 2.06 1.99 1.93 1.90 1.87 1.8S 1.83 1.80 1.78 1.77 1.76 1.7S 1.73 1.72 
17S 4.32 3.15 2.73 2.SO 2.36 2.19 2.09 2.01 1.96 1.92 1.89 1.87 1.8S 1.82 1.80 1.79 1.78 1.77 1.7S 1.74 
200 4.38 3.19 2.76 2.S3 2.39 2.22 2.12 2.04 1.98 1.94 1.91 1.89 1.87 1.84 1.82 1.81 1.80 1.79 1.77 1.76 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-6. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 2 (5 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 1.72 1.28 1.12 1.04 0.98 0.92 0.88 0.86 0.84 0.83 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.78 0.77 0.77 
2 2.19 1.58 1.37 1.26 1.19 1.11 1.06 1.03 1.01 0.99 0.98 0.97 0.96 0.95 0.94 0.94 0.93 0.93 0.92 0.92 
3 2.47 1.76 1.51 1.39 1.31 1.22 1.17 1.13 1.10 1.08 1.07 1.06 1.05 1.04 1.03 1.02 1.02 1.01 1.01 1.00 
4 2.67 1.89 1.61 1.48 1.39 1.29 1.24 1.19 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
5 2.83 1.98 1.69 1.54 1.45 1.35 1.29 1.24 1.21 1.19 1.18 1.16 1.15 1.14 1.13 1.12 1.12 1.11 1.10 1.10 
8 3.17 2.19 1.86 1.69 1.59 1.47 1.40 1.35 1.31 1.29 1.27 1.26 1.25 1.23 1.22 1.21 1.21 1.20 1.19 1.18 
12 3.45 2.37 2.00 1.81 1.70 1.57 1.49 1.43 1.40 1.37 1.35 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.26 1.26 
16 3.65 2.49 2.10 1.90 1.78 1.64 1.56 1.50 1.46 1.43 1.41 1.39 1.38 1.36 1.35 1.34 1.33 1.32 1.31 1.31 
20 3.81 2.58 2.17 1.96 1.84 1.69 1.61 1.54 1.50 1.47 1.45 1.43 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.34 
30 4.08 2.75 2.31 2.08 1.94 1.78 1.69 1.63 1.58 1.55 1.53 1.51 1.49 1.47 1.46 1.45 1.44 1.43 1.42 1.41 
40 4.27 2.87 2.40 2.16 2.02 1.85 1.76 1.68 1.64 1.60 1.58 1.56 1.54 1.52 1.50 1.49 1.48 1.48 1.46 1.45 
50 4.42 2.96 2.47 2.23 2.08 1.90 1.80 1.73 1.68 1.64 1.62 1.60 1.58 1.56 1.54 1.53 1.52 1.51 1.50 1.49 
60 4.54 3.03 2.53 2.28 2.12 1.94 1.84 1.76 1.71 1.68 1.65 1.63 1.61 1.59 1.57 1.56 1.55 1.54 1.53 1.52 
75 4.68 3.12 2.60 2.34 2.18 1.99 1.89 1.81 1.75 1.72 1.69 1.67 1.65 1.63 1.61 1.59 1.58 1.58 1.56 1.55 

100 4.86 3.23 2.69 2.42 2.25 2.06 1.95 1.86 1.81 1.77 1.74 1.72 1.70 1.67 1.65 1.64 1.63 1.62 1.60 1.59 
125 5.00 3.32 2.76 2.48 2.31 2.11 1.99 1.91 1.85 1.81 1.78 1.75 1.74 1.71 1.69 1.67 1.66 1.65 1.64 1.63 
150 5.11 3.39 2.82 2.53 2.35 2.15 2.03 1.94 1.88 1.84 1.81 1.79 1.77 1.74 1.72 1.70 1.69 1.68 1.66 1.65 
175 5.20 3.44 2.86 2.57 2.39 2.18 2.06 1.97 1.91 1.87 1.84 1.81 1.79 1.76 1.74 1.73 1.71 1.70 1.69 1.67 
200 5.28 3.49 2.90 2.60 2.42 2.21 2.09 2.00 1.93 1.89 1.86 1.83 1.81 1.78 1.76 1.75 1.73 1.72 1.71 1.70 

Table 19-6. K-Multipliers for 1-of-2 Interwell Prediction Li mi ts on Means of Order 2 (5 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.19 1.58 1.37 1.26 1.19 1.11 1.06 1.03 1.01 0.99 0.98 0.97 0.96 0.95 0.94 0.94 0.93 0.93 0.92 0.92 
2 2.67 1.89 1.61 1.48 1.39 1.29 1.24 1.19 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
3 2.96 2.06 1.76 1.60 1.50 1.39 1.33 1.28 1.25 1.23 1.21 1.20 1.19 1.18 1.17 1.16 1.15 1.15 1.14 1.13 
4 3.17 2.19 1.86 1.69 1.59 1.47 1.40 1.35 1.31 1.29 1.27 1.26 1.25 1.23 1.22 1.21 1.21 1.20 1.19 1.18 
5 3.32 2.29 1.93 1.76 1.65 1.52 1.45 1.40 1.36 1.33 1.32 1.30 1.29 1.27 1.26 1.25 1.25 1.24 1.23 1.22 
8 3.65 2.49 2.10 1.90 1.78 1.64 1.56 1.50 1.46 1.43 1.41 1.39 1.38 1.36 1.35 1.34 1.33 1.32 1.31 1.31 
12 3.93 2.66 2.23 2.02 1.88 1.73 1.65 1.58 1.54 1.51 1.48 1.47 1.45 1.43 1.42 1.41 1.40 1.39 1.38 1.37 
16 4.13 2.78 2.33 2.10 1.96 1.80 1.71 1.64 1.59 1.56 1.54 1.52 1.50 1.48 1.47 1.46 1.45 1.44 1.43 1.42 
20 4.27 2.87 2.40 2.16 2.02 1.85 1.76 1.68 1.64 1.60 1.58 1.56 1.54 1.52 1.50 1.49 1.48 1.48 1.46 1.45 
30 4.54 3.03 2.53 2.28 2.12 1.94 1.84 1.76 1.71 1.68 1.65 1.63 1.61 1.59 1.57 1.56 1.55 1.54 1.53 1.52 
40 4.72 3.15 2.62 2.36 2.20 2.01 1.90 1.82 1.77 1.73 1.70 1.68 1.66 1.64 1.62 1.60 1.59 1.59 1.57 1.56 
50 4.86 3.23 2.69 2.42 2.25 2.06 1.95 1.86 1.81 1.77 1.74 1.72 1.70 1.67 1.65 1.64 1.63 1.62 1.60 1.59 
60 4.97 3.30 2.75 2.47 2.30 2.10 1.99 1.90 1.84 1.80 1.77 1.75 1.73 1.70 1.68 1.67 1.66 1.65 1.63 1.62 
75 5.11 3.39 2.82 2.53 2.35 2.15 2.03 1.94 1.88 1.84 1.81 1.79 1.77 1.74 1.72 1.70 1.69 1.68 1.66 1.65 

100 5.28 3.49 2.90 2.60 2.42 2.21 2.09 2.00 1.93 1.89 1.86 1.83 1.81 1.78 1.76 1.75 1.73 1.72 1.71 1.70 
125 5.41 3.58 2.97 2.66 2.48 2.26 2.13 2.04 1.97 1.93 1.89 1.87 1.85 1.82 1.80 1.78 1.77 1.76 1.74 1.73 
150 5.52 3.64 3.02 2.71 2.52 2.30 2.17 2.07 2.01 1.96 1.92 1.90 1.88 1.85 1.82 1.81 1.79 1.78 1.76 1.75 
175 5.61 3.70 3.07 2.75 2.56 2.33 2.20 2.10 2.03 1.99 1.95 1.92 1.90 1.87 1.85 1.83 1.82 1.81 1.79 1.77 
200 5.68 3.75 3.11 2.78 2.59 2.36 2.23 2.12 2.06 2.01 1.97 1.94 1.92 1.89 1.87 1.85 1.84 1.82 1.80 1.79 
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Table 19-6. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 2 (5 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 2.67 1.89 1.61 1.48 1.39 1.29 1.24 1.19 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
2 3.17 2.19 1.86 1.69 1.S9 1.47 1.40 1.3S 1.31 1.29 1.27 1.26 1.2S 1.23 1.22 1.21 1.21 1.20 1.19 1.18 
3 3.45 2.37 2.00 1.81 1.70 1.S7 1.49 1.43 1.40 1.37 1.3S 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.26 1.26 
4 3.65 2.49 2.10 1.90 1.78 1.64 1.S6 1.50 1.46 1.43 1.41 1.39 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 
s 3.81 2.S8 2.17 1.96 1.84 1.69 1.61 1.S4 1.50 1.47 1.4S 1.43 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 1.34 
8 4.13 2.78 2.33 2.10 1.96 1.80 1.71 1.64 1.S9 1.S6 1.S4 1.S2 1.SO 1.48 1.47 1.46 1.4S 1.44 1.43 1.42 
12 4.39 2.94 2.46 2.21 2.07 1.89 1.80 1.72 1.67 1.64 1.61 1.S9 1.58 1.SS 1.S4 1.S2 1.Sl 1.Sl 1.49 1.48 
16 4.58 3.06 2.S5 2.30 2.14 1.96 1.86 1.78 1.73 1.69 1.66 1.64 1.62 1.60 1.58 1.S7 1.S6 1.SS 1.S4 1.S3 
20 4.72 3.15 2.62 2.36 2.20 2.01 1.90 1.82 1.77 1.73 1.70 1.68 1.66 1.64 1.62 1.60 1.S9 1.S9 1.S7 1.S6 
30 4.97 3.30 2.7S 2.47 2.30 2.10 1.99 1.90 1.84 1.80 1.77 1.7S 1.73 1.70 1.68 1.67 1.66 1.6S 1.63 1.62 
40 5.15 3.41 2.84 2.SS 2.37 2.16 2.04 1.9S 1.89 1.8S 1.82 1.80 1.78 1.7S 1.73 1.71 1.70 1.69 1.67 1.66 
so 5.28 3.49 2.90 2.60 2.42 2.21 2.09 2.00 1.93 1.89 1.86 1.83 1.81 1.78 1.76 1.7S 1.73 1.72 1.71 1.70 
60 5.39 3.56 2.96 2.6S 2.47 2.2S 2.13 2.03 1.97 1.92 1.89 1.86 1.84 1.81 1.79 1.77 1.76 1.7S 1.73 1.72 
7S 5.52 3.64 3.02 2.71 2.S2 2.30 2.17 2.07 2.01 1.96 1.92 1.90 1.88 1.8S 1.82 1.81 1.79 1.78 1.76 1.7S 

100 5.68 3.75 3.11 2.78 2.S9 2.36 2.23 2.12 2.06 2.01 1.97 1.94 1.92 1.89 1.87 1.8S 1.84 1.82 1.80 1.79 
12S 5.81 3.82 3.17 2.84 2.64 2.40 2.27 2.16 2.09 2.04 2.01 1.98 1.96 1.92 1.90 1.88 1.87 1.86 1.84 1.82 
150 5.91 3.89 3.22 2.88 2.68 2.44 2.30 2.20 2.12 2.07 2.04 2.01 1.99 1.9S 1.93 1.91 1.89 1.88 1.86 1.8S 
17S 5.99 3.94 3.26 2.92 2.71 2.47 2.33 2.22 2.1S 2.10 2.06 2.03 2.01 1.97 1.95 1.93 1.91 1.90 1.88 1.87 
200 6.07 3.99 3.30 2.96 2.74 2.SO 2.36 2.2S 2.17 2.12 2.08 2.05 2.03 1.99 1.97 1.9S 1.93 1.92 1.90 1.89 

Table 19-6. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 2 (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.29 1.62 1.39 1.27 1.20 1.11 1.07 1.03 1.01 0.99 0.98 0.97 0.96 0.9S 0.94 0.94 0.93 0.93 0.92 0.92 
2 2.86 1.94 1.64 1.49 1.40 1.30 1.24 1.20 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
3 3.21 2.14 1.79 1.62 1.S2 1.40 1.34 1.29 1.26 1.23 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.13 
4 3.46 2.28 1.90 1.72 1.60 1.48 1.41 1.3S 1.32 1.29 1.27 1.26 1.2S 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
s 3.66 2.39 1.99 1.79 1.67 1.S3 1.46 1.40 1.36 1.34 1.32 1.30 1.29 1.28 1.26 1.2S 1.2S 1.24 1.23 1.22 
8 4.07 2.62 2.16 1.94 1.80 1.6S 1.S7 1.SO 1.46 1.43 1.41 1.39 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 
12 4.43 2.82 2.31 2.06 1.92 1.7S 1.66 1.S9 1.S4 1.Sl 1.49 1.47 1.46 1.43 1.42 1.41 1.40 1.39 1.38 1.37 
16 4.68 2.96 2.42 2.15 2.00 1.82 1.72 1.6S 1.60 1.S7 1.S4 1.S2 1.Sl 1.48 1.47 1.46 1.4S 1.44 1.43 1.42 
20 4.87 3.06 2.SO 2.22 2.06 1.87 1.77 1.69 1.64 1.61 1.58 1.S6 1.55 1.S2 1.Sl 1.49 1.49 1.48 1.46 1.46 
30 5.22 3.26 2.65 2.3S 2.17 1.97 1.86 1.78 1.72 1.68 1.66 1.63 1.62 1.S9 1.S7 1.S6 1.55 1.S4 1.S3 1.S2 
40 5.46 3.39 2.75 2.44 2.2S 2.04 1.92 1.83 1.78 1.74 1.71 1.68 1.67 1.64 1.62 1.61 1.60 1.S9 1.S7 1.S6 
so 5.64 3.49 2.83 2.SO 2.31 2.09 1.97 1.88 1.82 1.78 1.7S 1.72 1.70 1.68 1.66 1.64 1.63 1.62 1.61 1.60 
60 5.79 3.58 2.89 2.S6 2.36 2.14 2.01 1.91 1.8S 1.81 1.78 1.7S 1.73 1.71 1.69 1.67 1.66 1.6S 1.63 1.62 
7S 5.97 3.68 2.97 2.63 2.42 2.19 2.06 1.96 1.89 1.8S 1.82 1.79 1.77 1.74 1.72 1.70 1.69 1.68 1.67 1.6S 

100 6.19 3.81 3.07 2.71 2.50 2.2S 2.12 2.01 1.9S 1.90 1.87 1.84 1.82 1.79 1.76 1.7S 1.74 1.73 1.71 1.70 
12S 6.37 3.90 3.15 2.78 2.S6 2.30 2.16 2.06 1.99 1.94 1.90 1.88 1.8S 1.82 1.80 1.78 1.77 1.76 1.74 1.73 
150 6.51 3.98 3.21 2.83 2.60 2.3S 2.20 2.09 2.02 1.97 1.93 1.91 1.88 1.8S 1.83 1.81 1.80 1.78 1.77 1.7S 
17S 6.62 4.05 3.26 2.87 2.64 2.38 2.23 2.12 2.05 2.00 1.96 1.93 1.91 1.87 1.8S 1.83 1.82 1.81 1.79 1.77 
200 6.72 4.11 3.30 2.91 2.68 2.41 2.26 2.1S 2.07 2.02 1.98 1.9S 1.93 1.89 1.87 1.8S 1.84 1.83 1.81 1.79 
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Table 19-6. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Means of Order 2 (10 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.86 1.94 1.64 1.49 1.40 1.30 1.24 1.20 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
2 3.46 2.28 1.90 1.72 1.60 1.48 1.41 1.3S 1.32 1.29 1.27 1.26 1.2S 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
3 3.82 2.48 2.05 1.84 1.72 1.58 1.SO 1.44 1.40 1.37 1.3S 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.26 1.26 
4 4.07 2.62 2.16 1.94 1.80 1.6S 1.S7 1.SO 1.46 1.43 1.41 1.39 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 
s 4.27 2.73 2.24 2.01 1.87 1.71 1.62 1.55 1.Sl 1.48 1.4S 1.44 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 1.34 
8 4.68 2.96 2.42 2.15 2.00 1.82 1.72 1.6S 1.60 1.S7 1.S4 1.S2 1.Sl 1.48 1.47 1.46 1.4S 1.44 1.43 1.42 
12 5.03 3.15 2.S7 2.28 2.11 1.92 1.81 1.73 1.68 1.64 1.62 1.S9 1.58 1.SS 1.S4 1.S2 1.Sl 1.Sl 1.49 1.48 
16 5.27 3.29 2.67 2.37 2.19 1.99 1.87 1.79 1.73 1.70 1.67 1.6S 1.63 1.60 1.58 1.S7 1.S6 1.SS 1.S4 1.S3 
20 5.46 3.39 2.7S 2.44 2.2S 2.04 1.92 1.83 1.78 1.74 1.71 1.68 1.67 1.64 1.62 1.61 1.60 1.S9 1.S7 1.S6 
30 5.79 3.58 2.89 2.S6 2.36 2.14 2.01 1.91 1.8S 1.81 1.78 1.7S 1.73 1.71 1.69 1.67 1.66 1.6S 1.63 1.62 
40 6.02 3.71 2.99 2.6S 2.44 2.20 2.07 1.97 1.91 1.86 1.83 1.80 1.78 1.7S 1.73 1.71 1.70 1.69 1.68 1.66 
so 6.19 3.81 3.07 2.71 2.SO 2.2S 2.12 2.01 1.9S 1.90 1.87 1.84 1.82 1.79 1.76 1.7S 1.74 1.73 1.71 1.70 
60 6.34 3.89 3.13 2.76 2.S4 2.30 2.16 2.05 1.98 1.93 1.90 1.87 1.8S 1.82 1.79 1.78 1.76 1.7S 1.73 1.72 
7S 6.51 3.98 3.21 2.83 2.60 2.3S 2.20 2.09 2.02 1.97 1.93 1.91 1.88 1.8S 1.83 1.81 1.80 1.78 1.77 1.7S 

100 6.72 4.11 3.30 2.91 2.68 2.41 2.26 2.1S 2.07 2.02 1.98 1.9S 1.93 1.89 1.87 1.8S 1.84 1.83 1.81 1.79 
12S 6.89 4.20 3.38 2.97 2.73 2.46 2.31 2.19 2.11 2.06 2.02 1.99 1.96 1.93 1.90 1.88 1.87 1.86 1.84 1.82 
1SO 7.02 4.28 3.43 3.02 2.78 2.SO 2.34 2.22 2.14 2.09 2.05 2.02 1.99 1.96 1.93 1.91 1.90 1.88 1.86 1.8S 
17S 7.13 4.34 3.48 3.07 2.82 2.S3 2.37 2.2S 2.17 2.12 2.07 2.04 2.02 1.98 1.95 1.93 1.92 1.90 1.88 1.87 
200 7.23 4.40 3.53 3.10 2.85 2.S6 2.40 2.28 2.19 2.14 2.10 2.06 2.04 2.00 1.97 1.9S 1.94 1.92 1.90 1.89 

Table 19-6. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 2 (10 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 3.46 2.28 1.90 1.72 1.60 1.48 1.41 1.3S 1.32 1.29 1.27 1.26 1.2S 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
2 4.07 2.62 2.16 1.94 1.80 1.6S 1.S7 1.50 1.46 1.43 1.41 1.39 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 
3 4.43 2.82 2.31 2.06 1.92 1.7S 1.66 1.S9 1.S4 1.Sl 1.49 1.47 1.46 1.43 1.42 1.41 1.40 1.39 1.38 1.37 
4 4.68 2.96 2.42 2.15 2.00 1.82 1.72 1.6S 1.60 1.S7 1.S4 1.S2 1.Sl 1.48 1.47 1.46 1.4S 1.44 1.43 1.42 
s 4.87 3.06 2.SO 2.22 2.06 1.87 1.77 1.69 1.64 1.61 1.58 1.S6 1.55 1.S2 1.Sl 1.49 1.49 1.48 1.46 1.46 
8 5.27 3.29 2.67 2.37 2.19 1.99 1.87 1.79 1.73 1.70 1.67 1.6S 1.63 1.60 1.58 1.S7 1.S6 1.55 1.S4 1.S3 
12 5.61 3.48 2.81 2.49 2.30 2.08 1.96 1.87 1.81 1.77 1.74 1.72 1.70 1.67 1.6S 1.64 1.62 1.62 1.60 1.S9 
16 5.84 3.61 2.92 2.S8 2.38 2.1S 2.02 1.93 1.86 1.82 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.64 1.63 
20 6.02 3.71 2.99 2.6S 2.44 2.20 2.07 1.97 1.91 1.86 1.83 1.80 1.78 1.7S 1.73 1.71 1.70 1.69 1.68 1.66 
30 6.34 3.89 3.13 2.76 2.S4 2.30 2.16 2.05 1.98 1.93 1.90 1.87 1.8S 1.82 1.79 1.78 1.76 1.7S 1.73 1.72 
40 6.56 4.01 3.23 2.85 2.62 2.36 2.22 2.10 2.03 1.98 1.94 1.92 1.89 1.86 1.84 1.82 1.81 1.79 1.77 1.76 
so 6.72 4.11 3.30 2.91 2.68 2.41 2.26 2.1S 2.07 2.02 1.98 1.9S 1.93 1.89 1.87 1.8S 1.84 1.83 1.81 1.79 
60 6.86 4.18 3.36 2.96 2.72 2.4S 2.30 2.18 2.10 2.05 2.01 1.98 1.96 1.92 1.90 1.88 1.86 1.8S 1.83 1.82 
7S 7.02 4.28 3.43 3.02 2.78 2.SO 2.34 2.22 2.14 2.09 2.05 2.02 1.99 1.96 1.93 1.91 1.90 1.88 1.86 1.8S 

100 7.23 4.40 3.53 3.10 2.8S 2.S6 2.40 2.28 2.19 2.14 2.10 2.06 2.04 2.00 1.97 1.9S 1.94 1.92 1.90 1.89 
12S 7.39 4.49 3.60 3.16 2.91 2.61 2.44 2.32 2.23 2.17 2.13 2.10 2.07 2.03 2.00 1.98 1.97 1.9S 1.93 1.92 
1SO 7.52 4.56 3.65 3.21 2.9S 2.6S 2.48 2.3S 2.26 2.20 2.16 2.13 2.10 2.06 2.03 2.01 1.99 1.98 1.96 1.93 
17S 7.62 4.62 3.70 3.25 2.99 2.68 2.Sl 2.38 2.29 2.23 2.18 2.1S 2.12 2.08 2.05 2.03 2.01 2.00 1.98 1.96 
200 7.71 4.67 3.74 3.29 3.02 2.71 2.S4 2.40 2.31 2.2S 2.21 2.17 2.14 2.10 2.07 2.05 2.03 2.02 1.99 1.98 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-6. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Means of Order 2 (20 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.99 1.98 1.66 1.SO 1.41 1.30 1.24 1.20 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
2 3.68 2.34 1.93 1.73 1.61 1.48 1.41 1.3S 1.32 1.29 1.28 1.26 1.2S 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
3 4.12 2.S6 2.09 1.87 1.73 1.S9 1.SO 1.44 1.40 1.38 1.36 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.26 1.26 
4 4.43 2.71 2.20 1.96 1.82 1.66 1.S7 1.Sl 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 
s 4.68 2.84 2.29 2.04 1.88 1.72 1.62 1.55 1.Sl 1.48 1.4S 1.44 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 1.34 
8 5.20 3.10 2.48 2.19 2.02 1.83 1.73 1.6S 1.60 1.S7 1.S4 1.S2 1.Sl 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
12 5.65 3.32 2.65 2.33 2.14 1.93 1.82 1.74 1.68 1.6S 1.62 1.60 1.58 1.S6 1.S4 1.S3 1.S2 1.Sl 1.49 1.48 
16 5.96 3.48 2.76 2.42 2.23 2.01 1.89 1.80 1.74 1.70 1.67 1.6S 1.63 1.60 1.S9 1.S7 1.S6 1.SS 1.S4 1.S3 
20 6.20 3.60 2.85 2.SO 2.29 2.06 1.94 1.84 1.78 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.S9 1.S7 1.S6 
30 6.63 3.82 3.01 2.63 2.41 2.16 2.02 1.92 1.86 1.81 1.78 1.76 1.74 1.71 1.69 1.67 1.66 1.6S 1.63 1.62 
40 6.94 3.98 3.12 2.72 2.49 2.23 2.09 1.98 1.91 1.87 1.83 1.80 1.78 1.7S 1.73 1.72 1.70 1.69 1.68 1.66 
so 7.17 4.09 3.21 2.80 2.SS 2.28 2.14 2.03 1.9S 1.91 1.87 1.84 1.82 1.79 1.77 1.7S 1.74 1.73 1.71 1.70 
60 7.35 4.19 3.28 2.85 2.61 2.33 2.18 2.06 1.99 1.94 1.90 1.87 1.8S 1.82 1.79 1.78 1.76 1.7S 1.73 1.72 
7S 7.58 4.31 3.37 2.92 2.67 2.38 2.22 2.11 2.03 1.98 1.94 1.91 1.89 1.8S 1.83 1.81 1.80 1.79 1.77 1.7S 

100 7.86 4.45 3.48 3.02 2.75 2.4S 2.28 2.16 2.08 2.03 1.99 1.96 1.93 1.90 1.87 1.8S 1.84 1.83 1.81 1.79 
12S 8.08 4.56 3.56 3.09 2.81 2.SO 2.33 2.20 2.12 2.07 2.02 1.99 1.97 1.93 1.90 1.89 1.87 1.86 1.84 1.82 
1SO 8.26 4.66 3.63 3.14 2.86 2.S4 2.37 2.24 2.16 2.10 2.06 2.02 2.00 1.96 1.93 1.91 1.90 1.88 1.86 1.8S 
17S 8.40 4.73 3.68 3.19 2.90 2.58 2.40 2.27 2.18 2.12 2.08 2.05 2.02 1.98 1.95 1.93 1.92 1.91 1.88 1.87 
200 8.53 4.80 3.73 3.23 2.94 2.61 2.43 2.29 2.21 2.1S 2.10 2.07 2.04 2.00 1.97 1.9S 1.94 1.92 1.90 1.89 

Table 19-6. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 2 (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 3.68 2.34 1.93 1.73 1.61 1.48 1.41 1.3S 1.32 1.29 1.28 1.26 1.2S 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
2 4.43 2.71 2.20 1.96 1.82 1.66 1.S7 1.Sl 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 
3 4.88 2.94 2.37 2.10 1.94 1.76 1.66 1.S9 1.55 1.Sl 1.49 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 
4 5.20 3.10 2.48 2.19 2.02 1.83 1.73 1.6S 1.60 1.S7 1.S4 1.S2 1.Sl 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
s 5.44 3.22 2.S7 2.27 2.09 1.89 1.78 1.70 1.6S 1.61 1.58 1.S6 1.55 1.S2 1.Sl 1.50 1.49 1.48 1.46 1.46 
8 5.96 3.48 2.76 2.42 2.23 2.01 1.89 1.80 1.74 1.70 1.67 1.6S 1.63 1.60 1.S9 1.S7 1.S6 1.55 1.S4 1.S3 
12 6.40 3.70 2.92 2.S6 2.34 2.11 1.98 1.88 1.82 1.77 1.74 1.72 1.70 1.67 1.6S 1.64 1.63 1.62 1.60 1.S9 
16 6.70 3.86 3.04 2.65 2.43 2.18 2.04 1.94 1.87 1.83 1.79 1.77 1.7S 1.72 1.70 1.68 1.67 1.66 1.64 1.63 
20 6.94 3.98 3.12 2.72 2.49 2.23 2.09 1.98 1.91 1.87 1.83 1.80 1.78 1.7S 1.73 1.72 1.70 1.69 1.68 1.66 
30 7.35 4.19 3.28 2.85 2.61 2.33 2.18 2.06 1.99 1.94 1.90 1.87 1.8S 1.82 1.79 1.78 1.76 1.7S 1.73 1.72 
40 7.64 4.34 3.39 2.95 2.69 2.40 2.24 2.12 2.04 1.99 1.9S 1.92 1.90 1.86 1.84 1.82 1.81 1.80 1.78 1.76 
so 7.86 4.45 3.48 3.02 2.7S 2.4S 2.28 2.16 2.08 2.03 1.99 1.96 1.93 1.90 1.87 1.8S 1.84 1.83 1.81 1.79 
60 8.04 4.54 3.54 3.07 2.80 2.49 2.32 2.20 2.12 2.06 2.02 1.99 1.96 1.92 1.90 1.88 1.86 1.8S 1.83 1.82 
7S 8.26 4.66 3.63 3.14 2.86 2.S4 2.37 2.24 2.16 2.10 2.06 2.02 2.00 1.96 1.93 1.91 1.90 1.88 1.86 1.8S 

100 8.53 4.80 3.73 3.23 2.94 2.61 2.43 2.29 2.21 2.1S 2.10 2.07 2.04 2.00 1.97 1.9S 1.94 1.92 1.90 1.89 
12S 8.74 4.91 3.81 3.30 3.00 2.66 2.48 2.34 2.2S 2.18 2.14 2.10 2.08 2.04 2.01 1.98 1.97 1.96 1.93 1.92 
1SO 8.91 4.99 3.88 3.35 3.05 2.70 2.Sl 2.37 2.28 2.22 2.17 2.13 2.10 2.06 2.03 2.01 1.99 1.98 1.96 1.94 
17S 9.05 5.07 3.93 3.40 3.09 2.74 2.SS 2.40 2.31 2.24 2.19 2.16 2.13 2.08 2.05 2.03 2.02 2.00 1.98 1.96 
200 9.17 5.13 3.98 3.44 3.12 2.77 2.S7 2.43 2.33 2.26 2.22 2.18 2.1S 2.10 2.07 2.05 2.03 2.02 1.99 1.98 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-6. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Means of Order 2 (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 4.43 2.71 2.20 1.96 1.82 1.66 1.S7 1.Sl 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 
2 5.20 3.10 2.48 2.19 2.02 1.83 1.73 1.6S 1.60 1.S7 1.S4 1.S2 1.Sl 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
3 5.65 3.32 2.6S 2.33 2.14 1.93 1.82 1.74 1.68 1.6S 1.62 1.60 1.58 1.S6 1.S4 1.S3 1.S2 1.Sl 1.49 1.48 
4 5.96 3.48 2.76 2.42 2.23 2.01 1.89 1.80 1.74 1.70 1.67 1.6S 1.63 1.60 1.S9 1.S7 1.S6 1.SS 1.S4 1.S3 
s 6.20 3.60 2.8S 2.SO 2.29 2.06 1.94 1.84 1.78 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.S9 1.S7 1.S6 
8 6.70 3.86 3.04 2.65 2.43 2.18 2.04 1.94 1.87 1.83 1.79 1.77 1.7S 1.72 1.70 1.68 1.67 1.66 1.64 1.63 
12 7.12 4.07 3.19 2.78 2.S4 2.27 2.13 2.02 1.9S 1.90 1.86 1.84 1.81 1.78 1.76 1.74 1.73 1.72 1.70 1.69 
16 7.42 4.22 3.31 2.87 2.62 2.34 2.19 2.07 2.00 1.9S 1.91 1.88 1.86 1.83 1.80 1.79 1.77 1.76 1.74 1.73 
20 7.64 4.34 3.39 2.95 2.69 2.40 2.24 2.12 2.04 1.99 1.9S 1.92 1.90 1.86 1.84 1.82 1.81 1.80 1.78 1.76 
30 8.04 4.54 3.54 3.07 2.80 2.49 2.32 2.20 2.12 2.06 2.02 1.99 1.96 1.92 1.90 1.88 1.86 1.8S 1.83 1.82 
40 8.32 4.69 3.65 3.16 2.88 2.S6 2.38 2.2S 2.17 2.11 2.07 2.03 2.01 1.97 1.94 1.92 1.91 1.89 1.87 1.86 
so 8.53 4.80 3.73 3.23 2.94 2.61 2.43 2.29 2.21 2.1S 2.10 2.07 2.04 2.00 1.97 1.9S 1.94 1.92 1.90 1.89 
60 8.70 4.89 3.80 3.29 2.99 2.6S 2.47 2.33 2.24 2.18 2.13 2.10 2.07 2.03 2.00 1.98 1.96 1.9S 1.93 1.91 
7S 8.91 4.99 3.88 3.35 3.05 2.70 2.Sl 2.37 2.28 2.22 2.17 2.13 2.10 2.06 2.03 2.01 1.99 1.98 1.96 1.94 

100 9.17 5.13 3.98 3.44 3.12 2.77 2.S7 2.43 2.33 2.26 2.22 2.18 2.1S 2.10 2.07 2.05 2.03 2.02 1.99 1.98 
12S 9.37 5.23 4.06 3.50 3.18 2.82 2.62 2.47 2.37 2.30 2.2S 2.21 2.18 2.14 2.11 2.08 2.06 2.05 2.02 2.01 
1SO 9.53 5.32 4.12 3.56 3.23 2.86 2.66 2.SO 2.40 2.33 2.28 2.24 2.21 2.16 2.13 2.11 2.09 2.07 2.05 2.03 
17S 9.66 5.39 4.17 3.60 3.27 2.89 2.69 2.S3 2.43 2.36 2.30 2.26 2.23 2.19 2.1S 2.13 2.11 2.09 2.07 2.05 
200 9.78 5.45 4.22 3.64 3.30 2.92 2.71 2.SS 2.4S 2.38 2.33 2.28 2.2S 2.20 2.17 2.1S 2.13 2.11 2.08 2.07 

Table 19-6. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 2 (40 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 3.84 2.38 1.94 1.74 1.62 1.49 1.41 1.36 1.32 1.29 1.28 1.26 1.2S 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
2 4.71 2.78 2.23 1.98 1.83 1.66 1.S7 1.Sl 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 
3 5.25 3.02 2.40 2.12 1.9S 1.77 1.67 1.S9 1.SS 1.Sl 1.49 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 
4 5.64 3.20 2.S3 2.22 2.04 1.84 1.73 1.6S 1.60 1.S7 1.S4 1.S2 1.Sl 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
s 5.95 3.34 2.62 2.29 2.10 1.90 1.79 1.70 1.6S 1.61 1.S9 1.S6 1.55 1.S2 1.Sl 1.SO 1.49 1.48 1.46 1.46 
8 6.60 3.64 2.83 2.46 2.2S 2.02 1.89 1.80 1.74 1.70 1.67 1.6S 1.63 1.60 1.S9 1.57 1.S6 1.55 1.S4 1.S3 
12 7.16 3.89 3.00 2.60 2.37 2.12 1.98 1.88 1.82 1.78 1.74 1.72 1.70 1.67 1.6S 1.64 1.63 1.62 1.60 1.S9 
16 7.56 4.07 3.13 2.70 2.46 2.19 2.05 1.94 1.87 1.83 1.79 1.77 1.7S 1.72 1.70 1.68 1.67 1.66 1.64 1.63 
20 7.86 4.21 3.23 2.78 2.S3 2.2S 2.10 1.99 1.92 1.87 1.83 1.81 1.79 1.7S 1.73 1.72 1.70 1.69 1.68 1.66 
30 8.41 4.46 3.40 2.92 2.65 2.3S 2.19 2.07 1.99 1.94 1.90 1.87 1.8S 1.82 1.80 1.78 1.76 1.7S 1.74 1.72 
40 8.79 4.64 3.53 3.02 2.73 2.42 2.2S 2.13 2.05 1.99 1.9S 1.92 1.90 1.86 1.84 1.82 1.81 1.80 1.78 1.76 
so 9.08 4.77 3.62 3.10 2.80 2.48 2.30 2.17 2.09 2.03 1.99 1.96 1.93 1.90 1.87 1.8S 1.84 1.83 1.81 1.79 
60 9.31 4.88 3.70 3.16 2.86 2.S2 2.34 2.21 2.12 2.06 2.02 1.99 1.96 1.93 1.90 1.88 1.87 1.8S 1.83 1.82 
7S 9.59 5.01 3.79 3.24 2.92 2.S8 2.39 2.2S 2.16 2.10 2.06 2.03 2.00 1.96 1.93 1.91 1.90 1.89 1.86 1.8S 
100 9.95 5.18 3.91 3.34 3.01 2.65 2.4S 2.31 2.22 2.1S 2.11 2.07 2.04 2.00 1.98 1.9S 1.94 1.93 1.90 1.89 
12S 10.23 5.31 4.00 3.41 3.07 2.70 2.SO 2.3S 2.26 2.19 2.14 2.11 2.08 2.04 2.01 1.99 1.97 1.96 1.93 1.92 
1SO 10.45 5.42 4.08 3.47 3.13 2.74 2.S4 2.39 2.29 2.22 2.17 2.14 2.11 2.06 2.03 2.01 1.99 1.98 1.96 1.94 
17S 10.63 5.50 4.14 3.52 3.17 2.78 2.57 2.42 2.32 2.2S 2.20 2.16 2.13 2.09 2.06 2.03 2.02 2.00 1.98 1.96 
200 10.79 5.58 4.20 3.57 3.21 2.81 2.60 2.44 2.34 2.27 2.22 2.18 2.1S 2.11 2.08 2.05 2.03 2.02 1.99 1.98 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-6. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Means of Order 2 ( 40 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 4.71 2.78 2.23 1.98 1.83 1.66 1.57 1.51 1.46 1.43 1.41 1.40 1.38 1.36 1.35 1.34 1.33 1.32 1.31 1.31 
2 5.64 3.20 2.53 2.22 2.04 1.84 1.73 1.65 1.60 1.57 1.54 1.52 1.51 1.49 1.47 1.46 1.45 1.44 1.43 1.42 
3 6.20 3.45 2.70 2.36 2.16 1.94 1.83 1.74 1.68 1.65 1.62 1.60 1.58 1.56 1.54 1.53 1.52 1.51 1.49 1.48 
4 6.60 3.64 2.83 2.46 2.25 2.02 1.89 1.80 1.74 1.70 1.67 1.65 1.63 1.60 1.59 1.57 1.56 1.55 1.54 1.53 
5 6.91 3.78 2.92 2.54 2.32 2.07 1.94 1.85 1.78 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.59 1.57 1.56 
8 7.56 4.07 3.13 2.70 2.46 2.19 2.05 1.94 1.87 1.83 1.79 1.77 1.75 1.72 1.70 1.68 1.67 1.66 1.64 1.63 
12 8.11 4.32 3.31 2.84 2.58 2.29 2.14 2.02 1.95 1.90 1.87 1.84 1.82 1.78 1.76 1.74 1.73 1.72 1.70 1.69 
16 8.49 4.50 3.43 2.94 2.67 2.36 2.20 2.08 2.01 1.95 1.91 1.89 1.86 1.83 1.81 1.79 1.77 1.76 1.74 1.73 
20 8.79 4.64 3.53 3.02 2.73 2.42 2.25 2.13 2.05 1.99 1.95 1.92 1.90 1.86 1.84 1.82 1.81 1.80 1.78 1.76 
30 9.31 4.88 3.70 3.16 2.86 2.52 2.34 2.21 2.12 2.06 2.02 1.99 1.96 1.93 1.90 1.88 1.87 1.85 1.83 1.82 
40 9.68 5.05 3.82 3.26 2.94 2.59 2.40 2.26 2.17 2.11 2.07 2.04 2.01 1.97 1.94 1.92 1.91 1.89 1.87 1.86 
50 9.95 5.18 3.91 3.34 3.01 2.65 2.45 2.31 2.22 2.15 2.11 2.07 2.04 2.00 1.98 1.95 1.94 1.93 1.90 1.89 
60 10.18 5.29 3.99 3.40 3.06 2.69 2.49 2.34 2.25 2.18 2.14 2.10 2.07 2.03 2.00 1.98 1.96 1.95 1.93 1.91 
75 10.45 5.42 4.08 3.47 3.13 2.74 2.54 2.39 2.29 2.22 2.17 2.14 2.11 2.06 2.03 2.01 1.99 1.98 1.96 1.94 

100 10.79 5.58 4.20 3.57 3.21 2.81 2.60 2.44 2.34 2.27 2.22 2.18 2.15 2.11 2.08 2.05 2.03 2.02 1.99 1.98 
125 11.05 5.70 4.28 3.64 3.27 2.87 2.65 2.48 2.38 2.31 2.26 2.22 2.19 2.14 2.11 2.08 2.06 2.05 2.02 2.01 
150 11.27 5.81 4.36 3.70 3.32 2.91 2.69 2.52 2.41 2.34 2.29 2.25 2.21 2.17 2.13 2.11 2.09 2.07 2.05 2.03 
175 11.44 5.89 4.42 3.75 3.37 2.95 2.72 2.55 2.44 2.37 2.31 2.27 2.24 2.19 2.15 2.13 2.11 2.09 2.07 2.05 
200 11.60 5.96 4.47 3.79 3.41 2.98 2.75 2.57 2.46 2.39 2.33 2.29 2.26 2.21 2.17 2.15 2.13 2.11 2.08 2.07 

Table 19-6. K-Multipliers for 1-of-2 Interwell Prediction Li mi ts on Means of Order 2 ( 40 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 5.64 3.20 2.53 2.22 2.04 1.84 1.73 1.65 1.60 1.57 1.54 1.52 1.51 1.49 1.47 1.46 1.45 1.44 1.43 1.42 
2 6.60 3.64 2.83 2.46 2.25 2.02 1.89 1.80 1.74 1.70 1.67 1.65 1.63 1.60 1.59 1.57 1.56 1.55 1.54 1.53 
3 7.16 3.89 3.00 2.60 2.37 2.12 1.98 1.88 1.82 1.78 1.74 1.72 1.70 1.67 1.65 1.64 1.63 1.62 1.60 1.59 
4 7.56 4.07 3.13 2.70 2.46 2.19 2.05 1.94 1.87 1.83 1.79 1.77 1.75 1.72 1.70 1.68 1.67 1.66 1.64 1.63 
5 7.86 4.21 3.23 2.78 2.53 2.25 2.10 1.99 1.92 1.87 1.83 1.81 1.79 1.75 1.73 1.72 1.70 1.69 1.68 1.66 
8 8.49 4.50 3.43 2.94 2.67 2.36 2.20 2.08 2.01 1.95 1.91 1.89 1.86 1.83 1.81 1.79 1.77 1.76 1.74 1.73 
12 9.02 4.75 3.60 3.09 2.79 2.47 2.29 2.16 2.08 2.02 1.98 1.95 1.93 1.89 1.87 1.85 1.83 1.82 1.79 1.79 
16 9.39 4.92 3.73 3.18 2.88 2.54 2.35 2.22 2.13 2.08 2.03 2.00 1.97 1.94 1.91 1.89 1.87 1.86 1.84 1.83 
20 9.68 5.05 3.82 3.26 2.94 2.59 2.40 2.26 2.17 2.11 2.07 2.04 2.01 1.97 1.94 1.92 1.91 1.89 1.87 1.86 
30 10.18 5.29 3.99 3.40 3.06 2.69 2.49 2.34 2.25 2.18 2.14 2.10 2.07 2.03 2.00 1.98 1.96 1.95 1.93 1.91 
40 10.53 5.45 4.11 3.49 3.14 2.76 2.55 2.40 2.30 2.23 2.18 2.15 2.12 2.07 2.04 2.02 2.00 1.99 1.97 1.95 
50 10.79 5.58 4.20 3.57 3.21 2.81 2.60 2.44 2.34 2.27 2.22 2.18 2.15 2.11 2.08 2.05 2.03 2.02 1.99 1.98 
60 11.01 5.68 4.27 3.63 3.26 2.86 2.64 2.48 2.37 2.30 2.25 2.21 2.18 2.13 2.10 2.08 2.06 2.04 2.02 2.00 
75 11.27 5.81 4.36 3.70 3.32 2.91 2.69 2.52 2.41 2.34 2.29 2.25 2.21 2.17 2.13 2.11 2.09 2.07 2.05 2.03 
100 11.60 5.96 4.47 3.79 3.41 2.98 2.75 2.57 2.46 2.39 2.33 2.29 2.26 2.21 2.17 2.15 2.13 2.11 2.08 2.07 
125 11.85 6.08 4.56 3.86 3.47 3.03 2.79 2.62 2.50 2.43 2.37 2.32 2.29 2.24 2.20 2.18 2.16 2.14 2.11 2.09 
150 12.05 6.18 4.63 3.92 3.52 3.07 2.83 2.65 2.54 2.46 2.40 2.35 2.32 2.27 2.23 2.20 2.18 2.17 2.14 2.12 
175 12.22 6.26 4.68 3.97 3.56 3.11 2.86 2.68 2.56 2.48 2.42 2.38 2.34 2.29 2.25 2.22 2.20 2.19 2.16 2.14 
200 12.37 6.33 4.74 4.01 3.60 3.14 2.89 2.70 2.59 2.50 2.44 2.40 2.36 2.31 2.27 2.24 2.22 2.20 2.17 2.15 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-7. K-Multipliers for 1-of-3 Interwell Prediction Limits on Means of Order 2 (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.37 0.27 0.22 0.19 0.17 0.14 0.13 0.11 0.11 0.10 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.07 0.07 
2 0.64 o.so 0.43 0.39 0.36 0.33 0.31 0.30 0.29 0.28 0.27 0.27 0.26 0.26 0.2S 0.2S 0.2S 0.2S 0.24 0.24 
3 0.79 0.62 O.S4 o.so 0.47 0.43 0.41 0.39 0.38 0.37 0.37 0.36 0.36 0.3S 0.3S 0.34 0.34 0.34 0.33 0.33 
4 0.90 0.71 0.62 O.S7 O.S4 o.so 0.48 0.46 0.4S 0.44 0.43 0.42 0.42 0.41 0.41 0.40 0.40 0.40 0.39 0.39 
s 0.98 0.77 0.68 0.63 0.60 o.ss O.S3 O.Sl 0.49 0.48 0.48 0.47 0.47 0.46 0.4S 0.4S 0.4S 0.44 0.44 0.44 
8 1.1S 0.91 0.80 0.75 0.71 0.66 0.63 0.61 O.S9 O.S8 O.S7 O.S6 O.S6 o.ss O.S4 O.S4 O.S4 O.S3 O.S3 O.S3 
12 1.29 1.02 0.90 0.84 0.80 0.74 0.71 0.69 0.67 0.66 0.6S 0.64 0.63 0.63 0.62 0.61 0.61 0.61 0.60 0.60 
16 1.38 1.10 0.97 0.90 0.86 0.80 0.77 0.74 0.72 0.71 0.70 0.69 0.69 0.68 0.67 0.66 0.66 0.66 0.65 0.65 
20 1.46 1.1S 1.03 0.95 0.91 0.8S 0.81 0.78 0.76 0.7S 0.74 0.73 0.73 0.72 0.71 0.70 0.70 0.69 0.69 0.68 
30 1.S9 1.26 1.12 1.04 0.99 0.93 0.89 0.86 0.84 0.82 0.81 0.80 0.79 0.78 0.78 0.77 0.76 0.76 0.7S 0.7S 
40 1.68 1.33 1.18 1.10 1.05 0.98 0.94 0.91 0.89 0.87 0.86 0.8S 0.84 0.83 0.82 0.81 0.81 0.81 0.80 0.79 
so 1.7S 1.38 1.23 1.15 1.09 1.02 0.98 0.9S 0.92 0.91 0.89 0.88 0.88 0.86 0.86 0.8S 0.84 0.84 0.83 0.83 
60 1.81 1.43 1.27 1.18 1.13 1.06 1.01 0.98 0.9S 0.94 0.92 0.91 0.91 0.89 0.88 0.88 0.87 0.87 0.86 0.8S 
7S 1.87 1.48 1.32 1.23 1.17 1.10 1.05 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.91 0.91 0.90 0.89 0.89 

100 1.96 1.SS 1.38 1.28 1.22 1.1S 1.10 1.06 1.04 1.02 1.00 0.99 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 0.93 
12S 2.02 1.60 1.42 1.33 1.26 1.18 1.14 1.10 1.07 1.05 1.04 1.03 1.02 1.00 0.99 0.98 0.98 0.97 0.97 0.96 
150 2.08 1.64 1.46 1.36 1.30 1.21 1.17 1.13 1.10 1.08 1.06 1.05 1.04 1.03 1.02 1.01 1.00 1.00 0.99 0.98 
17S 2.12 1.67 1.49 1.39 1.32 1.24 1.19 1.1S 1.12 1.10 1.09 1.08 1.07 1.05 1.04 1.03 1.03 1.02 1.01 1.00 
200 2.16 1.70 1.S2 1.41 1.3S 1.26 1.21 1.17 1.14 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 

Table 19-7. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Means of Order 2 (1 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.64 o.so 0.43 0.39 0.36 0.33 0.31 0.30 0.29 0.28 0.27 0.27 0.26 0.26 0.2S 0.2S 0.2S 0.2S 0.24 0.24 
2 0.90 0.71 0.62 O.S7 O.S4 o.so 0.48 0.46 0.4S 0.44 0.43 0.42 0.42 0.41 0.41 0.40 0.40 0.40 0.39 0.39 
3 1.04 0.83 0.73 0.68 0.64 O.S9 O.S7 o.ss O.S3 O.S2 O.Sl O.Sl o.so 0.49 0.49 0.49 0.48 0.48 0.48 0.47 
4 1.1S 0.91 0.80 0.75 0.71 0.66 0.63 0.61 O.S9 O.S8 O.S7 O.S6 O.S6 o.ss O.S4 O.S4 O.S4 O.S3 O.S3 O.S3 
s 1.22 0.97 0.86 0.80 0.76 0.71 0.68 0.6S 0.63 0.62 0.61 0.61 0.60 O.S9 O.S9 O.S8 O.S8 O.S7 O.S7 O.S7 
8 1.38 1.10 0.97 0.90 0.86 0.80 0.77 0.74 0.72 0.71 0.70 0.69 0.69 0.68 0.67 0.66 0.66 0.66 0.6S 0.6S 
12 1.S2 1.20 1.07 0.99 0.94 0.88 0.8S 0.82 0.80 0.78 0.77 0.76 0.76 0.7S 0.74 0.73 0.73 0.73 0.72 0.71 
16 1.61 1.27 1.13 1.05 1.00 0.94 0.90 0.87 0.8S 0.83 0.82 0.81 0.80 0.79 0.79 0.78 0.77 0.77 0.76 0.76 
20 1.68 1.33 1.18 1.10 1.05 0.98 0.94 0.91 0.89 0.87 0.86 0.8S 0.84 0.83 0.82 0.81 0.81 0.81 0.80 0.79 
30 1.81 1.43 1.27 1.18 1.13 1.06 1.01 0.98 0.9S 0.94 0.92 0.91 0.91 0.89 0.88 0.88 0.87 0.87 0.86 0.8S 
40 1.89 1.50 1.33 1.24 1.18 1.11 1.06 1.03 1.00 0.98 0.97 0.96 0.9S 0.94 0.93 0.92 0.91 0.91 0.90 0.90 
so 1.96 1.SS 1.38 1.28 1.22 1.1S 1.10 1.06 1.04 1.02 1.00 0.99 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 0.93 
60 2.01 1.S9 1.42 1.32 1.26 1.18 1.13 1.09 1.06 1.05 1.03 1.02 1.01 1.00 0.99 0.98 0.97 0.97 0.96 0.9S 
7S 2.08 1.64 1.46 1.36 1.30 1.21 1.17 1.13 1.10 1.08 1.06 1.05 1.04 1.03 1.02 1.01 1.00 1.00 0.99 0.98 

100 2.16 1.70 1.S2 1.41 1.3S 1.26 1.21 1.17 1.14 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
12S 2.22 1.7S 1.S6 1.45 1.38 1.30 1.2S 1.20 1.18 1.1S 1.14 1.13 1.12 1.10 1.09 1.08 1.07 1.07 1.06 1.05 
150 2.27 1.79 1.60 1.49 1.42 1.33 1.28 1.23 1.20 1.18 1.16 1.1S 1.14 1.13 1.11 1.11 1.10 1.09 1.08 1.08 
17S 2.31 1.82 1.62 1.Sl 1.44 1.3S 1.30 1.2S 1.22 1.20 1.19 1.17 1.16 1.1S 1.13 1.13 1.12 1.11 1.10 1.10 
200 2.3S 1.8S 1.6S 1.S4 1.46 1.37 1.32 1.27 1.24 1.22 1.20 1.19 1.18 1.16 1.1S 1.14 1.14 1.13 1.12 1.11 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-7. K-Multipliers for 1-of-3 Interwell Prediction Limits on Means of Order 2 (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.90 0.71 0.62 O.S7 O.S4 o.so 0.48 0.46 0.4S 0.44 0.43 0.42 0.42 0.41 0.41 0.40 0.40 0.40 0.39 0.39 
2 1.1S 0.91 0.80 0.75 0.71 0.66 0.63 0.61 O.S9 O.S8 O.S7 O.S6 O.S6 o.ss O.S4 O.S4 O.S4 O.S3 O.S3 O.S3 
3 1.29 1.02 0.90 0.84 0.80 0.74 0.71 0.69 0.67 0.66 0.6S 0.64 0.63 0.63 0.62 0.61 0.61 0.61 0.60 0.60 
4 1.38 1.10 0.97 0.90 0.86 0.80 0.77 0.74 0.72 0.71 0.70 0.69 0.69 0.68 0.67 0.66 0.66 0.66 0.6S 0.65 
s 1.46 1.1S 1.03 0.95 0.91 0.8S 0.81 0.78 0.76 0.7S 0.74 0.73 0.73 0.72 0.71 0.70 0.70 0.69 0.69 0.68 
8 1.61 1.27 1.13 1.05 1.00 0.94 0.90 0.87 0.8S 0.83 0.82 0.81 0.80 0.79 0.79 0.78 0.77 0.77 0.76 0.76 
12 1.74 1.37 1.22 1.14 1.08 1.01 0.97 0.94 0.92 0.90 0.89 0.88 0.87 0.86 0.8S 0.84 0.84 0.83 0.83 0.82 
16 1.83 1.44 1.29 1.20 1.14 1.07 1.02 0.99 0.96 0.9S 0.93 0.92 0.92 0.90 0.89 0.89 0.88 0.88 0.87 0.86 
20 1.89 1.50 1.33 1.24 1.18 1.11 1.06 1.03 1.00 0.98 0.97 0.96 0.9S 0.94 0.93 0.92 0.91 0.91 0.90 0.90 
30 2.01 1.S9 1.42 1.32 1.26 1.18 1.13 1.09 1.06 1.05 1.03 1.02 1.01 1.00 0.99 0.98 0.97 0.97 0.96 0.9S 
40 2.09 1.6S 1.47 1.37 1.31 1.23 1.18 1.14 1.11 1.09 1.07 1.06 1.05 1.04 1.03 1.02 1.01 1.01 1.00 0.99 
so 2.16 1.70 1.S2 1.41 1.3S 1.26 1.21 1.17 1.14 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
60 2.21 1.74 1.SS 1.45 1.38 1.29 1.24 1.20 1.17 1.1S 1.13 1.12 1.11 1.09 1.08 1.08 1.07 1.06 1.05 1.05 
7S 2.27 1.79 1.60 1.49 1.42 1.33 1.28 1.23 1.20 1.18 1.16 1.1S 1.14 1.13 1.11 1.11 1.10 1.09 1.08 1.08 

100 2.3S 1.8S 1.6S 1.S4 1.46 1.37 1.32 1.27 1.24 1.22 1.20 1.19 1.18 1.16 1.1S 1.14 1.14 1.13 1.12 1.11 
12S 2.41 1.90 1.69 1.58 1.50 1.41 1.3S 1.31 1.28 1.2S 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
150 2.46 1.93 1.72 1.61 1.S3 1.44 1.38 1.33 1.30 1.28 1.26 1.2S 1.24 1.22 1.21 1.20 1.19 1.18 1.17 1.16 
17S 2.SO 1.96 1.7S 1.63 1.S6 1.46 1.40 1.36 1.32 1.30 1.28 1.27 1.26 1.24 1.22 1.21 1.21 1.20 1.19 1.18 
200 2.S3 1.99 1.78 1.66 1.58 1.48 1.42 1.37 1.34 1.32 1.30 1.28 1.27 1.2S 1.24 1.23 1.22 1.22 1.21 1.20 

Table 19-7. K-Multipliers for 1-of-3 Interwell Prediction Limits on Means of Order 2 (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 0.71 O.S3 0.4S 0.41 0.38 0.34 0.32 0.30 0.29 0.28 0.28 0.27 0.27 0.26 0.26 0.2S 0.2S 0.2S 0.2S 0.24 
2 1.00 0.76 0.66 0.60 O.S6 O.Sl 0.49 0.47 0.4S 0.44 0.43 0.43 0.42 0.41 0.41 0.41 0.40 0.40 0.40 0.39 
3 1.17 0.89 0.77 0.70 0.66 0.61 O.S8 o.ss O.S4 O.S3 O.S2 O.Sl O.Sl o.so 0.49 0.49 0.48 0.48 0.48 0.47 
4 1.30 0.98 0.8S 0.78 0.73 0.68 0.64 0.62 0.60 O.S9 O.S8 O.S7 O.S6 o.ss o.ss O.S4 O.S4 O.S4 O.S3 O.S3 
s 1.39 1.05 0.91 0.83 0.78 0.72 0.69 0.66 0.64 0.63 0.62 0.61 0.60 0.60 O.S9 O.S8 O.S8 O.S8 O.S7 O.S7 
8 1.S9 1.19 1.04 0.95 0.89 0.83 0.79 0.7S 0.73 0.72 0.71 0.70 0.69 0.68 0.67 0.67 0.66 0.66 0.6S 0.6S 
12 1.76 1.31 1.14 1.04 0.98 0.91 0.87 0.83 0.81 0.79 0.78 0.77 0.76 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 
16 1.88 1.40 1.21 1.11 1.05 0.97 0.92 0.88 0.86 0.84 0.83 0.82 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.76 
20 1.97 1.46 1.27 1.16 1.09 1.01 0.96 0.92 0.90 0.88 0.87 0.86 0.8S 0.83 0.83 0.82 0.81 0.81 0.80 0.80 
30 2.13 1.58 1.37 1.25 1.18 1.09 1.04 1.00 0.97 0.9S 0.93 0.92 0.91 0.90 0.89 0.88 0.88 0.87 0.86 0.86 
40 2.24 1.66 1.44 1.32 1.24 1.1S 1.09 1.05 1.02 1.00 0.98 0.97 0.96 0.94 0.93 0.92 0.92 0.91 0.90 0.90 
so 2.33 1.72 1.49 1.36 1.28 1.19 1.13 1.08 1.05 1.03 1.02 1.00 0.99 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 
60 2.40 1.77 1.S3 1.40 1.32 1.22 1.16 1.11 1.08 1.06 1.04 1.03 1.02 1.00 0.99 0.98 0.98 0.97 0.96 0.96 
7S 2.48 1.83 1.58 1.45 1.36 1.26 1.20 1.1S 1.12 1.10 1.08 1.06 1.05 1.04 1.02 1.02 1.01 1.00 0.99 0.99 

100 2.59 1.90 1.6S 1.Sl 1.42 1.31 1.2S 1.20 1.16 1.14 1.12 1.11 1.10 1.08 1.07 1.06 1.05 1.04 1.03 1.03 
12S 2.67 1.96 1.70 1.SS 1.46 1.3S 1.29 1.23 1.20 1.17 1.1S 1.14 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.05 
150 2.73 2.01 1.74 1.S9 1.SO 1.38 1.32 1.26 1.23 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.10 1.09 1.08 
17S 2.79 2.05 1.77 1.62 1.S2 1.41 1.34 1.29 1.2S 1.22 1.20 1.19 1.17 1.16 1.14 1.13 1.12 1.12 1.11 1.10 
200 2.83 2.08 1.80 1.65 1.SS 1.43 1.36 1.31 1.27 1.24 1.22 1.21 1.19 1.17 1.16 1.1S 1.14 1.14 1.12 1.12 
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Table 19-7. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Means of Order 2 (2 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.00 0.76 0.66 0.60 O.S6 O.Sl 0.49 0.47 0.4S 0.44 0.43 0.43 0.42 0.41 0.41 0.41 0.40 0.40 0.40 0.39 
2 1.30 0.98 0.8S 0.78 0.73 0.68 0.64 0.62 0.60 O.S9 O.S8 O.S7 O.S6 o.ss o.ss O.S4 O.S4 O.S4 O.S3 O.S3 
3 1.47 1.10 0.96 0.88 0.83 0.76 0.73 0.70 0.68 0.66 0.6S 0.6S 0.64 0.63 0.62 0.62 0.61 0.61 0.60 0.60 
4 1.S9 1.19 1.04 0.95 0.89 0.83 0.79 0.7S 0.73 0.72 0.71 0.70 0.69 0.68 0.67 0.67 0.66 0.66 0.6S 0.6S 
s 1.68 1.26 1.09 1.00 0.94 0.87 0.83 0.80 0.77 0.76 0.7S 0.74 0.73 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
8 1.88 1.40 1.21 1.11 1.05 0.97 0.92 0.88 0.86 0.84 0.83 0.82 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.76 
12 2.04 1.S2 1.31 1.20 1.13 1.05 1.00 0.96 0.93 0.91 0.90 0.89 0.88 0.86 0.8S 0.8S 0.84 0.84 0.83 0.82 
16 2.1S 1.60 1.38 1.27 1.19 1.10 1.05 1.01 0.98 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
20 2.24 1.66 1.44 1.32 1.24 1.1S 1.09 1.05 1.02 1.00 0.98 0.97 0.96 0.94 0.93 0.92 0.92 0.91 0.90 0.90 
30 2.40 1.77 1.S3 1.40 1.32 1.22 1.16 1.11 1.08 1.06 1.04 1.03 1.02 1.00 0.99 0.98 0.98 0.97 0.96 0.96 
40 2.SO 1.8S 1.60 1.46 1.38 1.27 1.21 1.16 1.13 1.11 1.09 1.07 1.06 1.05 1.03 1.02 1.02 1.01 1.00 1.00 
so 2.S9 1.90 1.6S 1.Sl 1.42 1.31 1.2S 1.20 1.16 1.14 1.12 1.11 1.10 1.08 1.07 1.06 1.05 1.04 1.03 1.03 
60 2.65 1.9S 1.69 1.S4 1.4S 1.34 1.28 1.23 1.19 1.17 1.1S 1.13 1.12 1.10 1.09 1.08 1.07 1.07 1.06 1.05 
7S 2.73 2.01 1.74 1.S9 1.SO 1.38 1.32 1.26 1.23 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.10 1.09 1.08 

100 2.83 2.08 1.80 1.65 1.SS 1.43 1.36 1.31 1.27 1.24 1.22 1.21 1.19 1.17 1.16 1.1S 1.14 1.14 1.12 1.12 
12S 2.91 2.14 1.8S 1.69 1.S9 1.47 1.40 1.34 1.30 1.27 1.2S 1.24 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 1.14 
150 2.97 2.18 1.88 1.72 1.62 1.50 1.43 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.21 1.20 1.19 1.19 1.17 1.17 
17S 3.03 2.22 1.92 1.75 1.6S 1.S3 1.4S 1.39 1.3S 1.32 1.30 1.28 1.27 1.2S 1.23 1.22 1.21 1.21 1.19 1.19 
200 3.07 2.2S 1.94 1.78 1.67 1.SS 1.47 1.41 1.37 1.34 1.32 1.30 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 

Table 19-7. K-Multipliers for 1-of-3 Interwell Prediction Limits on Means of Order 2 (2 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.30 0.98 0.8S 0.78 0.73 0.68 0.64 0.62 0.60 O.S9 O.S8 O.S7 O.S6 o.ss o.ss O.S4 O.S4 O.S4 O.S3 O.S3 
2 1.S9 1.19 1.04 0.95 0.89 0.83 0.79 0.7S 0.73 0.72 0.71 0.70 0.69 0.68 0.67 0.67 0.66 0.66 0.6S 0.6S 
3 1.76 1.31 1.14 1.04 0.98 0.91 0.87 0.83 0.81 0.79 0.78 0.77 0.76 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 
4 1.88 1.40 1.21 1.11 1.05 0.97 0.92 0.88 0.86 0.84 0.83 0.82 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.76 
s 1.97 1.46 1.27 1.16 1.09 1.01 0.96 0.92 0.90 0.88 0.87 0.86 0.8S 0.83 0.83 0.82 0.81 0.81 0.80 0.80 
8 2.1S 1.60 1.38 1.27 1.19 1.10 1.05 1.01 0.98 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
12 2.31 1.71 1.48 1.35 1.28 1.18 1.12 1.08 1.05 1.03 1.01 1.00 0.99 0.97 0.96 0.9S 0.9S 0.94 0.93 0.92 
16 2.42 1.79 1.SS 1.42 1.33 1.23 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.01 1.00 0.99 0.99 0.98 0.97 0.96 
20 2.SO 1.8S 1.60 1.46 1.38 1.27 1.21 1.16 1.13 1.11 1.09 1.07 1.06 1.05 1.03 1.02 1.02 1.01 1.00 1.00 
30 2.6S 1.9S 1.69 1.S4 1.4S 1.34 1.28 1.23 1.19 1.17 1.1S 1.13 1.12 1.10 1.09 1.08 1.07 1.07 1.06 1.05 
40 2.7S 2.02 1.7S 1.60 1.Sl 1.39 1.33 1.27 1.24 1.21 1.19 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.09 1.09 
so 2.83 2.08 1.80 1.65 1.SS 1.43 1.36 1.31 1.27 1.24 1.22 1.21 1.19 1.17 1.16 1.1S 1.14 1.14 1.12 1.12 
60 2.90 2.13 1.84 1.68 1.58 1.46 1.39 1.33 1.30 1.27 1.2S 1.23 1.22 1.20 1.18 1.17 1.17 1.16 1.1S 1.14 
7S 2.97 2.18 1.88 1.72 1.62 1.50 1.43 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.21 1.20 1.19 1.19 1.17 1.17 

100 3.07 2.2S 1.94 1.78 1.67 1.SS 1.47 1.41 1.37 1.34 1.32 1.30 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 
12S 3.14 2.30 1.99 1.82 1.71 1.58 1.Sl 1.44 1.40 1.37 1.3S 1.33 1.32 1.30 1.28 1.27 1.26 1.2S 1.24 1.23 
150 3.20 2.3S 2.03 1.8S 1.74 1.61 1.S3 1.47 1.43 1.40 1.37 1.36 1.34 1.32 1.30 1.29 1.28 1.27 1.26 1.2S 
17S 3.25 2.38 2.06 1.88 1.77 1.64 1.S6 1.49 1.4S 1.42 1.39 1.38 1.36 1.34 1.32 1.31 1.30 1.29 1.28 1.27 
200 3.30 2.41 2.08 1.91 1.79 1.66 1.58 1.Sl 1.47 1.44 1.41 1.39 1.38 1.36 1.34 1.33 1.32 1.31 1.29 1.28 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-7. K-Multipliers for 1-of-3 Interwell Prediction Limits on Means of Order 2 (5 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.20 0.87 0.74 0.67 0.63 O.S8 O.S4 O.S2 o.so 0.49 0.48 0.48 0.47 0.46 0.46 0.4S 0.4S 0.4S 0.44 0.44 
2 1.S6 1.11 0.9S 0.86 0.80 0.74 0.70 0.67 0.6S 0.63 0.62 0.61 0.61 0.60 O.S9 O.S9 O.S8 O.S8 O.S7 O.S7 
3 1.78 1.26 1.07 0.97 0.90 0.83 0.78 0.7S 0.73 0.71 0.70 0.69 0.68 0.67 0.66 0.66 0.6S 0.6S 0.64 0.64 
4 1.93 1.36 1.1S 1.04 0.97 0.89 0.84 0.81 0.78 0.76 0.7S 0.74 0.73 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
s 2.05 1.44 1.21 1.10 1.02 0.94 0.89 0.8S 0.82 0.80 0.79 0.78 0.77 0.76 0.7S 0.74 0.74 0.74 0.73 0.72 
8 2.31 1.60 1.3S 1.21 1.13 1.04 0.98 0.94 0.91 0.89 0.87 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
12 2.S3 1.74 1.46 1.31 1.22 1.12 1.06 1.01 0.98 0.96 0.94 0.93 0.92 0.90 0.89 0.88 0.88 0.87 0.86 0.86 
16 2.69 1.84 1.S4 1.38 1.29 1.18 1.11 1.06 1.03 1.00 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
20 2.81 1.91 1.60 1.44 1.34 1.22 1.1S 1.10 1.07 1.04 1.02 1.01 1.00 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 
30 3.02 2.05 1.71 1.S3 1.43 1.30 1.23 1.17 1.13 1.11 1.09 1.07 1.06 1.04 1.03 1.02 1.01 1.01 1.00 0.99 
40 3.17 2.14 1.78 1.60 1.49 1.3S 1.28 1.22 1.18 1.1S 1.13 1.11 1.10 1.08 1.07 1.06 1.05 1.05 1.03 1.03 
so 3.29 2.21 1.84 1.65 1.S3 1.40 1.32 1.26 1.21 1.19 1.16 1.1S 1.13 1.12 1.10 1.09 1.08 1.08 1.06 1.06 
60 3.38 2.27 1.89 1.69 1.S7 1.43 1.3S 1.29 1.24 1.21 1.19 1.17 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 
7S 3.49 2.34 1.9S 1.74 1.62 1.47 1.39 1.32 1.28 1.2S 1.22 1.21 1.19 1.17 1.16 1.1S 1.14 1.13 1.12 1.11 

100 3.63 2.43 2.02 1.81 1.68 1.S3 1.44 1.37 1.32 1.29 1.27 1.2S 1.23 1.21 1.20 1.18 1.17 1.17 1.1S 1.1S 
12S 3.74 2.SO 2.07 1.86 1.72 1.S7 1.47 1.40 1.36 1.32 1.30 1.28 1.26 1.24 1.23 1.21 1.20 1.20 1.18 1.17 
150 3.83 2.SS 2.12 1.90 1.76 1.60 1.Sl 1.43 1.38 1.3S 1.32 1.31 1.29 1.27 1.2S 1.24 1.23 1.22 1.20 1.20 
17S 3.90 2.60 2.16 1.93 1.79 1.63 1.S3 1.46 1.41 1.37 1.3S 1.33 1.31 1.29 1.27 1.26 1.2S 1.24 1.22 1.21 
200 3.97 2.64 2.19 1.96 1.82 1.6S 1.SS 1.48 1.43 1.39 1.37 1.34 1.33 1.30 1.29 1.27 1.26 1.2S 1.24 1.23 

Table 19-7. K-Multipliers for 1-of-3 Interwell Prediction Li mi ts on Means of Order 2 (5 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.S6 1.11 0.9S 0.86 0.80 0.74 0.70 0.67 0.6S 0.63 0.62 0.61 0.61 0.60 O.S9 O.S9 O.S8 O.S8 O.S7 O.S7 
2 1.93 1.36 1.1S 1.04 0.97 0.89 0.84 0.81 0.78 0.76 0.7S 0.74 0.73 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
3 2.1S 1.SO 1.26 1.14 1.07 0.98 0.92 0.88 0.86 0.84 0.82 0.81 0.80 0.79 0.78 0.77 0.77 0.77 0.76 0.7S 
4 2.31 1.60 1.3S 1.21 1.13 1.04 0.98 0.94 0.91 0.89 0.87 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
s 2.43 1.68 1.41 1.27 1.18 1.08 1.02 0.98 0.9S 0.93 0.91 0.90 0.89 0.87 0.86 0.86 0.8S 0.8S 0.84 0.83 
8 2.69 1.84 1.S4 1.38 1.29 1.18 1.11 1.06 1.03 1.00 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
12 2.91 1.97 1.6S 1.48 1.38 1.26 1.19 1.13 1.10 1.07 1.05 1.04 1.03 1.01 1.00 0.99 0.98 0.97 0.96 0.96 
16 3.06 2.07 1.72 1.SS 1.44 1.31 1.24 1.18 1.14 1.12 1.10 1.08 1.07 1.05 1.04 1.03 1.02 1.01 1.00 1.00 
20 3.17 2.14 1.78 1.60 1.49 1.3S 1.28 1.22 1.18 1.1S 1.13 1.11 1.10 1.08 1.07 1.06 1.05 1.05 1.03 1.03 
30 3.38 2.27 1.89 1.69 1.S7 1.43 1.3S 1.29 1.24 1.21 1.19 1.17 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 
40 3.52 2.36 1.96 1.76 1.63 1.48 1.40 1.33 1.29 1.26 1.23 1.22 1.20 1.18 1.17 1.1S 1.1S 1.14 1.13 1.12 
so 3.63 2.43 2.02 1.81 1.68 1.S3 1.44 1.37 1.32 1.29 1.27 1.2S 1.23 1.21 1.20 1.18 1.17 1.17 1.1S 1.1S 
60 3.72 2.49 2.06 1.8S 1.72 1.S6 1.47 1.40 1.3S 1.32 1.29 1.27 1.26 1.24 1.22 1.21 1.20 1.19 1.18 1.17 
7S 3.83 2.SS 2.12 1.90 1.76 1.60 1.Sl 1.43 1.38 1.3S 1.32 1.31 1.29 1.27 1.2S 1.24 1.23 1.22 1.20 1.20 

100 3.97 2.64 2.19 1.96 1.82 1.6S 1.SS 1.48 1.43 1.39 1.37 1.34 1.33 1.30 1.29 1.27 1.26 1.2S 1.24 1.23 
12S 4.07 2.71 2.24 2.01 1.86 1.69 1.S9 1.Sl 1.46 1.42 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
150 4.16 2.76 2.29 2.04 1.90 1.72 1.62 1.S4 1.49 1.4S 1.42 1.40 1.38 1.36 1.34 1.32 1.31 1.30 1.29 1.28 
17S 4.23 2.80 2.32 2.08 1.93 1.7S 1.64 1.S6 1.Sl 1.47 1.44 1.42 1.40 1.38 1.36 1.34 1.33 1.32 1.31 1.30 
200 4.29 2.84 2.3S 2.10 1.9S 1.77 1.67 1.58 1.S3 1.49 1.46 1.44 1.42 1.39 1.37 1.36 1.3S 1.34 1.32 1.31 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-7. K-Multipliers for 1-of-3 Interwell Prediction Limits on Means of Order 2 (5 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 1.93 1.36 1.15 1.04 0.97 0.89 0.84 0.81 0.78 0.76 0.75 0.74 0.73 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
2 2.31 1.60 1.35 1.21 1.13 1.04 0.98 0.94 0.91 0.89 0.87 0.86 0.85 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
3 2.53 1.74 1.46 1.31 1.22 1.12 1.06 1.01 0.98 0.96 0.94 0.93 0.92 0.90 0.89 0.88 0.88 0.87 0.86 0.86 
4 2.69 1.84 1.54 1.38 1.29 1.18 1.11 1.06 1.03 1.00 0.99 0.97 0.96 0.95 0.94 0.93 0.92 0.92 0.91 0.90 
5 2.81 1.91 1.60 1.44 1.34 1.22 1.15 1.10 1.07 1.04 1.02 1.01 1.00 0.98 0.97 0.96 0.95 0.95 0.94 0.93 
8 3.06 2.07 1.72 1.55 1.44 1.31 1.24 1.18 1.14 1.12 1.10 1.08 1.07 1.05 1.04 1.03 1.02 1.01 1.00 1.00 
12 3.27 2.20 1.83 1.64 1.53 1.39 1.31 1.25 1.21 1.18 1.16 1.14 1.13 1.11 1.10 1.08 1.08 1.07 1.06 1.05 
16 3.41 2.29 1.91 1.71 1.59 1.44 1.36 1.30 1.25 1.22 1.20 1.18 1.17 1.15 1.14 1.12 1.12 1.11 1.10 1.09 
20 3.52 2.36 1.96 1.76 1.63 1.48 1.40 1.33 1.29 1.26 1.23 1.22 1.20 1.18 1.17 1.15 1.15 1.14 1.13 1.12 
30 3.72 2.49 2.06 1.85 1.72 1.56 1.47 1.40 1.35 1.32 1.29 1.27 1.26 1.24 1.22 1.21 1.20 1.19 1.18 1.17 
40 3.86 2.57 2.14 1.91 1.77 1.61 1.52 1.44 1.39 1.36 1.33 1.31 1.30 1.27 1.26 1.24 1.23 1.23 1.21 1.20 
50 3.97 2.64 2.19 1.96 1.82 1.65 1.55 1.48 1.43 1.39 1.37 1.34 1.33 1.30 1.29 1.27 1.26 1.25 1.24 1.23 
60 4.05 2.69 2.23 2.00 1.85 1.68 1.58 1.51 1.45 1.42 1.39 1.37 1.35 1.33 1.31 1.30 1.29 1.28 1.26 1.25 
75 4.16 2.76 2.29 2.04 1.90 1.72 1.62 1.54 1.49 1.45 1.42 1.40 1.38 1.36 1.34 1.32 1.31 1.30 1.29 1.28 

100 4.29 2.84 2.35 2.10 1.95 1.77 1.67 1.58 1.53 1.49 1.46 1.44 1.42 1.39 1.37 1.36 1.35 1.34 1.32 1.31 
125 4.39 2.91 2.41 2.15 1.99 1.81 1.70 1.62 1.56 1.52 1.49 1.47 1.45 1.42 1.40 1.39 1.37 1.37 1.35 1.34 
150 4.47 2.96 2.45 2.19 2.03 1.84 1.73 1.64 1.59 1.55 1.52 1.49 1.47 1.44 1.42 1.41 1.40 1.39 1.37 1.36 
175 4.54 3.00 2.48 2.22 2.06 1.86 1.75 1.67 1.61 1.57 1.54 1.51 1.49 1.46 1.44 1.43 1.41 1.41 1.39 1.38 
200 4.60 3.04 2.51 2.24 2.08 1.89 1.77 1.69 1.63 1.58 1.55 1.53 1.51 1.48 1.46 1.44 1.43 1.42 1.40 1.39 

Table 19-7. K-Multipliers for 1-of-3 Interwell Prediction Limits on Means of Order 2 (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 1.64 1.14 0.96 0.87 0.81 0.74 0.70 0.67 0.65 0.63 0.62 0.62 0.61 0.60 0.59 0.59 0.58 0.58 0.57 0.57 
2 2.07 1.40 1.17 1.05 0.98 0.90 0.85 0.81 0.78 0.77 0.75 0.74 0.74 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
3 2.34 1.56 1.29 1.16 1.08 0.98 0.93 0.89 0.86 0.84 0.83 0.81 0.81 0.79 0.78 0.78 0.77 0.77 0.76 0.75 
4 2.53 1.67 1.38 1.24 1.15 1.04 0.99 0.94 0.91 0.89 0.87 0.86 0.85 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
5 2.68 1.76 1.45 1.29 1.20 1.09 1.03 0.98 0.95 0.93 0.91 0.90 0.89 0.88 0.86 0.86 0.85 0.85 0.84 0.83 
8 3.00 1.94 1.59 1.42 1.31 1.19 1.12 1.07 1.03 1.01 0.99 0.98 0.97 0.95 0.94 0.93 0.92 0.92 0.91 0.90 
12 3.27 2.09 1.71 1.52 1.40 1.27 1.20 1.14 1.10 1.07 1.05 1.04 1.03 1.01 1.00 0.99 0.98 0.98 0.96 0.96 
16 3.47 2.20 1.80 1.59 1.47 1.33 1.25 1.19 1.15 1.12 1.10 1.08 1.07 1.05 1.04 1.03 1.02 1.02 1.00 1.00 
20 3.62 2.29 1.86 1.65 1.52 1.37 1.29 1.23 1.19 1.16 1.13 1.12 1.10 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
30 3.88 2.44 1.98 1.75 1.61 1.45 1.36 1.30 1.25 1.22 1.20 1.18 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 
40 4.07 2.55 2.06 1.82 1.68 1.51 1.42 1.34 1.30 1.26 1.24 1.22 1.21 1.18 1.17 1.16 1.15 1.14 1.13 1.12 
50 4.21 2.63 2.13 1.88 1.73 1.55 1.46 1.38 1.33 1.30 1.27 1.25 1.24 1.21 1.20 1.19 1.18 1.17 1.16 1.15 
60 4.33 2.70 2.18 1.92 1.77 1.59 1.49 1.41 1.36 1.32 1.30 1.28 1.26 1.24 1.22 1.21 1.20 1.19 1.18 1.17 
75 4.47 2.78 2.24 1.97 1.81 1.63 1.53 1.45 1.39 1.36 1.33 1.31 1.29 1.27 1.25 1.24 1.23 1.22 1.21 1.20 

100 4.65 2.88 2.32 2.04 1.88 1.68 1.58 1.49 1.44 1.40 1.37 1.35 1.33 1.31 1.29 1.28 1.26 1.26 1.24 1.23 
125 4.78 2.96 2.38 2.10 1.92 1.73 1.61 1.53 1.47 1.43 1.40 1.38 1.36 1.34 1.32 1.30 1.29 1.28 1.27 1.26 
150 4.90 3.02 2A3 2.14 1.96 1.76 1.65 1.56 1.50 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.29 1.28 
175 4.99 3.07 2A7 2.17 1.99 1.79 1.67 1.58 1.52 1.48 1.45 1.43 1.41 1.38 1.36 1.35 1.33 1.32 1.31 1.30 
200 5.07 3.12 2.51 2.20 2.02 1.81 1.69 1.60 1.54 1.50 1.47 1.44 1.43 1.40 1.38 1.36 1.35 1.34 1.32 1.31 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-7. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Means of Order 2 (10 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.07 1.40 1.17 1.05 0.98 0.90 0.8S 0.81 0.78 0.77 0.7S 0.74 0.74 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
2 2.S3 1.67 1.38 1.24 1.1S 1.04 0.99 0.94 0.91 0.89 0.87 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
3 2.80 1.83 1.SO 1.34 1.24 1.13 1.06 1.01 0.98 0.96 0.94 0.93 0.92 0.90 0.89 0.88 0.88 0.87 0.86 0.86 
4 3.00 1.94 1.S9 1.42 1.31 1.19 1.12 1.07 1.03 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
s 3.15 2.02 1.66 1.47 1.36 1.23 1.16 1.11 1.07 1.04 1.03 1.01 1.00 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 
8 3.47 2.20 1.80 1.S9 1.47 1.33 1.2S 1.19 1.1S 1.12 1.10 1.08 1.07 1.05 1.04 1.03 1.02 1.02 1.00 1.00 
12 3.74 2.36 1.91 1.70 1.S6 1.41 1.32 1.26 1.21 1.18 1.16 1.1S 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.05 
16 3.93 2.46 2.00 1.77 1.63 1.47 1.38 1.31 1.26 1.23 1.21 1.19 1.17 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
20 4.07 2.SS 2.06 1.82 1.68 1.Sl 1.42 1.34 1.30 1.26 1.24 1.22 1.21 1.18 1.17 1.16 1.1S 1.14 1.13 1.12 
30 4.33 2.70 2.18 1.92 1.77 1.S9 1.49 1.41 1.36 1.32 1.30 1.28 1.26 1.24 1.22 1.21 1.20 1.19 1.18 1.17 
40 4.51 2.80 2.26 1.99 1.83 1.64 1.S4 1.46 1.40 1.37 1.34 1.32 1.30 1.28 1.26 1.2S 1.24 1.23 1.21 1.20 
so 4.65 2.88 2.32 2.04 1.88 1.68 1.58 1.49 1.44 1.40 1.37 1.3S 1.33 1.31 1.29 1.28 1.26 1.26 1.24 1.23 
60 4.76 2.94 2.37 2.09 1.92 1.72 1.61 1.S2 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.26 1.2S 
7S 4.90 3.02 2.43 2.14 1.96 1.76 1.6S 1.S6 1.50 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.29 1.28 

100 5.07 3.12 2.Sl 2.20 2.02 1.81 1.69 1.60 1.S4 1.50 1.47 1.44 1.43 1.40 1.38 1.36 1.3S 1.34 1.32 1.31 
12S 5.20 3.19 2.S7 2.26 2.07 1.8S 1.73 1.64 1.58 1.S3 1.SO 1.47 1.4S 1.43 1.40 1.39 1.38 1.37 1.3S 1.34 
150 5.30 3.26 2.61 2.30 2.11 1.89 1.76 1.66 1.60 1.S6 1.S2 1.50 1.48 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 
17S 5.39 3.31 2.65 2.33 2.14 1.91 1.79 1.69 1.62 1.58 1.SS 1.S2 1.50 1.47 1.4S 1.43 1.42 1.41 1.39 1.38 
200 5.47 3.35 2.69 2.36 2.16 1.94 1.81 1.71 1.64 1.60 1.S6 1.S4 1.S2 1.48 1.46 1.4S 1.43 1.42 1.40 1.39 

Table 19-7. K-Multipliers for 1-of-3 Interwell Prediction Limits on Means of Order 2 (10 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.S3 1.67 1.38 1.24 1.1S 1.04 0.99 0.94 0.91 0.89 0.87 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
2 3.00 1.94 1.S9 1.42 1.31 1.19 1.12 1.07 1.03 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
3 3.27 2.09 1.71 1.S2 1.40 1.27 1.20 1.14 1.10 1.07 1.05 1.04 1.03 1.01 1.00 0.99 0.98 0.98 0.96 0.96 
4 3.47 2.20 1.80 1.S9 1.47 1.33 1.2S 1.19 1.1S 1.12 1.10 1.08 1.07 1.05 1.04 1.03 1.02 1.02 1.00 1.00 
s 3.62 2.29 1.86 1.65 1.S2 1.37 1.29 1.23 1.19 1.16 1.13 1.12 1.10 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
8 3.93 2.46 2.00 1.77 1.63 1.47 1.38 1.31 1.26 1.23 1.21 1.19 1.17 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
12 4.19 2.61 2.11 1.87 1.72 1.S4 1.4S 1.37 1.32 1.29 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 
16 4.37 2.72 2.20 1.94 1.78 1.60 1.50 1.42 1.37 1.33 1.31 1.29 1.27 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 
20 4.51 2.80 2.26 1.99 1.83 1.64 1.S4 1.46 1.40 1.37 1.34 1.32 1.30 1.28 1.26 1.2S 1.24 1.23 1.21 1.20 
30 4.76 2.94 2.37 2.09 1.92 1.72 1.61 1.S2 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.26 1.2S 
40 4.93 3.04 2.4S 2.15 1.98 1.77 1.66 1.S7 1.Sl 1.47 1.44 1.41 1.40 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 
so 5.07 3.12 2.Sl 2.20 2.02 1.81 1.69 1.60 1.S4 1.50 1.47 1.44 1.43 1.40 1.38 1.36 1.3S 1.34 1.32 1.31 
60 5.17 3.18 2.SS 2.25 2.06 1.8S 1.72 1.63 1.S7 1.S3 1.49 1.47 1.4S 1.42 1.40 1.38 1.37 1.36 1.3S 1.33 
7S 5.30 3.26 2.61 2.30 2.11 1.89 1.76 1.66 1.60 1.S6 1.S2 1.50 1.48 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 

100 5.47 3.35 2.69 2.36 2.16 1.94 1.81 1.71 1.64 1.60 1.S6 1.S4 1.S2 1.48 1.46 1.4S 1.43 1.42 1.40 1.39 
12S 5.60 3.42 2.74 2.41 2.21 1.98 1.84 1.74 1.68 1.63 1.S9 1.S7 1.S4 1.Sl 1.49 1.47 1.46 1.4S 1.43 1.42 
150 5.70 3.48 2.79 2.45 2.2S 2.01 1.87 1.77 1.70 1.6S 1.62 1.S9 1.S7 1.S3 1.Sl 1.49 1.48 1.47 1.4S 1.44 
17S 5.78 3.53 2.83 2.48 2.28 2.04 1.90 1.79 1.72 1.67 1.64 1.61 1.S9 1.SS 1.S3 1.Sl 1.50 1.49 1.47 1.4S 
200 5.86 3.57 2.86 2.Sl 2.30 2.06 1.92 1.81 1.74 1.69 1.66 1.63 1.60 1.S7 1.SS 1.S3 1.Sl 1.SO 1.48 1.47 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-7. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Means of Order 2 (20 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.16 1.43 1.19 1.06 0.99 0.90 0.8S 0.81 0.78 0.77 0.7S 0.74 0.74 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
2 2.69 1.72 1.40 1.2S 1.16 1.05 0.99 0.94 0.91 0.89 0.88 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
3 3.02 1.89 1.53 1.36 1.2S 1.14 1.07 1.02 0.98 0.96 0.94 0.93 0.92 0.90 0.89 0.89 0.88 0.87 0.86 0.86 
4 3.26 2.01 1.62 1.44 1.32 1.20 1.12 1.07 1.03 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
s 3.45 2.11 1.70 1.SO 1.38 1.24 1.17 1.11 1.07 1.05 1.03 1.01 1.00 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 
8 3.84 2.31 1.8S 1.62 1.49 1.34 1.26 1.19 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.00 1.00 
12 4.19 2.49 1.98 1.73 1.S9 1.42 1.33 1.26 1.22 1.19 1.16 1.1S 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.05 
16 4.43 2.61 2.07 1.81 1.6S 1.48 1.38 1.31 1.26 1.23 1.21 1.19 1.17 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
20 4.62 2.71 2.14 1.87 1.71 1.S3 1.43 1.3S 1.30 1.27 1.24 1.22 1.21 1.18 1.17 1.16 1.1S 1.14 1.13 1.12 
30 4.95 2.88 2.27 1.97 1.80 1.61 1.SO 1.42 1.36 1.33 1.30 1.28 1.26 1.24 1.22 1.21 1.20 1.19 1.18 1.17 
40 5.19 3.00 2.36 2.05 1.87 1.66 1.SS 1.47 1.41 1.37 1.34 1.32 1.30 1.28 1.26 1.2S 1.24 1.23 1.21 1.20 
so 5.37 3.10 2.43 2.11 1.92 1.71 1.S9 1.SO 1.44 1.40 1.38 1.3S 1.34 1.31 1.29 1.28 1.27 1.26 1.24 1.23 
60 5.51 3.17 2.48 2.16 1.96 1.74 1.62 1.S3 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.26 1.2S 
7S 5.69 3.26 2.55 2.21 2.01 1.79 1.66 1.S7 1.Sl 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.29 1.28 

100 5.91 3.38 2.64 2.29 2.08 1.84 1.71 1.61 1.SS 1.Sl 1.47 1.4S 1.43 1.40 1.38 1.36 1.3S 1.34 1.32 1.31 
12S 6.08 3.47 2.71 2.34 2.13 1.89 1.7S 1.6S 1.58 1.S4 1.SO 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.3S 1.34 
150 6.22 3.54 2.76 2.39 2.17 1.92 1.78 1.68 1.61 1.S6 1.S3 1.50 1.48 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 
17S 6.34 3.60 2.81 2.43 2.20 1.9S 1.81 1.70 1.63 1.S9 1.SS 1.S2 1.50 1.47 1.4S 1.43 1.42 1.41 1.39 1.38 
200 6.44 3.66 2.85 2.46 2.23 1.98 1.83 1.72 1.6S 1.61 1.S7 1.S4 1.S2 1.49 1.46 1.4S 1.43 1.42 1.41 1.39 

Table 19-7. K-Multipliers for 1-of-3 Interwell Prediction Limits on Means of Order 2 (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.69 1.72 1.40 1.25 1.16 1.05 0.99 0.94 0.91 0.89 0.88 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
2 3.26 2.01 1.62 1.44 1.32 1.20 1.12 1.07 1.03 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
3 3.60 2.19 1.7S 1.SS 1.42 1.28 1.20 1.14 1.10 1.08 1.06 1.04 1.03 1.01 1.00 0.99 0.98 0.98 0.96 0.96 
4 3.84 2.31 1.8S 1.62 1.49 1.34 1.26 1.19 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.00 1.00 
s 4.03 2.41 1.92 1.68 1.S4 1.39 1.30 1.23 1.19 1.16 1.14 1.12 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
8 4.43 2.61 2.07 1.81 1.6S 1.48 1.38 1.31 1.26 1.23 1.21 1.19 1.17 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
12 4.77 2.79 2.20 1.92 1.7S 1.S6 1.46 1.38 1.33 1.29 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 
16 5.00 2.91 2.29 1.99 1.82 1.62 1.Sl 1.43 1.38 1.34 1.31 1.29 1.27 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 
20 5.19 3.00 2.36 2.05 1.87 1.66 1.SS 1.47 1.41 1.37 1.34 1.32 1.30 1.28 1.26 1.2S 1.24 1.23 1.21 1.20 
30 5.51 3.17 2.48 2.16 1.96 1.74 1.62 1.S3 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.26 1.2S 
40 5.74 3.29 2.S7 2.23 2.03 1.80 1.67 1.58 1.S2 1.47 1.44 1.42 1.40 1.37 1.3S 1.34 1.32 1.31 1.30 1.29 
so 5.91 3.38 2.64 2.29 2.08 1.84 1.71 1.61 1.SS 1.Sl 1.47 1.4S 1.43 1.40 1.38 1.36 1.3S 1.34 1.32 1.31 
60 6.05 3.45 2.69 2.33 2.12 1.88 1.74 1.64 1.58 1.S3 1.SO 1.47 1.4S 1.42 1.40 1.39 1.37 1.36 1.3S 1.33 
7S 6.22 3.54 2.76 2.39 2.17 1.92 1.78 1.68 1.61 1.S6 1.S3 1.50 1.48 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 

100 6.44 3.66 2.85 2.46 2.23 1.98 1.83 1.72 1.6S 1.61 1.S7 1.S4 1.S2 1.49 1.46 1.4S 1.43 1.42 1.41 1.39 
12S 6.61 3.74 2.91 2.Sl 2.28 2.02 1.87 1.76 1.69 1.64 1.60 1.S7 1.SS 1.Sl 1.49 1.47 1.46 1.4S 1.43 1.42 
150 6.74 3.81 2.96 2.S6 2.32 2.05 1.90 1.79 1.71 1.66 1.62 1.S9 1.S7 1.S4 1.Sl 1.50 1.48 1.47 1.4S 1.44 
17S 6.85 3.87 3.01 2.60 2.3S 2.08 1.93 1.81 1.74 1.68 1.64 1.62 1.S9 1.S6 1.S3 1.Sl 1.50 1.49 1.47 1.4S 
200 6.95 3.92 3.04 2.63 2.38 2.10 1.9S 1.83 1.76 1.70 1.66 1.63 1.61 1.S7 1.SS 1.S3 1.Sl 1.SO 1.48 1.47 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-7. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Means of Order 2 (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 3.26 2.01 1.62 1.44 1.32 1.20 1.12 1.07 1.03 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
2 3.84 2.31 1.8S 1.62 1.49 1.34 1.26 1.19 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.00 1.00 
3 4.19 2.49 1.98 1.73 1.S9 1.42 1.33 1.26 1.22 1.19 1.16 1.1S 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.05 
4 4.43 2.61 2.07 1.81 1.6S 1.48 1.38 1.31 1.26 1.23 1.21 1.19 1.17 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
s 4.62 2.71 2.14 1.87 1.71 1.S3 1.43 1.3S 1.30 1.27 1.24 1.22 1.21 1.18 1.17 1.16 1.1S 1.14 1.13 1.12 
8 5.00 2.91 2.29 1.99 1.82 1.62 1.Sl 1.43 1.38 1.34 1.31 1.29 1.27 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 
12 5.33 3.08 2.42 2.10 1.91 1.70 1.58 1.50 1.44 1.40 1.37 1.3S 1.33 1.30 1.28 1.27 1.26 1.2S 1.24 1.23 
16 5.56 3.20 2.SO 2.17 1.98 1.76 1.63 1.S4 1.48 1.44 1.41 1.39 1.37 1.34 1.32 1.31 1.30 1.29 1.27 1.26 
20 5.74 3.29 2.S7 2.23 2.03 1.80 1.67 1.58 1.S2 1.47 1.44 1.42 1.40 1.37 1.3S 1.34 1.32 1.31 1.30 1.29 
30 6.05 3.45 2.69 2.33 2.12 1.88 1.74 1.64 1.58 1.S3 1.SO 1.47 1.4S 1.42 1.40 1.39 1.37 1.36 1.3S 1.33 
40 6.27 3.57 2.78 2.40 2.18 1.93 1.79 1.69 1.62 1.S7 1.S4 1.Sl 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
so 6.44 3.66 2.85 2.46 2.23 1.98 1.83 1.72 1.6S 1.61 1.S7 1.S4 1.S2 1.49 1.46 1.4S 1.43 1.42 1.41 1.39 
60 6.57 3.73 2.90 2.SO 2.27 2.01 1.86 1.7S 1.68 1.63 1.S9 1.S7 1.S4 1.Sl 1.49 1.47 1.46 1.44 1.43 1.41 
7S 6.74 3.81 2.96 2.S6 2.32 2.05 1.90 1.79 1.71 1.66 1.62 1.S9 1.S7 1.S4 1.Sl 1.SO 1.48 1.47 1.4S 1.44 

100 6.95 3.92 3.04 2.63 2.38 2.10 1.9S 1.83 1.76 1.70 1.66 1.63 1.61 1.S7 1.55 1.S3 1.Sl 1.50 1.48 1.47 
12S 7.11 4.01 3.11 2.68 2.43 2.1S 1.99 1.87 1.79 1.73 1.69 1.66 1.64 1.60 1.S7 1.SS 1.S4 1.S3 1.Sl 1.49 
150 7.24 4.07 3.16 2.72 2.47 2.18 2.02 1.89 1.81 1.76 1.72 1.68 1.66 1.62 1.60 1.58 1.S6 1.SS 1.S3 1.Sl 
17S 7.34 4.13 3.20 2.76 2.50 2.21 2.04 1.92 1.84 1.78 1.74 1.70 1.68 1.64 1.61 1.S9 1.58 1.S7 1.S4 1.S3 
200 7.44 4.18 3.24 2.79 2.S3 2.23 2.06 1.94 1.8S 1.80 1.7S 1.72 1.70 1.66 1.63 1.61 1.S9 1.58 1.S6 1.S4 

Table 19-7. K-Multipliers for 1-of-3 Interwell Prediction Limits on Means of Order 2 (40 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.81 1.74 1.42 1.26 1.16 1.05 0.99 0.94 0.91 0.89 0.88 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
2 3.46 2.06 1.6S 1.4S 1.33 1.20 1.13 1.07 1.04 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
3 3.87 2.2S 1.78 1.S6 1.43 1.28 1.20 1.14 1.10 1.08 1.06 1.04 1.03 1.01 1.00 0.99 0.98 0.98 0.97 0.96 
4 4.17 2.39 1.88 1.64 1.50 1.3S 1.26 1.19 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
s 4.40 2.50 1.96 1.70 1.S6 1.39 1.30 1.23 1.19 1.16 1.14 1.12 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
8 4.90 2.73 2.12 1.84 1.67 1.49 1.39 1.31 1.27 1.23 1.21 1.19 1.18 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
12 5.33 2.93 2.26 1.95 1.77 1.S7 1.47 1.38 1.33 1.30 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 
16 5.63 3.07 2.36 2.03 1.84 1.63 1.S2 1.43 1.38 1.34 1.31 1.29 1.27 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 
20 5.86 3.18 2.44 2.09 1.90 1.68 1.S6 1.47 1.41 1.37 1.3S 1.32 1.31 1.28 1.26 1.2S 1.24 1.23 1.21 1.20 
30 6.29 3.38 2.58 2.21 2.00 1.76 1.63 1.S4 1.48 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.26 1.2S 
40 6.58 3.51 2.68 2.29 2.07 1.82 1.69 1.S9 1.S2 1.48 1.44 1.42 1.40 1.37 1.3S 1.34 1.32 1.32 1.30 1.29 
so 6.81 3.62 2.75 2.35 2.12 1.86 1.73 1.62 1.S6 1.Sl 1.48 1.4S 1.43 1.40 1.38 1.36 1.3S 1.34 1.33 1.31 
60 6.99 3.71 2.81 2.40 2.16 1.90 1.76 1.6S 1.58 1.S4 1.SO 1.48 1.4S 1.42 1.40 1.39 1.37 1.36 1.3S 1.34 
7S 7.21 3.81 2.89 2.46 2.22 1.9S 1.80 1.69 1.62 1.S7 1.S3 1.Sl 1.48 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 

100 7.49 3.95 2.98 2.54 2.29 2.00 1.8S 1.73 1.66 1.61 1.S7 1.S4 1.S2 1.49 1.47 1.4S 1.43 1.42 1.41 1.39 
12S 7.71 4.05 3.06 2.60 2.34 2.05 1.89 1.77 1.69 1.64 1.60 1.S7 1.SS 1.S2 1.49 1.47 1.46 1.4S 1.43 1.42 
150 7.89 4.13 3.12 2.65 2.38 2.08 1.92 1.80 1.72 1.67 1.63 1.60 1.S7 1.S4 1.Sl 1.50 1.48 1.47 1.4S 1.44 
17S 8.03 4.20 3.17 2.69 2.42 2.11 1.9S 1.82 1.74 1.69 1.6S 1.62 1.S9 1.S6 1.S3 1.Sl 1.50 1.49 1.47 1.4S 
200 8.16 4.26 3.21 2.73 2.45 2.14 1.97 1.84 1.76 1.71 1.67 1.64 1.61 1.S7 1.55 1.S3 1.S2 1.SO 1.48 1.47 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-7. K-Multipliers for 1-of-3 Interwel I Prediction Limits on Means of Order 2 ( 40 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 3.46 2.06 1.6S 1.4S 1.33 1.20 1.13 1.07 1.04 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
2 4.17 2.39 1.88 1.64 1.50 1.3S 1.26 1.19 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
3 4.59 2.S9 2.02 1.76 1.60 1.43 1.34 1.27 1.22 1.19 1.17 1.1S 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.05 
4 4.90 2.73 2.12 1.84 1.67 1.49 1.39 1.31 1.27 1.23 1.21 1.19 1.18 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
s 5.13 2.84 2.20 1.90 1.73 1.S4 1.43 1.3S 1.30 1.27 1.24 1.22 1.21 1.18 1.17 1.16 1.1S 1.14 1.13 1.12 
8 5.63 3.07 2.36 2.03 1.84 1.63 1.S2 1.43 1.38 1.34 1.31 1.29 1.27 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 
12 6.06 3.27 2.SO 2.15 1.94 1.72 1.S9 1.50 1.44 1.40 1.37 1.3S 1.33 1.30 1.29 1.27 1.26 1.2S 1.24 1.23 
16 6.35 3.41 2.60 2.23 2.01 1.77 1.6S 1.55 1.49 1.44 1.41 1.39 1.37 1.34 1.32 1.31 1.30 1.29 1.27 1.26 
20 6.58 3.51 2.68 2.29 2.07 1.82 1.69 1.S9 1.S2 1.48 1.44 1.42 1.40 1.37 1.3S 1.34 1.32 1.32 1.30 1.29 
30 6.99 3.71 2.81 2.40 2.16 1.90 1.76 1.6S 1.58 1.S4 1.50 1.48 1.4S 1.42 1.40 1.39 1.37 1.36 1.3S 1.34 
40 7.28 3.84 2.91 2.48 2.23 1.96 1.81 1.70 1.63 1.58 1.S4 1.Sl 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
so 7.49 3.95 2.98 2.54 2.29 2.00 1.8S 1.73 1.66 1.61 1.S7 1.S4 1.S2 1.49 1.47 1.4S 1.43 1.42 1.41 1.39 
60 7.67 4.03 3.04 2.S9 2.33 2.04 1.88 1.76 1.69 1.64 1.60 1.57 1.SS 1.Sl 1.49 1.47 1.46 1.4S 1.43 1.41 
7S 7.89 4.13 3.12 2.65 2.38 2.08 1.92 1.80 1.72 1.67 1.63 1.60 1.S7 1.54 1.51 1.50 1.48 1.47 1.4S 1.44 

100 8.16 4.26 3.21 2.73 2.4S 2.14 1.97 1.84 1.76 1.71 1.67 1.64 1.61 1.S7 1.55 1.S3 1.S2 1.50 1.48 1.47 
12S 8.37 4.36 3.28 2.79 2.SO 2.18 2.01 1.88 1.80 1.74 1.70 1.66 1.64 1.60 1.58 1.56 1.S4 1.S3 1.Sl 1.49 
150 8.53 4.44 3.34 2.83 2.S4 2.22 2.04 1.91 1.82 1.76 1.72 1.69 1.66 1.62 1.60 1.58 1.S6 1.SS 1.S3 1.Sl 
17S 8.68 4.51 3.39 2.87 2.S8 2.2S 2.07 1.93 1.8S 1.79 1.74 1.71 1.68 1.64 1.61 1.S9 1.58 1.S7 1.S4 1.S3 
200 8.80 4.57 3.43 2.91 2.61 2.27 2.09 1.9S 1.87 1.80 1.76 1.73 1.70 1.66 1.63 1.61 1.S9 1.58 1.S6 1.S4 

Table 19-7. K-Multipliers for 1-of-3 Interwell Prediction Li mi ts on Means of Order 2 ( 40 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 4.17 2.39 1.88 1.64 1.50 1.3S 1.26 1.19 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
2 4.90 2.73 2.12 1.84 1.67 1.49 1.39 1.31 1.27 1.23 1.21 1.19 1.18 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
3 5.33 2.93 2.26 1.9S 1.77 1.S7 1.47 1.38 1.33 1.30 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 
4 5.63 3.07 2.36 2.03 1.84 1.63 1.S2 1.43 1.38 1.34 1.31 1.29 1.27 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 
s 5.86 3.18 2.44 2.09 1.90 1.68 1.S6 1.47 1.41 1.37 1.3S 1.32 1.31 1.28 1.26 1.2S 1.24 1.23 1.21 1.20 
8 6.35 3.41 2.60 2.23 2.01 1.77 1.6S 1.55 1.49 1.44 1.41 1.39 1.37 1.34 1.32 1.31 1.30 1.29 1.27 1.26 
12 6.77 3.60 2.74 2.34 2.11 1.86 1.72 1.61 1.55 1.50 1.47 1.44 1.42 1.40 1.37 1.36 1.3S 1.34 1.32 1.31 
16 7.06 3.74 2.83 2.42 2.18 1.91 1.77 1.66 1.S9 1.SS 1.Sl 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.3S 1.34 
20 7.28 3.84 2.91 2.48 2.23 1.96 1.81 1.70 1.63 1.58 1.S4 1.Sl 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
30 7.67 4.03 3.04 2.S9 2.33 2.04 1.88 1.76 1.69 1.64 1.60 1.S7 1.55 1.Sl 1.49 1.47 1.46 1.4S 1.43 1.41 
40 7.95 4.16 3.14 2.67 2.40 2.10 1.93 1.81 1.73 1.68 1.64 1.61 1.58 1.SS 1.S2 1.50 1.49 1.48 1.46 1.4S 
so 8.16 4.26 3.21 2.73 2.4S 2.14 1.97 1.84 1.76 1.71 1.67 1.64 1.61 1.S7 1.55 1.S3 1.S2 1.50 1.48 1.47 
60 8.33 4.34 3.27 2.77 2.49 2.18 2.00 1.87 1.79 1.73 1.69 1.66 1.63 1.60 1.S7 1.SS 1.S4 1.S2 1.SO 1.49 
7S 8.53 4.44 3.34 2.83 2.S4 2.22 2.04 1.91 1.82 1.76 1.72 1.69 1.66 1.62 1.60 1.58 1.S6 1.SS 1.S3 1.Sl 

100 8.80 4.57 3.43 2.91 2.61 2.27 2.09 1.9S 1.87 1.80 1.76 1.73 1.70 1.66 1.63 1.61 1.S9 1.58 1.S6 1.S4 
12S 9.00 4.67 3.50 2.97 2.66 2.32 2.13 1.99 1.90 1.84 1.79 1.7S 1.73 1.69 1.66 1.64 1.62 1.61 1.58 1.S7 
150 9.16 4.74 3.56 3.01 2.70 2.3S 2.16 2.02 1.92 1.86 1.81 1.78 1.7S 1.71 1.68 1.66 1.64 1.63 1.60 1.S9 
17S 9.29 4.81 3.60 3.0£ 2.73 2.38 2.19 2.04 1.9S 1.88 1.83 1.80 1.77 1.73 1.69 1.67 1.66 1.64 1.62 1.60 
200 9.41 4.86 3.64 3.08 2.76 2.40 2.21 2.06 1.97 1.90 1.8S 1.81 1.78 1.74 1.71 1.69 1.67 1.66 1.63 1.62 
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Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.2S 1.04 0.96 0.91 0.88 0.84 0.82 0.81 0.79 0.79 0.78 0.78 0.77 0.77 0.76 0.76 0.76 0.76 0.7S 0.7S 
2 1.6S 1.3S 1.24 1.17 1.13 1.08 1.05 1.03 1.01 1.00 1.00 0.99 0.99 0.98 0.97 0.97 0.97 0.96 0.96 0.96 
3 1.87 1.S3 1.39 1.32 1.27 1.21 1.18 1.1S 1.13 1.12 1.11 1.11 1.10 1.09 1.09 1.08 1.08 1.07 1.07 1.07 
4 2.03 1.6S 1.50 1.42 1.36 1.30 1.26 1.23 1.22 1.20 1.19 1.18 1.18 1.17 1.16 1.16 1.1S 1.1S 1.14 1.14 
s 2.16 1.74 1.58 1.49 1.43 1.37 1.33 1.30 1.28 1.26 1.2S 1.24 1.24 1.23 1.22 1.21 1.21 1.21 1.20 1.20 
8 2.41 1.93 1.7S 1.6S 1.58 1.50 1.46 1.42 1.40 1.38 1.37 1.36 1.3S 1.34 1.33 1.33 1.32 1.32 1.31 1.31 
12 2.62 2.09 1.89 1.77 1.70 1.62 1.S7 1.S3 1.50 1.48 1.47 1.46 1.4S 1.44 1.43 1.42 1.42 1.41 1.40 1.40 
16 2.76 2.20 1.98 1.86 1.79 1.70 1.64 1.60 1.S7 1.SS 1.S4 1.S3 1.S2 1.SO 1.49 1.48 1.48 1.47 1.47 1.46 
20 2.87 2.28 2.05 1.93 1.8S 1.76 1.70 1.6S 1.63 1.60 1.S9 1.58 1.S7 1.SS 1.S4 1.S3 1.S3 1.S2 1.Sl 1.Sl 
30 3.06 2.43 2.18 2.05 1.96 1.86 1.80 1.7S 1.72 1.70 1.68 1.67 1.6S 1.64 1.63 1.62 1.61 1.61 1.60 1.S9 
40 3.19 2.S3 2.27 2.13 2.04 1.93 1.87 1.82 1.78 1.76 1.74 1.73 1.72 1.70 1.69 1.68 1.67 1.66 1.6S 1.6S 
so 3.29 2.61 2.34 2.19 2.10 1.99 1.92 1.87 1.83 1.81 1.79 1.77 1.76 1.74 1.73 1.72 1.71 1.71 1.70 1.69 
60 3.38 2.67 2.39 2.24 2.1S 2.03 1.96 1.91 1.87 1.8S 1.83 1.81 1.80 1.78 1.77 1.76 1.7S 1.74 1.73 1.72 
7S 3.47 2.74 2.46 2.30 2.21 2.09 2.02 1.96 1.92 1.89 1.87 1.86 1.84 1.83 1.81 1.80 1.79 1.79 1.77 1.77 

100 3.59 2.83 2.S4 2.38 2.28 2.1S 2.08 2.02 1.98 1.9S 1.93 1.92 1.90 1.88 1.87 1.86 1.8S 1.84 1.83 1.82 
12S 3.69 2.90 2.60 2.44 2.33 2.21 2.13 2.07 2.03 2.00 1.98 1.96 1.94 1.92 1.91 1.90 1.89 1.88 1.87 1.86 
150 3.76 2.96 2.6S 2.48 2.38 2.2S 2.17 2.11 2.07 2.04 2.01 1.99 1.98 1.96 1.94 1.93 1.92 1.91 1.90 1.89 
17S 3.82 3.01 2.69 2.S2 2.41 2.28 2.20 2.14 2.10 2.07 2.04 2.02 2.01 1.99 1.97 1.96 1.9S 1.94 1.93 1.92 
200 3.88 3.05 2.73 2.S6 2.4S 2.31 2.23 2.17 2.12 2.09 2.07 2.05 2.03 2.01 1.99 1.98 1.97 1.96 1.9S 1.94 

Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (1 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.6S 1.3S 1.24 1.17 1.13 1.08 1.05 1.03 1.01 1.00 1.00 0.99 0.99 0.98 0.97 0.97 0.97 0.96 0.96 0.96 
2 2.03 1.6S 1.50 1.42 1.36 1.30 1.26 1.23 1.22 1.20 1.19 1.18 1.18 1.17 1.16 1.16 1.1S 1.1S 1.14 1.14 
3 2.2S 1.82 1.6S 1.SS 1.49 1.42 1.38 1.3S 1.32 1.31 1.30 1.29 1.28 1.27 1.26 1.26 1.2S 1.2S 1.24 1.24 
4 2.41 1.93 1.7S 1.6S 1.58 1.50 1.46 1.42 1.40 1.38 1.37 1.36 1.3S 1.34 1.33 1.33 1.32 1.32 1.31 1.31 
s 2.S2 2.02 1.82 1.72 1.6S 1.S7 1.S2 1.48 1.46 1.44 1.43 1.42 1.41 1.39 1.39 1.38 1.37 1.37 1.36 1.36 
8 2.76 2.20 1.98 1.86 1.79 1.70 1.64 1.60 1.S7 1.SS 1.S4 1.S3 1.S2 1.SO 1.49 1.48 1.48 1.47 1.47 1.46 
12 2.96 2.3S 2.11 1.98 1.90 1.80 1.74 1.70 1.67 1.6S 1.63 1.62 1.61 1.S9 1.58 1.S7 1.S7 1.S6 1.SS 1.S4 
16 3.09 2.4S 2.20 2.07 1.98 1.88 1.82 1.77 1.73 1.71 1.69 1.68 1.67 1.6S 1.64 1.63 1.62 1.62 1.61 1.60 
20 3.19 2.S3 2.27 2.13 2.04 1.93 1.87 1.82 1.78 1.76 1.74 1.73 1.72 1.70 1.69 1.68 1.67 1.66 1.6S 1.6S 
30 3.38 2.67 2.39 2.24 2.1S 2.03 1.96 1.91 1.87 1.8S 1.83 1.81 1.80 1.78 1.77 1.76 1.7S 1.74 1.73 1.72 
40 3.50 2.76 2.48 2.32 2.22 2.10 2.03 1.97 1.94 1.91 1.89 1.87 1.86 1.84 1.82 1.81 1.80 1.80 1.79 1.78 
so 3.59 2.83 2.S4 2.38 2.28 2.1S 2.08 2.02 1.98 1.9S 1.93 1.92 1.90 1.88 1.87 1.86 1.8S 1.84 1.83 1.82 
60 3.67 2.89 2.S9 2.43 2.32 2.20 2.12 2.06 2.02 1.99 1.97 1.9S 1.94 1.92 1.90 1.89 1.88 1.87 1.86 1.8S 
7S 3.76 2.96 2.6S 2.48 2.38 2.2S 2.17 2.11 2.07 2.04 2.01 1.99 1.98 1.96 1.94 1.93 1.92 1.91 1.90 1.89 

100 3.88 3.05 2.73 2.S6 2.4S 2.31 2.23 2.17 2.12 2.09 2.07 2.05 2.03 2.01 1.99 1.98 1.97 1.96 1.9S 1.94 
12S 3.96 3.12 2.79 2.61 2.SO 2.36 2.28 2.21 2.17 2.13 2.11 2.09 2.08 2.05 2.03 2.02 2.01 2.00 1.99 1.98 
150 4.03 3.17 2.84 2.66 2.S4 2.40 2.32 2.2S 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.04 2.03 2.02 2.01 
17S 4.09 3.22 2.88 2.69 2.S8 2.43 2.3S 2.28 2.23 2.20 2.17 2.1S 2.14 2.11 2.09 2.08 2.07 2.06 2.05 2.03 
200 4.14 3.25 2.91 2.73 2.61 2.46 2.37 2.31 2.26 2.22 2.20 2.18 2.16 2.14 2.12 2.10 2.09 2.08 2.07 2.06 
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Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 2.03 1.6S 1.50 1.42 1.36 1.30 1.26 1.23 1.22 1.20 1.19 1.18 1.18 1.17 1.16 1.16 1.1S 1.1S 1.14 1.14 
2 2.41 1.93 1.7S 1.6S 1.58 1.50 1.46 1.42 1.40 1.38 1.37 1.36 1.3S 1.34 1.33 1.33 1.32 1.32 1.31 1.31 
3 2.62 2.09 1.89 1.77 1.70 1.62 1.S7 1.S3 1.50 1.48 1.47 1.46 1.4S 1.44 1.43 1.42 1.42 1.41 1.40 1.40 
4 2.76 2.20 1.98 1.86 1.79 1.70 1.64 1.60 1.S7 1.55 1.S4 1.S3 1.S2 1.50 1.49 1.48 1.48 1.47 1.47 1.46 
s 2.87 2.28 2.05 1.93 1.8S 1.76 1.70 1.6S 1.63 1.60 1.S9 1.58 1.S7 1.55 1.S4 1.S3 1.S3 1.S2 1.Sl 1.Sl 
8 3.09 2.4S 2.20 2.07 1.98 1.88 1.82 1.77 1.73 1.71 1.69 1.68 1.67 1.6S 1.64 1.63 1.62 1.62 1.61 1.60 
12 3.28 2.S9 2.33 2.18 2.09 1.98 1.91 1.86 1.82 1.80 1.78 1.77 1.7S 1.74 1.72 1.71 1.71 1.70 1.69 1.68 
16 3.40 2.69 2.41 2.26 2.16 2.05 1.98 1.92 1.89 1.86 1.84 1.83 1.81 1.79 1.78 1.77 1.76 1.76 1.74 1.74 
20 3.50 2.76 2.48 2.32 2.22 2.10 2.03 1.97 1.94 1.91 1.89 1.87 1.86 1.84 1.82 1.81 1.80 1.80 1.79 1.78 
30 3.67 2.89 2.S9 2.43 2.32 2.20 2.12 2.06 2.02 1.99 1.97 1.9S 1.94 1.92 1.90 1.89 1.88 1.87 1.86 1.8S 
40 3.79 2.98 2.67 2.SO 2.39 2.26 2.18 2.12 2.08 2.05 2.02 2.01 1.99 1.97 1.9S 1.94 1.93 1.92 1.91 1.90 
so 3.88 3.05 2.73 2.S6 2.4S 2.31 2.23 2.17 2.12 2.09 2.07 2.05 2.03 2.01 1.99 1.98 1.97 1.96 1.9S 1.94 
60 3.95 3.10 2.78 2.60 2.49 2.3S 2.27 2.20 2.16 2.13 2.10 2.08 2.07 2.04 2.03 2.01 2.00 2.00 1.98 1.97 
7S 4.03 3.17 2.84 2.66 2.S4 2.40 2.32 2.2S 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.04 2.03 2.02 2.01 

100 4.14 3.2S 2.91 2.73 2.61 2.46 2.37 2.31 2.26 2.22 2.20 2.18 2.16 2.14 2.12 2.10 2.09 2.08 2.07 2.06 
12S 4.23 3.32 2.97 2.78 2.66 2.Sl 2.42 2.3S 2.30 2.27 2.24 2.22 2.20 2.17 2.16 2.14 2.13 2.12 2.10 2.09 
150 4.29 3.37 3.01 2.82 2.70 2.SS 2.46 2.38 2.33 2.30 2.27 2.2S 2.23 2.21 2.19 2.17 2.16 2.1S 2.13 2.12 
17S 4.35 3.41 3.05 2.86 2.73 2.S8 2.49 2.41 2.36 2.33 2.30 2.28 2.26 2.23 2.21 2.20 2.19 2.18 2.16 2.1S 
200 4.40 3.45 3.08 2.89 2.76 2.60 2.Sl 2.44 2.39 2.3S 2.32 2.30 2.28 2.2S 2.24 2.22 2.21 2.20 2.18 2.17 

Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.78 1.41 1.27 1.20 1.1S 1.09 1.06 1.04 1.02 1.01 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.97 0.96 0.96 
2 2.24 1.74 1.SS 1.4S 1.39 1.32 1.28 1.24 1.22 1.21 1.20 1.19 1.18 1.17 1.16 1.16 1.1S 1.1S 1.1S 1.14 
3 2.S2 1.93 1.71 1.60 1.S3 1.44 1.40 1.36 1.33 1.32 1.30 1.29 1.29 1.28 1.27 1.26 1.26 1.2S 1.2S 1.24 
4 2.71 2.06 1.82 1.70 1.62 1.S3 1.48 1.44 1.41 1.39 1.38 1.37 1.36 1.3S 1.34 1.33 1.33 1.32 1.31 1.31 
s 2.86 2.16 1.91 1.78 1.69 1.60 1.S4 1.50 1.47 1.4S 1.43 1.42 1.41 1.40 1.39 1.38 1.38 1.37 1.36 1.36 
8 3.17 2.38 2.09 1.94 1.84 1.73 1.67 1.62 1.S9 1.S6 1.SS 1.S3 1.S2 1.Sl 1.SO 1.49 1.48 1.48 1.47 1.46 
12 3.43 2.S5 2.24 2.07 1.97 1.84 1.77 1.72 1.68 1.66 1.64 1.63 1.61 1.60 1.S9 1.58 1.S7 1.S6 1.SS 1.SS 
16 3.60 2.68 2.34 2.16 2.05 1.92 1.85 1.79 1.7S 1.73 1.71 1.69 1.68 1.66 1.6S 1.64 1.63 1.62 1.61 1.60 
20 3.74 2.77 2.42 2.23 2.12 1.98 1.91 1.84 1.80 1.78 1.76 1.74 1.73 1.71 1.69 1.68 1.67 1.67 1.66 1.6S 
30 3.98 2.94 2.S6 2.36 2.24 2.09 2.01 1.94 1.90 1.87 1.84 1.83 1.81 1.79 1.77 1.76 1.7S 1.7S 1.74 1.73 
40 4.15 3.05 2.6S 2.4S 2.32 2.16 2.08 2.01 1.96 1.93 1.90 1.89 1.87 1.8S 1.83 1.82 1.81 1.80 1.79 1.78 
so 4.27 3.14 2.73 2.Sl 2.38 2.22 2.13 2.06 2.01 1.98 1.9S 1.93 1.92 1.89 1.87 1.86 1.8S 1.84 1.83 1.82 
60 4.37 3.21 2.79 2.S7 2.43 2.27 2.17 2.10 2.05 2.01 1.99 1.97 1.9S 1.93 1.91 1.90 1.89 1.88 1.86 1.8S 
7S 4.49 3.29 2.86 2.63 2.49 2.32 2.22 2.1S 2.10 2.06 2.03 2.01 2.00 1.97 1.9S 1.94 1.93 1.92 1.90 1.89 

100 4.65 3.40 2.9S 2.71 2.S7 2.39 2.29 2.21 2.16 2.12 2.09 2.07 2.05 2.02 2.01 1.99 1.98 1.97 1.96 1.94 
12S 4.76 3.48 3.02 2.78 2.63 2.4S 2.34 2.26 2.20 2.16 2.13 2.11 2.09 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
150 4.86 3.55 3.07 2.83 2.67 2.49 2.38 2.30 2.24 2.20 2.17 2.1S 2.13 2.10 2.08 2.06 2.05 2.04 2.03 2.01 
17S 4.94 3.60 3.12 2.87 2.71 2.S2 2.42 2.33 2.27 2.23 2.20 2.18 2.16 2.13 2.11 2.09 2.08 2.07 2.05 2.04 
200 5.00 3.65 3.16 2.91 2.7S 2.S6 2.44 2.36 2.30 2.26 2.23 2.20 2.18 2.1S 2.13 2.11 2.10 2.09 2.07 2.06 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (2 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.24 1.74 1.SS 1.4S 1.39 1.32 1.28 1.24 1.22 1.21 1.20 1.19 1.18 1.17 1.16 1.16 1.1S 1.1S 1.1S 1.14 
2 2.71 2.06 1.82 1.70 1.62 1.S3 1.48 1.44 1.41 1.39 1.38 1.37 1.36 1.3S 1.34 1.33 1.33 1.32 1.31 1.31 
3 2.98 2.2S 1.98 1.84 1.7S 1.6S 1.S9 1.S4 1.Sl 1.49 1.48 1.47 1.46 1.44 1.43 1.42 1.42 1.41 1.41 1.40 
4 3.17 2.38 2.09 1.94 1.84 1.73 1.67 1.62 1.S9 1.S6 1.SS 1.S3 1.S2 1.Sl 1.SO 1.49 1.48 1.48 1.47 1.46 
s 3.31 2.47 2.17 2.01 1.91 1.79 1.73 1.67 1.64 1.62 1.60 1.S9 1.S7 1.S6 1.55 1.S4 1.S3 1.S3 1.S2 1.Sl 
8 3.60 2.68 2.34 2.16 2.05 1.92 1.85 1.79 1.7S 1.73 1.71 1.69 1.68 1.66 1.6S 1.64 1.63 1.62 1.61 1.60 
12 3.85 2.84 2.48 2.29 2.17 2.03 1.9S 1.89 1.8S 1.82 1.80 1.78 1.76 1.74 1.73 1.72 1.71 1.70 1.69 1.68 
16 4.02 2.96 2.S8 2.38 2.2S 2.11 2.02 1.96 1.91 1.88 1.86 1.84 1.82 1.80 1.79 1.78 1.77 1.76 1.7S 1.74 
20 4.15 3.05 2.6S 2.4S 2.32 2.16 2.08 2.01 1.96 1.93 1.90 1.89 1.87 1.8S 1.83 1.82 1.81 1.80 1.79 1.78 
30 4.37 3.21 2.79 2.S7 2.43 2.27 2.17 2.10 2.05 2.01 1.99 1.97 1.9S 1.93 1.91 1.90 1.89 1.88 1.86 1.8S 
40 4.53 3.32 2.88 2.6S 2.Sl 2.34 2.24 2.16 2.11 2.07 2.05 2.02 2.01 1.98 1.96 1.9S 1.94 1.93 1.92 1.91 
so 4.65 3.40 2.9S 2.71 2.S7 2.39 2.29 2.21 2.16 2.12 2.09 2.07 2.05 2.02 2.01 1.99 1.98 1.97 1.96 1.94 
60 4.74 3.47 3.01 2.77 2.62 2.44 2.33 2.2S 2.19 2.16 2.13 2.10 2.09 2.06 2.04 2.02 2.01 2.00 1.99 1.98 
7S 4.86 3.55 3.07 2.83 2.67 2.49 2.38 2.30 2.24 2.20 2.17 2.1S 2.13 2.10 2.08 2.06 2.05 2.04 2.03 2.01 

100 5.00 3.65 3.16 2.91 2.7S 2.S6 2.44 2.36 2.30 2.26 2.23 2.20 2.18 2.1S 2.13 2.11 2.10 2.09 2.07 2.06 
12S 5.11 3.73 3.23 2.97 2.80 2.61 2.49 2.40 2.34 2.30 2.27 2.24 2.22 2.19 2.17 2.1S 2.14 2.13 2.11 2.10 
1SO 5.20 3.79 3.28 3.01 2.8S 2.6S 2.S3 2.44 2.38 2.33 2.30 2.28 2.2S 2.22 2.20 2.18 2.17 2.16 2.14 2.13 
17S 5.28 3.84 3.32 3.05 2.88 2.68 2.S6 2.47 2.41 2.36 2.33 2.30 2.28 2.2S 2.23 2.21 2.20 2.19 2.17 2.1S 
200 5.34 3.89 3.36 3.09 2.92 2.71 2.S9 2.SO 2.43 2.39 2.3S 2.33 2.31 2.27 2.2S 2.23 2.22 2.21 2.19 2.17 

Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (2 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.71 2.06 1.82 1.70 1.62 1.S3 1.48 1.44 1.41 1.39 1.38 1.37 1.36 1.3S 1.34 1.33 1.33 1.32 1.31 1.31 
2 3.17 2.38 2.09 1.94 1.84 1.73 1.67 1.62 1.S9 1.S6 1.SS 1.S3 1.S2 1.Sl 1.SO 1.49 1.48 1.48 1.47 1.46 
3 3.43 2.S5 2.24 2.07 1.97 1.84 1.77 1.72 1.68 1.66 1.64 1.63 1.61 1.60 1.S9 1.58 1.S7 1.S6 1.55 1.55 
4 3.60 2.68 2.34 2.16 2.05 1.92 1.85 1.79 1.7S 1.73 1.71 1.69 1.68 1.66 1.6S 1.64 1.63 1.62 1.61 1.60 
s 3.74 2.77 2.42 2.23 2.12 1.98 1.91 1.84 1.80 1.78 1.76 1.74 1.73 1.71 1.69 1.68 1.67 1.67 1.66 1.6S 
8 4.02 2.96 2.S8 2.38 2.2S 2.11 2.02 1.96 1.91 1.88 1.86 1.84 1.82 1.80 1.79 1.78 1.77 1.76 1.7S 1.74 
12 4.25 3.12 2.71 2.SO 2.37 2.21 2.12 2.05 2.00 1.97 1.94 1.92 1.91 1.88 1.87 1.8S 1.84 1.84 1.82 1.81 
16 4.41 3.23 2.81 2.S9 2.4S 2.28 2.19 2.11 2.06 2.03 2.00 1.98 1.96 1.94 1.92 1.91 1.90 1.89 1.88 1.87 
20 4.53 3.32 2.88 2.6S 2.Sl 2.34 2.24 2.16 2.11 2.07 2.05 2.02 2.01 1.98 1.96 1.9S 1.94 1.93 1.92 1.91 
30 4.74 3.47 3.01 2.77 2.62 2.44 2.33 2.2S 2.19 2.16 2.13 2.10 2.09 2.06 2.04 2.02 2.01 2.00 1.99 1.98 
40 4.89 3.57 3.09 2.84 2.69 2.SO 2.40 2.31 2.2S 2.21 2.18 2.16 2.14 2.11 2.09 2.07 2.06 2.05 2.04 2.02 
so 5.00 3.65 3.16 2.91 2.7S 2.S6 2.44 2.36 2.30 2.26 2.23 2.20 2.18 2.1S 2.13 2.11 2.10 2.09 2.07 2.06 
60 5.09 3.71 3.22 2.95 2.79 2.60 2.48 2.39 2.33 2.29 2.26 2.23 2.21 2.18 2.16 2.1S 2.13 2.12 2.10 2.09 
7S 5.20 3.79 3.28 3.01 2.8S 2.6S 2.S3 2.44 2.38 2.33 2.30 2.28 2.2S 2.22 2.20 2.18 2.17 2.16 2.14 2.13 

100 5.34 3.89 3.36 3.09 2.92 2.71 2.S9 2.SO 2.43 2.39 2.3S 2.33 2.31 2.27 2.2S 2.23 2.22 2.21 2.19 2.17 
12S 5.44 3.96 3.43 3.15 2.97 2.76 2.64 2.S4 2.48 2.43 2.40 2.37 2.3S 2.31 2.29 2.27 2.26 2.24 2.22 2.21 
1SO 5.53 4.02 3.48 3.19 3.01 2.80 2.68 2.S8 2.Sl 2.46 2.43 2.40 2.38 2.34 2.32 2.30 2.29 2.27 2.2S 2.24 
17S 5.60 4.07 3,52 3.23 3.05 2.83 2.71 2.61 2.S4 2.49 2.46 2.43 2.40 2.37 2.34 2.32 2.31 2.30 2.28 2.26 
200 5.66 4.11 3.56 3.26 3.08 2.86 2.74 2.63 2.S7 2.S2 2.48 2.4S 2.43 2.39 2.37 2.3S 2.33 2.32 2.30 2.28 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (5 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.62 1.92 1.68 1.S6 1.49 1.40 1.3S 1.31 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 1.22 1.21 1.21 1.20 1.20 
2 3.22 2.29 1.98 1.82 1.73 1.62 1.55 1.Sl 1.48 1.4S 1.44 1.43 1.42 1.40 1.39 1.38 1.38 1.37 1.37 1.36 
3 3.58 2.Sl 2.1S 1.97 1.86 1.74 1.67 1.61 1.58 1.56 1.S4 1.S2 1.Sl 1.SO 1.49 1.48 1.47 1.46 1.46 1.4S 
4 3.83 2.66 2.27 2.08 1.96 1.82 1.7S 1.69 1.6S 1.63 1.61 1.S9 1.58 1.S6 1.55 1.S4 1.S3 1.S3 1.S2 1.Sl 
s 4.03 2.78 2.36 2.16 2.03 1.89 1.81 1.7S 1.71 1.68 1.66 1.64 1.63 1.61 1.60 1.S9 1.58 1.S7 1.S6 1.S6 
8 4.44 3.03 2.S6 2.32 2.18 2.02 1.93 1.86 1.82 1.79 1.76 1.7S 1.73 1.71 1.70 1.69 1.68 1.67 1.66 1.6S 
12 4.79 3.23 2.72 2.47 2.31 2.14 2.04 1.96 1.91 1.88 1.8S 1.83 1.82 1.80 1.78 1.77 1.76 1.7S 1.74 1.73 
16 5.03 3.38 2.84 2.S7 2.40 2.22 2.11 2.03 1.98 1.94 1.92 1.89 1.88 1.8S 1.84 1.82 1.81 1.81 1.79 1.78 
20 5.21 3.49 2.93 2.64 2.47 2.28 2.17 2.08 2.03 1.99 1.96 1.94 1.92 1.90 1.88 1.87 1.86 1.8S 1.83 1.82 
30 5.53 3.69 3.08 2.78 2.60 2.39 2.27 2.18 2.12 2.08 2.05 2.02 2.01 1.98 1.96 1.94 1.93 1.92 1.91 1.90 
40 5.76 3.83 3.19 2.88 2.69 2.46 2.34 2.24 2.18 2.14 2.11 2.08 2.06 2.03 2.01 2.00 1.98 1.98 1.96 1.9S 
so 5.93 3.93 3.28 2.95 2.7S 2.S2 2.39 2.30 2.23 2.19 2.1S 2.13 2.11 2.07 2.05 2.04 2.02 2.01 2.00 1.99 
60 6.07 4.02 3.35 3.01 2.81 2.S7 2.44 2.34 2.27 2.22 2.19 2.16 2.14 2.11 2.09 2.07 2.06 2.05 2.03 2.02 
7S 6.23 4.12 3.43 3.08 2.87 2.63 2.49 2.39 2.32 2.27 2.23 2.20 2.18 2.1S 2.13 2.11 2.10 2.09 2.07 2.05 

100 6.44 4.25 3.53 3.17 2.9S 2.70 2.S6 2.4S 2.38 2.33 2.29 2.26 2.24 2.20 2.18 2.16 2.1S 2.13 2.11 2.10 
12S 6.60 4.35 3.61 3.24 3.02 2.76 2.61 2.SO 2.42 2.37 2.33 2.30 2.28 2.24 2.22 2.20 2.18 2.17 2.1S 2.14 
1SO 6.72 4.42 3.67 3.30 3.07 2.80 2.6S 2.S4 2.46 2.41 2.37 2.34 2.31 2.28 2.2S 2.23 2.21 2.20 2.18 2.17 
17S 6.83 4.49 3.73 3.34 3.11 2.84 2.69 2.S7 2.49 2.44 2.40 2.37 2.34 2.30 2.28 2.26 2.24 2.23 2.21 2.19 
200 6.92 4.55 3.77 3.38 3.15 2.87 2.72 2.60 2.S2 2.46 2.42 2.39 2.36 2.33 2.30 2.28 2.26 2.2S 2.23 2.21 

Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Li mi ts on Means of Order 3 (5 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 3.22 2.29 1.98 1.82 1.73 1.62 1.SS 1.Sl 1.48 1.4S 1.44 1.43 1.42 1.40 1.39 1.38 1.38 1.37 1.37 1.36 
2 3.83 2.66 2.27 2.08 1.96 1.82 1.7S 1.69 1.6S 1.63 1.61 1.S9 1.58 1.S6 1.55 1.S4 1.S3 1.S3 1.S2 1.Sl 
3 4.19 2.88 2.44 2.22 2.09 1.94 1.86 1.79 1.7S 1.72 1.70 1.68 1.67 1.6S 1.64 1.63 1.62 1.61 1.60 1.S9 
4 4.44 3.03 2.S6 2.32 2.18 2.02 1.93 1.86 1.82 1.79 1.76 1.7S 1.73 1.71 1.70 1.69 1.68 1.67 1.66 1.6S 
s 4.63 3.14 2.6S 2.40 2.26 2.09 1.99 1.92 1.87 1.84 1.81 1.79 1.78 1.76 1.74 1.73 1.72 1.72 1.70 1.69 
8 5.03 3.38 2.84 2.S7 2.40 2.22 2.11 2.03 1.98 1.94 1.92 1.89 1.88 1.8S 1.84 1.82 1.81 1.81 1.79 1.78 
12 5.36 3.58 3.00 2.71 2.S3 2.33 2.21 2.13 2.07 2.03 2.00 1.98 1.96 1.93 1.92 1.90 1.89 1.88 1.87 1.86 
16 5.59 3.72 3.11 2.80 2.62 2.41 2.29 2.19 2.13 2.09 2.06 2.04 2.02 1.99 1.97 1.96 1.94 1.93 1.92 1.91 
20 5.76 3.83 3.19 2.88 2.69 2.46 2.34 2.24 2.18 2.14 2.11 2.08 2.06 2.03 2.01 2.00 1.98 1.98 1.96 1.9S 
30 6.07 4.02 3.35 3.01 2.81 2.S7 2.44 2.34 2.27 2.22 2.19 2.16 2.14 2.11 2.09 2.07 2.06 2.05 2.03 2.02 
40 6.28 4.15 3.45 3.10 2.89 2.6S 2.Sl 2.40 2.33 2.28 2.2S 2.22 2.20 2.16 2.14 2.12 2.11 2.10 2.08 2.06 
so 6.44 4.25 3.53 3.17 2.9S 2.70 2.S6 2.4S 2.38 2.33 2.29 2.26 2.24 2.20 2.18 2.16 2.1S 2.13 2.11 2.10 
60 6.57 4.33 3.59 3.23 3.01 2.7S 2.60 2.49 2.42 2.36 2.32 2.29 2.27 2.24 2.21 2.19 2.17 2.17 2.14 2.13 
7S 6.72 4.42 3.67 3.30 3.07 2.80 2.6S 2.S4 2.46 2.41 2.37 2.34 2.31 2.28 2.2S 2.23 2.21 2.20 2.18 2.17 

100 6.92 4.55 3.77 3.38 3.1S 2.87 2.72 2.60 2.S2 2.46 2.42 2.39 2.36 2.33 2.30 2.28 2.26 2.2S 2.23 2.21 
12S 7.07 4.64 3.85 3.45 3.21 2.93 2.77 2.6S 2.S6 2.Sl 2.46 2.43 2.40 2.36 2.33 2.32 2.30 2.29 2.26 2.2S 
1SO 7.19 4.72 3.91 3.50 3.26 2.97 2.81 2.68 2.60 2.S4 2.SO 2.46 2.44 2.40 2.37 2.3S 2.33 2.32 2.29 2.28 
17S 7.29 4.78 3.96 3.55 3.30 3.01 2.84 2.72 2.63 2.S7 2.S3 2.49 2.46 2.42 2.39 2.37 2.3S 2.34 2.32 2.30 
200 7.34 4.83 4.00 3.59 3.34 3.04 2.87 2.74 2.66 2.60 2.SS 2.S2 2.49 2.4S 2.42 2.39 2.38 2.36 2.34 2.32 
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Appendix D. Chapter 19 Interwell K-Tables for Means Unified Guidance 

Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (5 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 3.83 2.66 2.27 2.08 1.96 1.82 1.7S 1.69 1.6S 1.63 1.61 1.S9 1.58 1.S6 1.SS 1.S4 1.S3 1.S3 1.S2 1.Sl 
2 4.44 3.03 2.S6 2.32 2.18 2.02 1.93 1.86 1.82 1.79 1.76 1.7S 1.73 1.71 1.70 1.69 1.68 1.67 1.66 1.6S 
3 4.79 3.23 2.72 2.47 2.31 2.14 2.04 1.96 1.91 1.88 1.8S 1.83 1.82 1.80 1.78 1.77 1.76 1.7S 1.74 1.73 
4 5.03 3.38 2.84 2.S7 2.40 2.22 2.11 2.03 1.98 1.94 1.92 1.89 1.88 1.8S 1.84 1.82 1.81 1.81 1.79 1.78 
s 5.21 3.49 2.93 2.64 2.47 2.28 2.17 2.08 2.03 1.99 1.96 1.94 1.92 1.90 1.88 1.87 1.86 1.8S 1.83 1.82 
8 5.59 3.72 3.11 2.80 2.62 2.41 2.29 2.19 2.13 2.09 2.06 2.04 2.02 1.99 1.97 1.96 1.94 1.93 1.92 1.91 
12 5.90 3.91 3.26 2.94 2.74 2.Sl 2.38 2.29 2.22 2.18 2.14 2.12 2.10 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
16 6.11 4.05 3.37 3.03 2.83 2.S9 2.4S 2.3S 2.28 2.24 2.20 2.17 2.1S 2.12 2.10 2.08 2.07 2.06 2.04 2.03 
20 6.28 4.15 3.4S 3.10 2.89 2.6S 2.Sl 2.40 2.33 2.28 2.2S 2.22 2.20 2.16 2.14 2.12 2.11 2.10 2.08 2.06 
30 6.57 4.33 3.59 3.23 3.01 2.7S 2.60 2.49 2.42 2.36 2.32 2.29 2.27 2.24 2.21 2.19 2.17 2.17 2.14 2.13 
40 6.77 4.45 3.70 3.32 3.09 2.82 2.67 2.S5 2.47 2.42 2.38 2.3S 2.32 2.29 2.26 2.24 2.23 2.21 2.19 2.18 
so 6.92 4.55 3.77 3.38 3.1S 2.87 2.72 2.60 2.S2 2.46 2.42 2.39 2.36 2.33 2.30 2.28 2.26 2.2S 2.23 2.21 
60 7.04 4.62 3.83 3.44 3.20 2.92 2.76 2.64 2.S6 2.50 2.46 2.42 2.40 2.36 2.33 2.31 2.29 2.28 2.26 2.24 
7S 7.19 4.72 3.91 3.50 3.26 2.97 2.81 2.68 2.60 2.S4 2.50 2.46 2.44 2.40 2.37 2.3S 2.33 2.32 2.29 2.28 

100 7.34 4.83 4.00 3,59 3.34 3.04 2.87 2.74 2.66 2.60 2.SS 2.S2 2.49 2.4S 2.42 2.39 2.38 2.36 2.34 2.32 
12S 7.52 4.92 4.08 3.65 3.39 3.09 2.92 2.79 2.70 2.64 2.S9 2.S6 2.S3 2.48 2.4S 2.43 2.41 2.40 2.37 2.3S 
150 7.64 5.00 4.13 3.70 3.44 3.14 2.96 2.83 2.74 2.67 2.62 2.S9 2.S6 2.Sl 2.48 2.46 2.44 2.43 2.40 2.38 
17S 7.73 5.06 4.18 3.75 3.48 3.17 2.99 2.86 2.77 2.70 2.6S 2.61 2.S8 2.S4 2.Sl 2.48 2.46 2.4S 2.42 2.40 
200 7.82 5.11 4.23 3.78 3.52 3.20 3.02 2.88 2.79 2.73 2.68 2.64 2.61 2.S6 2.S3 2.SO 2.49 2.47 2.44 2.42 

Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 3.41 2.3S 2.01 1.84 1.74 1.62 1.S6 1.Sl 1.48 1.46 1.44 1.43 1.42 1.40 1.39 1.39 1.38 1.37 1.37 1.36 
2 4.15 2.76 2.32 2.10 1.98 1.83 1.7S 1.69 1.6S 1.63 1.61 1.S9 1.58 1.S6 1.55 1.S4 1.S3 1.S3 1.S2 1.Sl 
3 4.60 3.00 2.SO 2.26 2.12 1.9S 1.86 1.80 1.7S 1.72 1.70 1.69 1.67 1.6S 1.64 1.63 1.62 1.61 1.60 1.S9 
4 4.92 3.17 2.63 2.37 2.21 2.04 1.94 1.87 1.82 1.79 1.77 1.7S 1.73 1.71 1.70 1.69 1.68 1.67 1.66 1.6S 
s 5.16 3.30 2.73 2.4S 2.29 2.10 2.00 1.93 1.88 1.84 1.82 1.80 1.78 1.76 1.74 1.73 1.72 1.72 1.70 1.69 
8 5.68 3.58 2.94 2.63 2.4S 2.24 2.13 2.04 1.99 1.9S 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
12 6.11 3.82 3.12 2.78 2.S8 2.36 2.23 2.14 2.08 2.04 2.01 1.98 1.96 1.94 1.92 1.90 1.89 1.88 1.87 1.86 
16 6.41 3.99 3.24 2.89 2.68 2.44 2.31 2.21 2.14 2.10 2.07 2.04 2.02 1.99 1.97 1.96 1.9S 1.94 1.92 1.91 
20 6.64 4.11 3.34 2.97 2.7S 2.SO 2.36 2.26 2.19 2.1S 2.11 2.09 2.07 2.04 2.01 2.00 1.99 1.98 1.96 1.9S 
30 7.05 4.34 3.51 3.11 2.88 2.61 2.47 2.3S 2.28 2.23 2.20 2.17 2.1S 2.11 2.09 2.07 2.06 2.05 2.03 2.02 
40 7.33 4.50 3.63 3.22 2.97 2.69 2.S4 2.42 2.34 2.29 2.2S 2.22 2.20 2.17 2.14 2.12 2.11 2.10 2.08 2.07 
so 7 .55 4.62 3.73 3.30 3.04 2.7S 2.S9 2.47 2.39 2.34 2.30 2.27 2.24 2.21 2.18 2.16 2.1S 2.14 2.12 2.10 
60 7.72 4.71 3.80 3.36 3.10 2.80 2.63 2.50 2.43 2.38 2.33 2.30 2.28 2.24 2.21 2.19 2.18 2.17 2.1S 2.13 
7S 7.93 4.83 3.89 3.44 3.17 2.86 2.69 2.S6 2.48 2.42 2.38 2.34 2.32 2.28 2.2S 2.23 2.22 2.20 2.18 2.17 

100 8.19 4.98 4.00 3.53 3.25 2.94 2.76 2.63 2.S4 2.48 2.43 2.40 2.37 2.33 2.30 2.28 2.27 2.2S 2.23 2.21 
12S 8.39 5.09 4.09 3.61 3.32 2.99 2.81 2.67 2.S8 2.S2 2.48 2.44 2.41 2.37 2.34 2.32 2.30 2.29 2.27 2.2S 
150 8.55 5.18 4.16 3.67 3.38 3.04 2.86 2.71 2.62 2.S6 2.Sl 2.47 2.4S 2.40 2.37 2.3S 2.33 2.32 2.29 2.28 
17S 8.68 5.26 4.22 3.72 3.42 3.08 2.89 2.7S 2.6S 2.S9 2.S4 2.SO 2.47 2.43 2.40 2.38 2.36 2.34 2.32 2.30 
200 8.80 5.32 4.27 3.76 3.46 3.12 2.92 2.78 2.68 2.61 2.S7 2.S3 2.SO 2.4S 2.42 2.40 2.38 2.36 2.34 2.26 
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Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (10 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 4.15 2.76 2.32 2.10 1.98 1.83 1.7S 1.69 1.6S 1.63 1.61 1.S9 1.58 1.S6 1.SS 1.S4 1.S3 1.S3 1.S2 1.Sl 
2 4.92 3.17 2.63 2.37 2.21 2.04 1.94 1.87 1.82 1.79 1.77 1.7S 1.73 1.71 1.70 1.69 1.68 1.67 1.66 1.6S 
3 5.36 3.41 2.81 2.S2 2.3S 2.16 2.05 1.97 1.92 1.88 1.86 1.84 1.82 1.80 1.78 1.77 1.76 1.7S 1.74 1.73 
4 5.68 3.58 2.94 2.63 2.4S 2.24 2.13 2.04 1.99 1.9S 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
s 5.92 3.71 3.04 2.71 2.S2 2.30 2.18 2.09 2.04 2.00 1.97 1.9S 1.93 1.90 1.88 1.87 1.86 1.85 1.83 1.82 
8 6.41 3.99 3.24 2.89 2.68 2.44 2.31 2.21 2.14 2.10 2.07 2.04 2.02 1.99 1.97 1.96 1.9S 1.94 1.92 1.91 
12 6.83 4.22 3.42 3.03 2.81 2.SS 2.41 2.30 2.23 2.19 2.1S 2.12 2.10 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
16 7.11 4.38 3.54 3.14 2.90 2.63 2.48 2.37 2.30 2.2S 2.21 2.18 2.16 2.12 2.10 2.08 2.07 2.06 2.04 2.03 
20 7.33 4.50 3.63 3.22 2.97 2.69 2.S4 2.42 2.34 2.29 2.2S 2.22 2.20 2.17 2.14 2.12 2.11 2.10 2.08 2.07 
30 7.72 4.71 3.80 3.36 3.10 2.80 2.63 2.SO 2.43 2.38 2.33 2.30 2.28 2.24 2.21 2.19 2.18 2.17 2.1S 2.13 
40 7.99 4.87 3.92 3.46 3.19 2.88 2.71 2.S8 2.49 2.43 2.39 2.36 2.33 2.29 2.26 2.24 2.23 2.22 2.19 2.18 
so 8.19 4.98 4.00 3.53 3.25 2.94 2.76 2.63 2.S4 2.48 2.43 2.40 2.37 2.33 2.30 2.28 2.27 2.2S 2.23 2.21 
60 8.35 5.07 4.08 3.59 3.31 2.98 2.80 2.67 2.S8 2.Sl 2.47 2.43 2.41 2.36 2.33 2.31 2.30 2.28 2.26 2.24 
7S 8.55 5.18 4.16 3.67 3.38 3.04 2.86 2.71 2.62 2.S6 2.Sl 2.47 2.4S 2.40 2.37 2.3S 2.33 2.32 2.29 2.28 

100 8.80 5.32 4.27 3.76 3.46 3.12 2.92 2.78 2.68 2.61 2.S7 2.S3 2.SO 2.4S 2.42 2.40 2.38 2.36 2.34 2.26 
12S 8.99 5.43 4.36 3.83 3.53 3.17 2.98 2.82 2.73 2.66 2.61 2.S7 2.S4 2.49 2.46 2.43 2.42 2.40 2.37 2.36 
150 9.14 5.52 4.42 3.89 3.58 3.22 3.02 2.86 2.76 2.69 2.64 2.60 2.S7 2.S2 2.49 2.46 2.44 2.43 2.40 2.38 
17S 9.27 5.60 4.48 3.94 3.62 3.26 3.05 2.90 2.79 2.72 2.67 2.63 2.60 2.SS 2.Sl 2.49 2.47 2.4S 2.42 2.41 
200 9.38 5.66 4.53 3.98 3.66 3.29 3.08 2.92 2.82 2.7S 2.69 2.6S 2.62 2.S7 2.S4 2.Sl 2.49 2.47 2.4S 2.43 

Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (10 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 4.92 3.17 2.63 2.37 2.21 2.04 1.94 1.87 1.82 1.79 1.77 1.7S 1.73 1.71 1.70 1.69 1.68 1.67 1.66 1.6S 
2 5.68 3.58 2.94 2.63 2.4S 2.24 2.13 2.04 1.99 1.9S 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
3 6.11 3.82 3.12 2.78 2.S8 2.36 2.23 2.14 2.08 2.04 2.01 1.98 1.96 1.94 1.92 1.90 1.89 1.88 1.87 1.86 
4 6.41 3.99 3.24 2.89 2.68 2.44 2.31 2.21 2.14 2.10 2.07 2.04 2.02 1.99 1.97 1.96 1.9S 1.94 1.92 1.91 
s 6.64 4.11 3.34 2.97 2.7S 2.SO 2.36 2.26 2.19 2.1S 2.11 2.09 2.07 2.04 2.01 2.00 1.99 1.98 1.96 1.9S 
8 7.11 4.38 3.54 3.14 2.90 2.63 2.48 2.37 2.30 2.2S 2.21 2.18 2.16 2.12 2.10 2.08 2.07 2.06 2.04 2.03 
12 7.51 4.60 3.71 3.28 3.03 2.74 2.S8 2.46 2.38 2.33 2.29 2.26 2.24 2.20 2.17 2.16 2.14 2.13 2.11 2.10 
16 7.78 4.75 3.83 3.38 3.12 2.82 2.6S 2.S3 2.44 2.39 2.3S 2.31 2.29 2.2S 2.23 2.21 2.19 2.18 2.16 2.14 
20 7.99 4.87 3.92 3.46 3.19 2.88 2.71 2.S8 2.49 2.43 2.39 2.36 2.33 2.29 2.26 2.24 2.23 2.22 2.19 2.18 
30 8.35 5.07 4.08 3.59 3.31 2.98 2.80 2.67 2.S8 2.Sl 2.47 2.43 2.41 2.36 2.33 2.31 2.30 2.28 2.26 2.24 
40 8.60 5.22 4.19 3.69 3.39 3.06 2.87 2.73 2.64 2.S7 2.S2 2.49 2.46 2.41 2.38 2.36 2.34 2.33 2.30 2.29 
so 8.80 5.32 4.27 3.76 3.46 3.12 2.92 2.78 2.68 2.61 2.S7 2.S3 2.SO 2.4S 2.42 2.40 2.38 2.36 2.34 2.26 
60 8.95 5.42 4.34 3.82 3.51 3.16 2.97 2.82 2.72 2.6S 2.60 2.S6 2.S3 2.48 2.4S 2.43 2.41 2.39 2.37 2.3S 
7S 9.14 5.52 4.42 3.89 3.58 3.22 3.02 2.86 2.76 2.69 2.64 2.60 2.S7 2.S2 2.49 2.46 2.44 2.43 2.40 2.38 

100 9.38 5.66 4.53 3.98 3.66 3.29 3.08 2.92 2.82 2.7S 2.69 2.6S 2.62 2.S7 2.S4 2.Sl 2.49 2.47 2.4S 2.43 
12S 9.56 5.76 4.61 4.05 3.72 3.34 3.13 2.97 2.86 2.79 2.73 2.69 2.66 2.61 2.S7 2.S4 2.S2 2.Sl 2.48 2.46 
150 9.70 5.85 4.68 4.11 3.77 3.39 3.17 3.01 2.90 2.82 2.77 2.72 2.69 2.64 2.60 2.S7 2.SS 2.S4 2.Sl 2.49 
17S 9.82 5.91 4.73 4.16 3.82 3.43 3.21 3.04 2.93 2.8S 2.80 2.7S 2.72 2.66 2.63 2.60 2.S8 2.S6 2.S3 2.Sl 
200 9.93 5.97 4.77 4.20 3.85 3.46 3.24 3.07 2.96 2.88 2.82 2.77 2.74 2.68 2.6S 2.62 2.60 2.S8 2.SS 2.S3 
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Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (20 COC, Annual) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 4.38 2.82 2.34 2.12 1.99 1.84 1.76 1.70 1.66 1.63 1.61 1.59 1.58 1.56 1.55 1.54 1.53 1.53 1.52 1.51 
2 5.31 3.27 2.67 2.39 2.23 2.05 1.95 1.87 1.83 1.79 1.77 1.75 1.74 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
3 5.86 3.54 2.87 2.55 2.37 2.17 2.06 1.97 1.92 1.89 1.86 1.84 1.82 1.80 1.78 1.77 1.76 1.75 1.74 1.73 
4 6.26 3.74 3.01 2.67 2.47 2.25 2.13 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
5 6.57 3.89 3.12 2.76 2.55 2.32 2.19 2.10 2.04 2.00 1.97 1.95 1.93 1.90 1.88 1.87 1.86 1.85 1.83 1.82 
8 7.22 4.21 3.35 2.95 2.71 2.46 2.32 2.21 2.15 2.10 2.07 2.04 2.02 1.99 1.97 1.96 1.95 1.94 1.92 1.91 
12 7.76 4.48 3.54 3.11 2.85 2.57 2.42 2.31 2.24 2.19 2.15 2.13 2.10 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
16 8.14 4.67 3.68 3.22 2.95 2.66 2.50 2.38 2.30 2.25 2.21 2.18 2.16 2.13 2.10 2.08 2.07 2.06 2.04 2.03 
20 8.43 4.81 3.78 3.31 3.03 2.72 2.56 2.43 2.35 2.30 2.26 2.23 2.20 2.17 2.14 2.12 2.11 2.10 2.08 2.07 
30 8.94 5.07 3.97 3.46 3.17 2.84 2.66 2.53 2.44 2.38 2.34 2.31 2.28 2.24 2.22 2.20 2.18 2.17 2.15 2.13 
40 9.30 5.25 4.11 3.57 3.26 2.92 2.73 2.59 2.50 2.44 2.40 2.36 2.33 2.29 2.27 2.25 2.23 2.22 2.17 2.18 
50 9.57 5.39 4.21 3.66 3.34 2.98 2.79 2.64 2.55 2.49 2.44 2.40 2.38 2.33 2.31 2.28 2.27 2.25 2.23 2.21 
60 9.79 5.50 4.29 3.72 3.40 3.03 2.83 2.68 2.59 2.52 2.48 2.44 2.41 2.37 2.34 2.31 2.30 2.28 2.26 2.24 
75 10.05 5.64 4.39 3.81 3.47 3.09 2.89 2.73 2.64 2.57 2.52 2.48 2.45 2.41 2.37 2.35 2.33 2.32 2.29 2.26 

100 10.38 5.81 4.52 3.91 3.56 3.17 2.96 2.80 2.70 2.63 2.57 2.53 2.50 2.46 2.42 2.40 2.38 2.37 2.34 2.32 
125 10.63 5.94 4.61 3.99 3.63 3.23 3.01 2.85 2.74 2.67 2.62 2.57 2.54 2.49 2.46 2.44 2.42 2.40 2.37 2.36 
150 10.83 6.04 4.69 4.06 3.69 3.28 3.06 2.89 2.78 2.71 2.65 2.61 2.58 2.53 2.49 2.47 2.45 2.43 2.40 2.38 
175 11.00 6.13 4.76 4.11 3.74 3.32 3.10 2.92 2.81 2.74 2.68 2.64 2.60 2.55 2.52 2.49 2.47 2.45 2.43 2.41 
200 11.15 6.20 4.81 4.16 3.78 3.36 3.13 2.95 2.84 2.76 2.70 2.66 2.63 2.57 2.54 2.51 2.49 2.48 2.45 2.43 

Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 5.31 3.27 2.67 2.39 2.23 2.05 1.95 1.87 1.83 1.79 1.77 1.75 1.74 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
2 6.26 3.74 3.01 2.67 2.47 2.25 2.13 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
3 6.82 4.01 3.21 2.83 2.61 2.37 2.24 2.14 2.08 2.04 2.01 1.98 1.97 1.94 1.92 1.90 1.89 1.88 1.87 1.86 
4 7.22 4.21 3.35 2.95 2.71 2.46 2.32 2.21 2.15 2.10 2.07 2.04 2.02 1.99 1.97 1.96 1.95 1.94 1.92 1.91 
5 7.52 4.36 3.45 3.03 2.79 2.52 2.38 2.27 2.20 2.15 2.12 2.09 2.07 2.04 2.02 2.00 1.99 1.98 1.96 1.95 
8 8.14 4.67 3.68 3.22 2.95 2.66 2.50 2.38 2.30 2.25 2.21 2.18 2.16 2.13 2.10 2.08 2.07 2.06 2.04 2.03 
12 8.66 4.93 3.87 3.38 3.09 2.77 2.60 2.47 2.39 2.34 2.29 2.26 2.24 2.20 2.18 2.16 2.14 2.13 2.11 2.10 
16 9.02 5.11 4.00 3.49 3.19 2.86 2.68 2.54 2.45 2.40 2.35 2.32 2.29 2.25 2.23 2.21 2.19 2.18 2.16 2.14 
20 9.30 5.25 4.11 3.57 3.26 2.92 2.73 2.59 2.50 2.44 2.40 2.36 2.33 2.29 2.27 2.25 2.23 2.22 2.17 2.18 
30 9.79 5.50 4.29 3.72 3.40 3.03 2.83 2.68 2.59 2.52 2.48 2.44 2.41 2.37 2.34 2.31 2.30 2.28 2.26 2.24 
40 10.12 5.68 4.42 3.83 3.49 3.11 2.90 2.75 2.65 2.58 2.53 2.49 2.46 2.42 2.39 2.36 2.34 2.33 2.31 2.29 
50 10.38 5.81 4.52 3.91 3.56 3.17 2.96 2.80 2.70 2.63 2.57 2.53 2.50 2.46 2.42 2.40 2.38 2.37 2.34 2.32 
60 10.58 5.91 4.59 3.98 3.62 3.22 3.00 2.84 2.73 2.66 2.61 2.57 2.54 2.49 2.45 2.43 2.41 2.40 2.37 2.35 
75 10.83 6.04 4.69 4.06 3.69 3.28 3.06 2.89 2.78 2.71 2.65 2.61 2.58 2.53 2.49 2.47 2.45 2.43 2.40 2.38 
100 11.15 6.20 4.81 4.16 3.78 3.36 3.13 2.95 2.84 2.76 2.70 2.66 2.63 2.57 2.54 2.51 2.49 2.48 2.45 2.43 
125 11.38 6.33 4.90 4.24 3.85 3.42 3.18 3.00 2.89 2.81 2.75 2.70 2.67 2.61 2.58 2.55 2.53 2.51 2.48 2.46 
150 11.58 6.43 4.98 4.30 3.91 3.47 3.22 3.04 2.92 2.84 2.78 2.73 2.70 2.64 2.60 2.58 2.56 2.54 2.51 2.49 
175 11.74 6.52 5.04 4.35 3.95 3.51 3.26 3.07 2.95 2.87 2.81 2.76 2.72 2.67 2.63 2.60 2.58 2.56 2.53 2.51 
200 11.88 6.59 5.10 4.40 3.99 3.54 3.29 3.10 2.98 2.90 2.83 2.78 2.75 2.69 2.65 2.62 2.60 2.58 2.55 2.53 
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Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 6.26 3.74 3.01 2.67 2.47 2.2S 2.13 2.05 1.99 1.9S 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
2 7.22 4.21 3.3S 2.9S 2.71 2.46 2.32 2.21 2.1S 2.10 2.07 2.04 2.02 1.99 1.97 1.96 1.9S 1.94 1.92 1.91 
3 7.76 4.48 3.54 3.11 2.85 2.S7 2.42 2.31 2.24 2.19 2.1S 2.13 2.10 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
4 8.14 4.67 3.68 3.22 2.9S 2.66 2.SO 2.38 2.30 2.2S 2.21 2.18 2.16 2.13 2.10 2.08 2.07 2.06 2.04 2.03 
s 8.43 4.81 3.78 3.31 3.03 2.72 2.S6 2.43 2.3S 2.30 2.26 2.23 2.20 2.17 2.14 2.12 2.11 2.10 2.08 2.07 
8 9.02 5.11 4.00 3.49 3.19 2.86 2.68 2.S4 2.4S 2.40 2.3S 2.32 2.29 2.2S 2.23 2.21 2.19 2.18 2.16 2.14 
12 9.52 5.37 4.19 3.64 3.32 2.97 2.78 2.63 2.S4 2.48 2.43 2.40 2.37 2.31 2.30 2.28 2.26 2.2S 2.22 2.21 
16 9.86 5.54 4.32 3.75 3.42 3.05 2.8S 2.70 2.60 2.S4 2.49 2.4S 2.42 2.38 2.3S 2.33 2.31 2.29 2.27 2.2S 
20 10.12 5.68 4.42 3.83 3.49 3.11 2.90 2.7S 2.6S 2.S8 2.S3 2.49 2.46 2.42 2.39 2.36 2.34 2.33 2.31 2.29 
30 10.58 5.91 4.59 3.98 3.62 3.22 3.00 2.84 2.73 2.66 2.61 2.S7 2.S4 2.49 2.4S 2.43 2.41 2.40 2.37 2.3S 
40 10.90 6.08 4.72 4.08 3.71 3.30 3.07 2.90 2.79 2.72 2.66 2.62 2.S9 2.S4 2.SO 2.48 2.46 2.44 2.41 2.39 
so 11.15 6.20 4.81 4.16 3.78 3.36 3.13 2.9S 2.84 2.76 2.70 2.66 2.63 2.S7 2.S4 2.Sl 2.49 2.48 2.4S 2.43 
60 11.34 6.31 4.89 4.22 3.84 3.41 3.17 2.99 2.88 2.80 2.74 2.69 2.66 2.61 2.S7 2.S4 2.S2 2.SO 2.47 2.4S 
7S 11.58 6.43 4.98 4.30 3.91 3.47 3.22 3.04 2.92 2.84 2.78 2.73 2.70 2.64 2.60 2.S8 2.S6 2.S4 2.Sl 2.49 

100 11.88 6.59 5.10 4.40 3.99 3.54 3.29 3.10 2.98 2.90 2.83 2.78 2.7S 2.69 2.6S 2.62 2.60 2.S8 2.SS 2.S3 
12S 12.10 6.71 5.19 4.48 4.06 3.60 3.34 3.1S 3.02 2.94 2.87 2.82 2.79 2.73 2.69 2.66 2.63 2.62 2.S8 2.S6 
1SO 12.29 6.80 5.26 4.54 4.12 3.64 3.39 3.19 3.06 2.97 2.91 2.86 2.82 2.76 2.72 2.69 2.66 2.64 2.61 2.S9 
17S 12.44 6.89 5.32 4.59 4.16 3.68 3.42 3.22 3.09 3.00 2.93 2.88 2.84 2.78 2.74 2.71 2.68 2.67 2.63 2.61 
200 12.57 6.95 5.37 4.63 4.20 3.69 3.4S 3.2S 3.12 3.03 2.96 2.91 2.87 2.80 2.76 2.73 2.70 2.69 2.6S 2.63 

Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 (40 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 5.59 3.33 2.70 2.41 2.24 2.05 1.9S 1.88 1.83 1.79 1.77 1.7S 1.74 1.71 1.70 1.69 1.68 1.67 1.66 1.6S 
2 6.75 3.85 3.05 2.69 2.49 2.26 2.14 2.05 1.99 1.9S 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
3 7.45 4.16 3.27 2.86 2.63 2.38 2.2S 2.1S 2.09 2.04 2.01 1.99 1.97 1.94 1.92 1.90 1.89 1.88 1.87 1.86 
4 7.95 4.38 3.42 2.98 2.74 2.47 2.32 2.22 2.1S 2.10 2.07 2.05 2.02 2.00 1.97 1.96 1.9S 1.94 1.92 1.91 
s 8.33 4.55 3.54 3.08 2.82 2.S3 2.38 2.27 2.20 2.1S 2.12 2.09 2.07 2.04 2.02 2.00 1.99 1.98 1.96 1.9S 
8 9.15 4.91 3.78 3.28 2.99 2.67 2.Sl 2.38 2.31 2.2S 2.21 2.19 2.16 2.13 2.10 2.09 2.07 2.06 2.04 2.03 
12 9.83 5.22 4.00 3.45 3.13 2.79 2.61 2.48 2.40 2.34 2.30 2.27 2.24 2.20 2.18 2.16 2.14 2.13 2.11 2.10 
16 10.31 5.44 4.15 3.57 3.24 2.88 2.69 2.S5 2.46 2.40 2.3S 2.32 2.29 2.26 2.23 2.21 2.19 2.18 2.16 2.14 
20 10.67 5.60 4.26 3.66 3.32 2.9S 2.7S 2.60 2.Sl 2.4S 2.40 2.36 2.34 2.30 2.27 2.2S 2.23 2.22 2.19 2.18 
30 11.32 5.90 4.47 3.83 3.46 3.06 2.8S 2.70 2.60 2.S3 2.48 2.44 2.41 2.37 2.34 2.32 2.30 2.28 2.26 2.20 
40 11.77 6.11 4.62 3.95 3.56 3.15 2.93 2.76 2.66 2.S9 2.S4 2.SO 2.46 2.42 2.39 2.33 2.3S 2.33 2.31 2.29 
so 12.10 6.27 4.73 4.04 3.64 3.20 2.98 2.81 2.71 2.63 2.S8 2.S4 2.Sl 2.46 2.42 2.40 2.38 2.37 2.34 2.32 
60 12.38 6.40 4.82 4.11 3.71 3.27 3.03 2.8S 2.74 2.67 2.61 2.S7 2.S4 2.49 2.46 2.43 2.41 2.40 2.37 2.34 
7S 12.71 6.55 4.93 4.20 3.78 3.33 3.09 2.91 2.79 2.71 2.66 2.61 2.S8 2.S3 2.49 2.47 2.44 2.43 2.40 2.38 
100 13.12 6.75 5.07 4.31 3.88 3.41 3.16 2.97 2.8S 2.77 2.71 2.67 2.63 2.S8 2.S4 2.Sl 2.49 2.48 2.4S 2.43 
12S 13.44 6.90 5.18 4.40 3.96 3.47 3.22 3.02 2.90 2.81 2.7S 2.71 2.67 2.62 2.S8 2.SS 2.S3 2.Sl 2.48 2.46 
1SO 13.70 7.02 5.26 4.47 4.02 3.53 3.26 3.06 2.94 2.8S 2.79 2.74 2.70 2.6S 2.61 2.S8 2.S6 2.S2 2.Sl 2.49 
17S 13.91 7.12 5.31 4.53 4.07 3.57 3.30 3.10 2.97 2.88 2.82 2.77 2.73 2.67 2.63 2.60 2.S8 2.S6 2.S3 2.Sl 
200 14.09 7.21 5.40 4.58 4.12 3.61 3.33 3.13 3.00 2.91 2.84 2.79 2.7S 2.69 2.6S 2.62 2.60 2.S8 2.S4 2.S3 
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Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Limits on Means of Order 3 ( 40 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 6.75 3.85 3.05 2.69 2.49 2.26 2.14 2.05 1.99 1.9S 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
2 7.95 4.38 3.42 2.98 2.74 2.47 2.32 2.22 2.1S 2.10 2.07 2.05 2.02 2.00 1.97 1.96 1.9S 1.94 1.92 1.91 
3 8.65 4.69 3.63 3.1S 2.88 2.S9 2.43 2.32 2.24 2.19 2.16 2.13 2.11 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
4 9.15 4.91 3.78 3.28 2.99 2.67 2.Sl 2.38 2.31 2.2S 2.21 2.19 2.16 2.13 2.10 2.09 2.07 2.06 2.04 2.03 
s 9.52 5.08 3.90 3.37 3.07 2.74 2.S7 2.44 2.36 2.30 2.26 2.23 2.20 2.17 2.14 2.13 2.11 2.10 2.08 2.07 
8 10.31 5.44 4.15 3.57 3.24 2.88 2.69 2.S5 2.46 2.40 2.3S 2.32 2.29 2.26 2.23 2.21 2.19 2.18 2.16 2.14 
12 10.96 5.74 4.36 3.74 3.38 3.00 2.79 2.64 2.S5 2.48 2.44 2.40 2.37 2.33 2.30 2.28 2.26 2.2S 2.22 2.21 
16 11.42 5.95 4.51 3.85 3.49 3.08 2.87 2.71 2.61 2.S4 2.49 2.4S 2.42 2.38 2.3S 2.33 2.31 2.30 2.26 2.2S 
20 11.77 6.11 4.62 3.95 3.56 3.1S 2.93 2.76 2.66 2.S9 2.S4 2.50 2.46 2.42 2.39 2.33 2.3S 2.33 2.31 2.29 
30 12.38 6.40 4.82 4.11 3.71 3.27 3.03 2.8S 2.74 2.67 2.61 2.S7 2.S4 2.49 2.46 2.43 2.41 2.40 2.37 2.34 
40 12.80 6.60 4.96 4.22 3.81 3.35 3.10 2.92 2.81 2.73 2.67 2.62 2.S9 2.S4 2.50 2.48 2.46 2.44 2.41 2.39 
so 13.12 6.75 5.07 4.31 3.88 3.41 3.16 2.97 2.8S 2.77 2.71 2.67 2.63 2.S8 2.S4 2.Sl 2.49 2.48 2.4S 2.43 
60 13.38 6.87 5.16 4.38 3.94 3.46 3.20 3.01 2.89 2.81 2.7S 2.70 2.66 2.61 2.S7 2.S4 2.S2 2.50 2.47 2.4S 
7S 13.70 7.02 5.26 4.47 4.02 3.53 3.26 3.06 2.94 2.8S 2.79 2.74 2.70 2.6S 2.61 2.S8 2.S6 2.S2 2.Sl 2.46 

100 14.09 7.21 5.40 4.58 4.12 3.61 3.33 3.13 3.00 2.91 2.84 2.79 2.7S 2.69 2.6S 2.62 2.60 2.S8 2.S4 2.47 
12S 14.39 7.35 5.50 4.66 4.19 3.67 3.39 3.18 3.04 2.9S 2.88 2.83 2.79 2.73 2.69 2.66 2.64 2.62 2.S8 2.S6 
150 14.64 7.47 5.58 4.73 4.25 3.72 3.43 3.22 3.08 2.99 2.92 2.86 2.82 2.76 2.72 2.69 2.66 2.64 2.S7 2.S9 
17S 14.84 7.56 5.65 4.79 4.30 3.76 3.47 3.25 3.11 3.01 2.94 2.89 2.8S 2.77 2.74 2.71 2.69 2.67 2.63 2.61 
200 15.01 7.65 5.71 4.84 4.34 3.80 3.50 3.28 3.14 3.04 2.97 2.91 2.87 2.81 2.76 2.73 2.71 2.69 2.6S 2.60 

Table 19-8. K-Multipliers for 1-of-1 Interwell Prediction Li mi ts on Means of Order 3 ( 40 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 7.95 4.38 3.42 2.98 2.74 2.47 2.32 2.22 2.1S 2.10 2.07 2.05 2.02 2.00 1.97 1.96 1.9S 1.94 1.92 1.91 
2 9.15 4.91 3.78 3.28 2.99 2.67 2.Sl 2.38 2.31 2.2S 2.21 2.19 2.16 2.13 2.10 2.09 2.07 2.06 2.04 2.03 
3 9.83 5.22 4.00 3.4S 3.13 2.79 2.61 2.48 2.40 2.34 2.30 2.27 2.24 2.20 2.18 2.16 2.14 2.13 2.11 2.10 
4 10.31 5.44 4.15 3.57 3.24 2.88 2.69 2.S5 2.46 2.40 2.3S 2.32 2.29 2.26 2.23 2.21 2.19 2.18 2.16 2.14 
s 10.67 5.60 4.26 3.66 3.32 2.9S 2.7S 2.60 2.Sl 2.4S 2.40 2.36 2.34 2.30 2.27 2.2S 2.23 2.22 2.19 2.18 
8 11.42 5.95 4.51 3.85 3.49 3.08 2.87 2.71 2.61 2.S4 2.49 2.4S 2.42 2.38 2.3S 2.33 2.31 2.30 2.26 2.20 
12 12.04 6.24 4.69 4.02 3.63 3.20 2.97 2.80 2.69 2.62 2.S7 2.S3 2.50 2.4S 2.42 2.39 2.38 2.36 2.33 2.32 
16 12.48 6.44 4.85 4.14 3.73 3.28 3.05 2.87 2.76 2.68 2.63 2.S8 2.SS 2.SO 2.47 2.44 2.42 2.41 2.38 2.32 
20 12.80 6.60 4.96 4.22 3.81 3.3S 3.10 2.92 2.81 2.73 2.67 2.62 2.S9 2.S4 2.SO 2.48 2.46 2.44 2.41 2.39 
30 13.38 6.87 5.16 4.38 3.94 3.46 3.20 3.01 2.89 2.81 2.7S 2.70 2.66 2.61 2.S7 2.S4 2.S2 2.50 2.47 2.46 
40 13.79 7.06 5.29 4.50 4.04 3.54 3.28 3.08 2.9S 2.86 2.80 2.7S 2.71 2.66 2.62 2.S8 2.S7 2.SS 2.S2 2.50 
so 14.09 7.21 5.40 4.58 4.12 3.61 3.33 3.13 3.00 2.91 2.84 2.79 2.7S 2.69 2.6S 2.62 2.60 2.S8 2.S4 2.S3 
60 14.34 7.32 5.48 4.65 4.18 3.66 3.38 3.17 3.03 2.94 2.87 2.82 2.78 2.72 2.68 2.6S 2.63 2.61 2.S8 2.S6 
7S 14.64 7.47 5.58 4.73 4.25 3.72 3.43 3.22 3.08 2.99 2.92 2.86 2.82 2.76 2.72 2.69 2.66 2.64 2.61 2.S9 
100 15.01 7.65 5.71 4.84 4.34 3.80 3.50 3.28 3.14 3.04 2.97 2.91 2.87 2.81 2.76 2.73 2.71 2.69 2.6S 2.63 
12S 15.30 7.78 5.81 4.92 4.41 3.86 3.55 3.33 3.18 3.08 3.01 2.9S 2.91 2.84 2.80 2.77 2.74 2.72 2.68 2.66 
150 15.48 7.90 5.89 4.99 4.47 3.90 3.60 3.37 3.22 3.12 3.04 2.99 2.94 2.87 2.83 2.79 2.77 2.7S 2.71 2.68 
17S 15.73 7.99 5.96 5.04 4.52 3.95 3.63 3.40 3.2S 3.1S 3.07 3.01 2.97 2.90 2.8S 2.82 2.79 2.77 2.73 2.71 
200 15.89 8.07 6.02 5.09 4.56 3.98 3.67 3.43 3.28 3.17 3.09 3.04 2.99 2.92 2.87 2.84 2.81 2.79 2.7S 2.73 
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Table 19-9. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 3 (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.67 O.S3 0.46 0.42 0.40 0.37 0.3S 0.34 0.33 0.32 0.31 0.31 0.31 0.30 0.30 0.29 0.29 0.29 0.29 0.29 
2 0.9S 0.7S 0.67 0.62 O.S9 o.ss O.S3 O.Sl o.so 0.49 0.48 0.48 0.47 0.47 0.46 0.46 0.4S 0.4S 0.4S 0.4S 
3 1.11 0.88 0.79 0.73 0.69 0.6S 0.62 0.60 O.S9 O.S8 O.S7 O.S6 O.S6 o.ss o.ss O.S4 O.S4 O.S4 O.S3 O.S3 
4 1.22 0.97 0.86 0.80 0.77 0.72 0.69 0.67 0.6S 0.64 0.63 0.62 0.62 0.61 0.61 0.60 0.60 0.60 O.S9 O.S9 
s 1.30 1.04 0.92 0.86 0.82 0.77 0.74 0.71 0.70 0.68 0.68 0.67 0.66 0.6S 0.6S 0.64 0.64 0.64 0.63 0.63 
8 1.47 1.17 1.05 0.97 0.93 0.87 0.84 0.81 0.79 0.78 0.77 0.76 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 0.71 
12 1.62 1.28 1.1S 1.07 1.02 0.9S 0.92 0.89 0.87 0.8S 0.84 0.83 0.83 0.82 0.81 0.80 0.80 0.79 0.79 0.78 
16 1.72 1.36 1.21 1.13 1.08 1.01 0.97 0.94 0.92 0.90 0.89 0.88 0.88 0.86 0.86 0.8S 0.8S 0.84 0.84 0.83 
20 1.79 1.42 1.27 1.18 1.13 1.06 1.02 0.98 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.88 0.87 0.87 
30 1.92 1.S2 1.36 1.27 1.21 1.13 1.09 1.05 1.03 1.01 1.00 0.99 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 0.93 
40 2.02 1.S9 1.42 1.33 1.26 1.19 1.14 1.10 1.08 1.06 1.05 1.03 1.03 1.01 1.00 1.00 0.99 0.98 0.98 0.97 
so 2.09 1.6S 1.47 1.37 1.31 1.23 1.18 1.14 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
60 2.14 1.69 1.Sl 1.41 1.34 1.26 1.21 1.17 1.14 1.12 1.11 1.10 1.09 1.07 1.06 1.06 1.05 1.04 1.04 1.03 
7S 2.21 1.74 1.S6 1.45 1.38 1.30 1.2S 1.21 1.18 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.08 1.07 1.06 

100 2.29 1.81 1.62 1.Sl 1.44 1.3S 1.30 1.2S 1.22 1.20 1.19 1.17 1.16 1.1S 1.14 1.13 1.12 1.12 1.11 1.10 
12S 2.36 1.86 1.66 1.SS 1.48 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.20 1.18 1.17 1.16 1.1S 1.1S 1.14 1.13 
150 2.41 1.90 1.70 1.58 1.Sl 1.42 1.36 1.32 1.29 1.26 1.2S 1.23 1.22 1.21 1.19 1.18 1.18 1.17 1.16 1.1S 
17S 2.4S 1.93 1.73 1.61 1.S3 1.44 1.38 1.34 1.31 1.29 1.27 1.2S 1.24 1.23 1.21 1.20 1.20 1.19 1.18 1.17 
200 2.49 1.96 1.7S 1.63 1.S6 1.46 1.41 1.36 1.33 1.30 1.29 1.27 1.26 1.24 1.23 1.22 1.22 1.21 1.20 1.19 

Table 19-9. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Means of Order 3 (1 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.9S 0.7S 0.67 0.62 O.S9 o.ss O.S3 O.Sl o.so 0.49 0.48 0.48 0.47 0.47 0.46 0.46 0.4S 0.4S 0.4S 0.4S 
2 1.22 0.97 0.86 0.80 0.77 0.72 0.69 0.67 0.6S 0.64 0.63 0.62 0.62 0.61 0.61 0.60 0.60 0.60 O.S9 O.S9 
3 1.37 1.09 0.97 0.91 0.86 0.81 0.78 0.7S 0.73 0.72 0.71 0.70 0.70 0.69 0.68 0.68 0.67 0.67 0.67 0.66 
4 1.47 1.17 1.05 0.97 0.93 0.87 0.84 0.81 0.79 0.78 0.77 0.76 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 0.71 
s 1.SS 1.23 1.10 1.03 0.98 0.92 0.88 0.8S 0.83 0.82 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.76 0.76 0.7S 
8 1.72 1.36 1.21 1.13 1.08 1.01 0.97 0.94 0.92 0.90 0.89 0.88 0.88 0.86 0.86 0.8S 0.8S 0.84 0.84 0.83 
12 1.8S 1.47 1.31 1.22 1.16 1.09 1.05 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 0.89 
16 1.94 1.S4 1.37 1.28 1.22 1.1S 1.10 1.06 1.04 1.02 1.01 1.00 0.99 0.98 0.97 0.96 0.96 0.9S 0.94 0.94 
20 2.02 1.S9 1.42 1.33 1.26 1.19 1.14 1.10 1.08 1.06 1.05 1.03 1.03 1.01 1.00 1.00 0.99 0.98 0.98 0.97 
30 2.14 1.69 1.Sl 1.41 1.34 1.26 1.21 1.17 1.14 1.12 1.11 1.10 1.09 1.07 1.06 1.06 1.05 1.04 1.04 1.03 
40 2.23 1.76 1.S7 1.46 1.40 1.31 1.26 1.22 1.19 1.17 1.1S 1.14 1.13 1.12 1.10 1.10 1.09 1.08 1.08 1.07 
so 2.29 1.81 1.62 1.Sl 1.44 1.3S 1.30 1.2S 1.22 1.20 1.19 1.17 1.16 1.1S 1.14 1.13 1.12 1.12 1.11 1.10 
60 2.3S 1.8S 1.6S 1.S4 1.47 1.38 1.33 1.28 1.2S 1.23 1.21 1.20 1.19 1.17 1.16 1.1S 1.1S 1.14 1.13 1.12 
7S 2.41 1.90 1.70 1.58 1.Sl 1.42 1.36 1.32 1.29 1.26 1.2S 1.23 1.22 1.21 1.19 1.18 1.18 1.17 1.16 1.1S 

100 2.49 1.96 1.7S 1.63 1.S6 1.46 1.41 1.36 1.33 1.30 1.29 1.27 1.26 1.24 1.23 1.22 1.22 1.21 1.20 1.19 
12S 2.SS 2.01 1.79 1.67 1.60 1.SO 1.44 1.39 1.36 1.34 1.32 1.30 1.29 1.27 1.26 1.2S 1.24 1.24 1.23 1.22 
150 2.60 2.05 1.83 1.71 1.63 1.S3 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.27 1.26 1.2S 1.24 
17S 2.64 2.08 1.86 1.73 1.6S 1.SS 1.49 1.44 1.41 1.38 1.36 1.3S 1.34 1.32 1.31 1.30 1.29 1.28 1.27 1.26 
200 2.68 2.11 1.88 1.75 1.67 1.S7 1.Sl 1.46 1.43 1.40 1.38 1.37 1.36 1.34 1.32 1.31 1.30 1.30 1.29 1.28 
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Table 19-9. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 3 (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.22 0.97 0.86 0.80 0.77 0.72 0.69 0.67 0.6S 0.64 0.63 0.62 0.62 0.61 0.61 0.60 0.60 0.60 O.S9 O.S9 
2 1.47 1.17 1.05 0.97 0.93 0.87 0.84 0.81 0.79 0.78 0.77 0.76 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 0.71 
3 1.62 1.28 1.1S 1.07 1.02 0.9S 0.92 0.89 0.87 0.8S 0.84 0.83 0.83 0.82 0.81 0.80 0.80 0.79 0.79 0.78 
4 1.72 1.36 1.21 1.13 1.08 1.01 0.97 0.94 0.92 0.90 0.89 0.88 0.88 0.86 0.86 0.8S 0.8S 0.84 0.84 0.83 
s 1.79 1.42 1.27 1.18 1.13 1.06 1.02 0.98 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.88 0.87 0.87 
8 1.94 1.S4 1.37 1.28 1.22 1.1S 1.10 1.06 1.04 1.02 1.01 1.00 0.99 0.98 0.97 0.96 0.96 0.9S 0.94 0.94 
12 2.07 1.64 1.46 1.36 1.30 1.22 1.17 1.13 1.11 1.09 1.07 1.06 1.05 1.04 1.03 1.02 1.02 1.01 1.00 1.00 
16 2.16 1.71 1.S2 1.42 1.3S 1.27 1.22 1.18 1.1S 1.13 1.12 1.11 1.10 1.08 1.07 1.06 1.06 1.05 1.04 1.04 
20 2.23 1.76 1.S7 1.46 1.40 1.31 1.26 1.22 1.19 1.17 1.1S 1.14 1.13 1.12 1.10 1.10 1.09 1.08 1.08 1.07 
30 2.3S 1.8S 1.6S 1.S4 1.47 1.38 1.33 1.28 1.2S 1.23 1.21 1.20 1.19 1.17 1.16 1.1S 1.1S 1.14 1.13 1.12 
40 2.43 1.91 1.71 1.S9 1.S2 1.43 1.37 1.33 1.29 1.27 1.26 1.24 1.23 1.21 1.20 1.19 1.19 1.18 1.17 1.16 
so 2.49 1.96 1.7S 1.63 1.S6 1.46 1.41 1.36 1.33 1.30 1.29 1.27 1.26 1.24 1.23 1.22 1.22 1.21 1.20 1.19 
60 2.S4 2.00 1.79 1.67 1.S9 1.49 1.43 1.39 1.3S 1.33 1.31 1.30 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 1.21 
7S 2.60 2.05 1.83 1.71 1.63 1.S3 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.27 1.26 1.2S 1.24 

100 2.68 2.11 1.88 1.75 1.67 1.S7 1.Sl 1.46 1.43 1.40 1.38 1.37 1.36 1.34 1.32 1.31 1.30 1.30 1.29 1.28 
12S 2.74 2.1S 1.92 1.79 1.71 1.61 1.S4 1.49 1.46 1.43 1.41 1.40 1.38 1.37 1.3S 1.34 1.33 1.33 1.31 1.30 
150 2.79 2.19 1.9S 1.82 1.74 1.63 1.S7 1.S2 1.48 1.46 1.44 1.42 1.41 1.39 1.37 1.36 1.3S 1.3S 1.33 1.33 
17S 2.82 2.22 1.98 1.85 1.76 1.66 1.S9 1.S4 1.SO 1.48 1.46 1.44 1.43 1.41 1.39 1.38 1.37 1.37 1.3S 1.34 
200 2.86 2.2S 2.00 1.87 1.78 1.68 1.61 1.S6 1.S2 1.49 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 1.36 

Table 19-9. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 3 (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.04 0.80 0.70 0.64 0.61 O.S6 O.S4 O.S2 o.so 0.49 0.49 0.48 0.47 0.47 0.46 0.46 0.46 0.4S 0.4S 0.4S 
2 1.36 1.04 0.91 0.84 0.79 0.73 0.70 0.67 0.66 0.64 0.64 0.63 0.62 0.61 0.61 0.60 0.60 0.60 O.S9 O.S9 
3 1.SS 1.17 1.02 0.94 0.89 0.83 0.79 0.76 0.74 0.73 0.72 0.71 0.70 0.69 0.69 0.68 0.68 0.67 0.67 0.66 
4 1.68 1.27 1.11 1.02 0.96 0.89 0.8S 0.82 0.80 0.78 0.77 0.76 0.76 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 
s 1.78 1.34 1.17 1.07 1.01 0.94 0.90 0.87 0.84 0.83 0.82 0.81 0.80 0.79 0.78 0.77 0.77 0.77 0.76 0.7S 
8 1.99 1.49 1.29 1.19 1.12 1.04 0.99 0.96 0.93 0.91 0.90 0.89 0.88 0.87 0.86 0.8S 0.8S 0.84 0.84 0.83 
12 2.17 1.61 1.40 1.29 1.21 1.12 1.07 1.03 1.00 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.91 0.91 0.90 0.90 
16 2.29 1.70 1.47 1.35 1.28 1.18 1.13 1.08 1.06 1.03 1.02 1.01 1.00 0.98 0.97 0.97 0.96 0.9S 0.9S 0.94 
20 2.38 1.76 1.S3 1.40 1.32 1.23 1.17 1.12 1.09 1.07 1.06 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
30 2.S4 1.88 1.63 1.49 1.41 1.30 1.24 1.19 1.16 1.14 1.12 1.11 1.10 1.08 1.07 1.06 1.05 1.05 1.04 1.03 
40 2.66 1.96 1.70 1.S6 1.47 1.36 1.29 1.24 1.21 1.18 1.17 1.1S 1.14 1.12 1.11 1.10 1.09 1.09 1.08 1.07 
so 2.74 2.02 1.7S 1.60 1.Sl 1.40 1.33 1.28 1.2S 1.22 1.20 1.19 1.17 1.16 1.14 1.13 1.13 1.12 1.11 1.10 
60 2.81 2.07 1.79 1.64 1.SS 1.43 1.36 1.31 1.27 1.2S 1.23 1.21 1.20 1.18 1.17 1.16 1.1S 1.1S 1.13 1.13 
7S 2.90 2.13 1.84 1.69 1.S9 1.47 1.40 1.3S 1.31 1.28 1.26 1.2S 1.23 1.21 1.20 1.19 1.18 1.18 1.16 1.16 

100 3.00 2.21 1.91 1.75 1.6S 1.S2 1.4S 1.39 1.3S 1.33 1.30 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.19 
12S 3.08 2.26 1.96 1.79 1.69 1.S6 1.49 1.43 1.39 1.36 1.34 1.32 1.31 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 
150 3.15 2.31 2.00 1.83 1.72 1.S9 1.S2 1.46 1.41 1.39 1.36 1.3S 1.33 1.31 1.29 1.28 1.27 1.27 1.2S 1.2S 
17S 3.20 2.3S 2.03 1.86 1.7S 1.62 1.S4 1.48 1.44 1.41 1.38 1.37 1.3S 1.33 1.32 1.30 1.29 1.29 1.27 1.26 
200 3.25 2.38 2.06 1.88 1.77 1.64 1.S6 1.SO 1.46 1.43 1.40 1.39 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 
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Table 19-9. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Means of Order 3 (2 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.36 1.04 0.91 0.84 0.79 0.73 0.70 0.67 0.66 0.64 0.64 0.63 0.62 0.61 0.61 0.60 0.60 0.60 O.S9 O.S9 
2 1.68 1.27 1.11 1.02 0.96 0.89 0.8S 0.82 0.80 0.78 0.77 0.76 0.76 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 
3 1.86 1.40 1.22 1.12 1.06 0.98 0.94 0.90 0.88 0.86 0.8S 0.84 0.83 0.82 0.81 0.81 0.80 0.80 0.79 0.78 
4 1.99 1.49 1.29 1.19 1.12 1.04 0.99 0.96 0.93 0.91 0.90 0.89 0.88 0.87 0.86 0.8S 0.8S 0.84 0.84 0.83 
s 2.09 1.S6 1.3S 1.24 1.17 1.09 1.04 1.00 0.97 0.9S 0.94 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
8 2.29 1.70 1.47 1.35 1.28 1.18 1.13 1.08 1.06 1.03 1.02 1.01 1.00 0.98 0.97 0.97 0.96 0.9S 0.9S 0.94 
12 2.4S 1.82 1.S7 1.44 1.36 1.26 1.20 1.16 1.12 1.10 1.09 1.07 1.06 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
16 2.S7 1.90 1.64 1.Sl 1.42 1.32 1.2S 1.21 1.17 1.1S 1.13 1.12 1.11 1.09 1.08 1.07 1.06 1.06 1.05 1.04 
20 2.66 1.96 1.70 1.S6 1.47 1.36 1.29 1.24 1.21 1.18 1.17 1.1S 1.14 1.12 1.11 1.10 1.09 1.09 1.08 1.07 
30 2.81 2.07 1.79 1.64 1.SS 1.43 1.36 1.31 1.27 1.2S 1.23 1.21 1.20 1.18 1.17 1.16 1.1S 1.1S 1.13 1.13 
40 2.92 2.1S 1.86 1.70 1.60 1.48 1.41 1.36 1.32 1.29 1.27 1.26 1.24 1.22 1.21 1.20 1.19 1.18 1.17 1.16 
so 3.00 2.21 1.91 1.75 1.6S 1.S2 1.4S 1.39 1.3S 1.33 1.30 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.19 
60 3.07 2.2S 1.9S 1.78 1.68 1.SS 1.48 1.42 1.38 1.3S 1.33 1.31 1.30 1.28 1.27 1.2S 1.2S 1.24 1.23 1.22 
7S 3.15 2.31 2.00 1.83 1.72 1.S9 1.S2 1.46 1.41 1.39 1.36 1.3S 1.33 1.31 1.29 1.28 1.27 1.27 1.2S 1.2S 

100 3.25 2.38 2.06 1.88 1.77 1.64 1.S6 1.50 1.46 1.43 1.40 1.39 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 
12S 3.33 2.44 2.10 1.93 1.81 1.68 1.60 1.S3 1.49 1.46 1.43 1.42 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 
150 3.39 2.48 2.14 1.96 1.8S 1.71 1.63 1.S6 1.S2 1.48 1.46 1.44 1.43 1.40 1.39 1.37 1.36 1.3S 1.34 1.33 
17S 3.44 2.S2 2.17 1.99 1.87 1.73 1.6S 1.58 1.S4 1.Sl 1.48 1.46 1.4S 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 
200 3.49 2.SS 2.20 2.01 1.90 1.7S 1.67 1.60 1.S6 1.S2 1.SO 1.48 1.46 1.44 1.42 1.41 1.40 1.39 1.37 1.36 

Table 19-9. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 3 (2 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.68 1.27 1.11 1.02 0.96 0.89 0.8S 0.82 0.80 0.78 0.77 0.76 0.76 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 
2 1.99 1.49 1.29 1.19 1.12 1.04 0.99 0.96 0.93 0.91 0.90 0.89 0.88 0.87 0.86 0.8S 0.8S 0.84 0.84 0.83 
3 2.17 1.61 1.40 1.29 1.21 1.12 1.07 1.03 1.00 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.91 0.91 0.90 0.90 
4 2.29 1.70 1.47 1.35 1.28 1.18 1.13 1.08 1.06 1.03 1.02 1.01 1.00 0.98 0.97 0.97 0.96 0.9S 0.9S 0.94 
s 2.38 1.76 1.S3 1.40 1.32 1.23 1.17 1.12 1.09 1.07 1.06 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
8 2.S7 1.90 1.64 1.Sl 1.42 1.32 1.2S 1.21 1.17 1.1S 1.13 1.12 1.11 1.09 1.08 1.07 1.06 1.06 1.05 1.04 
12 2.73 2.01 1.74 1.60 1.50 1.39 1.33 1.27 1.24 1.21 1.19 1.18 1.17 1.1S 1.14 1.13 1.12 1.11 1.10 1.10 
16 2.84 2.09 1.81 1.66 1.S6 1.44 1.38 1.32 1.28 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 1.14 
20 2.92 2.1S 1.86 1.70 1.60 1.48 1.41 1.36 1.32 1.29 1.27 1.26 1.24 1.22 1.21 1.20 1.19 1.18 1.17 1.16 
30 3.07 2.2S 1.9S 1.78 1.68 1.SS 1.48 1.42 1.38 1.3S 1.33 1.31 1.30 1.28 1.27 1.2S 1.2S 1.24 1.23 1.22 
40 3.17 2.33 2.01 1.84 1.73 1.60 1.S3 1.47 1.42 1.39 1.37 1.3S 1.34 1.32 1.30 1.29 1.28 1.28 1.26 1.2S 
so 3.25 2.38 2.06 1.88 1.77 1.64 1.S6 1.50 1.46 1.43 1.40 1.39 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 
60 3.31 2.43 2.10 1.92 1.81 1.67 1.S9 1.S3 1.48 1.4S 1.43 1.41 1.40 1.37 1.36 1.34 1.33 1.33 1.31 1.30 
7S 3.39 2.48 2.14 1.96 1.8S 1.71 1.63 1.S6 1.S2 1.48 1.46 1.44 1.43 1.40 1.39 1.37 1.36 1.3S 1.34 1.33 

100 3.49 2.SS 2.20 2.01 1.90 1.7S 1.67 1.60 1.S6 1.S2 1.50 1.48 1.46 1.44 1.42 1.41 1.40 1.39 1.37 1.36 
12S 3.56 2.60 2.24 2.06 1.94 1.79 1.70 1.63 1.S9 1.SS 1.S3 1.Sl 1.49 1.47 1.4S 1.44 1.42 1.42 1.40 1.39 
150 3.62 2.64 2.28 2.09 1.97 1.82 1.73 1.66 1.61 1.58 1.SS 1.S3 1.S2 1.49 1.47 1.46 1.4S 1.44 1.42 1.41 
17S 3.67 2.68 2.31 2.12 1.99 1.84 1.7S 1.68 1.63 1.60 1.S7 1.SS 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.44 1.43 
200 3.71 2.71 2.34 2.14 2.01 1.86 1.77 1.70 1.6S 1.62 1.S9 1.S7 1.SS 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.44 
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Table 19-9. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 3 (5 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.62 1.17 1.01 0.92 0.86 0.80 0.76 0.73 0.71 0.70 0.68 0.68 0.67 0.66 0.6S 0.6S 0.64 0.64 0.64 0.63 
2 2.02 1.43 1.22 1.11 1.04 0.96 0.91 0.87 0.8S 0.83 0.82 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.76 0.76 
3 2.26 1.58 1.34 1.22 1.14 1.05 1.00 0.9S 0.93 0.91 0.89 0.88 0.87 0.86 0.8S 0.8S 0.84 0.84 0.83 0.82 
4 2.43 1.69 1.43 1.29 1.21 1.11 1.05 1.01 0.98 0.96 0.9S 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
s 2.S7 1.77 1.50 1.35 1.26 1.16 1.10 1.05 1.02 1.00 0.98 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
8 2.84 1.94 1.63 1.47 1.37 1.26 1.19 1.14 1.11 1.08 1.06 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
12 3.07 2.09 1.7S 1.S7 1.47 1.34 1.27 1.21 1.18 1.1S 1.13 1.12 1.10 1.09 1.07 1.06 1.06 1.05 1.04 1.03 
16 3.24 2.19 1.83 1.65 1.S3 1.40 1.32 1.26 1.22 1.20 1.18 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
20 3.36 2.27 1.89 1.70 1.58 1.44 1.36 1.30 1.26 1.23 1.21 1.19 1.18 1.16 1.1S 1.14 1.13 1.12 1.11 1.10 
30 3.58 2.40 2.00 1.80 1.67 1.S2 1.44 1.37 1.33 1.30 1.27 1.26 1.24 1.22 1.21 1.19 1.19 1.18 1.17 1.16 
40 3.73 2.50 2.08 1.86 1.73 1.58 1.49 1.42 1.37 1.34 1.32 1.30 1.28 1.26 1.2S 1.23 1.22 1.22 1.20 1.20 
so 3.85 2.S7 2.14 1.92 1.78 1.62 1.S3 1.46 1.41 1.38 1.3S 1.33 1.32 1.29 1.28 1.26 1.2S 1.2S 1.23 1.22 
60 3.94 2.63 2.19 1.96 1.82 1.6S 1.S6 1.49 1.44 1.40 1.38 1.36 1.34 1.32 1.30 1.29 1.28 1.27 1.26 1.2S 
7S 4.06 2.70 2.24 2.01 1.86 1.70 1.60 1.S2 1.47 1.44 1.41 1.39 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 

100 4.20 2.79 2.32 2.07 1.92 1.7S 1.6S 1.S7 1.S2 1.48 1.4S 1.43 1.41 1.39 1.37 1.36 1.34 1.34 1.32 1.31 
12S 4.31 2.86 2.37 2.12 1.97 1.79 1.68 1.60 1.SS 1.Sl 1.48 1.46 1.44 1.42 1.40 1.38 1.37 1.36 1.3S 1.34 
150 4.40 2.91 2.42 2.16 2.01 1.82 1.72 1.63 1.58 1.S4 1.Sl 1.49 1.47 1.44 1.42 1.41 1.40 1.39 1.37 1.36 
17S 4.47 2.96 2.4S 2.19 2.04 1.8S 1.74 1.66 1.60 1.S6 1.S3 1.Sl 1.49 1.46 1.44 1.43 1.41 1.41 1.39 1.38 
200 4.53 3.00 2.49 2.22 2.06 1.87 1.76 1.68 1.62 1.58 1.SS 1.S2 1.Sl 1.48 1.46 1.44 1.43 1.42 1.40 1.39 

Table 19-9. K-Multipliers for 1-of-2 Interwell Prediction Li mi ts on Means of Order 3 (5 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.02 1.43 1.22 1.11 1.04 0.96 0.91 0.87 0.8S 0.83 0.82 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.76 0.76 
2 2.43 1.69 1.43 1.29 1.21 1.11 1.05 1.01 0.98 0.96 0.9S 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
3 2.67 1.84 1.SS 1.40 1.31 1.20 1.13 1.09 1.05 1.03 1.02 1.00 0.99 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 
4 2.84 1.94 1.63 1.47 1.37 1.26 1.19 1.14 1.11 1.08 1.06 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
s 2.97 2.02 1.70 1.S3 1.42 1.30 1.23 1.18 1.14 1.12 1.10 1.09 1.07 1.06 1.05 1.04 1.03 1.02 1.01 1.01 
8 3.24 2.19 1.83 1.65 1.S3 1.40 1.32 1.26 1.22 1.20 1.18 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
12 3.46 2.33 1.94 1.74 1.62 1.48 1.40 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.17 1.16 1.16 1.1S 1.14 1.13 
16 3.61 2.43 2.02 1.81 1.68 1.S3 1.4S 1.38 1.34 1.31 1.28 1.27 1.2S 1.23 1.21 1.20 1.19 1.19 1.18 1.17 
20 3.73 2.SO 2.08 1.86 1.73 1.58 1.49 1.42 1.37 1.34 1.32 1.30 1.28 1.26 1.2S 1.23 1.22 1.22 1.20 1.20 
30 3.94 2.63 2.19 1.96 1.82 1.6S 1.S6 1.49 1.44 1.40 1.38 1.36 1.34 1.32 1.30 1.29 1.28 1.27 1.26 1.2S 
40 4.09 2.72 2.26 2.02 1.88 1.71 1.61 1.S3 1.48 1.4S 1.42 1.40 1.38 1.36 1.34 1.33 1.32 1.31 1.29 1.28 
so 4.20 2.79 2.32 2.07 1.92 1.7S 1.6S 1.S7 1.S2 1.48 1.4S 1.43 1.41 1.39 1.37 1.36 1.34 1.34 1.32 1.31 
60 4.29 2.8S 2.36 2.11 1.96 1.78 1.68 1.60 1.S4 1.Sl 1.48 1.46 1.44 1.41 1.39 1.38 1.37 1.36 1.34 1.33 
7S 4.40 2.91 2.42 2.16 2.01 1.82 1.72 1.63 1.58 1.S4 1.Sl 1.49 1.47 1.44 1.42 1.41 1.40 1.39 1.37 1.36 

100 4.53 3.00 2.49 2.22 2.06 1.87 1.76 1.68 1.62 1.58 1.SS 1.S2 1.Sl 1.48 1.46 1.44 1.43 1.42 1.40 1.39 
12S 4.64 3.07 2.S4 2.27 2.11 1.91 1.80 1.71 1.6S 1.61 1.58 1.SS 1.S4 1.Sl 1.49 1.47 1.46 1.4S 1.43 1.42 
150 4.72 3.12 2.S8 2.31 2.14 1.94 1.83 1.74 1.68 1.64 1.60 1.58 1.S6 1.S3 1.Sl 1.49 1.48 1.47 1.4S 1.44 
17S 4.79 3.16 2.62 2.34 2.17 1.97 1.8S 1.76 1.70 1.66 1.62 1.60 1.58 1.SS 1.S3 1.Sl 1.50 1.49 1.47 1.46 
200 4.85 3.20 2.6S 2.37 2.19 1.99 1.87 1.78 1.72 1.68 1.64 1.62 1.60 1.S7 1.S4 1.S3 1.Sl 1.SO 1.49 1.47 
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Table 19-9. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 3 (5 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.43 1.69 1.43 1.29 1.21 1.11 1.05 1.01 0.98 0.96 0.9S 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
2 2.84 1.94 1.63 1.47 1.37 1.26 1.19 1.14 1.11 1.08 1.06 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
3 3.07 2.09 1.7S 1.S7 1.47 1.34 1.27 1.21 1.18 1.1S 1.13 1.12 1.10 1.09 1.07 1.06 1.06 1.05 1.04 1.03 
4 3.24 2.19 1.83 1.6S 1.S3 1.40 1.32 1.26 1.22 1.20 1.18 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
s 3.36 2.27 1.89 1.70 1.58 1.44 1.36 1.30 1.26 1.23 1.21 1.19 1.18 1.16 1.1S 1.14 1.13 1.12 1.11 1.10 
8 3.61 2.43 2.02 1.81 1.68 1.S3 1.4S 1.38 1.34 1.31 1.28 1.27 1.2S 1.23 1.21 1.20 1.19 1.19 1.18 1.17 
12 3.83 2.S6 2.13 1.91 1.77 1.61 1.S2 1.4S 1.40 1.37 1.34 1.33 1.31 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 
16 3.98 2.6S 2.20 1.97 1.83 1.67 1.S7 1.SO 1.4S 1.41 1.39 1.37 1.3S 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
20 4.09 2.72 2.26 2.02 1.88 1.71 1.61 1.S3 1.48 1.4S 1.42 1.40 1.38 1.36 1.34 1.33 1.32 1.31 1.29 1.28 
30 4.29 2.8S 2.36 2.11 1.96 1.78 1.68 1.60 1.S4 1.Sl 1.48 1.46 1.44 1.41 1.39 1.38 1.37 1.36 1.34 1.33 
40 4.43 2.93 2.43 2.18 2.02 1.83 1.73 1.64 1.S9 1.SS 1.S2 1.49 1.48 1.4S 1.43 1.41 1.40 1.39 1.38 1.37 
so 4.53 3.00 2.49 2.22 2.06 1.87 1.76 1.68 1.62 1.58 1.SS 1.S2 1.Sl 1.48 1.46 1.44 1.43 1.42 1.40 1.39 
60 4.62 3.05 2.S3 2.26 2.10 1.90 1.79 1.70 1.6S 1.60 1.S7 1.55 1.S3 1.50 1.48 1.47 1.4S 1.44 1.43 1.41 
7S 4.72 3,12 2.S8 2.31 2.14 1.94 1.83 1.74 1.68 1.64 1.60 1.58 1.S6 1.S3 1.Sl 1.49 1.48 1.47 1.4S 1.44 

100 4.85 3.20 2.6S 2.37 2.19 1.99 1.87 1.78 1.72 1.68 1.64 1.62 1.60 1.S7 1.S4 1.S3 1.Sl 1.50 1.49 1.47 
12S 4.95 3.26 2.70 2.41 2.24 2.03 1.91 1.81 1.7S 1.71 1.67 1.6S 1.62 1.S9 1.S7 1.SS 1.S4 1.S3 1.Sl 1.SO 
150 5.03 3.31 2.74 2.45 2.27 2.06 1.94 1.84 1.78 1.73 1.70 1.67 1.6S 1.62 1.S9 1.58 1.S6 1.SS 1.S3 1.S2 
17S 5.10 3.36 2.78 2.48 2.30 2.08 1.96 1.86 1.80 1.7S 1.72 1.69 1.67 1.63 1.61 1.S9 1.58 1.S7 1.SS 1.S3 
200 5.16 3.39 2.81 2.Sl 2.32 2.11 1.98 1.88 1.82 1.77 1.73 1.71 1.68 1.6S 1.63 1.61 1.S9 1.58 1.S6 1.SS 

Table 19-9. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 3 (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.1S 1.48 1.24 1.12 1.05 0.96 0.91 0.88 0.8S 0.83 0.82 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.76 0.76 
2 2.64 1.76 1.46 1.31 1.22 1.12 1.06 1.01 0.98 0.96 0.9S 0.94 0.93 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
3 2.94 1.93 1.S9 1.43 1.32 1.21 1.14 1.09 1.06 1.03 1.02 1.00 0.99 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 
4 3.15 2.04 1.68 1.SO 1.40 1.27 1.20 1.14 1.11 1.08 1.07 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
s 3.32 2.14 1.7S 1.S6 1.4S 1.32 1.24 1.19 1.1S 1.12 1.10 1.09 1.08 1.06 1.05 1.04 1.03 1.02 1.01 1.01 
8 3.66 2.33 1.90 1.69 1.S6 1.42 1.33 1.27 1.23 1.20 1.18 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
12 3.95 2.49 2.03 1.80 1.66 1.50 1.41 1.34 1.30 1.27 1.24 1.23 1.21 1.19 1.18 1.16 1.16 1.1S 1.14 1.13 
16 4.15 2.61 2.12 1.87 1.73 1.S6 1.46 1.39 1.3S 1.31 1.29 1.27 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
20 4.31 2.69 2.18 1.93 1.78 1.60 1.Sl 1.43 1.38 1.3S 1.32 1.30 1.29 1.26 1.2S 1.24 1.23 1.22 1.21 1.20 
30 4.58 2.85 2.30 2.03 1.87 1.68 1.58 1.SO 1.4S 1.41 1.38 1.36 1.3S 1.32 1.30 1.29 1.28 1.27 1.26 1.2S 
40 4.77 2.96 2.39 2.11 1.94 1.74 1.63 1.55 1.49 1.4S 1.43 1.40 1.39 1.36 1.34 1.33 1.32 1.31 1.29 1.28 
so 4.92 3.04 2.4S 2.16 1.99 1.78 1.67 1.58 1.S3 1.49 1.46 1.44 1.42 1.39 1.37 1.36 1.3S 1.34 1.32 1.31 
60 5.04 3.11 2.SO 2.21 2.03 1.82 1.70 1.61 1.S6 1.Sl 1.48 1.46 1.44 1.41 1.40 1.38 1.37 1.36 1.34 1.33 
7S 5.18 3.19 2.S7 2.26 2.08 1.86 1.74 1.6S 1.S9 1.SS 1.S2 1.49 1.47 1.44 1.42 1.41 1.40 1.39 1.37 1.36 

100 5.36 3.29 2.6S 2.33 2.14 1.92 1.79 1.70 1.63 1.S9 1.S6 1.S3 1.Sl 1.48 1.46 1.4S 1.43 1.42 1.41 1.39 
12S 5.50 3.37 2.71 2.38 2.18 1.96 1.83 1.73 1.67 1.62 1.S9 1.S6 1.S4 1.Sl 1.49 1.47 1.46 1.4S 1.43 1.42 
150 5.61 3.43 2.76 2.42 2.22 1.99 1.86 1.76 1.69 1.6S 1.61 1.S9 1.S7 1.S3 1.Sl 1.50 1.48 1.47 1.4S 1.44 
17S 5.70 3.49 2.80 2.46 2.26 2.02 1.89 1.78 1.72 1.67 1.64 1.61 1.S9 1.SS 1.S3 1.Sl 1.50 1.49 1.47 1.46 
200 5.78 3.53 2.83 2.49 2.28 2.05 1.91 1.81 1.74 1.69 1.6S 1.63 1.60 1.S7 1.55 1.S3 1.S2 1.Sl 1.49 1.47 
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Table 19-9. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Means of Order 3 (10 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.64 1.76 1.46 1.31 1.22 1.12 1.06 1.01 0.98 0.96 0.95 0.94 0.93 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
2 3.15 2.04 1.68 1.SO 1.40 1.27 1.20 1.14 1.11 1.08 1.07 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
3 3.45 2.21 1.81 1.61 1.49 1.36 1.28 1.22 1.18 1.1S 1.13 1.12 1.11 1.09 1.07 1.06 1.06 1.05 1.04 1.03 
4 3.66 2.33 1.90 1.69 1.S6 1.42 1.33 1.27 1.23 1.20 1.18 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
s 3.82 2.42 1.97 1.75 1.62 1.46 1.38 1.31 1.27 1.24 1.21 1.20 1.18 1.16 1.1S 1.14 1.13 1.12 1.11 1.10 
8 4.15 2.61 2.12 1.87 1.73 1.S6 1.46 1.39 1.3S 1.31 1.29 1.27 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
12 4.43 2.76 2.24 1.98 1.82 1.64 1.S4 1.46 1.41 1.38 1.3S 1.33 1.31 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 
16 4.63 2.87 2.32 2.05 1.89 1.70 1.S9 1.Sl 1.46 1.42 1.39 1.37 1.3S 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
20 4.77 2.96 2.39 2.11 1.94 1.74 1.63 1.55 1.49 1.4S 1.43 1.40 1.39 1.36 1.34 1.33 1.32 1.31 1.29 1.28 
30 5.04 3.11 2.50 2.21 2.03 1.82 1.70 1.61 1.S6 1.Sl 1.48 1.46 1.44 1.41 1.40 1.38 1.37 1.36 1.34 1.33 
40 5.22 3.21 2.S8 2.28 2.09 1.87 1.7S 1.66 1.60 1.S6 1.S3 1.50 1.48 1.4S 1.43 1.42 1.41 1.40 1.38 1.37 
so 5.36 3.29 2.6S 2.33 2.14 1.92 1.79 1.70 1.63 1.S9 1.S6 1.S3 1.Sl 1.48 1.46 1.4S 1.43 1.42 1.41 1.39 
60 5.47 3.36 2.70 2.37 2.18 1.9S 1.82 1.73 1.66 1.62 1.58 1.S6 1.S4 1.Sl 1.48 1.47 1.46 1.4S 1.43 1.42 
7S 5.61 3.43 2.76 2.42 2.22 1.99 1.86 1.76 1.69 1.6S 1.61 1.S9 1.S7 1.S3 1.Sl 1.SO 1.48 1.47 1.4S 1.44 

100 5.78 3.53 2.83 2.49 2.28 2.05 1.91 1.81 1.74 1.69 1.6S 1.63 1.60 1.S7 1.55 1.S3 1.S2 1.Sl 1.49 1.47 
12S 5.91 3.61 2.89 2.S4 2.33 2.09 1.9S 1.84 1.77 1.72 1.68 1.66 1.63 1.60 1.S7 1.S6 1.S4 1.S3 1.Sl 1.SO 
150 6.02 3.67 2.94 2.S8 2.37 2.12 1.98 1.87 1.80 1.7S 1.71 1.68 1.66 1.62 1.60 1.58 1.S6 1.SS 1.S3 1.S2 
17S 6.10 3.72 2.98 2.62 2.40 2.1S 2.00 1.89 1.82 1.77 1.73 1.70 1.68 1.64 1.62 1.60 1.58 1.S7 1.SS 1.S4 
200 6.18 3.76 3.01 2.6S 2.42 2.17 2.02 1.91 1.84 1.79 1.7S 1.72 1.69 1.66 1.63 1.61 1.60 1.S9 1.S6 1.SS 

Table 19-9. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 3 (10 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 3.15 2.04 1.68 1.SO 1.40 1.27 1.20 1.14 1.11 1.08 1.07 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
2 3.66 2.33 1.90 1.69 1.S6 1.42 1.33 1.27 1.23 1.20 1.18 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
3 3.95 2.49 2.03 1.80 1.66 1.SO 1.41 1.34 1.30 1.27 1.24 1.23 1.21 1.19 1.18 1.16 1.16 1.1S 1.14 1.13 
4 4.15 2.61 2.12 1.87 1.73 1.S6 1.46 1.39 1.3S 1.31 1.29 1.27 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
s 4.31 2.69 2.18 1.93 1.78 1.60 1.Sl 1.43 1.38 1.3S 1.32 1.30 1.29 1.26 1.2S 1.24 1.23 1.22 1.21 1.20 
8 4.63 2.87 2.32 2.05 1.89 1.70 1.S9 1.Sl 1.46 1.42 1.39 1.37 1.3S 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
12 4.89 3.03 2.44 2.15 1.98 1.78 1.66 1.58 1.S2 1.48 1.4S 1.43 1.41 1.38 1.37 1.3S 1.34 1.33 1.32 1.31 
16 5.08 3.13 2.S2 2.22 2.04 1.83 1.72 1.62 1.S7 1.S2 1.49 1.47 1.4S 1.42 1.40 1.39 1.38 1.37 1.3S 1.34 
20 5.22 3.21 2.S8 2.28 2.09 1.87 1.7S 1.66 1.60 1.S6 1.S3 1.50 1.48 1.4S 1.43 1.42 1.41 1.40 1.38 1.37 
30 5.47 3.36 2.70 2.37 2.18 1.9S 1.82 1.73 1.66 1.62 1.58 1.S6 1.S4 1.Sl 1.48 1.47 1.46 1.4S 1.43 1.42 
40 5.65 3.46 2.77 2.44 2.24 2.00 1.87 1.77 1.70 1.66 1.62 1.60 1.S7 1.S4 1.S2 1.50 1.49 1.48 1.46 1.4S 
so 5.78 3.53 2.83 2.49 2.28 2.05 1.91 1.81 1.74 1.69 1.6S 1.63 1.60 1.S7 1.55 1.S3 1.S2 1.Sl 1.49 1.47 
60 5.89 3.60 2.88 2.S3 2.32 2.08 1.94 1.83 1.76 1.71 1.68 1.6S 1.63 1.S9 1.S7 1.SS 1.S4 1.S3 1.Sl 1.49 
7S 6.02 3.67 2.94 2.S8 2.37 2.12 1.98 1.87 1.80 1.7S 1.71 1.68 1.66 1.62 1.60 1.58 1.S6 1.SS 1.S3 1.S2 

100 6.18 3.76 3.01 2.6S 2.42 2.17 2.02 1.91 1.84 1.79 1.7S 1.72 1.69 1.66 1.63 1.61 1.60 1.S9 1.S6 1.SS 
12S 6.31 3.84 3.07 2.69 2.47 2.21 2.06 1.9S 1.87 1.82 1.78 1.7S 1.72 1.68 1.66 1.64 1.62 1.61 1.S9 1.S7 
150 6.41 3.90 3.12 2.73 2.Sl 2.24 2.09 1.97 1.90 1.84 1.80 1.77 1.74 1.71 1.68 1.66 1.64 1.63 1.61 1.S9 
17S 6.49 3.94 3.16 2.77 2.S4 2.27 2.11 2.00 1.92 1.86 1.82 1.79 1.76 1.72 1.70 1.68 1.66 1.6S 1.63 1.61 
200 6.56 3.99 3.19 2.80 2.S6 2.29 2.13 2.01 1.94 1.88 1.84 1.81 1.78 1.74 1.71 1.69 1.68 1.66 1.64 1.63 
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Table 19-9. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Means of Order 3 (20 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.80 1.80 1.48 1.33 1.23 1.12 1.06 1.02 0.99 0.96 0.95 0.94 0.93 0.91 0.90 0.89 0.89 0.88 0.88 0.87 
2 3.41 2.12 1.72 1.S2 1.41 1.28 1.20 1.1S 1.11 1.09 1.07 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
3 3.78 2.30 1.8S 1.64 1.Sl 1.36 1.28 1.22 1.18 1.16 1.13 1.12 1.11 1.09 1.07 1.07 1.06 1.05 1.04 1.03 
4 4.04 2.44 1.9S 1.72 1.58 1.43 1.34 1.27 1.23 1.20 1.18 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
s 4.24 2.S4 2.03 1.78 1.64 1.47 1.38 1.31 1.27 1.24 1.22 1.20 1.19 1.17 1.1S 1.14 1.13 1.12 1.11 1.10 
8 4.67 2.76 2.19 1.91 1.7S 1.S7 1.47 1.40 1.3S 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
12 5.04 2.94 2.32 2.03 1.8S 1.66 1.SS 1.47 1.42 1.38 1.3S 1.33 1.32 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 
16 5.29 3.07 2.42 2.11 1.92 1.72 1.60 1.S2 1.46 1.42 1.40 1.37 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
20 5.48 3.17 2.49 2.17 1.98 1.76 1.6S 1.S6 1.50 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.29 1.28 
30 5.83 3.35 2.62 2.28 2.08 1.8S 1.72 1.62 1.S6 1.S2 1.49 1.46 1.4S 1.42 1.40 1.38 1.37 1.36 1.34 1.33 
40 6.07 3.47 2.72 2.36 2.14 1.90 1.77 1.67 1.61 1.S6 1.S3 1.50 1.48 1.46 1.43 1.42 1.41 1.40 1.38 1.37 
so 6.25 3.57 2.79 2.41 2.20 1.9S 1.81 1.71 1.64 1.60 1.S6 1.S4 1.S2 1.48 1.46 1.4S 1.43 1.42 1.41 1.39 
60 6.40 3.65 2.84 2.46 2.24 1.99 1.8S 1.74 1.67 1.62 1.S9 1.S6 1.S4 1.Sl 1.49 1.47 1.46 1.4S 1.43 1.42 
7S 6.58 3.74 2.91 2.S2 2.29 2.03 1.89 1.78 1.71 1.66 1.62 1.S9 1.S7 1.S4 1.Sl 1.SO 1.48 1.47 1.4S 1.44 

100 6.81 3.86 3.00 2.S9 2.36 2.09 1.94 1.82 1.7S 1.70 1.66 1.63 1.61 1.S7 1.55 1.S3 1.S2 1.Sl 1.49 1.47 
12S 6.98 3.95 3.07 2.65 2.41 2.13 1.98 1.86 1.78 1.73 1.69 1.66 1.64 1.60 1.58 1.S6 1.S4 1.S3 1.Sl 1.SO 
150 7.12 4.02 3.12 2.70 2.4S 2.16 2.01 1.89 1.81 1.76 1.72 1.69 1.66 1.62 1.60 1.58 1.S7 1.SS 1.S3 1.S2 
17S 7.24 4.08 3.17 2.74 2.48 2.19 2.03 1.91 1.83 1.78 1.74 1.71 1.68 1.64 1.62 1.60 1.58 1.S7 1.SS 1.S4 
200 7.34 4.13 3.21 2.77 2.Sl 2.22 2.06 1.93 1.8S 1.80 1.7S 1.72 1.70 1.66 1.63 1.61 1.60 1.S9 1.S7 1.SS 

Table 19-9. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 3 (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 3.41 2.12 1.72 1.S2 1.41 1.28 1.20 1.1S 1.11 1.09 1.07 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
2 4.04 2.44 1.9S 1.72 1.58 1.43 1.34 1.27 1.23 1.20 1.18 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
3 4.41 2.62 2.09 1.83 1.68 1.Sl 1.42 1.3S 1.30 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 1.13 
4 4.67 2.76 2.19 1.91 1.7S 1.S7 1.47 1.40 1.3S 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
s 4.87 2.86 2.26 1.98 1.81 1.62 1.S2 1.44 1.39 1.3S 1.32 1.30 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 
8 5.29 3.07 2.42 2.11 1.92 1.72 1.60 1.S2 1.46 1.42 1.40 1.37 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
12 5.64 3.25 2.S5 2.22 2.02 1.80 1.68 1.S9 1.S3 1.49 1.46 1.43 1.41 1.39 1.37 1.3S 1.34 1.33 1.32 1.31 
16 5.89 3.38 2.64 2.30 2.09 1.86 1.73 1.64 1.S7 1.S3 1.50 1.47 1.4S 1.43 1.41 1.39 1.38 1.37 1.3S 1.34 
20 6.07 3.47 2.72 2.36 2.14 1.90 1.77 1.67 1.61 1.S6 1.S3 1.50 1.48 1.46 1.43 1.42 1.41 1.40 1.38 1.37 
30 6.40 3.65 2.84 2.46 2.24 1.99 1.8S 1.74 1.67 1.62 1.S9 1.S6 1.S4 1.Sl 1.49 1.47 1.46 1.4S 1.43 1.42 
40 6.63 3.77 2.93 2.S4 2.30 2.04 1.90 1.79 1.72 1.67 1.63 1.60 1.58 1.SS 1.S2 1.50 1.49 1.48 1.46 1.4S 
so 6.81 3.86 3,00 2.S9 2.36 2.09 1.94 1.82 1.7S 1.70 1.66 1.63 1.61 1.S7 1.55 1.S3 1.S2 1.Sl 1.49 1.47 
60 6.95 3.93 3.06 2.64 2.40 2.12 1.97 1.8S 1.78 1.72 1.69 1.66 1.63 1.60 1.S7 1.SS 1.S4 1.S3 1.Sl 1.49 
7S 7.12 4.02 3.12 2.70 2.4S 2.16 2.01 1.89 1.81 1.76 1.72 1.69 1.66 1.62 1.60 1.58 1.S7 1.SS 1.S3 1.S2 

100 7.34 4.13 3.21 2.77 2.Sl 2.22 2.06 1.93 1.8S 1.80 1.7S 1.72 1.70 1.66 1.63 1.61 1.60 1.S9 1.S7 1.SS 
12S 7.50 4.22 3.27 2.82 2.S6 2.26 2.09 1.97 1.89 1.83 1.79 1.7S 1.73 1.69 1.66 1.64 1.62 1.61 1.S9 1.58 
150 7.64 4.29 3.33 2.87 2.60 2.29 2.13 2.00 1.91 1.8S 1.81 1.78 1.7S 1.71 1.68 1.66 1.6S 1.63 1.61 1.60 
17S 7.75 4.35 3.37 2.90 2.63 2.32 2.1S 2.02 1.93 1.87 1.83 1.80 1.77 1.73 1.70 1.68 1.66 1.6S 1.63 1.61 
200 7.84 4.40 3.41 2.94 2.66 2.3S 2.17 2.04 1.9S 1.89 1.8S 1.81 1.79 1.7S 1.72 1.69 1.68 1.67 1.64 1.63 
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Table 19-9. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Means of Order 3 (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 4.04 2.44 1.9S 1.72 1.58 1.43 1.34 1.27 1.23 1.20 1.18 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
2 4.67 2.76 2.19 1.91 1.7S 1.S7 1.47 1.40 1.3S 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
3 5.04 2.94 2.32 2.03 1.8S 1.66 1.SS 1.47 1.42 1.38 1.3S 1.33 1.32 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 
4 5.29 3.07 2.42 2.11 1.92 1.72 1.60 1.S2 1.46 1.42 1.40 1.37 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
s 5.48 3.17 2.49 2.17 1.98 1.76 1.6S 1.S6 1.50 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.29 1.28 
8 5.89 3.38 2.64 2.30 2.09 1.86 1.73 1.64 1.S7 1.S3 1.SO 1.47 1.4S 1.43 1.41 1.39 1.38 1.37 1.3S 1.34 
12 6.22 3.55 2.77 2.40 2.19 1.94 1.81 1.70 1.64 1.S9 1.S6 1.S3 1.Sl 1.48 1.46 1.44 1.43 1.42 1.40 1.39 
16 6.46 3.67 2.86 2.48 2.2S 2.00 1.86 1.7S 1.68 1.63 1.60 1.S7 1.SS 1.S2 1.49 1.48 1.46 1.4S 1.44 1.42 
20 6.63 3.77 2.93 2.S4 2.30 2.04 1.90 1.79 1.72 1.67 1.63 1.60 1.58 1.SS 1.S2 1.50 1.49 1.48 1.46 1.4S 
30 6.95 3.93 3.06 2.64 2.40 2.12 1.97 1.8S 1.78 1.72 1.69 1.66 1.63 1.60 1.S7 1.55 1.S4 1.S3 1.Sl 1.49 
40 7.17 4.05 3.14 2.71 2.46 2.18 2.02 1.90 1.82 1.76 1.72 1.69 1.67 1.63 1.61 1.S9 1.S7 1.S6 1.S4 1.S3 
so 7.34 4.13 3.21 2.77 2.Sl 2.22 2.06 1.93 1.8S 1.80 1.7S 1.72 1.70 1.66 1.63 1.61 1.60 1.S9 1.S7 1.SS 
60 7.47 4.20 3.26 2.81 2.S5 2.2S 2.09 1.96 1.88 1.82 1.78 1.7S 1.72 1.68 1.66 1.64 1.62 1.61 1.S9 1.S7 
7S 7.64 4.29 3.33 2.87 2.60 2.29 2.13 2.00 1.91 1.8S 1.81 1.78 1.7S 1.71 1.68 1.66 1.6S 1.63 1.61 1.60 

100 7.84 4.40 3.41 2.94 2.66 2.3S 2.17 2.04 1.9S 1.89 1.8S 1.81 1.79 1.7S 1.72 1.69 1.68 1.67 1.64 1.63 
12S 8.00 4.48 3.47 2.99 2.71 2.39 2.21 2.07 1.99 1.92 1.88 1.84 1.81 1.77 1.74 1.72 1.70 1.69 1.67 1.6S 
1SO 8.13 4.55 3.52 3.03 2.7S 2.42 2.24 2.10 2.01 1.9S 1.90 1.87 1.84 1.79 1.76 1.74 1.72 1.71 1.68 1.67 
17S 8.23 4.61 3.56 3.07 2.78 2.4S 2.27 2.13 2.03 1.97 1.92 1.88 1.86 1.81 1.78 1.76 1.74 1.73 1.70 1.68 
200 8.33 4.65 3.60 3.10 2.81 2.47 2.29 2.1S 2.05 1.99 1.94 1.90 1.87 1.83 1.80 1.77 1.76 1.74 1.72 1.70 

Table 19-9. K-Multipliers for 1-of-2 Interwell Prediction Limits on Means of Order 3 (40 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 3.60 2.16 1.74 1.S3 1.42 1.28 1.21 1.1S 1.11 1.09 1.07 1.05 1.04 1.03 1.01 1.00 1.00 0.99 0.98 0.98 
2 4.35 2.Sl 1.98 1.74 1.S9 1.43 1.34 1.28 1.23 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
3 4.81 2.72 2.13 1.86 1.70 1.S2 1.42 1.3S 1.30 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 1.13 
4 5.14 2.87 2.24 1.94 1.77 1.58 1.48 1.40 1.3S 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
s 5.40 2.99 2.32 2.01 1.83 1.63 1.S2 1.44 1.39 1.3S 1.33 1.31 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 
8 5.94 3.24 2.49 2.15 1.9S 1.73 1.61 1.S2 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
12 6.39 3.45 2.64 2.27 2.05 1.82 1.69 1.S9 1.S3 1.49 1.46 1.43 1.42 1.39 1.37 1.3S 1.34 1.33 1.32 1.31 
16 6.71 3.60 2.74 2.35 2.13 1.88 1.74 1.64 1.58 1.S3 1.50 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.3S 1.34 
20 6.96 3.71 2.82 2.42 2.18 1.92 1.78 1.68 1.61 1.S7 1.S3 1.Sl 1.49 1.46 1.43 1.42 1.41 1.40 1.38 1.37 
30 7.39 3.91 2.97 2.S3 2.29 2.01 1.86 1.7S 1.68 1.63 1.S9 1.S6 1.S4 1.Sl 1.49 1.47 1.46 1.4S 1.43 1.42 
40 7.70 4.06 3.07 2.62 2.36 2.07 1.91 1.80 1.72 1.67 1.63 1.60 1.58 1.SS 1.S2 1.Sl 1.49 1.48 1.46 1.4S 
so 7.93 4.16 3.15 2.68 2.41 2.12 1.9S 1.83 1.76 1.70 1.66 1.63 1.61 1.58 1.55 1.S3 1.S2 1.Sl 1.49 1.47 
60 8.11 4.25 3.21 2.73 2.46 2.1S 1.99 1.86 1.78 1.73 1.69 1.66 1.63 1.60 1.S7 1.SS 1.S4 1.S3 1.Sl 1.SO 
7S 8.34 4.36 3.29 2.79 2.Sl 2.20 2.03 1.90 1.82 1.76 1.72 1.69 1.66 1.63 1.60 1.58 1.S7 1.SS 1.S3 1.S2 

100 8.62 4.49 3.38 2.87 2.S8 2.26 2.08 1.9S 1.86 1.80 1.76 1.73 1.70 1.66 1.64 1.62 1.60 1.S9 1.S7 1.SS 
12S 8.84 4.60 3.46 2.93 2.63 2.30 2.12 1.98 1.90 1.83 1.79 1.76 1.73 1.69 1.66 1.64 1.63 1.61 1.S9 1.58 
1SO 9.01 4.68 3.52 2.98 2.68 2.34 2.1S 2.01 1.92 1.86 1.82 1.78 1.7S 1.71 1.68 1.66 1.6S 1.63 1.61 1.60 
17S 9.16 4.75 3.57 3.03 2.71 2.37 2.18 2.04 1.9S 1.88 1.84 1.80 1.77 1.73 1.70 1.68 1.66 1.6S 1.63 1.61 
200 9.29 4.81 3.61 3.06 2.75 2.39 2.20 2.06 1.97 1.90 1.86 1.82 1.79 1.7S 1.72 1.70 1.68 1.67 1.64 1.62 
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Table 19-9. K-Multipliers for 1-of-2 Interwel I Prediction Limits on Means of Order 3 ( 40 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 4.35 2.Sl 1.98 1.74 1.S9 1.43 1.34 1.28 1.23 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
2 5.14 2.87 2.24 1.94 1.77 1.58 1.48 1.40 1.3S 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
3 5.61 3.09 2.39 2.06 1.88 1.67 1.S6 1.47 1.42 1.38 1.3S 1.33 1.32 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 
4 5.94 3.24 2.49 2.15 1.9S 1.73 1.61 1.S2 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
s 6.19 3.35 2.S7 2.21 2.01 1.78 1.6S 1.S6 1.50 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.29 1.28 
8 6.71 3.60 2.74 2.35 2.13 1.88 1.74 1.64 1.58 1.S3 1.SO 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.3S 1.34 
12 7.15 3.80 2.89 2.47 2.23 1.96 1.82 1.71 1.64 1.S9 1.S6 1.S3 1.Sl 1.48 1.46 1.44 1.43 1.42 1.40 1.39 
16 7.46 3.95 2.99 2.S5 2.30 2.02 1.87 1.76 1.69 1.64 1.60 1.S7 1.SS 1.S2 1.49 1.48 1.46 1.4S 1.44 1.42 
20 7.70 4.06 3.07 2.62 2.36 2.07 1.91 1.80 1.72 1.67 1.63 1.60 1.58 1.SS 1.S2 1.Sl 1.49 1.48 1.46 1.4S 
30 8.11 4.25 3.21 2.73 2.46 2.1S 1.99 1.86 1.78 1.73 1.69 1.66 1.63 1.60 1.S7 1.55 1.S4 1.S3 1.Sl 1.SO 
40 8.40 4.39 3.31 2.81 2.S3 2.21 2.04 1.91 1.83 1.77 1.73 1.70 1.67 1.63 1.61 1.S9 1.S7 1.S6 1.S4 1.S3 
so 8.62 4.49 3.38 2.87 2.S8 2.26 2.08 1.9S 1.86 1.80 1.76 1.73 1.70 1.66 1.64 1.62 1.60 1.S9 1.S7 1.SS 
60 8.80 4.58 3.44 2.92 2.62 2.29 2.11 1.98 1.89 1.83 1.78 1.7S 1.72 1.69 1.66 1.64 1.62 1.61 1.S9 1.S7 
7S 9.01 4.68 3.52 2.98 2.68 2.34 2.1S 2.01 1.92 1.86 1.82 1.78 1.7S 1.71 1.68 1.66 1.6S 1.63 1.61 1.60 

100 9.29 4.81 3.61 3.0$ 2.7S 2.39 2.20 2.06 1.97 1.90 1.86 1.82 1.79 1.7S 1.72 1.70 1.68 1.67 1.64 1.62 
12S 9.50 4.91 3.68 3.12 2.80 2.44 2.24 2.09 2.00 1.93 1.89 1.8S 1.82 1.77 1.74 1.72 1.70 1.69 1.67 1.6S 
1SO 9.67 4.99 3.74 3.17 2.84 2.47 2.27 2.12 2.03 1.96 1.91 1.87 1.84 1.80 1.77 1.74 1.72 1.71 1.69 1.67 
17S 9.81 5.06 3.79 3.21 2.87 2.SO 2.30 2.1S 2.05 1.98 1.93 1.89 1.86 1.82 1.78 1.76 1.74 1.73 1.70 1.69 
200 9.93 5.12 3.83 3.24 2.90 2.S3 2.32 2.17 2.07 2.00 1.9S 1.91 1.88 1.83 1.80 1.77 1.76 1.74 1.72 1.70 

Table 19-9. K-Multipliers for 1-of-2 Interwell Prediction Li mi ts on Means of Order 3 ( 40 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 5.14 2.87 2.24 1.94 1.77 1.58 1.48 1.40 1.3S 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
2 5.94 3.24 2.49 2.1S 1.9S 1.73 1.61 1.S2 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
3 6.39 3.45 2.64 2.27 2.05 1.82 1.69 1.S9 1.S3 1.49 1.46 1.43 1.42 1.39 1.37 1.3S 1.34 1.33 1.32 1.31 
4 6.71 3.60 2.74 2.3S 2.13 1.88 1.74 1.64 1.58 1.S3 1.SO 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.3S 1.34 
s 6.96 3.71 2.82 2.42 2.18 1.92 1.78 1.68 1.61 1.S7 1.S3 1.51 1.49 1.46 1.43 1.42 1.41 1.40 1.38 1.37 
8 7.46 3.95 2.99 2.S5 2.30 2.02 1.87 1.76 1.69 1.64 1.60 1.57 1.55 1.S2 1.49 1.48 1.46 1.4S 1.44 1.42 
12 7.88 4.14 3.13 2.67 2.40 2.11 1.9S 1.83 1.7S 1.70 1.66 1.63 1.60 1.S7 1.SS 1.53 1.Sl 1.SO 1.48 1.47 
16 8.18 4.28 3.23 2.7S 2.47 2.17 2.00 1.87 1.79 1.74 1.70 1.67 1.64 1.61 1.58 1.56 1.55 1.S4 1.S2 1.SO 
20 8.40 4.39 3.31 2.81 2.S3 2.21 2.04 1.91 1.83 1.77 1.73 1.70 1.67 1.63 1.61 1.59 1.S7 1.S6 1.S4 1.S3 
30 8.80 4.58 3.44 2.92 2.62 2.29 2.11 1.98 1.89 1.83 1.78 1.7S 1.72 1.69 1.66 1.64 1.62 1.61 1.S9 1.S7 
40 9.08 4.71 3.54 3.00 2.69 2.3S 2.16 2.02 1.93 1.87 1.82 1.79 1.76 1.72 1.69 1.67 1.6S 1.64 1.62 1.60 
so 9.29 4.81 3.61 3.06 2.7S 2.39 2.20 2.06 1.97 1.90 1.86 1.82 1.79 1.7S 1.72 1.70 1.68 1.67 1.64 1.62 
60 9.46 4.89 3.67 3.11 2.79 2.43 2.23 2.09 1.99 1.93 1.88 1.84 1.81 1.77 1.74 1.72 1.70 1.69 1.66 1.6S 
7S 9.67 4.99 3.74 3.17 2.84 2.47 2.27 2.12 2.03 1.96 1.91 1.87 1.84 1.80 1.77 1.74 1.72 1.71 1.69 1.67 
100 9.93 5.12 3.83 3.24 2.90 2.S3 2.32 2.17 2.07 2.00 1.9S 1.91 1.88 1.83 1.80 1.77 1.76 1.74 1.72 1.70 
12S 10.12 5.21 3.90 3.30 2.9S 2.S7 2.36 2.20 2.10 2.03 1.98 1.94 1.90 1.86 1.82 1.80 1.78 1.77 1.74 1.72 
1SO 10.29 5.29 3.96 3.35 3.00 2.61 2.39 2.23 2.13 2.05 2.00 1.96 1.93 1.88 1.8S 1.82 1.80 1.79 1.76 1.74 
17S 10.42 5.36 4.00 3.39 3.03 2.63 2.42 2.2S 2.1S 2.07 2.02 1.98 1.9S 1.90 1.86 1.84 1.82 1.80 1.77 1.76 
200 10.54 5.41 4.04 3.42 3.06 2.66 2.44 2.27 2.17 2.09 2.04 2.00 1.96 1.91 1.88 1.8S 1.83 1.82 1.79 1.77 
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Table 19-10. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Observations (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 0.78 0.67 0.61 O.S8 O.S7 O.S4 O.S3 O.S2 O.Sl O.Sl o.so o.so o.so o.so 0.49 0.49 0.49 0.49 0.49 0.49 
2 1.27 1.05 0.97 0.92 0.89 0.8S 0.83 0.81 0.80 0.79 0.79 0.78 0.78 0.78 0.77 0.77 0.77 0.77 0.76 0.76 
3 1.S9 1.28 1.17 1.10 1.06 1.02 0.99 0.97 0.96 0.9S 0.94 0.94 0.93 0.93 0.92 0.92 0.91 0.91 0.91 0.91 
4 1.82 1.4S 1.31 1.23 1.19 1.13 1.10 1.08 1.06 1.05 1.04 1.04 1.03 1.03 1.02 1.02 1.01 1.01 1.01 1.00 
s 2.02 1.58 1.41 1.33 1.28 1.22 1.19 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 1.09 1.09 1.08 1.08 1.08 
8 2.47 1.86 1.6S 1.S4 1.47 1.40 1.36 1.32 1.30 1.29 1.28 1.27 1.26 1.2S 1.24 1.24 1.24 1.23 1.23 1.22 
12 2.90 2.11 1.8S 1.72 1.64 1.SS 1.50 1.46 1.43 1.42 1.40 1.39 1.39 1.38 1.37 1.36 1.36 1.3S 1.3S 1.34 
16 3.24 2.30 1.99 1.84 1.7S 1.6S 1.60 1.SS 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 1.43 1.43 1.42 
20 3.52 2.4S 2.11 1.94 1.84 1.73 1.67 1.62 1.S9 1.S7 1.S6 1.SS 1.S4 1.S2 1.Sl 1.Sl 1.SO 1.50 1.49 1.48 
30 4.09 2.73 2.32 2.12 2.01 1.88 1.80 1.7S 1.72 1.69 1.68 1.66 1.6S 1.64 1.63 1.62 1.61 1.61 1.60 1.S9 
40 4.54 2.94 2.47 2.25 2.12 1.98 1.90 1.84 1.80 1.78 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
so 4.91 3.11 2.59 2.3S 2.21 2.06 1.97 1.91 1.87 1.84 1.82 1.80 1.79 1.77 1.76 1.7S 1.74 1.74 1.73 1.72 
60 5.24 3.26 2.70 2.43 2.29 2.12 2.03 1.96 1.92 1.89 1.87 1.8S 1.84 1.82 1.81 1.80 1.79 1.78 1.77 1.76 
7S 5.67 3.44 2.82 2.54 2.38 2.20 2.10 2.03 1.98 1.9S 1.93 1.91 1.90 1.88 1.86 1.8S 1.84 1.84 1.83 1.82 

100 6.26 3.68 2.99 2.67 2.49 2.30 2.19 2.11 2.07 2.03 2.01 1.99 1.97 1.9S 1.93 1.92 1.91 1.91 1.89 1.89 
12S 6.76 3.88 3.12 2.78 2.59 2.37 2.26 2.18 2.13 2.09 2.07 2.05 2.03 2.01 1.99 1.98 1.97 1.96 1.9S 1.94 
150 7.20 4.05 3.23 2.87 2.66 2.44 2.32 2.23 2.18 2.14 2.11 2.09 2.07 2.05 2.03 2.02 2.01 2.00 1.99 1.98 
17S 7.59 4.19 3.33 2.94 2.72 2.49 2.37 2.28 2.22 2.18 2.1S 2.13 2.11 2.09 2.07 2.06 2.05 2.04 2.02 2.01 
200 7.95 4.32 3.41 3.01 2.78 2.54 2.41 2.32 2.26 2.22 2.19 2.16 2.1S 2.12 2.10 2.09 2.08 2.07 2.05 2.04 

Table 19-10. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Observations (1 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.21 1.03 0.9S 0.90 0.88 0.84 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 0.77 0.77 0.77 0.76 0.76 0.76 
2 1.76 1.42 1.29 1.22 1.18 1.13 1.10 1.08 1.06 1.05 1.04 1.04 1.03 1.02 1.02 1.02 1.01 1.01 1.01 1.00 
3 2.11 1.66 1.49 1.40 1.3S 1.28 1.2S 1.22 1.20 1.19 1.18 1.17 1.17 1.16 1.1S 1.1S 1.14 1.14 1.14 1.13 
4 2.39 1.83 1.63 1.S3 1.47 1.39 1.3S 1.32 1.30 1.29 1.27 1.27 1.26 1.2S 1.24 1.24 1.23 1.23 1.23 1.22 
s 2.62 1.97 1.74 1.63 1.S6 1.48 1.43 1.40 1.37 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 1.30 1.30 1.29 1.29 
8 3.15 2.27 1.98 1.83 1.7S 1.6S 1.S9 1.SS 1.S2 1.SO 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 1.43 1.43 1.42 
12 3.67 2.SS 2.19 2.01 1.91 1.79 1.73 1.68 1.6S 1.63 1.61 1.60 1.S9 1.S7 1.S6 1.S6 1.SS 1.SS 1.S4 1.S3 
16 4.08 2.7S 2.34 2.14 2.03 1.90 1.82 1.77 1.74 1.71 1.69 1.68 1.67 1.6S 1.64 1.63 1.63 1.62 1.61 1.61 
20 4.42 2.91 2.46 2.24 2.12 1.98 1.90 1.84 1.80 1.78 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
30 5.11 3.23 2.68 2.43 2.28 2.12 2.03 1.96 1.92 1.89 1.87 1.8S 1.84 1.82 1.81 1.80 1.79 1.78 1.77 1.76 
40 5.65 3.46 2.85 2.S6 2.40 2.22 2.12 2.05 2.00 1.97 1.9S 1.93 1.91 1.89 1.88 1.87 1.86 1.8S 1.84 1.83 
so 6.11 3.65 2.98 2.67 2.49 2.30 2.19 2.11 2.06 2.03 2.01 1.99 1.97 1.9S 1.93 1.92 1.91 1.91 1.89 1.89 
60 6.50 3.81 3.08 2.75 2.S6 2.36 2.2S 2.17 2.12 2.08 2.05 2.03 2.02 2.00 1.98 1.97 1.96 1.9S 1.94 1.93 
7S 7.02 4.02 3.22 2.86 2.66 2.44 2.32 2.23 2.18 2.14 2.11 2.09 2.07 2.05 2.03 2.02 2.01 2.00 1.99 1.98 

100 7.75 4.29 3.40 3.00 2.78 2.S4 2.41 2.32 2.26 2.22 2.19 2.16 2.1S 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
12S 8.36 4.51 3.54 3.11 2.87 2.62 2.48 2.38 2.32 2.27 2.24 2.22 2.20 2.17 2.1S 2.14 2.13 2.12 2.10 2.09 
150 8.91 4.70 3.66 3.20 2.95 2.68 2.S4 2.43 2.37 2.32 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.14 2.13 
17S 9.38 4.86 3.76 3.28 3.02 2.73 2.S9 2.48 2.41 2.36 2.33 2.30 2.28 2.2S 2.23 2.22 2.20 2.19 2.18 2.17 
200 9.81 5.01 3.85 3.35 3.07 2.78 2.63 2.Sl 2.44 2.40 2.36 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.21 2.19 
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Table 19-10. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Observations (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 1.6S 1.37 1.26 1.20 1.16 1.12 1.09 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.02 1.01 1.01 1.01 1.00 1.00 
2 2.27 1.78 1.61 1.51 1.4S 1.39 1.3S 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 1.24 1.23 1.23 1.23 1.22 
3 2.68 2.04 1.81 1.69 1.62 1.S4 1.49 1.4S 1.43 1.41 1.40 1.39 1.38 1.37 1.37 1.36 1.36 1.3S 1.34 1.34 
4 3.00 2.22 1.96 1.82 1.74 1.64 1.S9 1.55 1.S2 1.SO 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 1.43 1.43 1.42 
s 3.27 2.37 2.07 1.92 1.83 1.72 1.66 1.62 1.S9 1.S7 1.S6 1.S4 1.S4 1.S2 1.Sl 1.Sl 1.50 1.SO 1.49 1.48 
8 3.90 2.70 2.32 2.13 2.02 1.89 1.82 1.77 1.73 1.71 1.69 1.68 1.67 1.6S 1.64 1.63 1.63 1.62 1.61 1.61 
12 4.52 3.00 2.S4 2.31 2.18 2.03 1.9S 1.89 1.8S 1.83 1.81 1.79 1.78 1.76 1.7S 1.74 1.73 1.73 1.72 1.71 
16 5.01 3.23 2.70 2.4S 2.30 2.14 2.05 1.98 1.94 1.91 1.89 1.87 1.86 1.84 1.82 1.81 1.80 1.80 1.79 1.78 
20 5.42 3.41 2.83 2.SS 2.39 2.21 2.12 2.05 2.00 1.97 1.9S 1.93 1.91 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
30 6.24 3.76 3.06 2.74 2.S6 2.36 2.2S 2.17 2.11 2.08 2.05 2.03 2.02 2.00 1.98 1.97 1.96 1.9S 1.94 1.93 
40 6.89 4.02 3.24 2.88 2.68 2.46 2.34 2.2S 2.19 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
so 7.45 4.23 3.38 2.99 2.77 2.S3 2.41 2.32 2.26 2.22 2.19 2.16 2.1S 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
60 7.92 4.41 3.49 3.08 2.8S 2.60 2.47 2.37 2.31 2.26 2.23 2.21 2.19 2.16 2.14 2.13 2.12 2.11 2.09 2.08 
7S 8.55 4.64 3.64 3,19 2.94 2.68 2.S4 2.43 2.37 2.32 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.14 2.13 

100 9.43 4.95 3.83 3.34 3.07 2.78 2.63 2.Sl 2.44 2.40 2.36 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.21 2.19 
12S 10.17 5.20 3.98 3.46 3.17 2.86 2.70 2.S8 2.SO 2.4S 2.42 2.39 2.37 2.33 2.31 2.29 2.28 2.27 2.2S 2.24 
150 10.82 5.41 4.11 3.55 3.25 2.92 2.7S 2.63 2.SS 2.SO 2.46 2.43 2.41 2.37 2.3S 2.33 2.32 2.31 2.29 2.28 
17S 11.40 5.59 4.22 3.64 3.32 2.98 2.80 2.67 2.S9 2.S4 2.50 2.47 2.44 2.41 2.39 2.37 2.3S 2.34 2.32 2.31 
200 11.92 5.76 4.32 3.71 3.37 3.02 2.84 2.71 2.63 2.S7 2.S3 2.SO 2.48 2.44 2.42 2.40 2.38 2.37 2.3S 2.34 

Table 19-10. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Observations (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.27 1.05 0.97 0.92 0.89 0.8S 0.83 0.81 0.80 0.79 0.79 0.78 0.78 0.78 0.77 0.77 0.77 0.77 0.76 0.76 
2 1.82 1.4S 1.31 1.23 1.19 1.13 1.10 1.08 1.06 1.05 1.04 1.04 1.03 1.03 1.02 1.02 1.01 1.01 1.01 1.00 
3 2.19 1.68 1.SO 1.41 1.3S 1.29 1.2S 1.22 1.20 1.19 1.18 1.17 1.17 1.16 1.1S 1.1S 1.1S 1.14 1.14 1.13 
4 2.47 1.86 1.6S 1.S4 1.47 1.40 1.36 1.32 1.30 1.29 1.28 1.27 1.26 1.2S 1.24 1.24 1.24 1.23 1.23 1.22 
s 2.70 1.99 1.76 1.64 1.S6 1.48 1.43 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 1.30 1.30 1.29 1.29 
8 3.24 2.30 1.99 1.84 1.7S 1.6S 1.60 1.55 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 1.43 1.43 1.42 
12 3.77 2.57 2.20 2.02 1.92 1.80 1.73 1.68 1.6S 1.63 1.61 1.60 1.S9 1.S7 1.S6 1.S6 1.SS 1.SS 1.S4 1.S3 
16 4.19 2.78 2.3S 2.1S 2.03 1.90 1.83 1.77 1.74 1.71 1.69 1.68 1.67 1.6S 1.64 1.63 1.63 1.62 1.61 1.61 
20 4.54 2.94 2.47 2.2S 2.12 1.98 1.90 1.84 1.80 1.78 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
30 5.24 3.26 2.70 2.43 2.29 2.12 2.03 1.96 1.92 1.89 1.87 1.8S 1.84 1.82 1.81 1.80 1.79 1.78 1.77 1.76 
40 5.80 3.49 2.86 2.57 2.40 2.22 2.12 2.05 2.00 1.97 1.9S 1.93 1.91 1.89 1.88 1.87 1.86 1.8S 1.84 1.83 
so 6.26 3.68 2.99 2.67 2.49 2.30 2.19 2.11 2.07 2.03 2.01 1.99 1.97 1.9S 1.93 1.92 1.91 1.91 1.89 1.89 
60 6.67 3.84 3.10 2.76 2.57 2.36 2.2S 2.17 2.12 2.08 2.05 2.03 2.02 2.00 1.98 1.97 1.96 1.9S 1.93 1.92 
7S 7.20 4.05 3.23 2.87 2.66 2.44 2.32 2.23 2.18 2.14 2.11 2.09 2.08 2.05 2.03 2.02 2.01 2.00 1.99 1.98 
100 7.95 4.32 3.41 3.01 2.78 2.54 2.41 2.32 2.26 2.22 2.19 2.16 2.1S 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
12S 8.57 4.55 3.55 3.12 2.88 2.62 2.48 2.38 2.32 2.27 2.24 2.22 2.20 2.17 2.1S 2.14 2.13 2.12 2.10 2.09 
150 9.12 4.74 3.67 3.21 2.95 2.68 2.54 2.43 2.37 2.32 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.14 2.13 
17S 9.61 4.90 3.77 3.29 3.02 2.73 2.59 2.48 2.41 2.36 2.33 2.30 2.28 2.2S 2.23 2.22 2.20 2.19 2.18 2.17 
200 10.06 5.04 3.86 3.35 3.08 2.78 2.63 2.51 2.44 2.40 2.36 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.21 2.19 
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Table 19-10. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Observations (2 coc, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.76 1.42 1.29 1.22 1.18 1.13 1.10 1.08 1.06 1.05 1.04 1.04 1.03 1.02 1.02 1.02 1.01 1.01 1.01 1.00 
2 2.39 1.83 1.63 1.53 1.47 1.39 1.3S 1.32 1.30 1.29 1.28 1.27 1.26 1.2S 1.24 1.24 1.23 1.23 1.23 1.22 
3 2.82 2.08 1.83 1.71 1.63 1.S4 1.49 1.46 1.43 1.42 1.40 1.39 1.39 1.37 1.37 1.36 1.36 1.3S 1.3S 1.34 
4 3.15 2.27 1.98 1.83 1.7S 1.6S 1.S9 1.55 1.S2 1.SO 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 1.43 1.43 1.42 
s 3.43 2.42 2.09 1.93 1.84 1.73 1.67 1.62 1.S9 1.S7 1.S6 1.55 1.S4 1.S2 1.Sl 1.Sl 1.SO 1.SO 1.49 1.48 
8 4.08 2.7S 2.34 2.14 2.03 1.90 1.82 1.77 1.74 1.71 1.69 1.68 1.67 1.6S 1.64 1.63 1.63 1.62 1.61 1.61 
12 4.72 3.05 2.S6 2.33 2.19 2.04 1.96 1.89 1.86 1.83 1.81 1.79 1.78 1.76 1.7S 1.74 1.73 1.73 1.72 1.71 
16 5.22 3.28 2.72 2.46 2.31 2.14 2.05 1.98 1.94 1.91 1.89 1.87 1.86 1.84 1.82 1.81 1.81 1.80 1.79 1.78 
20 5.65 3.46 2.85 2.S6 2.40 2.22 2.12 2.05 2.00 1.97 1.9S 1.93 1.91 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
30 6.50 3.81 3.08 2.7S 2.S7 2.36 2.2S 2.17 2.12 2.08 2.05 2.03 2.02 2.00 1.98 1.97 1.96 1.9S 1.93 1.92 
40 7.18 4.08 3.26 2.89 2.68 2.46 2.34 2.2S 2.20 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
so 7.75 4.29 3.40 3.00 2.78 2.S4 2.41 2.32 2.26 2.22 2.19 2.16 2.1S 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
60 8.25 4.47 3.51 3.09 2.86 2.60 2.47 2.37 2.31 2.26 2.23 2.21 2.19 2.16 2.14 2.13 2.12 2.11 2.09 2.08 
7S 8.91 4.70 3.66 3.20 2.95 2.68 2.S4 2.43 2.37 2.32 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.14 2.13 

100 9.81 5.01 3.85 3.35 3.07 2.78 2.63 2.Sl 2.44 2.40 2.36 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.21 2.19 
12S 10.59 5.26 4.00 3.47 3.17 2.86 2.70 2.S8 2.SO 2.4S 2.42 2.39 2.37 2.33 2.31 2.29 2.28 2.27 2.2S 2.24 
1SO 11.25 5.47 4.13 3.56 3.25 2.92 2.7S 2.63 2.SS 2.SO 2.46 2.43 2.41 2.38 2.3S 2.33 2.32 2.31 2.29 2.28 
17S 11.86 5.66 4.24 3.65 3.32 2.98 2.80 2.67 2.S9 2.S4 2.SO 2.47 2.4S 2.41 2.39 2.37 2.3S 2.34 2.32 2.31 
200 12.40 5.82 4.34 3.72 3.38 3.03 2.84 2.71 2.63 2.S7 2.S3 2.SO 2.48 2.44 2.41 2.40 2.38 2.37 2.3S 2.34 

Table 19-10. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Observations (2 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.27 1.78 1.61 1.51 1.4S 1.39 1.3S 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 1.24 1.23 1.23 1.23 1.22 
2 3.00 2.22 1.96 1.82 1.74 1.64 1.S9 1.55 1.S2 1.50 1.49 1.48 1.47 1.46 1.4S 1.44 1.44 1.43 1.43 1.42 
3 3.51 2.SO 2.17 2.00 1.90 1.79 1.73 1.68 1.6S 1.63 1.61 1.60 1.S9 1.S7 1.S6 1.S6 1.55 1.55 1.S4 1.S3 
4 3.90 2.70 2.32 2.13 2.02 1.89 1.82 1.77 1.73 1.71 1.69 1.68 1.67 1.6S 1.64 1.63 1.63 1.62 1.61 1.61 
s 4.23 2.87 2.44 2.23 2.11 1.97 1.89 1.84 1.80 1.77 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
8 5.01 3.23 2.70 2.4S 2.30 2.14 2.05 1.98 1.94 1.91 1.89 1.87 1.86 1.84 1.82 1.81 1.80 1.80 1.79 1.78 
12 5.78 3.57 2.93 2.64 2.47 2.28 2.18 2.10 2.05 2.02 1.99 1.98 1.96 1.94 1.92 1.91 1.90 1.90 1.89 1.88 
16 6.38 3.82 3.10 2.77 2.S9 2.38 2.27 2.19 2.13 2.10 2.07 2.05 2.03 2.01 1.99 1.98 1.97 1.97 1.9S 1.94 
20 6.89 4.02 3.24 2.88 2.68 2.46 2.34 2.2S 2.19 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
30 7.92 4.41 3.49 3.08 2.8S 2.60 2.47 2.37 2.31 2.26 2.23 2.21 2.19 2.16 2.14 2.13 2.12 2.11 2.09 2.08 
40 8.74 4.71 3.68 3.23 2.97 2.70 2.S6 2.4S 2.38 2.34 2.30 2.28 2.26 2.23 2.21 2.19 2.18 2.17 2.16 2.1S 
so 9.43 4.95 3.83 3.34 3.07 2.78 2.63 2.Sl 2.44 2.40 2.36 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.21 2.19 
60 10.03 5.15 3.95 3.44 3.15 2.84 2.68 2.S7 2.49 2.44 2.41 2.38 2.36 2.32 2.30 2.29 2.27 2.26 2.24 2.23 
7S 10.82 5.41 4.11 3.55 3.25 2.92 2.7S 2.63 2.S5 2.SO 2.46 2.43 2.41 2.37 2.3S 2.33 2.32 2.31 2.29 2.28 
100 11.92 5.76 4.32 3.71 3.38 3.02 2.84 2.71 2.63 2.S7 2.S3 2.SO 2.48 2.44 2.41 2.40 2.38 2.37 2.3S 2.34 
12S 12.85 6.04 4.48 3.83 3.48 3.10 2.91 2.77 2.69 2.63 2.S8 2.S5 2.S3 2.49 2.46 2.44 2.43 2.42 2.40 2.38 
1SO 13.67 6.28 4.62 3.93 3.56 3.17 2.97 2.82 2.73 2.67 2.63 2.60 2.S7 2.S3 2.SO 2.48 2.47 2.4S 2.43 2.42 
17S 14.39 6.49 4.74 4.02 3.63 3.23 3.02 2.87 2.77 2.71 2.67 2.63 2.60 2.S6 2.S4 2.Sl 2.SO 2.49 2.46 2.4S 
200 15.04 6.68 4.85 4.10 3.69 3.27 3.06 2.91 2.81 2.74 2.70 2.66 2.63 2.S9 2.S6 2.S4 2.S3 2.Sl 2.49 2.48 
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Table 19-10. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Observations (5 coc, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.02 1.58 1.41 1.33 1.28 1.22 1.19 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 1.09 1.09 1.08 1.08 1.08 
2 2.70 1.99 1.76 1.64 1.S6 1.48 1.43 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 1.30 1.30 1.29 1.29 
3 3.16 2.2S 1.96 1.81 1.73 1.63 1.S7 1.S3 1.50 1.49 1.47 1.46 1.4S 1.44 1.43 1.43 1.42 1.42 1.41 1.40 
4 3.52 2.4S 2.11 1.94 1.84 1.73 1.67 1.62 1.S9 1.S7 1.S6 1.SS 1.S4 1.S2 1.Sl 1.Sl 1.SO 1.SO 1.49 1.48 
s 3.83 2.60 2.22 2.04 1.93 1.81 1.74 1.69 1.66 1.64 1.62 1.61 1.60 1.S9 1.58 1.S7 1.S6 1.S6 1.55 1.S4 
8 4.54 2.94 2.47 2.2S 2.12 1.98 1.90 1.84 1.80 1.78 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
12 5.24 3.26 2.69 2.43 2.29 2.12 2.03 1.96 1.92 1.89 1.87 1.8S 1.84 1.82 1.81 1.80 1.79 1.78 1.77 1.76 
16 5.80 3.49 2.86 2.57 2.40 2.22 2.12 2.05 2.00 1.97 1.9S 1.93 1.91 1.89 1.88 1.87 1.86 1.8S 1.84 1.83 
20 6.26 3.68 2.99 2.67 2A9 2.30 2.19 2.11 2.07 2.03 2.01 1.99 1.97 1.9S 1.93 1.92 1.91 1.91 1.89 1.89 
30 7.20 4.05 3.23 2.87 2.66 2A4 2.32 2.23 2.18 2.14 2.11 2.09 2.08 2.05 2.03 2.02 2.01 2.00 1.99 1.98 
40 7.95 4.32 3.41 3.01 2.78 2.54 2.41 2.32 2.26 2.22 2.19 2.16 2.1S 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
so 8.57 4.55 3.55 3.12 2.87 2.62 2.48 2.38 2.32 2.28 2.24 2.22 2.20 2.17 2.1S 2.14 2.13 2.12 2.10 2.09 
60 9.12 4.74 3.67 3.21 2.95 2.68 2.54 2.43 2.37 2.32 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.14 2.13 
7S 9.84 4.97 3.82 3.32 3.05 2.76 2.61 2.50 2.43 2.38 2.3S 2.32 2.30 2.27 2.2S 2.23 2.22 2.21 2.19 2.18 

100 10.84 5.30 4.02 3.47 3.17 2.86 2.70 2.58 2.50 2.45 2.42 2.39 2.37 2.33 2.31 2.29 2.28 2.27 2.2S 2.24 
12S 11.67 5.57 4.17 3.59 3.27 2.94 2.77 2.64 2.56 2.51 2.47 2.44 2.42 2.38 2.36 2.34 2.33 2.32 2.30 2.29 
1SO 12.45 5.79 4.30 3.69 3.36 3.00 2.83 2.69 2.61 2.56 2.51 2.48 2.46 2.43 2.40 2.38 2.37 2.36 2.34 2.33 
17S 13.09 5.98 4.42 3.77 3.42 3.06 2.87 2.73 2.65 2.59 2.55 2,52 2.50 2.46 2.44 2.42 2.40 2.39 2.37 2.36 
200 13.67 6.15 4.52 3.85 3.49 3.11 2.91 2.77 2.69 2.63 2.58 2.55 2.53 2.49 2.46 2.44 2.43 2.42 2.40 2.38 

Table 19-10. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Observations (5 coc, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.62 1.97 1.74 1.63 1.S6 1.48 1.43 1.40 1.37 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 1.30 1.30 1.29 1.29 
2 3.43 2.42 2.09 1.93 1.84 1.73 1.67 1.62 1.S9 1.S7 1.S6 1.55 1.S4 1.S2 1.Sl 1.Sl 1.SO 1.SO 1.49 1.48 
3 3.98 2.70 2.31 2.11 2.00 1.87 1.80 1.7S 1.72 1.69 1.68 1.66 1.6S 1.64 1.63 1.62 1.61 1.61 1.60 1.S9 
4 4.42 2.91 2.46 2.24 2.12 1.98 1.90 1.84 1.80 1.78 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
s 4.79 3.08 2.S8 2.3S 2.21 2.05 1.97 1.91 1.87 1.84 1.82 1.80 1.79 1.77 1.76 1.7S 1.74 1.74 1.73 1.72 
8 5.65 3.46 2.85 2.S6 2.40 2.22 2.12 2.05 2.00 1.97 1.9S 1.93 1.91 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
12 6.50 3.81 3.08 2.7S 2.S7 2.36 2.2S 2.17 2.12 2.08 2.05 2.03 2.02 2.00 1.98 1.97 1.96 1.9S 1.93 1.93 
16 7.18 4.08 3.26 2.89 2.68 2.46 2.34 2.2S 2.20 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
20 7.75 4.29 3.40 3.00 2.78 2.S4 2.41 2.32 2.26 2.22 2.19 2.16 2.1S 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
30 8.90 4.70 3.66 3.20 2.95 2.68 2.S4 2.43 2.37 2.32 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.14 2.13 
40 9.81 5.01 3.85 3.35 3.07 2.78 2.63 2.Sl 2.44 2.40 2.36 2.33 2.31 2.28 2.26 2.2S 2.23 2.22 2.21 2.19 
so 10.58 5.26 4.00 3.47 3.17 2.86 2.70 2.S8 2.SO 2.4S 2.42 2.39 2.37 2.33 2.31 2.29 2.28 2.27 2.2S 2.24 
60 11.25 5.47 4.13 3.56 3.25 2.92 2.75 2.63 2.S5 2.SO 2.46 2.43 2.41 2.38 2.3S 2.33 2.32 2.31 2.29 2.28 
7S 12.13 5.74 4.29 3.68 3.35 3.00 2.82 2.69 2.61 2.S6 2.Sl 2.48 2.46 2.43 2.40 2.38 2.37 2.36 2.34 2.33 
100 13.38 6.12 4.50 3.84 3.48 3.11 2.91 2.77 2.69 2.63 2.S8 2.S5 2.S3 2.49 2.46 2.44 2.43 2.42 2.40 2.38 
12S 14.40 6.41 4.68 3.97 3.58 3.19 2.98 2.84 2.7S 2.68 2.64 2.60 2.S8 2.S4 2.Sl 2.49 2.47 2.46 2.44 2.43 
1SO 15.33 6.67 4.82 4.06 3.67 3.25 3.04 2.89 2.79 2.73 2.68 2.6S 2.62 2.S8 2.SS 2.S3 2.Sl 2.SO 2.48 2.46 
17S 16.11 6.88 4.94 4.16 3.74 3.31 3.09 2.93 2.83 2.76 2.72 2.68 2.66 2.61 2.S8 2.S6 2.SS 2.S3 2.SO 2.48 
200 16.89 7.08 5.05 4.24 3.80 3.36 3.13 2.97 2.87 2.80 2.75 2.71 2.69 2.64 2.61 2.S9 2.S6 2.S4 2.SO 2.48 
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Table 19-10. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Observations (5 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 3.27 2.37 2.07 1.92 1.83 1.72 1.66 1.62 1.S9 1.S7 1.S6 1.S4 1.S4 1.52 1.Sl 1.Sl 1.SO 1.SO 1.49 1.48 
2 4.23 2.87 2.44 2.23 2.11 1.97 1.89 1.84 1.80 1.77 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
3 4.89 3.18 2.66 2.42 2.27 2.11 2.03 1.96 1.92 1.89 1.87 1.8S 1.84 1.82 1.81 1.80 1.79 1.78 1.77 1.76 
4 5.42 3.41 2.83 2.SS 2.39 2.21 2.12 2.05 2.00 1.97 1.9S 1.93 1.91 1.89 1.88 1.87 1.86 1.8S 1.84 1.83 
s 5.86 3.60 2.96 2.66 2.48 2.29 2.19 2.11 2.06 2.03 2.01 1.99 1.97 1.9S 1.93 1.92 1.91 1.91 1.89 1.89 
8 6.89 4.02 3.24 2.88 2.68 2.46 2.34 2.2S 2.19 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
12 7.93 4.41 3.49 3.08 2.8S 2.60 2.47 2.37 2.31 2.26 2.23 2.21 2.19 2.16 2.14 2.13 2.12 2.11 2.09 2.08 
16 8.74 4.71 3.68 3.23 2.97 2.70 2.S6 2.4S 2.38 2.34 2.30 2.28 2.26 2.23 2.21 2.19 2.18 2.17 2.16 2.1S 
20 9.43 4.95 3.83 3.34 3.07 2.78 2.63 2.Sl 2.44 2.40 2.36 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.21 2.19 
30 10.82 5.41 4.11 3.55 3.25 2.92 2.7S 2.63 2.SS 2.SO 2.46 2.43 2.41 2.38 2.3S 2.33 2.32 2.31 2.29 2.28 
40 11.93 5.76 4.32 3.71 3.38 3.02 2.84 2.71 2.63 2.S7 2.S3 2.SO 2.48 2.44 2.41 2.40 2.38 2.37 2.3S 2.34 
so 12.85 6.04 4.48 3.83 3.48 3.10 2.91 2.77 2.69 2.63 2.S8 2.SS 2.S3 2.49 2.46 2.44 2.43 2.42 2.40 2.38 
60 13.67 6.28 4.62 3.93 3.56 3.17 2.97 2.82 2.73 2.67 2.63 2.S9 2.S7 2.S3 2.SO 2.48 2.47 2.46 2.43 2.42 
7S 14.75 6.59 4.80 4.06 3.66 3.25 3.04 2.89 2.79 2.73 2.68 2.6S 2.62 2.S8 2.SS 2.S3 2.Sl 2.SO 2.48 2.46 

100 16.21 6.99 5.03 4.22 3.80 3.36 3.13 2.97 2.87 2.80 2.7S 2.71 2.68 2.64 2.61 2.S9 2.S7 2.SS 2.Sl 2.48 
12S 17.48 7.34 5.21 4.36 3.91 3.44 3.20 3.03 2.92 2.8S 2.80 2.76 2.73 2.69 2.6S 2.62 2.62 2.60 2.S8 2.S6 
1SO 18.55 7.62 5.37 4.47 3.99 3.50 3.26 3.08 2.97 2.90 2.84 2.81 2.77 2.73 2.69 2.67 2.66 2.64 2.62 2.60 
17S 19.53 7.86 5.51 4.57 4.06 3.56 3.31 3.12 3.02 2.94 2.88 2.84 2.81 2.76 2.73 2.70 2.69 2.67 2.64 2.63 
200 20.51 8.11 5.62 4.65 4.14 3.61 3.35 3.16 3.05 2.97 2.92 2.87 2.84 2.79 2.76 2.73 2.71 2.69 2.67 2.6S 

Table 19-10. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Observations (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.70 1.99 1.76 1.64 1.S6 1.48 1.43 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 1.30 1.30 1.29 1.29 
2 3.52 2.4S 2.11 1.94 1.84 1.73 1.67 1.62 1.S9 1.S7 1.S6 1.SS 1.S4 1.S2 1.Sl 1.Sl 1.SO 1.SO 1.49 1.48 
3 4.09 2.73 2.32 2.12 2.01 1.88 1.80 1.7S 1.72 1.69 1.68 1.66 1.6S 1.64 1.63 1.62 1.61 1.61 1.60 1.S9 
4 4.54 2.94 2.47 2.2S 2.12 1.98 1.90 1.84 1.80 1.78 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
s 4.91 3.11 2.59 2.3S 2.21 2.06 1.97 1.91 1.87 1.84 1.82 1.80 1.79 1.77 1.76 1.7S 1.74 1.74 1.73 1.72 
8 5.79 3.49 2.86 2.57 2.40 2.22 2.12 2.05 2.00 1.97 1.9S 1.93 1.92 1.89 1.88 1.87 1.86 1.8S 1.84 1.83 
12 6.67 3.84 3.10 2.76 2.57 2.36 2.2S 2.17 2.12 2.08 2.05 2.03 2.02 2.00 1.98 1.97 1.96 1.9S 1.93 1.92 
16 7.36 4.11 3.27 2.90 2.69 2.46 2.34 2.2S 2.20 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
20 7.95 4.32 3.41 3.01 2.78 2.54 2.41 2.32 2.26 2.22 2.19 2.16 2.1S 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
30 9.13 4.73 3.67 3.21 2.95 2.68 2.54 2.43 2.37 2.32 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.14 2.13 
40 10.05 5.05 3.86 3.35 3.08 2.78 2.63 2.51 2.44 2.40 2.36 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.21 2.19 
so 10.84 5.30 4.01 3.47 3.18 2.86 2.70 2.58 2.50 2.45 2.42 2.39 2.37 2.33 2.31 2.29 2.28 2.27 2.2S 2.24 
60 11.54 5.51 4.15 3.57 3.26 2.93 2.75 2.63 2.55 2.50 2.46 2.43 2.41 2.37 2.3S 2.33 2.32 2.31 2.29 2.28 
7S 12.42 5.79 4.31 3.68 3.35 3.00 2.82 2.69 2.61 2.56 2.52 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
100 13.71 6.15 4.51 3.85 3.49 3.11 2.92 2.77 2.69 2.63 2.59 2.55 2.53 2.49 2.46 2.44 2.43 2.42 2.40 2.38 
12S 14.77 6.45 4.69 3.97 3.59 3.19 2.98 2.83 2.75 2.68 2.64 2.60 2.58 2.54 2.51 2.49 2.48 2.46 2.44 2.43 
1SO 15.70 6.71 4.83 4.07 3.67 3.25 3.04 2.89 2.79 2.73 2.68 2.64 2.62 2.58 2.55 2.53 2.51 2.50 2.48 2.46 
17S 16.52 6.91 4.95 4.16 3.74 3.31 3.09 2.93 2.83 2.77 2.72 2.68 2.65 2.61 2.59 2.56 2.54 2.52 2.51 2.49 
200 17.34 7.12 5.07 4.25 3.81 3.35 3.13 2.97 2.87 2.80 2.75 2.71 2.68 2.64 2.61 2.59 2.57 2.54 2.53 2.52 
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Appendix D. Chapter 19 Intrawell K-Tables for Observations Unified Guidance 

Table 19-10. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Observations (10 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 3.43 2.42 2.09 1.93 1.84 1.73 1.67 1.62 1.S9 1.S7 1.S6 1.SS 1.S4 1.S2 1.Sl 1.Sl 1.50 1.50 1.49 1.48 
2 4.42 2.91 2.46 2.24 2.12 1.98 1.90 1.84 1.80 1.78 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
3 5.11 3.23 2.68 2.43 2.28 2.12 2.03 1.96 1.92 1.89 1.87 1.8S 1.84 1.82 1.81 1.80 1.79 1.78 1.77 1.76 
4 5.65 3.46 2.85 2.S6 2.40 2.22 2.12 2.05 2.00 1.97 1.9S 1.93 1.91 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
s 6.11 3.65 2.98 2.67 2.49 2.30 2.19 2.11 2.06 2.03 2.01 1.99 1.97 1.9S 1.93 1.92 1.91 1.91 1.89 1.89 
8 7.18 4.08 3.26 2.89 2.68 2.46 2.34 2.2S 2.20 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
12 8.25 4.47 3.51 3.09 2.86 2.60 2.47 2.37 2.31 2.26 2.23 2.21 2.19 2.16 2.14 2.13 2.12 2.11 2.09 2.08 
16 9.10 4.77 3.70 3.24 2.98 2.70 2.S6 2.4S 2.38 2.34 2.31 2.28 2.26 2.23 2.21 2.19 2.18 2.17 2.16 2.1S 
20 9.81 5.01 3.85 3.35 3.07 2.78 2.63 2.Sl 2.44 2.40 2.36 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.21 2.19 
30 11.25 5.47 4.13 3.56 3.25 2.92 2.75 2.63 2.S5 2.SO 2.46 2.43 2.41 2.37 2.3S 2.33 2.32 2.31 2.29 2.28 
40 12.39 5.82 4.34 3.72 3.38 3.03 2.84 2.71 2.63 2.S7 2.S3 2.50 2.48 2.44 2.42 2.40 2.38 2.37 2.3S 2.34 
so 13.36 6.11 4.50 3.84 3.48 3.11 2.91 2.77 2.69 2.63 2.S9 2.SS 2.S3 2.49 2.46 2.44 2.43 2.42 2.40 2.38 
60 14.24 6.36 4.64 3.94 3.56 3.17 2.97 2.82 2.74 2.67 2.63 2.S9 2.S7 2.S3 2.SO 2.48 2.47 2.46 2.43 2.42 
7S 15.35 6.67 4.82 4.06 3.67 3.25 3.04 2.89 2.79 2.73 2.68 2.6S 2.62 2.S8 2.SS 2.S3 2.Sl 2.SO 2.48 2.46 

100 16.88 7.08 5.05 4.23 3.80 3.36 3.13 2.97 2.87 2.80 2.75 2.71 2.68 2.64 2.61 2.S9 2.S6 2.S4 2.50 2.S2 
12S 18.16 7.41 5.24 4.37 3.91 3.44 3.20 3.03 2.93 2.85 2.80 2.76 2.73 2.68 2.6S 2.62 2.60 2.60 2.S8 2.S6 
150 19.34 7.71 5.39 4.48 4.00 3.51 3.26 3.08 2.97 2.90 2.85 2.81. 2.78 2.72 2.69 2.67 2.66 2.64 2.61 2.60 
17S 20.39 7.97 5.54 4.57 4.07 3.57 3.31 3.13 3.02 2.94 2.89 2.84 2.81 2.76 2.72 2.70 2.68 2.67 2.64 2.63 
200 21.33 8.20 5.65 4.66 4.13 3.62 3.35 3.16 3.05 2.97 2.92 2.87 2.84 2.79 2.75 2.73 2.71 2.70 2.67 2.6S 

Table 19-10. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Observations (10 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 4.23 2.87 2.44 2.23 2.11 1.97 1.89 1.84 1.80 1.77 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
2 5.42 3.41 2.83 2.SS 2.39 2.21 2.12 2.05 2.00 1.97 1.9S 1.93 1.91 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
3 6.24 3.76 3.06 2.74 2.S6 2.36 2.2S 2.17 2.11 2.08 2.05 2.03 2.02 2.00 1.98 1.97 1.96 1.9S 1.94 1.93 
4 6.89 4.02 3.24 2.88 2.68 2.46 2.34 2.2S 2.19 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
s 7.45 4.23 3.38 2.99 2.77 2.S3 2.41 2.32 2.26 2.22 2.19 2.16 2.1S 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
8 8.74 4.71 3.68 3.23 2.97 2.70 2.S6 2.4S 2.38 2.34 2.31 2.28 2.26 2.23 2.21 2.19 2.18 2.17 2.16 2.1S 
12 10.03 5.15 3.95 3.44 3.15 2.84 2.68 2.S7 2.49 2.44 2.41 2.38 2.36 2.32 2.30 2.29 2.27 2.26 2.24 2.23 
16 11.06 5.49 4.16 3.59 3.28 2.9S 2.77 2.6S 2.S7 2.S2 2.48 2.4S 2.42 2.39 2.37 2.3S 2.33 2.32 2.30 2.29 
20 11.92 5.76 4.32 3.71 3.37 3.02 2.84 2.71 2.63 2.S7 2.S3 2.50 2.48 2.44 2.42 2.40 2.38 2.37 2.3S 2.34 
30 13.67 6.28 4.62 3.93 3.56 3.1.7 2.97 2.82 2.73 2.67 2.63 2.S9 2.S7 2.S3 2.SO 2.48 2.47 2.46 2.43 2.42 
40 15.06 6.68 4.85 4.10 3.69 3.27 3.06 2.90 2.81 2.74 2.70 2.66 2.63 2.S9 2.S6 2.S4 2.S3 2.Sl 2.49 2.48 
so 16.23 7.00 5.03 4.23 3.80 3.35 3.1.3 2.97 2.87 2.80 2.7S 2.71 2.68 2.64 2.61 2.S9 2.S7 2.SS 2.Sl 2.48 
60 17.23 7.27 5.18 4.34 3.89 3.42 3.19 3.02 2.92 2.84 2.79 2.7S 2.72 2.68 2.64 2.61 2.61 2.S7 2.S7 2.S5 
7S 18.57 7.62 5.37 4.47 3.99 3.50 3.26 3.08 2.97 2.90 2.8S 2.81 2.77 2.72 2.70 2.67 2.6S 2.64 2.61 2.60 
100 20.51 8.09 5.62 4.64 4.13 3.61 3.35 3.16 3.05 2.97 2.92 2.87 2.84 2.79 2.7S 2.73 2.71 2.70 2.67 2.6S 
12S 22.03 8.47 5.83 4.79 4.25 3.70 3.42 3.23 3.11 3.03 2.97 2.93 2.89 2.83 2.80 2.78 2.7S 2.74 2.71 2.69 
150 23.44 8.79 5.99 4.91 4.34 3.76 3.48 3.28 3.16 3.07 3.01 2.96 2.93 2.87 2.84 2.81 2.79 2.78 2.7S 2.72 
17S 24.61 9.08 6.15 5.01 4.41 3.82 3.53 3.33 3.1.9 3.11 3.05 3.00 2.96 2.91 2.87 2.84 2.82 2.81 2.77 2.7S 
200 25.78 9.32 6.27 5.10 4.48 3.88 3.57 3.36 3.23 3.14 3.08 3.02 2.99 2.93 2.89 2.87 2.84 2.82 2.78 2.7S 
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Table 19-10. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Observations (20 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 3.52 2.4S 2.11 1.94 1.84 1.73 1.67 1.62 1.S9 1.S7 1.S6 1.SS 1.S4 1.S2 1.Sl 1.Sl 1.50 1.50 1.49 1.48 
2 4.54 2.94 2.47 2.2S 2.12 1.98 1.90 1.84 1.80 1.78 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
3 5.24 3.26 2.70 2.43 2.28 2.12 2.03 1.96 1.92 1.89 1.87 1.8S 1.84 1.82 1.81 1.80 1.79 1.78 1.77 1.76 
4 5.79 3.49 2.86 2.57 2.40 2.22 2.12 2.05 2.00 1.97 1.9S 1.93 1.92 1.89 1.88 1.87 1.86 1.8S 1.84 1.83 
s 6.26 3.68 2.99 2.67 2.49 2.30 2.19 2.11 2.07 2.03 2.01 1.99 1.97 1.9S 1.93 1.92 1.91 1.91 1.89 1.89 
8 7.36 4.11 3.27 2.90 2.69 2.46 2.34 2.2S 2.20 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
12 8.45 4.50 3.52 3.10 2.86 2.60 2.47 2.37 2.31 2.26 2.23 2.21 2.19 2.16 2.14 2.13 2.12 2.11 2.09 2.08 
16 9.32 4.80 3.71 3.24 2.98 2.70 2.56 2.45 2.38 2.34 2.31 2.28 2.26 2.23 2.21 2.20 2.18 2.17 2.16 2.1S 
20 10.05 5.04 3.86 3.36 3.08 2.78 2.63 2.51 2.44 2.40 2.36 2.33 2.31 2.28 2.26 2.2S 2.23 2.22 2.21 2.19 
30 11.53 5.51 4.14 3.57 3.25 2.92 2.75 2.63 2.55 2.50 2.46 2.43 2.41 2.38 2.3S 2.33 2.32 2.31 2.29 2.28 
40 12.71 5.86 4.35 3.72 3.38 3.03 2.84 2.71 2.63 2.57 2.53 2.50 2.48 2.44 2.42 2.40 2.38 2.37 2.3S 2.34 
so 13.69 6.15 4.52 3.85 3.48 3.11 2.91 2.77 2.69 2.63 2.58 2.55 2.53 2.49 2.46 2.44 2.43 2.42 2.40 2.38 
60 14.57 6.39 4.66 3.95 3.57 3.17 2.97 2.82 2.73 2.67 2.63 2.60 2.57 2.53 2.50 2.48 2.47 2.45 2.43 2.42 
7S 15.70 6.70 4.83 4.07 3.67 3.25 3.04 2.89 2.79 2.73 2.68 2.65 2.62 2.58 2.55 2.53 2.51 2.50 2.48 2.46 

100 17.27 7.12 5.06 4.24 3.80 3.36 3.13 2.97 2.87 2.80 2.75 2.71 2.68 2.64 2.60 2.58 2.55 2.54 2.50 2.48 
12S 18.59 7.46 5.24 4.37 3.91 3.44 3.20 3.03 2.93 2.86 2.80 2.76 2.73 2.69 2.65 2.62 2.60 2.58 2.58 2.56 
150 19.77 7.75 5.40 4.48 4.00 3.51 3.26 3.08 2.97 2.90 2.85 2.81 2.77 2.72 2.69 2.66 2.64 2.64 2.61 2.60 
17S 20.86 8.01 5.54 4.58 4.07 3.56 3.31 3.13 3.02 2.94 2.88 2.84 2.81 2.76 2.72 2.70 2.68 2.67 2.64 2.63 
200 21.80 8.24 5.65 4.66 4.14 3.61 3.35 3.16 3.05 2.97 2.92 2.87 2.84 2.79 2.76 2.73 2.71 2.70 2.67 2.65 

Table 19-10. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Observations (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 4.42 2.91 2.46 2.24 2.12 1.97 1.90 1.84 1.80 1.78 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
2 5.65 3.46 2.85 2.S6 2.40 2.22 2.12 2.05 2.00 1.97 1.9S 1.93 1.91 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
3 6.50 3.81 3.08 2.7S 2.S7 2.36 2.2S 2.17 2.12 2.08 2.05 2.03 2.02 2.00 1.98 1.97 1.96 1.9S 1.93 1.92 
4 7.18 4.08 3.26 2.89 2.68 2.46 2.34 2.2S 2.20 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
s 7.75 4.29 3.40 3.00 2.78 2.S4 2.41 2.32 2.26 2.22 2.19 2.16 2.1S 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
8 9.10 4.77 3.70 3.24 2.98 2.70 2.S6 2.4S 2.38 2.34 2.31 2.28 2.26 2.23 2.21 2.20 2.18 2.17 2.16 2.1S 
12 10.44 5.21 3.97 3.44 3.15 2.84 2.68 2.S7 2.49 2.44 2.41 2.38 2.36 2.32 2.30 2.29 2.27 2.26 2.24 2.23 
16 11.50 5.55 4.18 3.60 3.28 2.95 2.77 2.6S 2.S7 2.S2 2.48 2.4S 2.42 2.39 2.37 2.3S 2.33 2.32 2.30 2.29 
20 12.40 5.83 4.34 3.72 3.38 3.03 2.84 2.71 2.63 2.S7 2.S3 2.SO 2.48 2.44 2.42 2.40 2.38 2.37 2.3S 2.34 
30 14.22 6.35 4.64 3.94 3.56 3.17 2.97 2.82 2.73 2.67 2.63 2.60 2.S7 2.S3 2.SO 2.48 2.47 2.46 2.43 2.42 
40 15.66 6.75 4.87 4.11 3.70 3.28 3.06 2.91 2.81 2.74 2.70 2.66 2.63 2.S9 2.S6 2.S4 2.S3 2.Sl 2.49 2.48 
so 16.88 7.08 5.05 4.23 3.80 3.36 3.13 2.97 2.87 2.80 2.75 2.71 2.68 2.64 2.61 2.S9 2.S6 2.S4 2.50 2.48 
60 17.93 7.35 5.20 4.34 3.89 3.43 3.19 3.02 2.92 2.84 2.79 2.75 2.72 2.68 2.64 2.61 2.S9 2.S7 2.S4 2.S5 
7S 19.34 7.71 5.39 4.48 4.00 3.51 3.26 3.08 2.97 2.90 2.85 2.81 2.77 2.72 2.69 2.67 2.6S 2.64 2.61 2.60 
100 21.25 8.18 5.64 4.65 4.14 3.61 3.35 3.16 3.05 2.97 2.92 2.87 2.84 2.79 2.75 2.73 2.71 2.70 2.67 2.6S 
12S 22.97 8.55 5.85 4.79 4.25 3.70 3.42 3.23 3.11 3.03 2.97 2.92 2.89 2.83 2.80 2.77 2.75 2.74 2.71 2.69 
150 24.38 8.91 6.02 4.91 4.34 3.77 3.48 3.28 3.15 3.07 3.01 2.97 2.93 2.87 2.84 2.81 2.79 2.77 2.74 2.73 
17S 25.62 9.18 6.17 5.01 4.42 3.83 3.53 3.33 3.20 3.11 3.05 3.01 2.96 2.91 2.87 2.84 2.81 2.80 2.77 2.76 
200 26.88 9.45 6.29 5.10 4.49 3.88 3.57 3.36 3.23 3.14 3.08 3.04 2.99 2.93 2.89 2.86 2.84 2.83 2.80 2.78 
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Table 19-10. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Observations (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 5.42 3.41 2.83 2.55 2.39 2.21 2.12 2.05 2.00 1.97 1.95 1.93 1.91 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
2 6.89 4.02 3.24 2.88 2.68 2.46 2.34 2.25 2.19 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
3 7.92 4.41 3.49 3.08 2.85 2.60 2.47 2.37 2.31 2.26 2.23 2.21 2.19 2.16 2.14 2.13 2.12 2.11 2.09 2.08 
4 8.74 4.71 3.68 3,'}.3 2.97 2.70 2.56 2.45 2.38 2.34 2.30 2.28 2.26 2.23 2.21 2.19 2.18 2.17 2.16 2.15 
5 9.43 4.95 3.83 3.34 3.07 2.78 2.63 2.51 2.44 2.40 2.36 2.33 2.31 2.28 2.26 2.24 2.23 2.22 2.21 2.19 
8 11.06 5.49 4.16 3.59 3.28 2.94 2.77 2.65 2.57 2.52 2.48 2.45 2.42 2.39 2.37 2.35 2.33 2.32 2.30 2.29 
12 12.68 5.99 4.45 3.81 3.46 3.09 2.90 2.76 2.68 2.62 2.57 2.54 2.52 2.48 2.45 2.44 2.42 2.41 2.39 2.37 
16 13.96 6.37 4.67 3.97 3.59 3.19 2.99 2.84 2.75 2.69 2.64 2.61 2.58 2.54 2.52 2.50 2.48 2.47 2.45 2.43 
20 15.06 6.68 4.85 4.10 3.69 3.27 3.06 2.90 2.81 2.74 2.70 2.66 2.63 2.59 2.56 2.54 2.53 2.51 2.49 2.48 
30 17.25 7.27 5.18 4.33 3.89 3.42 3.19 3.02 2.91 2.84 2.79 2.75 2.72 2.68 2.64 2.61 2.59 2.57 2.57 2.55 
40 18.98 7.72 5.42 4.51 4.02 3.53 3.28 3.10 2.99 2.91 2.86 2.82 2.79 2.74 2.71 2.68 2.67 2.65 2.63 2.61 
50 20.47 8.10 5.62 4.64 4.13 3.61 3.35 3.16 3.05 2.97 2.92 2.87 2.84 2.79 2.76 2.73 2.71 2.70 2.67 2.65 
60 21.76 8.40 5.79 4.76 4.22 3.68 3.41 3.22 3.10 3.02 2.96 2.92 2.88 2.83 2.79 2.77 2.75 2.73 2.70 2.69 
75 23.44 8.81 6.00 4.90 4.34 3.76 3.48 3.28 3.16 3.07 3.01 2.96 2.92 2.87 2.84 2.81 2.79 2.77 2.75 2.73 

100 25.78 9.34 6.27 5.09 4.48 3.88 3.57 3.36 3.23 3.14 3.08 3.02 2.99 2.93 2.90 2.87 2.84 2.82 2.78 2.76 
125 27.81 9.77 6.48 5.24 4.60 3.96 3.65 3.42 3.29 3.20 3.12 3.08 3.04 2.98 2.94 2.91 2.88 2.86 2.82 2.80 
150 29.53 10.16 6.68 5.37 4.70 4.03 3.71 3.48 3.34 3.24 3.17 3.12 3.08 3.02 2.97 2.94 2.92 2.90 2.87 2.85 
175 31.09 10.47 6.84 5.47 4.79 4.09 3.75 3.52 3.38 3.28 3.20 3.15 3.11 3.05 3.01 2.98 2.95 2.93 2.90 2.88 
200 32.50 10.78 6.97 5.57 4.85 4.15 3.80 3.55 3.41 3.32 3.25 3.18 3.14 3.08 3.04 3.00 2.98 2.96 2.92 2.90 

Table 19-10. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Observations ( 40 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 4.54 2.94 2.47 2.25 2.12 1.98 1.90 1.84 1.80 1.78 1.76 1.74 1.73 1.71 1.70 1.69 1.69 1.68 1.67 1.66 
2 5.79 3.49 2.86 2.57 2.40 2.22 2.12 2.05 2.00 1.97 1.95 1.93 1.92 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
3 6.67 3.84 3.10 2.76 2.57 2.36 2.25 2.17 2.12 2.08 2.05 2.03 2.02 2.00 1.98 1.97 1.96 1.95 1.93 1.92 
4 7.36 4.11 3.27 2.90 2.69 2.46 2.34 2.25 2.20 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
5 7.95 4.32 3.41 3.01 2.78 2.54 2.41 2.32 2.26 2.22 2.19 2.16 2.15 2.12 2.10 2.09 2.08 2.07 2.05 2.04 
8 9.32 4.80 3.71 3.24 2.98 2.70 2.56 2.45 2.38 2.34 2.31 2.28 2.26 2.23 2.21 2.20 2.18 2.17 2.16 2.15 
12 10.70 5.25 3.99 3.45 3.16 2.85 2.68 2.57 2.49 2.44 2.41 2.38 2.36 2.32 2.30 2.29 2.27 2.26 2.24 2.23 
16 11.79 5.59 4.19 3.60 3.28 2.95 2.77 2.65 2.57 2.52 2.48 2.45 2.42 2.39 2.37 2.35 2.33 2.32 2.31 2.29 
20 12.71 5.86 4.35 3.72 3.38 3.03 2.84 2.71 2.63 2.57 2.53 2.50 2.48 2.44 2.41 2.40 2.38 2.37 2.35 2.34 
30 14.56 6.39 4.66 3.95 3.57 3.17 2.97 2.82 2.73 2.67 2.63 2.59 2.57 2.53 2.50 2.48 2.47 2.46 2.43 2.42 
40 16.04 6.80 4.88 4.11 3.70 3.28 3.06 2.91 2.81 2.74 2.70 2.66 2.63 2.59 2.56 2.54 2.53 2.51 2.49 2.46 
50 17.29 7.12 5.06 4.24 3.81 3.36 3.13 2.97 2.87 2.80 2.75 2.71 2.68 2.64 2.60 2.58 2.56 2.54 2.50 2.48 
60 18.37 7.40 5.21 4.35 3.89 3.42 3.19 3.02 2.92 2.85 2.79 2.75 2.72 2.68 2.64 2.61 2.59 2.57 2.54 2.56 
75 19.80 7.76 5.41 4.48 4.00 3.51 3.26 3.08 2.97 2.90 2.85 2.81 2.77 2.73 2.69 2.66 2.64 2.64 2.61 2.60 
100 21.80 8.23 5.66 4.66 4.14 3.61 3.35 3.16 3.05 2.97 2.92 2.87 2.84 2.79 2.76 2.73 2.71 2.70 2.67 2.65 
125 23.47 8.61 5.86 4.80 4.25 3.70 3.42 3.23 3.11 3.03 2.97 2.93 2.89 2.84 2.81 2.77 2.76 2.74 2.71 2.69 
150 24.96 8.94 6.03 4.92 4.35 3.77 3.48 3.28 3.16 3.07 3.01 2.97 2.93 2.88 2.85 2.80 2.79 2.77 2.75 2.72 
175 26.28 9.23 6.17 5.02 4.42 3.83 3.53 3.32 3.20 3.11 3.05 3.00 2.97 2.92 2.89 2.84 2.82 2.80 2.77 2.76 
200 27.42 9.49 6.31 5.11 4.49 3.88 3.58 3.36 3.23 3.14 3.08 3.04 3.00 2.95 2.92 2.86 2.84 2.82 2.79 2.78 
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Table 19-10. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Observations ( 40 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 5.65 3.46 2.85 2.56 2.40 2.22 2.12 2.05 2.00 1.97 1.95 1.93 1.91 1.89 1.88 1.87 1.86 1.85 1.84 1.83 
2 7.18 4.08 3.26 2.89 2.68 2.46 2.34 2.25 2.20 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
3 8.25 4.47 3.51 3.09 2.86 2.60 2.47 2.37 2.31 2.26 2.23 2.21 2.19 2.16 2.14 2.13 2.12 2.11 2.09 2.08 
4 9.10 4.77 3.70 3.24 2.98 2.70 2.56 2.45 2.38 2.34 2.31 2.28 2.26 2.23 2.21 2.20 2.18 2.17 2.16 2.15 
5 9.81 5.01 3.85 3.35 3.07 2.78 2.63 2.51 2.44 2.40 2.36 2.33 2.31 2.28 2.26 2.25 2.23 2.22 2.21 2.19 
8 11.51 5.55 4.18 3.60 3.28 2.95 2.77 2.65 2.57 2.52 2.48 2.45 2.42 2.39 2.37 2.35 2.33 2.32 2.30 2.29 
12 13.19 6.06 4.47 3.82 3.46 3.09 2.90 2.76 2.68 2.62 2.57 2.54 2.52 2.48 2.45 2.44 2.42 2.41 2.39 2.37 
16 14.53 6.44 4.69 3.98 3.59 3.19 2.99 2.84 2.75 2.69 2.64 2.61 2.58 2.54 2.52 2.50 2.48 2.47 2.45 2.43 
20 15.66 6.75 4.87 4.10 3.70 3.28 3.06 2.91 2.81 2.74 2.70 2.66 2.63 2.59 2.56 2.54 2.53 2.51 2.49 2.48 
30 17.94 7.35 5.20 4.34 3.89 3.42 3.19 3.02 2.91 2.84 2.79 2.75 2.72 2.68 2.64 2.61 2.59 2.60 2.57 2.55 
40 19.75 7.81 5.45 4.52 4.03 3.53 3.28 3.10 2.99 2.92 2.86 2.82 2.79 2.74 2.70 2.68 2.67 2.65 2.63 2.61 
50 21.27 8.18 5.64 4.65 4.14 3.61 3.35 3.16 3.05 2.97 2.92 2.87 2.84 2.79 2.75 2.73 2.71 2.70 2.67 2.65 
60 22.63 8.49 5.81 4.77 4.23 3.68 3.41 3.22 3.10 3.02 2.96 2.92 2.88 2.83 2.79 2.77 2.75 2.73 2.70 2.69 
75 24.39 8.90 6.02 4.91 4.34 3.77 3.48 3.28 3.16 3.07 3.01 2.97 2.93 2.87 2.84 2.81 2.79 2.77 2.75 2.73 

100 26.81 9.44 6.30 5.10 4.49 3.88 3.57 3.36 3.23 3.14 3.08 3.04 2.99 2.93 2.89 2.86 2.84 2.82 2.78 2.75 
125 28.92 9.89 6.51 5.25 4.60 3.96 3.65 3.42 3.29 3.20 3.14 3.09 3.04 2.98 2.94 2.91 2.88 2.86 2.82 2.80 
150 30.76 10.26 6.70 5.37 4.70 4.03 3.71 3.48 3.34 3.24 3.18 3.13 3.10 3.02 2.97 2.94 2.92 2.90 2.86 2.83 
175 32.34 10.59 6.87 5.48 4.78 4.09 3.76 3.52 3.38 3.28 3.22 3.17 3.13 3.05 3.01 2.97 2.95 2.93 2.89 2.87 
200 33.75 10.88 7.01 5.58 4.86 4.15 3.80 3.56 3.41 3.32 3.25 3.20 3.16 3.08 3.03 3.00 2.98 2.96 2.92 2.90 

Table 19-10. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Observations ( 40 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 6.89 4.02 3.24 2.88 2.68 2.46 2.34 2.25 2.19 2.16 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.02 2.00 1.99 
2 8.74 4.71 3.68 3.23 2.97 2.70 2.56 2.45 2.38 2.34 2.30 2.28 2.26 2.23 2.21 2.19 2.18 2.17 2.16 2.15 
3 10.03 5.15 3.95 3.44 3.15 2.84 2.68 2.57 2.49 2.44 2.41 2.38 2.36 2.32 2.30 2.29 2.27 2.26 2.24 2.23 
4 11.06 5.49 4.16 3.59 3.28 2.94 2.77 2.65 2.57 2.52 2.48 2.45 2.42 2.39 2.37 2.35 2.33 2.32 2.30 2.29 
5 11.92 5.76 4.32 3.71 3.38 3.02 2.84 2.71 2.63 2.57 2.53 2.50 2.48 2.44 2.41 2.40 2.38 2.37 2.35 2.34 
8 13.97 6.37 4.67 3.97 3.59 3.19 2.99 2.84 2.75 2.69 2.64 2.61 2.58 2.54 2.52 2.50 2.48 2.47 2.45 2.43 
12 16.00 6.94 5.00 4.20 3.78 3.34 3.12 2.96 2.86 2.79 2.74 2.70 2.67 2.63 2.60 2.58 2.56 2.55 2.51 2.51 
16 17.62 7.37 5.23 4.37 3.92 3.45 3.21 3.04 2.93 2.86 2.81 2.77 2.74 2.69 2.66 2.63 2.62 2.61 2.58 2.57 
20 19.00 7.72 5.42 4.51 4.02 3.53 3.28 3.10 2.99 2.91 2.86 2.82 2.79 2.74 2.71 2.68 2.67 2.65 2.63 2.61 
30 21.75 8.40 5.79 4.76 4.22 3.68 3.41 3.22 3.10 3.02 2.96 2.92 2.88 2.83 2.79 2.77 2.75 2.73 2.70 2.69 
40 23.95 8.92 6.05 4.94 4.37 3.79 3.50 3.30 3.17 3.09 3.03 2.98 2.94 2.89 2.85 2.82 2.80 2.79 2.76 2.74 
50 25.80 9.34 6.27 5.09 4.49 3.88 3.57 3.36 3.23 3.14 3.08 3.02 2.99 2.93 2.89 2.87 2.84 2.82 2.78 2.76 
60 27.42 9.70 6.45 5.21 4.58 3.95 3.63 3.41 3.28 3.19 3.12 3.07 3.03 2.97 2.93 2.90 2.87 2.85 2.82 2.79 
75 29.53 10.15 6.67 5.37 4.70 4.03 3.71 3.48 3.34 3.25 3.17 3.12 3.08 3.02 2.98 2.94 2.92 2.90 2.87 2.85 

100 32.52 10.77 6.98 5.56 4.85 4.14 3.80 3.56 3.41 3.32 3.25 3.18 3.14 3.08 3.03 3.00 2.98 2.96 2.93 2.90 
125 35.07 11.27 7.22 5.72 4.98 4.24 3.87 3.62 3.47 3.37 3.30 3.23 3.19 3.13 3.08 3.05 3.02 3.00 2.96 2.94 
150 37.27 11.69 7.43 5.86 5.08 4.31 3.93 3.67 3.52 3.41 3.34 3.27 3.23 3.16 3.12 3.09 3.05 3.03 2.99 2.96 
175 39.20 12.08 7.60 5.98 5.16 4.37 3.98 3.72 3.56 3.45 3.38 3.32 3.26 3.20 3.15 3.12 3.08 3.06 3.03 3.00 
200 40.96 12.39 7.76 6.08 5.24 4.42 4.03 3.76 3.59 3.48 3.41 3.35 3.31 3.22 3.18 3.15 3.11 3.09 3.05 3.03 

D-126 March 2009 

EPAPAV0117628 



Appendix D. Chapter 19 Intrawell K-Tables for Observations Unified Guidance 

Table 19-11. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Observations (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.33 0.2S 0.21 0.18 0.17 0.1S 0.14 0.13 0.12 0.12 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 
2 0.71 O.S7 o.so 0.46 0.44 0.41 0.39 0.38 0.37 0.37 0.36 0.36 0.3S 0.3S 0.3S 0.34 0.34 0.34 0.34 0.34 
3 0.9S 0.7S 0.67 0.62 O.S9 o.ss O.S3 O.S2 O.Sl o.so 0.49 0.49 0.48 0.48 0.47 0.47 0.47 0.47 0.46 0.46 
4 1.13 0.88 0.78 0.73 0.69 0.6S 0.63 0.61 0.60 O.S9 O.S8 O.S8 O.S7 O.S7 O.S6 O.S6 O.S6 o.ss o.ss o.ss 
s 1.27 0.98 0.87 0.81 0.77 0.72 0.70 0.68 0.66 0.6S 0.6S 0.64 0.64 0.63 0.62 0.62 0.62 0.62 0.61 0.61 
8 1.60 1.20 1.05 0.98 0.93 0.87 0.84 0.82 0.80 0.79 0.78 0.77 0.77 0.76 0.7S 0.7S 0.7S 0.74 0.74 0.74 
12 1.91 1.39 1.21 1.12 1.06 1.00 0.96 0.93 0.91 0.90 0.89 0.88 0.87 0.86 0.86 0.8S 0.8S 0.8S 0.84 0.84 
16 2.1S 1.S4 1.33 1.22 1.16 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.9S 0.94 0.93 0.92 0.92 0.92 0.91 0.91 
20 2.35 1.6S 1.42 1.30 1.23 1.1S 1.10 1.07 1.05 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
30 2.75 1.86 1.58 1.44 1.36 1.27 1.21 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 1.05 
40 3.06 2.02 1.70 1.SS 1.4S 1.3S 1.29 1.2S 1.22 1.20 1.19 1.17 1.17 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
so 3.32 2.1S 1.80 1.63 1.S3 1.41 1.3S 1.30 1.27 1.2S 1.24 1.23 1.22 1.20 1.19 1.19 1.18 1.17 1.17 1.16 
60 3.55 2.26 1.87 1.69 1.S9 1.47 1.40 1.3S 1.32 1.30 1.28 1.27 1.26 1.24 1.23 1.22 1.22 1.21 1.21 1.20 
7S 3.84 2.39 1.97 1.77 1.66 1.S3 1.46 1.40 1.37 1.3S 1.33 1.32 1.31 1.29 1.28 1.27 1.27 1.26 1.2S 1.2S 

100 4.26 2.57 2.10 1.88 1.7S 1.61 1.S3 1.48 1.44 1.41 1.39 1.38 1.37 1.3S 1.34 1.33 1.32 1.32 1.31 1.30 
12S 4.60 2.72 2.20 1.96 1.82 1.67 1.S9 1.S3 1.49 1.46 1.44 1.43 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 1.3S 
150 4.90 2.84 2.28 2.03 1.88 1.72 1.64 1.S7 1.S3 1.50 1.48 1.47 1.4S 1.44 1.42 1.41 1.41 1.40 1.39 1.38 
17S 5.17 2.95 2.35 2.09 1.93 1.77 1.68 1.61 1.S7 1.S4 1.S2 1.SO 1.49 1.47 1.4S 1.44 1.44 1.43 1.42 1.41 
200 5.42 3.04 2.42 2.14 1.98 1.80 1.71 1.64 1.60 1.S7 1.S4 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.46 1.44 1.44 

Table 19-11. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Observations (1 coc, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.67 O.S4 0.49 0.45 0.43 0.41 0.39 0.38 0.37 0.36 0.36 0.36 0.3S 0.3S 0.3S 0.34 0.34 0.34 0.34 0.34 
2 1.08 0.86 0.77 0.72 0.69 0.6S 0.62 0.61 O.S9 O.S9 O.S8 O.S7 O.S7 O.S6 O.S6 O.S6 o.ss o.ss o.ss o.ss 
3 1.3S 1.05 0.93 0.87 0.83 0.78 0.75 0.73 0.71 0.70 0.70 0.69 0.69 0.68 0.68 0.67 0.67 0.67 0.66 0.66 
4 1.SS 1.18 1.04 0.97 0.92 0.87 0.84 0.81 0.80 0.79 0.78 0.77 0.77 0.76 0.75 0.75 0.75 0.74 0.74 0.74 
s 1.71 1.29 1.13 1.05 1.00 0.94 0.90 0.88 0.86 0.8S 0.84 0.83 0.83 0.82 0.81 0.81 0.80 0.80 0.80 0.79 
8 2.09 1.S2 1.32 1.22 1.1S 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.9S 0.94 0.93 0.92 0.92 0.92 0.91 0.91 
12 2.46 1.73 1.48 1.36 1.29 1.20 1.1S 1.12 1.09 1.07 1.06 1.05 1.05 1.03 1.03 1.02 1.02 1.01 1.01 1.00 
16 2.75 1.88 1.60 1.46 1.38 1.28 1.23 1.19 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.09 1.08 1.08 1.07 1.07 
20 2.99 2.00 1.69 1.S4 1.4S 1.3S 1.29 1.2S 1.22 1.20 1.19 1.17 1.17 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
30 3.47 2.24 1.87 1.69 1.58 1.46 1.40 1.3S 1.32 1.30 1.28 1.27 1.26 1.24 1.23 1.22 1.22 1.21 1.21 1.20 
40 3.84 2.41 1.99 1.79 1.68 1.SS 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
so 4.16 2.55 2.09 1.87 1.7S 1.61 1.S3 1.47 1.44 1.41 1.39 1.38 1.37 1.3S 1.34 1.33 1.32 1.32 1.31 1.30 
60 4.44 2.67 2.17 1.94 1.81 1.66 1.58 1.S2 1.48 1.4S 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.36 1.3S 1.34 
7S 4.80 2.82 2.28 2.03 1.88 1.72 1.64 1.S7 1.S3 1.50 1.48 1.47 1.4S 1.44 1.42 1.41 1.41 1.40 1.39 1.38 

100 5.30 3.02 2.41 2.13 1.98 1.80 1.71 1.64 1.60 1.S7 1.S4 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.46 1.44 1.44 
12S 5.73 3.19 2.52 2.22 2.05 1.87 1.77 1.69 1.6S 1.61 1.S9 1.S7 1.S6 1.S4 1.S2 1.Sl 1.50 1.SO 1.49 1.48 
150 6.10 3.32 2.61 2.29 2.11 1.92 1.81 1.74 1.69 1.6S 1.63 1.61 1.60 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 
17S 6.43 3.44 2.69 2.35 2.16 1.96 1.8S 1.77 1.72 1.69 1.66 1.64 1.63 1.60 1.S9 1.S8 1.S7 1.S6 1.SS 1.S4 
200 6.73 3.55 2.75 2.40 2.21 2.00 1.89 1.80 1.7S 1.72 1.69 1.67 1.6S 1.63 1.61 1.60 1.S9 1.S9 1.S7 1.S6 
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Table 19-11. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Observations (1 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.01 0.82 0.7S 0.70 0.67 0.64 0.62 0.60 O.S9 O.S8 O.S8 O.S7 O.S7 O.S6 O.S6 O.S6 o.ss o.ss o.ss o.ss 
2 1.47 1.1S 1.02 0.96 0.91 0.86 0.83 0.81 0.79 0.78 0.78 0.77 0.76 0.76 0.7S 0.7S 0.74 0.74 0.74 0.73 
3 1.77 1.34 1.19 1.10 1.05 0.99 0.9S 0.93 0.91 0.89 0.89 0.88 0.87 0.86 0.86 0.8S 0.8S 0.8S 0.84 0.84 
4 2.00 1.49 1.30 1.21 1.1S 1.08 1.04 1.00 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 0.92 0.92 0.92 0.91 0.91 
s 2.19 1.60 1.39 1.29 1.22 1.14 1.10 1.06 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
8 2.64 1.8S 1.S9 1.45 1.37 1.28 1.23 1.19 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.09 1.08 1.08 1.07 1.07 
12 3.07 2.08 1.76 1.60 1.50 1.40 1.34 1.29 1.26 1.24 1.23 1.22 1.21 1.19 1.18 1.18 1.17 1.17 1.16 1.1S 
16 3.42 2.24 1.88 1.70 1.60 1.48 1.41 1.36 1.33 1.31 1.29 1.28 1.27 1.26 1.2S 1.24 1.23 1.23 1.22 1.21 
20 3.70 2.38 1.98 1.78 1.67 1.S4 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
30 4.28 2.64 2.16 1.93 1.80 1.66 1.58 1.S2 1.48 1.4S 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.36 1.3S 1.34 
40 4.74 2.83 2.29 2.04 1.90 1.74 1.6S 1.S9 1.SS 1.S2 1.50 1.48 1.47 1.4S 1.44 1.43 1.42 1.41 1.40 1.39 
so 5.12 2.99 2.40 2.13 1.97 1.80 1.71 1.64 1.60 1.S7 1.S4 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.46 1.44 1.44 
60 5.45 3.12 2.49 2.20 2.03 1.8S 1.76 1.68 1.64 1.61 1.58 1.S6 1.SS 1.S3 1.S2 1.Sl 1.50 1.49 1.48 1.47 
7S 5.89 3.29 2.60 2.28 2.11 1.92 1.81 1.74 1.69 1.6S 1.63 1.61 1.60 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 

100 6.50 3.51 2.74 2.40 2.21 2.00 1.89 1.80 1.7S 1.72 1.69 1.67 1.6S 1.63 1.61 1.60 1.S9 1.S9 1.S7 1.S6 
12S 7.02 3.70 2.86 2.49 2.28 2.06 1.94 1.8S 1.80 1.76 1.73 1.71 1.70 1.67 1.66 1.64 1.63 1.63 1.61 1.60 
150 7.46 3.85 2.95 2.S6 2.34 2.11 1.99 1.90 1.84 1.80 1.77 1.7S 1.73 1.71 1.69 1.68 1.67 1.66 1.64 1.64 
17S 7.87 3.98 3.04 2.63 2.40 2.1S 2.03 1.93 1.87 1.83 1.80 1.78 1.76 1.74 1.72 1.71 1.69 1.69 1.67 1.66 
200 8.23 4.10 3.11 2.68 2.44 2.19 2.06 1.96 1.90 1.86 1.83 1.81 1.79 1.76 1.74 1.73 1.72 1.71 1.69 1.69 

Table 19-11. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Observations (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 0.71 O.S7 o.so 0.46 0.44 0.41 0.39 0.38 0.37 0.37 0.36 0.36 0.3S 0.3S 0.3S 0.34 0.34 0.34 0.34 0.34 
2 1.13 0.88 0.78 0.73 0.69 0.6S 0.63 0.61 0.60 O.S9 O.S8 O.S8 O.S7 O.S7 O.S6 O.S6 O.S6 o.ss o.ss o.ss 
3 1.39 1.07 0.94 0.87 0.83 0.78 0.7S 0.73 0.72 0.71 0.70 0.69 0.69 0.68 0.68 0.67 0.67 0.67 0.66 0.66 
4 1.60 1.20 1.05 0.98 0.93 0.87 0.84 0.82 0.80 0.79 0.78 0.77 0.77 0.76 0.7S 0.7S 0.7S 0.74 0.74 0.74 
s 1.76 1.31 1.14 1.06 1.00 0.94 0.91 0.88 0.86 0.8S 0.84 0.83 0.83 0.82 0.81 0.81 0.80 0.80 0.80 0.79 
8 2.1S 1.S4 1.33 1.22 1.16 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.9S 0.94 0.93 0.92 0.92 0.92 0.91 0.91 
12 2.52 1.74 1.49 1.37 1.29 1.20 1.1S 1.12 1.09 1.08 1.06 1.05 1.05 1.03 1.03 1.02 1.02 1.01 1.01 1.00 
16 2.81 1.90 1.61 1.47 1.38 1.29 1.23 1.19 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.09 1.08 1.08 1.07 1.07 
20 3.06 2.02 1.70 1.SS 1.4S 1.3S 1.29 1.2S 1.22 1.20 1.19 1.17 1.17 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
30 3.55 2.26 1.87 1.69 1.S9 1.47 1.40 1.3S 1.32 1.30 1.28 1.27 1.26 1.24 1.23 1.22 1.22 1.21 1.21 1.20 
40 3.93 2.43 2.00 1.80 1.68 1.SS 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
so 4.26 2.57 2.10 1.88 1.7S 1.61 1.S3 1.48 1.44 1.41 1.39 1.38 1.37 1.3S 1.34 1.33 1.32 1.32 1.31 1.30 
60 4.54 2.69 2.18 1.95 1.81 1.66 1.58 1.S2 1.48 1.4S 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.36 1.3S 1.34 
7S 4.90 2.84 2.28 2.03 1.88 1.72 1.64 1.S7 1.S3 1.50 1.48 1.47 1.4S 1.44 1.42 1.41 1.41 1.40 1.39 1.38 

100 5.42 3.04 2.42 2.14 1.98 1.80 1.71 1.64 1.60 1.S7 1.S4 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.46 1.44 1.44 
12S 5.85 3.20 2.53 2.22 2.05 1.87 1.77 1.69 1.6S 1.61 1.S9 1.S7 1.S6 1.S4 1.S2 1.Sl 1.50 1.SO 1.49 1.48 
150 6.23 3.34 2.61 2.29 2.11 1.92 1.81 1.74 1.69 1.6S 1.63 1.61 1.60 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 
17S 6.56 3.46 2.69 2.35 2.17 1.96 1.8S 1.77 1.72 1.69 1.66 1.64 1.63 1.60 1.S9 1.S8 1.S7 1.S6 1.SS 1.S4 
200 6.87 3.57 2.76 2.41 2.21 2.00 1.89 1.80 1.7S 1.72 1.69 1.67 1.6S 1.63 1.61 1.60 1.S9 1.S9 1.S7 1.S6 
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Table 19-11. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Observations (2 coc, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.08 0.86 0.77 0.72 0.69 0.6S 0.62 0.61 O.S9 O.S9 O.S8 O.S7 O.S7 O.S6 O.S6 O.S6 o.ss o.ss o.ss o.ss 
2 1.SS 1.18 1.04 0.97 0.92 0.87 0.84 0.81 0.80 0.79 0.78 0.77 0.77 0.76 0.7S 0.7S 0.7S 0.74 0.74 0.74 
3 1.8S 1.38 1.20 1.11 1.06 0.99 0.96 0.93 0.91 0.90 0.89 0.88 0.87 0.86 0.86 0.8S 0.8S 0.8S 0.84 0.84 
4 2.09 1.S2 1.32 1.22 1.1S 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.9S 0.94 0.93 0.92 0.92 0.92 0.91 0.91 
s 2.29 1.63 1.41 1.30 1.23 1.1S 1.10 1.07 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
8 2.75 1.88 1.60 1.46 1.38 1.28 1.23 1.19 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.09 1.08 1.08 1.07 1.07 
12 3.19 2.11 1.77 1.61 1.Sl 1.40 1.34 1.29 1.26 1.24 1.23 1.22 1.21 1.19 1.18 1.18 1.17 1.17 1.16 1.1S 
16 3.55 2.28 1.89 1.71 1.60 1.48 1.42 1.37 1.33 1.31 1.29 1.28 1.27 1.26 1.2S 1.24 1.23 1.23 1.22 1.21 
20 3.84 2.41 1.99 1.79 1.68 1.SS 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
30 4.44 2.67 2.17 1.94 1.81 1.66 1.58 1.S2 1.48 1.4S 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.36 1.3S 1.34 
40 4.91 2.87 2.31 2.05 1.90 1.74 1.6S 1.S9 1.SS 1.S2 1.50 1.48 1.47 1.4S 1.44 1.43 1.42 1.41 1.40 1.39 
so 5.30 3.02 2.41 2.13 1.98 1.80 1.71 1.64 1.60 1.S7 1.S4 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.46 1.44 1.44 
60 5.65 3.15 2.50 2.20 2.04 1.8S 1.76 1.68 1.64 1.61 1.58 1.S7 1.SS 1.S3 1.S2 1.Sl 1.50 1.49 1.48 1.47 
7S 6.10 3.32 2.61 2.29 2.11 1.92 1.81 1.74 1.69 1.6S 1.63 1.61 1.60 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 

100 6.73 3.55 2.75 2.40 2.21 2.00 1.89 1.80 1.7S 1.72 1.69 1.67 1.6S 1.63 1.61 1.60 1.S9 1.S9 1.S7 1.S6 
12S 7.27 3.73 2.87 2.49 2.29 2.06 1.94 1.8S 1.80 1.76 1.73 1.71 1.70 1.67 1.66 1.64 1.63 1.63 1.61 1.60 
150 7.73 3.89 2.97 2.57 2.3S 2.11 1.99 1.90 1.84 1.80 1.77 1.7S 1.73 1.71 1.69 1.68 1.67 1.66 1.64 1.64 
17S 8.14 4.02 3.05 2.63 2.40 2.16 2.03 1.93 1.87 1.83 1.80 1.78 1.76 1.74 1.72 1.70 1.69 1.69 1.67 1.66 
200 8.53 4.15 3.12 2.69 2.4S 2.19 2.06 1.96 1.90 1.86 1.83 1.81 1.79 1.76 1.74 1.73 1.72 1.71 1.69 1.68 

Table 19-11. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Observations (2 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.47 1.1S 1.02 0.96 0.91 0.86 0.83 0.81 0.79 0.78 0.78 0.77 0.76 0.76 0.7S 0.7S 0.74 0.74 0.74 0.73 
2 2.00 1.49 1.30 1.21 1.1S 1.08 1.04 1.00 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 0.92 0.92 0.92 0.91 0.91 
3 2.36 1.70 1.47 1.3S 1.28 1.20 1.1S 1.11 1.09 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.02 1.01 1.01 1.00 
4 2.64 1.8S 1.S9 1.4S 1.37 1.28 1.23 1.19 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.09 1.08 1.08 1.07 1.07 
s 2.87 1.97 1.68 1.S3 1.4S 1.34 1.29 1.2S 1.22 1.20 1.18 1.17 1.16 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
8 3.42 2.24 1.88 1.70 1.60 1.48 1.41 1.36 1.33 1.31 1.29 1.28 1.27 1.26 1.2S 1.24 1.23 1.23 1.22 1.21 
12 3.95 2.49 2.06 1.8S 1.73 1.S9 1.S2 1.46 1.43 1.40 1.38 1.37 1.36 1.34 1.33 1.32 1.32 1.31 1.30 1.29 
16 4.38 2.68 2.19 1.96 1.82 1.68 1.S9 1.S3 1.49 1.47 1.4S 1.43 1.42 1.40 1.39 1.38 1.37 1.37 1.36 1.3S 
20 4.74 2.83 2.29 2.04 1.90 1.74 1.6S 1.S9 1.SS 1.S2 1.50 1.48 1.47 1.4S 1.44 1.43 1.42 1.41 1.40 1.39 
30 5.45 3.12 2.49 2.20 2.03 1.8S 1.76 1.68 1.64 1.61 1.58 1.S6 1.SS 1.S3 1.S2 1.51 1.50 1.49 1.48 1.47 
40 6.02 3.34 2.63 2.31 2.13 1.93 1.83 1.7S 1.70 1.67 1.64 1.62 1.61 1.S9 1.S7 1.56 1.SS 1.S4 1.S3 1.S2 
so 6.50 3.51 2.74 2.40 2.21 2.00 1.89 1.80 1.7S 1.72 1.69 1.67 1.6S 1.63 1.61 1.60 1.S9 1.S9 1.S7 1.S6 
60 6.92 3.66 2.84 2.47 2.27 2.05 1.93 1.8S 1.79 1.7S 1.73 1.71 1.69 1.67 1.6S 1.64 1.63 1.62 1.60 1.60 
7S 7.46 3.85 2.95 2.S6 2.34 2.11 1.99 1.90 1.84 1.80 1.77 1.7S 1.73 1.71 1.69 1.68 1.67 1.66 1.64 1.64 
100 8.23 4.10 3.11 2.68 2.44 2.19 2.06 1.96 1.90 1.86 1.83 1.81 1.79 1.76 1.74 1.73 1.72 1.71 1.69 1.69 
12S 8.88 4.31 3.23 2.78 2.S2 2.26 2.12 2.01 1.9S 1.91 1.87 1.8S 1.83 1.80 1.78 1.77 1.76 1.7S 1.73 1.72 
150 9.43 4.48 3.34 2.85 2.S9 2.31 2.16 2.06 1.99 1.94 1.91 1.89 1.87 1.84 1.82 1.80 1.79 1.78 1.76 1.7S 
17S 9.95 4.64 3.43 2.92 2.64 2.3S 2.20 2.09 2.02 1.98 1.94 1.92 1.90 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
200 10.40 4.78 3.51 2.98 2.69 2.39 2.23 2.12 2.05 2.00 1.97 1.94 1.92 1.89 1.87 1.8S 1.84 1.83 1.81 1.80 
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Table 19-11. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Observations (5 coc, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.27 0.98 0.87 0.81 0.77 0.72 0.70 0.68 0.66 0.6S 0.6S 0.64 0.64 0.63 0.62 0.62 0.62 0.62 0.61 0.61 
2 1.76 1.31 1.14 1.06 1.00 0.94 0.91 0.88 0.86 0.8S 0.84 0.83 0.83 0.82 0.81 0.81 0.80 0.80 0.80 0.79 
3 2.09 1.50 1.30 1.20 1.14 1.06 1.02 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.91 0.91 0.90 0.90 0.90 0.89 
4 2.35 1.6S 1.42 1.30 1.23 1.1S 1.10 1.07 1.05 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
s 2.56 1.77 1.51 1.38 1.30 1.21 1.16 1.13 1.10 1.09 1.07 1.06 1.06 1.04 1.04 1.03 1.03 1.02 1.01 1.01 
8 3.06 2.02 1.70 1.SS 1.4S 1.3S 1.29 1.2S 1.22 1.20 1.19 1.17 1.17 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
12 3.55 2.26 1.87 1.69 1.S9 1.47 1.40 1.3S 1.32 1.30 1.28 1.27 1.26 1.24 1.23 1.22 1.22 1.21 1.21 1.20 
16 3.93 2.43 2.00 1.80 1.68 1.SS 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
20 4.26 2.57 2.10 1.88 1.7S 1.61 1.S3 1.48 1.44 1.41 1.39 1.38 1.37 1.3S 1.34 1.33 1.32 1.32 1.31 1.30 
30 4.90 2.84 2.28 2.03 1.88 1.72 1.64 1.S7 1.S3 1.SO 1.48 1.47 1.4S 1.44 1.42 1.41 1.41 1.40 1.39 1.38 
40 5.42 3.04 2.42 2.14 1.98 1.80 1.71 1.64 1.60 1.S7 1.S4 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.46 1.44 1.44 
so 5.85 3.20 2.53 2.22 2.05 1.87 1.77 1.69 1.6S 1.61 1.S9 1.S7 1.S6 1.S4 1.S2 1.Sl 1.50 1.SO 1.49 1.48 
60 6.23 3.34 2.61 2.29 2.11 1.92 1.81 1.74 1.69 1.6S 1.63 1.61 1.60 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 
7S 6.72 3.52 2.73 2.38 2.19 1.98 1.87 1.79 1.74 1.70 1.68 1.66 1.64 1.62 1.60 1.S9 1.58 1.S7 1.S6 1.SS 

100 7.41 3.76 2.88 2.50 2.29 2.06 1.94 1.8S 1.80 1.76 1.74 1.71 1.70 1.67 1.66 1.64 1.63 1.63 1.61 1.60 
12S 8.00 3.95 3.00 2.59 2.36 2.12 2.00 1.91 1.8S 1.81 1.78 1.76 1.74 1.72 1.70 1.68 1.67 1.67 1.6S 1.64 
150 8.50 4.11 3.09 2.66 2.43 2.18 2.04 1.9S 1.89 1.8S 1.82 1.79 1.78 1.7S 1.73 1.72 1.71 1.70 1.68 1.67 
17S 8.96 4.25 3.18 2.72 2.48 2.22 2.08 1.98 1.92 1.88 1.8S 1.82 1.81 1.78 1.76 1.74 1.74 1.72 1.71 1.70 
200 9.38 4.38 3.25 2.78 2.53 2.26 2.12 2.01 1.9S 1.91 1.88 1.8S 1.83 1.80 1.78 1.77 1.76 1.7S 1.73 1.72 

Table 19-11. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Observations (5 coc, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.71 1.29 1.13 1.05 1.00 0.94 0.90 0.88 0.86 0.8S 0.84 0.83 0.83 0.82 0.81 0.81 0.80 0.80 0.80 0.79 
2 2.29 1.63 1.41 1.30 1.23 1.1S 1.10 1.07 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
3 2.68 1.8S 1.S7 1.44 1.36 1.27 1.21 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 1.05 
4 2.99 2.00 1.69 1.S4 1.4S 1.3S 1.29 1.2S 1.22 1.20 1.19 1.17 1.17 1.1S 1.14 1.14 1.13 1.13 1.12 1.11 
s 3.24 2.13 1.79 1.62 1.S2 1.41 1.3S 1.30 1.27 1.2S 1.24 1.23 1.22 1.20 1.19 1.18 1.18 1.17 1.17 1.16 
8 3.84 2.41 1.99 1.79 1.68 1.SS 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
12 4.44 2.67 2.17 1.94 1.81 1.66 1.58 1.S2 1.48 1.4S 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.36 1.3S 1.34 
16 4.91 2.87 2.31 2.05 1.90 1.74 1.6S 1.S9 1.SS 1.S2 1.SO 1.48 1.47 1.4S 1.44 1.43 1.42 1.41 1.40 1.39 
20 5.30 3.02 2.41 2.13 1.98 1.80 1.71 1.64 1.60 1.S7 1.S4 1.S3 1.Sl 1.49 1.48 1.47 1.46 1.46 1.44 1.44 
30 6.10 3.32 2.61 2.29 2.11 1.92 1.81 1.74 1.69 1.6S 1.63 1.61 1.60 1.S7 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 
40 6.73 3.55 2.75 2.40 2.21 2.00 1.89 1.80 1.7S 1.72 1.69 1.67 1.6S 1.63 1.61 1.60 1.S9 1.S9 1.S7 1.S6 
so 7.27 3.73 2.87 2.49 2.29 2.06 1.94 1.8S 1.80 1.76 1.73 1.71 1.70 1.67 1.66 1.64 1.63 1.63 1.61 1.60 
60 7.73 3.89 2.97 2.57 2.3S 2.11 1.99 1.90 1.84 1.80 1.77 1.7S 1.73 1.71 1.69 1.68 1.67 1.66 1.64 1.64 
7S 8.33 4.09 3.09 2.66 2.42 2.18 2.05 1.9S 1.89 1.8S 1.82 1.79 1.78 1.7S 1.73 1.72 1.71 1.70 1.68 1.67 
100 9.20 4.35 3.25 2.78 2.53 2.26 2.12 2.01 1.9S 1.91 1.88 1.8S 1.83 1.80 1.78 1.77 1.76 1.7S 1.73 1.72 
12S 9.90 4.57 3.38 2.88 2.61 2.32 2.17 2.07 2.00 1.9S 1.92 1.89 1.87 1.84 1.82 1.81 1.80 1.79 1.77 1.76 
150 10.55 4.75 3.49 2.96 2.67 2.37 2.22 2.11 2.04 1.99 1.96 1.93 1.91 1.88 1.86 1.84 1.83 1.82 1.80 1.79 
17S 11.07 4.91 3.57 3.02 2.72 2.42 2.26 2.14 2.07 2.02 1.98 1.96 1.94 1.90 1.88 1.87 1.8S 1.8S 1.83 1.82 
200 11.60 5.05 3.65 3.08 2.78 2.45 2.29 2.17 2.10 2.05 2.01 1.98 1.96 1.93 1.91 1.89 1.88 1.87 1.8S 1.84 
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Table 19-11. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Observations (5 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.19 1.60 1.39 1.29 1.22 1.14 1.10 1.06 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
2 2.87 1.97 1.68 1.53 1.45 1.34 1.29 1.25 1.22 1.20 1.18 1.17 1.16 1.15 1.14 1.14 1.13 1.13 1.12 1.11 
3 3.34 2.21 1.85 1.68 1.58 1.46 1.40 1.35 1.32 1.29 1.28 1.27 1.26 1.24 1.23 1.22 1.22 1.21 1.20 1.20 
4 3.70 2.38 1.98 1.78 1.67 1.54 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
5 4.01 2.52 2.08 1.87 1.74 1.61 1.53 1.47 1.44 1.41 1.39 1.38 1.37 1.35 1.34 1.33 1.32 1.32 1.31 1.30 
8 4.74 2.83 2.29 2.04 1.90 1.74 1.65 1.59 1.55 1.52 1.50 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 
12 5.45 3.12 2.49 2.20 2.03 1.85 1.76 1.68 1.64 1.61 1.58 1.56 1.55 1.53 1.52 1.51 1.50 1.49 1.48 1.47 
16 6.02 3.34 2.63 2.31 2.13 1.93 1.83 1.75 1.70 1.67 1.64 1.62 1.61 1.59 1.57 1.56 1.55 1.54 1.53 1.52 
20 6.50 3.51 2.74 2.40 2.21 2.00 1.89 1.80 1.75 1.72 1.69 1.67 1.65 1.63 1.61 1.60 1.59 1.59 1.57 1.56 
30 7.46 3.85 2.95 2.56 2.34 2.11 1.99 1.90 1.84 1.80 1.77 1.75 1.73 1.71 1.69 1.68 1.67 1.66 1.64 1.64 
40 8.23 4.10 3.11 2.68 2.44 2.19 2.06 1.96 1.90 1.86 1.83 1.81 1.79 1.76 1.74 1.73 1.72 1.71 1.69 1.69 
50 8.88 4.31 3.23 2.78 2.52 2.26 2.12 2.01 1.95 1.91 1.87 1.85 1.83 1.80 1.78 1.77 1.76 1.75 1.73 1.72 
60 9.43 4.48 3.34 2.85 2.59 2.31 2.16 2.06 1.99 1.94 1.91 1.89 1.87 1.84 1.82 1.80 1.79 1.78 1.76 1.75 
75 10.18 4.71 3.47 2.95 2.67 2.37 2.22 2.11 2.04 1.99 1.95 1.93 1.91 1.88 1.86 1.84 1.83 1.82 1.80 1.79 

100 11.22 5.01 3.64 3.08 2.77 2.45 2.29 2.17 2.10 2.05 2.01 1.98 1.96 1.93 1.91 1.89 1.88 1.87 1.85 1.84 
125 12.07 5.25 3.78 3.18 2.86 2.52 2.35 2.22 2.15 2.09 2.05 2.03 2.00 1.97 1.95 1.93 1.92 1.90 1.89 1.87 
150 12.83 5.46 3.90 3.26 2.92 2.57 2.40 2.26 2.18 2.13 2.09 2.06 2.04 2.00 1.98 1.96 1.95 1.94 1.92 1.90 
175 13.54 5.64 4.00 3.33 2.98 2.62 2.43 2.30 2.22 2.16 2.12 2.09 2.06 2.03 2.00 1.98 1.97 1.96 1.94 1.93 
200 14.18 5.80 4.09 3.40 3.03 2.66 2.47 2.33 2.24 2.19 2.15 2.11 2.09 2.05 2.03 2.01 1.99 1.98 1.96 1.95 

Table 19-11. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Observations (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 1.76 1.31 1.14 1.06 1.00 0.94 0.91 0.88 0.86 0.85 0.84 0.83 0.83 0.82 0.81 0.81 0.80 0.80 0.80 0.79 
2 2.35 1.65 1.42 1.30 1.23 1.15 1.10 1.07 1.05 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
3 2.75 1.86 1.58 1.44 1.36 1.27 1.21 1.17 1.15 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 1.05 
4 3.06 2.02 1.70 1.55 1.45 1.35 1.29 1.25 1.22 1.20 1.19 1.17 1.17 1.15 1.14 1.14 1.13 1.13 1.12 1.11 
5 3.32 2.15 1.80 1.63 1.53 1.41 1.35 1.30 1.27 1.25 1.24 1.23 1.22 1.20 1.19 1.19 1.18 1.17 1.17 1.16 
8 3.93 2.43 2.00 1.80 1.68 1.55 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.29 1.28 1.27 1.26 1.26 
12 4.53 2.69 2.18 1.95 1.81 1.66 1.58 1.52 1.48 1.45 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.36 1.35 1.34 
16 5.02 2.88 2.31 2.05 1.90 1.74 1.65 1.59 1.55 1.52 1.50 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 
20 5.42 3.04 2.42 2.14 1.98 1.80 1.71 1.64 1.60 1.57 1.54 1.53 1.51 1.49 1.48 1.47 1.46 1.46 1.44 1.44 
30 6.23 3.34 2.62 2.29 2.11 1.92 1.81 1.74 1.69 1.65 1.63 1.61 1.60 1.57 1.56 1.55 1.54 1.53 1.52 1.51 
40 6.87 3.57 2.76 2.41 2.21 2.00 1.89 1.80 1.75 1.72 1.69 1.67 1.65 1.63 1.61 1.60 1.59 1.59 1.57 1.56 
50 7.42 3.75 2.87 2.50 2.29 2.06 1.94 1.86 1.80 1.76 1.73 1.71 1.70 1.67 1.66 1.64 1.63 1.63 1.61 1.60 
60 7.89 3.91 2.97 2.57 2.35 2.11 1.99 1.90 1.84 1.80 1.77 1.75 1.73 1.71 1.69 1.68 1.67 1.66 1.64 1.64 
75 8.50 4.11 3.09 2.66 2.43 2.18 2.04 1.95 1.89 1.85 1.82 1.79 1.78 1.75 1.73 1.72 1.71 1.70 1.68 1.67 
100 9.38 4.37 3.25 2.78 2.53 2.26 2.12 2.01 1.95 1.91 1.87 1.85 1.83 1.80 1.78 1.77 1.76 1.75 1.73 1.72 
125 10.11 4.59 3.38 2.88 2.61 2.32 2.17 2.07 2.00 1.95 1.92 1.89 1.87 1.84 1.82 1.81 1.80 1.79 1.77 1.76 
150 10.74 4.79 3.49 2.95 2.67 2.37 2.22 2.11 2.04 1.99 1.95 1.93 1.91 1.88 1.86 1.84 1.83 1.82 1.80 1.79 
175 11.33 4.93 3.59 3.03 2.73 2.42 2.26 2.14 2.07 2.02 1.98 1.96 1.93 1.90 1.88 1.87 1.86 1.84 1.83 1.82 
200 11.82 5.08 3.66 3.09 2.78 2.45 2.29 2.17 2.10 2.04 2.01 1.98 1.96 1.93 1.90 1.89 1.88 1.87 1.85 1.84 
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Table 19-11. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Observations (10 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.29 1.63 1.41 1.30 1.23 1.15 1.10 1.07 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
2 2.99 2.00 1.69 1.54 1.45 1.35 1.29 1.25 1.22 1.20 1.19 1.17 1.17 1.15 1.14 1.14 1.13 1.13 1.12 1.11 
3 3.47 2.24 1.87 1.69 1.58 1.46 1.40 1.35 1.32 1.30 1.28 1.27 1.26 1.24 1.23 1.22 1.22 1.21 1.21 1.20 
4 3.84 2.41 1.99 1.79 1.68 1.55 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
5 4.16 2.55 2.09 1.87 1.75 1.61 1.53 1.47 1.44 1.41 1.39 1.38 1.37 1.35 1.34 1.33 1.32 1.32 1.31 1.30 
8 4.91 2.87 2.31 2.05 1.90 1.74 1.65 1.59 1.55 1.52 1.50 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 
12 5.65 3.16 2.50 2.20 2.04 1.85 1.76 1.68 1.64 1.61 1.58 1.57 1.55 1.53 1.52 1.51 1.50 1.49 1.48 1.47 
16 6.24 3.37 2.64 2.32 2.13 1.94 1.83 1.75 1.70 1.67 1.64 1.62 1.61 1.59 1.57 1.56 1.55 1.54 1.53 1.52 
20 6.73 3.55 2.75 2.40 2.21 2.00 1.89 1.80 1.75 1.72 1.69 1.67 1.65 1.63 1.61 1.60 1.59 1.59 1.57 1.56 
30 7.73 3.89 2.97 2.57 2.35 2.11 1.99 1.90 1.84 1.80 1.77 1.75 1.73 1.71 1.69 1.68 1.67 1.66 1.64 1.63 
40 8.52 4.14 3.12 2.69 2.45 2.19 2.06 1.96 1.90 1.86 1.83 1.81 1.79 1.76 1.74 1.73 1.72 1.71 1.70 1.68 
50 9.18 4.35 3.25 2.78 2.53 2.26 2.12 2.01 1.95 1.91 1.87 1.85 1.83 1.80 1.78 1.77 1.76 1.75 1.73 1.72 
60 9.77 4.53 3.35 2.86 2.59 2.31 2.16 2.06 1.99 1.94 1.91 1.89 1.87 1.84 1.82 1.80 1.79 1.78 1.76 1.75 
75 10.55 4.75 3.48 2.95 2.67 2.37 2.22 2.11 2.04 1.99 1.95 1.93 1.91 1.88 1.86 1.84 1.83 1.82 1.80 1.79 

100 11.62 5.05 3.66 3.08 2.78 2.46 2.29 2.17 2.10 2.05 2.01 1.98 1.96 1.93 1.91 1.89 1.88 1.87 1.85 1.84 
125 12.50 5.30 3.80 3.19 2.86 2.52 2.35 2.22 2.15 2.09 2.05 2.03 2.00 1.97 1.95 1.93 1.92 1.90 1.89 1.87 
150 13.28 5.52 3.91 3.27 2.93 2.58 2.39 2.26 2.19 2.13 2.09 2.06 2.04 2.00 1.98 1.96 1.95 1.93 1.92 1.90 
175 13.96 5.69 4.00 3.34 2.98 2.62 2.44 2.30 2.22 2.16 2.12 2.09 2.06 2.03 2.00 1.98 1.97 1.96 1.94 1.93 
200 14.65 5.86 4.10 3.41 3.04 2.66 2.47 2.33 2.25 2.19 2.14 2.11 2.09 2.05 2.03 2.01 2.00 1.98 1.96 1.95 

Table 19-11. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Observations (10 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.87 1.97 1.68 1.53 1.45 1.34 1.29 1.25 1.22 1.20 1.18 1.17 1.16 1.15 1.14 1.14 1.13 1.13 1.12 1.11 
2 3.70 2.38 1.98 1.78 1.67 1.54 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
3 4.28 2.64 2.16 1.93 1.80 1.66 1.58 1.52 1.48 1.45 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.36 1.35 1.34 
4 4.74 2.83 2.29 2.04 1.90 1.74 1.65 1.59 1.55 1.52 1.50 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 
5 5.12 2.99 2.40 2.13 1.97 1.80 1.71 1.64 1.60 1.57 1.54 1.53 1.51 1.49 1.48 1.47 1.46 1.46 1.44 1.44 
8 6.02 3.34 2.63 2.31 2.13 1.93 1.83 1.75 1.70 1.67 1.64 1.62 1.61 1.59 1.57 1.56 1.55 1.54 1.53 1.52 
12 6.92 3.66 2.84 2.47 2.27 2.05 1.93 1.85 1.79 1.75 1.73 1.71 1.69 1.67 1.65 1.64 1.63 1.62 1.61 1.60 
16 7.63 3.90 2.99 2.59 2.37 2.13 2.00 1.91 1.85 1.81 1.78 1.76 1.75 1.72 1.70 1.69 1.68 1.67 1.66 1.65 
20 8.23 4.10 3.11 2.68 2.44 2.19 2.06 1.96 1.90 1.86 1.83 1.81 1.79 1.76 1.74 1.73 1.72 1.71 1.69 1.68 
30 9.44 4.49 3.34 2.85 2.59 2.31 2.16 2.06 1.99 1.94 1.91 1.89 1.87 1.84 1.82 1.80 1.79 1.78 1.76 1.75 
40 10.40 4.77 3.51 2.98 2.69 2.39 2.23 2.12 2.05 2.00 1.97 1.94 1.92 1.89 1.87 1.85 1.84 1.83 1.81 1.80 
50 11.21 5.00 3.64 3.08 2.77 2.46 2.29 2.17 2.10 2.05 2.01 1.98 1.96 1.93 1.91 1.89 1.88 1.87 1.85 1.84 
60 11.91 5.21 3.75 3.16 2.84 2.51 2.34 2.21 2.14 2.08 2.05 2.02 1.99 1.96 1.94 1.92 1.91 1.90 1.88 1.87 
75 12.84 5.46 3.89 3.26 2.92 2.57 2.39 2.26 2.18 2.13 2.09 2.06 2.04 2.00 1.98 1.96 1.95 1.93 1.92 1.90 
100 14.16 5.80 4.09 3.40 3.03 2.66 2.47 2.33 2.24 2.19 2.15 2.11 2.09 2.05 2.03 2.01 1.99 1.98 1.96 1.95 
125 15.23 6.08 4.24 3.50 3.12 2.72 2.52 2.38 2.29 2.23 2.19 2.15 2.13 2.09 2.06 2.04 2.03 2.02 2.00 1.98 
150 16.21 6.32 4.37 3.59 3.19 2.78 2.57 2.42 2.33 2.26 2.22 2.19 2.16 2.12 2.09 2.07 2.06 2.05 2.02 2.01 
175 17.09 6.52 4.47 3.67 3.25 2.82 2.61 2.45 2.36 2.29 2.25 2.22 2.19 2.15 2.12 2.10 2.08 2.07 2.05 2.03 
200 17.77 6.69 4.57 3.74 3.31 2.86 2.64 2.48 2.39 2.33 2.28 2.24 2.21 2.17 2.14 2.12 2.11 2.09 2.07 2.05 
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Table 19-11. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Observations (20 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.35 1.65 1.42 1.30 1.23 1.15 1.10 1.07 1.05 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
2 3.06 2.02 1.70 1.55 1.45 1.35 1.29 1.25 1.22 1.20 1.19 1.17 1.17 1.15 1.14 1.14 1.13 1.13 1.12 1.11 
3 3.55 2.26 1.87 1.69 1.59 1.47 1.40 1.35 1.32 1.30 1.28 1.27 1.26 1.24 1.23 1.22 1.22 1.21 1.21 1.20 
4 3.93 2.43 2.00 1.80 1.68 1.55 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.29 1.28 1.27 1.26 1.26 
5 4.25 2.57 2.10 1.88 1.75 1.61 1.53 1.48 1.44 1.41 1.39 1.38 1.37 1.35 1.34 1.33 1.32 1.32 1.31 1.30 
8 5.02 2.88 2.31 2.05 1.90 1.74 1.65 1.59 1.55 1.52 1.50 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 
12 5.77 3.17 2.51 2.21 2.04 1.86 1.76 1.68 1.64 1.61 1.58 1.57 1.55 1.53 1.52 1.51 1.50 1.49 1.48 1.47 
16 6.37 3.39 2.65 2.32 2.14 1.94 1.83 1.75 1.70 1.67 1.64 1.62 1.61 1.59 1.57 1.56 1.55 1.54 1.53 1.52 
20 6.87 3.57 2.76 2.41 2.21 2.00 1.89 1.80 1.75 1.72 1.69 1.67 1.65 1.63 1.61 1.60 1.59 1.59 1.57 1.56 
30 7.89 3.91 2.97 2.57 2.35 2.11 1.99 1.90 1.84 1.80 1.77 1.75 1.73 1.71 1.69 1.68 1.67 1.66 1.64 1.64 
40 8.69 4.17 3.13 2.69 2.45 2.19 2.06 1.96 1.90 1.86 1.83 1.81 1.79 1.76 1.74 1.73 1.72 1.71 1.69 1.68 
50 9.38 4.38 3.25 2.78 2.53 2.26 2.12 2.01 1.95 1.91 1.87 1.85 1.83 1.80 1.78 1.77 1.76 1.75 1.73 1.72 
60 9.97 4.55 3.36 2.86 2.59 2.31 2.16 2.06 1.99 1.94 1.91 1.89 1.87 1.84 1.82 1.80 1.79 1.78 1.76 1.75 
75 10.74 4.78 3.49 2.96 2.67 2.37 2.22 2.11 2.04 1.99 1.95 1.93 1.91 1.88 1.86 1.84 1.83 1.82 1.80 1.79 

100 11.84 5.08 3.66 3.09 2.78 2.46 2.29 2.17 2.10 2.05 2.01 1.98 1.96 1.93 1.91 1.89 1.88 1.87 1.85 1.84 
125 12.74 5.32 3.80 3.19 2.86 2.52 2.35 2.22 2.15 2.09 2.05 2.02 2.00 1.97 1.95 1.93 1.91 1.90 1.89 1.87 
150 13.57 5.54 3.92 3.27 2.93 2.58 2.39 2.26 2.18 2.13 2.09 2.06 2.04 2.00 1.98 1.96 1.95 1.93 1.92 1.90 
175 14.26 5.71 4.02 3.34 2.98 2.62 2.43 2.3a 2.22 2.16 2.12 2.09 2.06 2.03 2.00 1.98 1.97 1.96 1.94 1.93 
200 14.94 5.88 4.11 3.41 3.04 2.66 2.47 2.33 2.24 2.19 2.15 2.11 2.09 2.05 2.03 2.01 1.99 1.98 1.96 1.95 

Table 19-11. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Observations (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.99 2.00 1.69 1.54 1.45 1.35 1.29 1.25 1.22 1.20 1.19 1.17 1.17 1.15 1.14 1.14 1.13 1.13 1.12 1.11 
2 3.84 2.41 1.99 1.79 1.68 1.55 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
3 4.44 2.67 2.17 1.94 1.81 1.66 1.58 1.52 1.48 1.45 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.36 1.35 1.34 
4 4.91 2.87 2.31 2.05 1.90 1.74 1.65 1.59 1.55 1.52 1.50 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 
5 5.30 3.02 2.41 2.13 1.98 1.80 1.71 1.64 1.60 1.57 1.54 1.53 1.51 1.49 1.48 1.47 1.46 1.46 1.44 1.44 
8 6.24 3.37 2.64 2.32 2.13 1.94 1.83 1.75 1.70 1.67 1.64 1.62 1.61 1.59 1.57 1.56 1.55 1.54 1.53 1.52 
12 7.16 3.70 2.85 2.48 2.27 2.05 1.93 1.85 1.79 1.75 1.73 1.71 1.69 1.67 1.65 1.64 1.63 1.62 1.61 1.60 
16 7.90 3.94 3.00 2.59 2.37 2.13 2.00 1.91 1.85 1.81 1.79 1.76 1.75 1.72 1.70 1.69 1.68 1.67 1.66 1.65 
20 8.52 4.14 3.12 2.69 2.45 2.19 2.06 1.96 1.90 1.86 1.83 1.81 1.79 1.76 1.74 1.73 1.72 1.71 1.69 1.68 
30 9.77 4.53 3.35 2.86 2.59 2.31 2.16 2.06 1.99 1.94 1.91 1.89 1.87 1.84 1.82 1.80 1.79 1.78 1.76 1.75 
40 10.77 4.82 3.52 2.98 2.69 2.39 2.24 2.12 2.05 2.00 1.97 1.94 1.92 1.89 1.87 1.85 1.84 1.83 1.81 1.80 
50 11.60 5.05 3.66 3.08 2.78 2.46 2.29 2.17 2.10 2.05 2.01 1.98 1.96 1.93 1.91 1.89 1.88 1.87 1.85 1.84 
60 12.33 5.26 3.77 3.16 2.84 2.51 2.34 2.21 2.14 2.08 2.05 2.02 2.00 1.96 1.94 1.92 1.91 1.90 1.88 1.87 
75 13.28 5.51 3.91 3.27 2.93 2.57 2.39 2.26 2.18 2.13 2.09 2.06 2.04 2.00 1.98 1.96 1.95 1.93 1.92 1.90 
100 14.65 5.85 4.10 3.40 3.04 2.66 2.47 2.33 2.24 2.19 2.14 2.11 2.09 2.05 2.03 2.01 1.99 1.98 1.96 1.95 
125 15.77 6.14 4.25 3.51 3.12 2.73 2.52 2.38 2.29 2.23 2.19 2.15 2.13 2.09 2.06 2.04 2.03 2.02 1.99 1.98 
150 16.80 6.37 4.38 3.60 3.19 2.78 2.57 2.42 2.33 2.27 2.22 2.19 2.16 2.12 2.09 2.07 2.06 2.05 2.03 2.01 
175 17.68 6.58 4.49 3.67 3.25 2.83 2.61 2.46 2.36 2.30 2.25 2.22 2.19 2.15 2.12 2.10 2.08 2.07 2.05 2.03 
200 18.46 6.76 4.58 3.74 3.31 2.86 2.64 2.48 2.39 2.32 2.28 2.24 2.21 2.17 2.14 2.12 2.10 2.09 2.07 2.05 
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Table 19-11. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Observations (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 3.70 2.38 1.98 1.78 1.67 1.54 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
2 4.74 2.83 2.29 2.04 1.90 1.74 1.65 1.59 1.55 1.52 1.50 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 
3 5.45 3.12 2.49 2.20 2.03 1.85 1.76 1.68 1.64 1.61 1.58 1.56 1.55 1.53 1.52 1.50 1.50 1.49 1.48 1.47 
4 6.02 3.34 2.63 2.31 2.13 1.93 1.83 1.75 1.70 1.67 1.64 1.62 1.61 1.59 1.57 1.56 1.55 1.54 1.53 1.52 
5 6.50 3.51 2.74 2.40 2.21 2.00 1.89 1.80 1.75 1.72 1.69 1.67 1.65 1.63 1.61 1.60 1.59 1.59 1.57 1.56 
8 7.63 3.91 2.99 2.59 2.37 2.13 2.00 1.91 1.85 1.81 1.78 1.76 1.75 1.72 1.70 1.69 1.68 1.67 1.66 1.65 
12 8.76 4.27 3.21 2.76 2.51 2.24 2.11 2.00 1.94 1.90 1.87 1.84 1.82 1.80 1.78 1.76 1.75 1.74 1.73 1.72 
16 9.65 4.55 3.38 2.88 2.61 2.33 2.18 2.07 2.00 1.96 1.92 1.90 1.88 1.85 1.83 1.81 1.80 1.79 1.78 1.76 
20 10.40 4.77 3.51 2.98 2.69 2.39 2.23 2.12 2.05 2.00 1.97 1.94 1.92 1.89 1.87 1.85 1.84 1.83 1.81 1.80 
30 11.93 5.21 3.76 3.16 2.84 2.51 2.34 2.21 2.14 2.08 2.05 2.02 1.99 1.96 1.94 1.92 1.91 1.90 1.88 1.87 
40 13.13 5.54 3.94 3.29 2.95 2.59 2.41 2.28 2.20 2.14 2.10 2.07 2.05 2.01 1.99 1.97 1.96 1.95 1.93 1.91 
50 14.16 5.80 4.09 3.40 3.03 2.66 2.47 2.33 2.24 2.19 2.14 2.11 2.09 2.05 2.03 2.01 1.99 1.98 1.96 1.95 
60 15.04 6.03 4.21 3.49 3.10 2.71 2.51 2.37 2.28 2.22 2.18 2.15 2.12 2.08 2.06 2.04 2.02 2.01 1.99 1.98 
75 16.21 6.32 4.36 3.59 3.19 2.78 2.57 2.42 2.33 2.27 2.22 2.19 2.16 2.12 2.09 2.07 2.06 2.04 2.02 2.00 

100 17.87 6.70 4.57 3.74 3.30 2.86 2.64 2.49 2.39 2.32 2.28 2.24 2.21 2.17 2.14 2.12 2.10 2.09 2.06 2.04 
125 19.24 7.03 4.74 3.85 3.39 2.93 2.70 2.54 2.44 2.37 2.32 2.28 2.25 2.21 2.18 2.16 2.14 2.13 2.10 2.09 
150 20.41 7.30 4.87 3.94 3.47 2.98 2.75 2.58 2.47 2.40 2.35 2.31 2.28 2.24 2.21 2.19 2.17 2.15 2.13 2.12 
175 21.48 7.53 4.99 4.03 3.53 3.03 2.79 2.61 2.51 2.43 2.38 2.34 2.31 2.27 2.24 2.21 2.19 2.18 2.16 2.14 
200 22.46 7.74 5.09 4.10 3.58 3.08 2.82 2.64 2.53 2.46 2.40 2.37 2.33 2.29 2.26 2.23 2.22 2.20 2.18 2.16 

Table 19-11. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Observations ( 40 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.06 2.02 1.70 1.55 1.45 1.35 1.29 1.25 1.22 1.20 1.19 1.17 1.17 1.15 1.14 1.14 1.13 1.13 1.12 1.11 
2 3.93 2.43 2.00 1.80 1.68 1.55 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.29 1.28 1.27 1.26 1.26 
3 4.54 2.69 2.18 1.95 1.81 1.66 1.58 1.52 1.48 1.45 1.43 1.42 1.41 1.39 1.38 1.37 1.36 1.36 1.35 1.34 
4 5.02 2.88 2.31 2.05 1.90 1.74 1.65 1.59 1.55 1.52 1.50 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 
5 5.42 3.04 2.42 2.14 1.98 1.80 1.71 1.64 1.60 1.57 1.54 1.53 1.51 1.49 1.48 1.47 1.46 1.46 1.44 1.44 
8 6.37 3.39 2.65 2.32 2.14 1.94 1.83 1.75 1.70 1.67 1.64 1.62 1.61 1.59 1.57 1.56 1.55 1.54 1.53 1.52 
12 7.31 3.72 2.86 2.48 2.27 2.05 1.93 1.85 1.79 1.75 1.73 1.71 1.69 1.67 1.65 1.64 1.63 1.62 1.61 1.60 
16 8.06 3.97 3.01 2.60 2.37 2.13 2.01 1.91 1.85 1.81 1.79 1.76 1.75 1.72 1.70 1.69 1.68 1.67 1.66 1.65 
20 8.69 4.17 3.13 2.69 2.45 2.19 2.06 1.96 1.90 1.86 1.83 1.81 1.79 1.76 1.74 1.73 1.72 1.71 1.69 1.68 
30 9.97 4.55 3.36 2.86 2.59 2.31 2.16 2.06 1.99 1.94 1.91 1.89 1.87 1.84 1.82 1.80 1.79 1.78 1.76 1.75 
40 10.98 4.84 3.53 2.99 2.70 2.39 2.24 2.12 2.05 2.00 1.97 1.94 1.92 1.89 1.87 1.85 1.84 1.83 1.81 1.80 
50 11.84 5.08 3.66 3.09 2.78 2.46 2.29 2.17 2.10 2.05 2.01 1.98 1.96 1.93 1.91 1.89 1.88 1.87 1.85 1.84 
60 12.58 5.28 3.77 3.17 2.84 2.51 2.34 2.21 2.14 2.08 2.05 2.02 1.99 1.96 1.94 1.92 1.91 1.90 1.88 1.87 
75 13.55 5.54 3.92 3.27 2.93 2.57 2.39 2.26 2.18 2.13 2.09 2.06 2.04 2.00 1.98 1.96 1.95 1.93 1.92 1.90 
100 14.92 5.88 4.11 3.41 3.04 2.66 2.47 2.33 2.24 2.19 2.14 2.11 2.09 2.05 2.03 2.01 1.99 1.98 1.96 1.94 
125 16.09 6.17 4.26 3.52 3.12 2.72 2.52 2.38 2.29 2.23 2.19 2.15 2.13 2.09 2.06 2.04 2.03 2.02 1.99 1.98 
150 17.11 6.41 4.38 3.60 3.19 2.78 2.57 2.42 2.33 2.27 2.22 2.19 2.16 2.12 2.09 2.07 2.06 2.05 2.03 2.01 
175 17.97 6.60 4.49 3.67 3.25 2.82 2.61 2.46 2.36 2.29 2.25 2.22 2.19 2.15 2.12 2.10 2.08 2.07 2.05 2.04 
200 18.75 6.80 4.59 3.75 3.30 2.86 2.65 2.49 2.39 2.32 2.28 2.24 2.21 2.17 2.14 2.12 2.10 2.09 2.09 2.06 
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Table 19-11. K-Multi pliers for 1-of-3 Intrawel I Prediction Limits on Observations ( 40 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.84 2.41 1.99 1.79 1.68 1.55 1.47 1.42 1.39 1.36 1.34 1.33 1.32 1.30 1.29 1.28 1.28 1.27 1.26 1.26 
2 4.91 2.87 2.31 2.05 1.90 1.74 1.65 1.59 1.55 1.52 1.50 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 
3 5.65 3.16 2.50 2.20 2.04 1.85 1.76 1.68 1.64 1.61 1.58 1.57 1.55 1.53 1.52 1.51 1.50 1.49 1.48 1.47 
4 6.24 3.37 2.64 2.32 2.13 1.94 1.83 1.75 1.70 1.67 1.64 1.62 1.61 1.59 1.57 1.56 1.55 1.54 1.53 1.52 
5 6.73 3.55 2.75 2.40 2.21 2.00 1.89 1.80 1.75 1.72 1.69 1.67 1.65 1.63 1.61 1.60 1.59 1.59 1.57 1.56 
8 7.90 3.94 3.00 2.59 2.37 2.13 2.00 1.91 1.85 1.81 1.79 1.76 1.75 1.72 1.70 1.69 1.68 1.67 1.66 1.65 
12 9.06 4.31 3.22 2.76 2.51 2.25 2.11 2.01 1.94 1.90 1.87 1.84 1.82 1.80 1.78 1.76 1.75 1.74 1.73 1.72 
16 9.98 4.59 3.39 2.89 2.61 2.33 2.18 2.07 2.00 1.96 1.92 1.90 1.88 1.85 1.83 1.81 1.80 1.79 1.78 1.76 
20 10.76 4.82 3.52 2.98 2.69 2.39 2.24 2.12 2.05 2.00 1.97 1.94 1.92 1.89 1.87 1.85 1.84 1.83 1.81 1.80 
30 12.33 5.25 3.77 3.17 2.84 2.51 2.34 2.21 2.14 2.08 2.05 2.02 1.99 1.96 1.94 1.92 1.91 1.90 1.88 1.87 
40 13.59 5.59 3.95 3.30 2.95 2.59 2.41 2.28 2.20 2.14 2.10 2.07 2.05 2.01 1.99 1.97 1.96 1.95 1.93 1.91 
50 14.65 5.85 4.10 3.40 3.03 2.66 2.47 2.33 2.24 2.19 2.14 2.11 2.09 2.05 2.03 2.01 1.99 1.98 1.96 1.95 
60 15.55 6.08 4.22 3.49 3.11 2.71 2.51 2.37 2.28 2.22 2.18 2.15 2.12 2.08 2.06 2.04 2.02 2.01 1.99 1.97 
75 16.80 6.37 4.38 3.60 3.19 2.78 2.57 2.42 2.33 2.27 2.22 2.19 2.16 2.12 2.09 2.07 2.06 2.04 2.02 2.00 

100 18.44 6.76 4.58 3.74 3.31 2.87 2.64 2.49 2.39 2.32 2.28 2.24 2.21 2.17 2.14 2.12 2.10 2.09 2.06 2.04 
125 19.84 7.09 4.75 3.86 3.40 2.93 2.70 2.53 2.44 2.37 2.32 2.28 2.25 2.21 2.18 2.16 2.14 2.12 2.10 2.08 
150 21.09 7.34 4.88 3.95 3.47 2.99 2.74 2.58 2.47 2.40 2.35 2.31 2.29 2.24 2.21 2.19 2.17 2.16 2.13 2.12 
175 22.19 7.58 5.00 4.03 3.54 3.04 2.79 2.61 2.SQ 2.43 2.38 2.34 2.31 2.27 2.24 2.21 2.19 2.18 2.16 2.14 
200 23.28 7.81 5.12 4.10 3.59 3.08 2.82 2.64 2.53 2.46 2.41 2.36 2.33 2.29 2.26 2.24 2.22 2.20 2.18 2.16 

Table 19-11. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Observations ( 40 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 4.74 2.83 2.29 2.04 1.90 1.74 1.65 1.59 1.55 1.52 1.50 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 
2 6.02 3.34 2.63 2.31 2.13 1.93 1.83 1.75 1.70 1.67 1.64 1.62 1.61 1.59 1.57 1.56 1.55 1.54 1.53 1.52 
3 6.92 3.66 2.84 2.47 2.27 2.05 1.93 1.85 1.79 1.75 1.73 1.71 1.69 1.67 1.65 1.64 1.63 1.62 1.61 1.60 
4 7.63 3.91 2.99 2.59 2.37 2.13 2.00 1.91 1.85 1.81 1.78 1.76 1.75 1.72 1.70 1.69 1.68 1.67 1.66 1.65 
5 8.23 4.10 3.11 2.68 2.44 2.19 2.06 1.96 1.90 1.86 1.83 1.81 1.79 1.76 1.74 1.73 1.72 1.71 1.69 1.68 
8 9.65 4.55 3.38 2.88 2.61 2.33 2.18 2.07 2.00 1.96 1.92 1.90 1.88 1.85 1.83 1.81 1.80 1.79 1.78 1.76 
12 11.06 4.96 3.62 3.06 2.76 2.44 2.28 2.16 2.09 2.04 2.00 1.98 1.95 1.92 1.90 1.88 1.87 1.86 1.84 1.83 
16 12.19 5.28 3.80 3.19 2.86 2.53 2.35 2.23 2.15 2.10 2.06 2.03 2.01 1.97 1.95 1.93 1.92 1.91 1.89 1.88 
20 13.13 5.53 3.94 3.29 2.95 2.59 2.41 2.28 2.20 2.14 2.10 2.07 2.05 2.01 1.99 1.97 1.96 1.95 1.93 1.91 
30 15.04 6.03 4.21 3.48 3.10 2.71 2.51 2.37 2.28 2.22 2.18 2.15 2.12 2.08 2.06 2.04 2.02 2.01 1.99 1.98 
40 16.56 6.40 4.41 3.63 3.22 2.80 2.59 2.44 2.34 2.28 2.23 2.20 2.17 2.13 2.10 2.08 2.07 2.05 2.03 2.01 
50 17.85 6.71 4.57 3.74 3.30 2.86 2.64 2.49 2.39 2.32 2.28 2.24 2.21 2.17 2.14 2.12 2.10 2.09 2.06 2.04 
60 18.98 6.96 4.70 3.83 3.38 2.92 2.69 2.53 2.43 2.36 2.31 2.27 2.24 2.20 2.17 2.15 2.13 2.12 2.10 2.08 
75 20.47 7.29 4.87 3.95 3.47 2.99 2.75 2.58 2.47 2.40 2.35 2.31 2.28 2.24 2.21 2.19 2.17 2.16 2.13 2.12 
100 22.50 7.73 5.10 4.10 3.58 3.08 2.82 2.64 2.53 2.46 2.40 2.37 2.33 2.29 2.26 2.23 2.22 2.20 2.18 2.16 
125 24.22 8.11 5.27 4.22 3.68 3.14 2.88 2.69 2.58 2.50 2.45 2.41 2.37 2.33 2.29 2.27 2.25 2.24 2.21 2.19 
150 25.78 8.40 5.43 4.32 3.76 3.20 2.92 2.73 2.62 2.54 2.48 2.44 2.40 2.36 2.32 2.30 2.28 2.26 2.24 2.22 
175 27.19 8.67 5.55 4.40 3.83 3.25 2.97 2.77 2.65 2.57 2.51 2.47 2.43 2.38 2.35 2.32 2.31 2.29 2.26 2.24 
200 28.44 8.91 5.66 4.47 3.89 3.29 3.0Q 2.80 2.68 2.59 2.53 2.49 2.46 2.41 2.37 2.35 2.33 2.31 2.28 2.26 
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Table 19-12. K-Multipliers for 1-of-4 Intrawel I Prediction Limits on Observations (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.06 -0.01 -0.04 -0.07 -0.08 -0.10 -0.11 -0.12 -0.13 -0.13 -0.13 -0.14 -0.14 -0.14 -0.14 -0.lS -0.lS -0.lS -0.lS -0.lS 
2 0.39 0.28 0.22 0.19 0.17 0.14 0.12 0.11 0.10 0.10 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 
3 O.S9 0.44 0.37 0.33 0.30 0.27 0.2S 0.23 0.22 0.22 0.21 0.21 0.20 0.20 0.20 0.19 0.19 0.19 0.19 0.18 
4 0.74 o.ss 0.47 0.42 0.39 0.36 0.33 0.32 0.31 0.30 0.29 0.29 0.28 0.28 0.27 0.27 0.27 0.27 0.26 0.26 
s 0.8S 0.63 O.S4 0.49 0.46 0.42 0.40 0.38 0.37 0.36 0.3S 0.3S 0.34 0.34 0.33 0.33 0.33 0.32 0.32 0.32 
8 1.11 0.82 0.70 0.64 0.60 o.ss O.S2 o.so 0.49 0.48 0.47 0.46 0.46 0.4S 0.4S 0.44 0.44 0.44 0.43 0.43 
12 1.36 0.98 0.84 0.76 0.72 0.66 0.63 0.60 O.S9 O.S8 O.S7 O.S6 O.S6 o.ss O.S4 O.S4 O.S3 O.S3 O.S3 O.S2 
16 1.S4 1.10 0.94 0.85 0.80 0.74 0.70 0.67 0.66 0.64 0.63 0.63 0.62 0.61 0.61 0.60 0.60 O.S9 O.S9 O.S9 
20 1.70 1.19 1.01 0.92 0.86 0.80 0.76 0.73 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.6S 0.64 0.64 0.63 
30 2.01 1.37 1.1S 1.04 0.98 0.90 0.86 0.82 0.80 0.78 0.77 0.76 0.76 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 
40 2.25 1.49 1.2S 1.13 1.06 0.97 0.92 0.89 0.86 0.8S 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 
so 2.45 1.60 1.33 1.20 1.12 1.03 0.98 0.94 0.91 0.89 0.88 0.87 0.86 0.8S 0.84 0.84 0.83 0.83 0.82 0.81 
60 2.62 1.68 1.39 1.2S 1.17 1.07 1.02 0.98 0.9S 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.87 0.86 0.8S 0.8S 
7S 2.85 1.79 1.47 1.32 1.23 1.13 1.07 1.02 1.00 0.98 0.96 0.9S 0.94 0.93 0.92 0.91 0.91 0.90 0.90 0.89 

100 3.16 1.94 1.58 1.41 1.31 1.20 1.13 1.09 1.06 1.03 1.02 1.01 1.00 0.98 0.97 0.97 0.96 0.96 0.9S 0.94 
12S 3.42 2.05 1.66 1.48 1.37 1.2S 1.18 1.13 1.10 1.08 1.06 1.05 1.04 1.02 1.01 1.01 1.00 1.00 0.99 0.98 
150 3.65 2,15 1.73 1.S4 1.42 1.29 1.22 1.17 1.14 1.11 1.10 1.08 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.01 
17S 3.85 2.24 1.79 1.58 1.46 1.33 1.26 1.20 1.17 1.14 1.13 1.11 1.10 1.09 1.07 1.07 1.06 1.05 1.04 1.04 
200 4.04 2.31 1.84 1.63 1.SO 1.36 1.29 1.23 1.20 1.17 1.1S 1.14 1.13 1.11 1.10 1.09 1.08 1.08 1.07 1.06 

Table 19-12. K-Multipliers for 1-of-4 Intrawell Prediction Limits on Observations (1 coc, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.36 0.2S 0.21 0.18 0.16 0.13 0.12 0.11 0.10 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 
2 0.70 O.S3 0.46 0.41 0.39 0.3S 0.33 0.31 0.30 0.30 0.29 0.29 0.28 0.28 0.27 0.27 0.27 0.27 0.26 0.26 
3 0.91 0.69 0.60 O.S4 O.Sl 0.47 0.44 0.43 0.41 0.40 0.40 0.39 0.39 0.38 0.38 0.37 0.37 0.37 0.36 0.36 
4 1.07 0.80 0.69 0.63 0.60 o.ss O.S2 o.so 0.49 0.48 0.47 0.46 0.46 0.4S 0.4S 0.44 0.44 0.44 0.43 0.43 
s 1.21 0.89 0.77 0.70 0.66 0.61 O.S8 O.S6 O.S4 O.S3 O.S2 O.S2 O.Sl o.so o.so o.so 0.49 0.49 0.49 0.48 
8 1.50 1.08 0.93 0.85 0.80 0.74 0.70 0.67 0.66 0.64 0.63 0.63 0.62 0.61 0.61 0.60 0.60 O.S9 O.S9 O.S9 
12 1.79 1.26 1.07 0.97 0.91 0.84 0.80 0.77 0.7S 0.73 0.72 0.72 0.71 0.70 0.69 0.69 0.68 0.68 0.67 0.67 
16 2.01 1.38 1.17 1.06 0.99 0.91 0.87 0.84 0.81 0.80 0.79 0.78 0.77 0.76 0.7S 0.7S 0.74 0.74 0.73 0.73 
20 2.20 1.48 1.24 1.13 1.05 0.97 0.92 0.89 0.86 0.8S 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 
30 2.56 1.67 1.39 1.2S 1.17 1.07 1.02 0.98 0.9S 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.86 0.86 0.8S 0.8S 
40 2.85 1.81 1.49 1.34 1.2S 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
so 3.10 1.92 1.S7 1.41 1.31 1.19 1.13 1.09 1.06 1.03 1.02 1.01 1.00 0.98 0.97 0.97 0.96 0.96 0.9S 0.94 
60 3.31 2.02 1.64 1.46 1.36 1.24 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
7S 3.58 2.14 1.73 1.S3 1.42 1.29 1.22 1.17 1.14 1.11 1.10 1.08 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.01 

100 3.96 2.30 1.84 1.62 1.50 1.36 1.29 1.23 1.19 1.17 1.1S 1.14 1.13 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
12S 4.28 2.43 1.93 1.70 1.S6 1.42 1.34 1.28 1.24 1.21 1.19 1.18 1.17 1.1S 1.14 1.13 1.12 1.11 1.10 1.10 
150 4.57 2.54 2.00 1.75 1.61 1.46 1.38 1.31 1.27 1.2S 1.23 1.21 1.20 1.18 1.17 1.16 1.1S 1.1S 1.14 1.13 
17S 4.82 2.63 2.06 1.80 1.66 1.50 1.41 1.3S 1.30 1.28 1.2S 1.24 1.23 1.21 1.19 1.18 1.18 1.17 1.16 1.1S 
200 5.04 2.72 2.12 1.85 1.70 1.S3 1.44 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
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Table 19-12. K-Multipliers for 1-of-4 Intrawel I Prediction Limits on Observations (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.64 o.so 0.44 0.40 0.37 0.34 0.32 0.31 0.30 0.29 0.29 0.28 0.28 0.27 0.27 0.27 0.27 0.26 0.26 0.26 
2 1.01 0.78 0.68 0.62 O.S9 O.S4 O.S2 o.so 0.48 0.47 0.47 0.46 0.46 0.4S 0.4S 0.44 0.44 0.44 0.43 0.43 
3 1.2S 0.94 0.82 0.75 0.71 0.6S 0.62 0.60 O.S8 O.S7 O.S7 O.S6 o.ss o.ss O.S4 O.S4 O.S3 O.S3 O.S3 O.S2 
4 1.44 1.06 0.92 0.84 0.79 0.73 0.70 0.67 0.6S 0.64 0.63 0.63 0.62 0.61 0.61 0.60 0.60 O.S9 O.S9 O.S9 
s 1.S9 1.1S 0.99 0.91 0.8S 0.79 0.75 0.72 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.64 0.64 0.64 0.63 
8 1.93 1.36 1.16 1.05 0.99 0.91 0.87 0.83 0.81 0.80 0.79 0.78 0.77 0.76 0.75 0.7S 0.74 0.74 0.73 0.73 
12 2.27 1.S4 1.30 1.17 1.10 1.01 0.96 0.93 0.90 0.88 0.87 0.86 0.8S 0.84 0.83 0.83 0.82 0.82 0.81 0.81 
16 2.S3 1.68 1.40 1.26 1.18 1.08 1.03 0.99 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.88 0.88 0.87 0.87 0.86 
20 2.75 1.79 1.48 1.33 1.24 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
30 3.20 2.00 1.63 1.46 1.3S 1.24 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
40 3.54 2.1S 1.74 1.SS 1.43 1.31 1.24 1.18 1.1S 1.13 1.11 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
so 3.83 2.27 1.83 1.62 1.50 1.36 1.29 1.23 1.19 1.17 1.1S 1.14 1.13 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
60 4.09 2.38 1.90 1.68 1.SS 1.40 1.33 1.27 1.23 1.20 1.19 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
7S 4.42 2.Sl 1.99 1.75 1.61 1.46 1.38 1.31 1.27 1.2S 1.23 1.21 1.20 1.18 1.17 1.16 1.1S 1.1S 1.14 1.13 

100 4.89 2.69 2.11 1.84 1.69 1.S3 1.44 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
12S 5.27 2.84 2.20 1.92 1.76 1.58 1.49 1.42 1.37 1.34 1.32 1.30 1.29 1.27 1.2S 1.24 1.24 1.23 1.22 1.21 
150 5.62 2.96 2.28 1.98 1.81 1.63 1.S3 1.4S 1.41 1.38 1.3S 1.33 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 
17S 5.92 3.06 2.3S 2.03 1.86 1.66 1.S6 1.48 1.44 1.40 1.38 1.36 1.3S 1.32 1.31 1.30 1.29 1.28 1.27 1.26 
200 6.19 3.16 2.41 2.08 1.89 1.70 1.S9 1.Sl 1.46 1.43 1.40 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 

Table 19-12. K-Multipliers for 1-of-4 Intrawel I Prediction Limits on Observations (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 0.39 0.28 0.22 0.19 0.17 0.14 0.12 0.11 0.10 0.10 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 
2 0.74 o.ss 0.47 0.42 0.39 0.36 0.33 0.32 0.31 0.30 0.29 0.29 0.28 0.28 0.27 0.27 0.27 0.27 0.26 0.26 
3 0.9S 0.70 0.61 o.ss O.Sl 0.47 0.4S 0.43 0.41 0.41 0.40 0.39 0.39 0.38 0.38 0.37 0.37 0.37 0.37 0.36 
4 1.11 0.82 0.70 0.64 0.60 o.ss O.S2 o.so 0.49 0.48 0.47 0.46 0.46 0.4S 0.4S 0.44 0.44 0.44 0.43 0.43 
s 1.24 0.91 0.78 0.71 0.67 0.61 O.S8 O.S6 O.S4 O.S3 O.S2 O.S2 O.Sl O.Sl o.so o.so 0.49 0.49 0.49 0.48 
8 1.S4 1.10 0.94 0.85 0.80 0.74 0.70 0.67 0.66 0.64 0.63 0.63 0.62 0.61 0.61 0.60 0.60 O.S9 O.S9 O.S9 
12 1.83 1.27 1.07 0.97 0.91 0.84 0.80 0.77 0.7S 0.74 0.72 0.72 0.71 0.70 0.69 0.69 0.68 0.68 0.67 0.67 
16 2.06 1.39 1.17 1.06 0.99 0.92 0.87 0.84 0.81 0.80 0.79 0.78 0.77 0.76 0.7S 0.7S 0.74 0.74 0.73 0.73 
20 2.25 1.49 1.2S 1.13 1.06 0.97 0.92 0.89 0.86 0.8S 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 
30 2.62 1.68 1.39 1.25 1.17 1.07 1.02 0.98 0.9S 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.87 0.86 0.8S 0.8S 
40 2.91 1.82 1.50 1.34 1.2S 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
so 3.16 1.94 1.58 1.41 1.31 1.20 1.13 1.09 1.06 1.03 1.02 1.01 1.00 0.98 0.97 0.97 0.96 0.96 0.9S 0.94 
60 3.37 2.03 1.6S 1.47 1.36 1.24 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
7S 3.65 2.15 1.73 1.S4 1.42 1.29 1.22 1.17 1.14 1.11 1.10 1.08 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.01 

100 4.04 2.31 1.84 1.63 1.50 1.36 1.29 1.23 1.19 1.17 1.1S 1.14 1.13 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
12S 4.37 2.44 1.93 1.70 1.S6 1.42 1.34 1.28 1.24 1.21 1.19 1.18 1.17 1.1S 1.14 1.13 1.12 1.11 1.11 1.10 
150 4.65 2.55 2.01 1.76 1.62 1.46 1.38 1.31 1.27 1.2S 1.23 1.21 1.20 1.18 1.17 1.16 1.1S 1.1S 1.14 1.13 
17S 4.91 2.65 2.07 1.81 1.66 1.50 1.41 1.3S 1.30 1.28 1.2S 1.24 1.23 1.21 1.19 1.18 1.18 1.17 1.16 1.1S 
200 5.14 2.73 2.12 1.85 1.70 1.S3 1.44 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
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Table 19-12. K-Multipliers for 1-of-4 Intrawel I Prediction Limits on Observations (2 coc, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.70 O.S3 0.46 0.41 0.39 0.3S 0.33 0.31 0.30 0.30 0.29 0.29 0.28 0.28 0.27 0.27 0.27 0.27 0.26 0.26 
2 1.07 0.80 0.69 0.63 0.60 o.ss O.S2 o.so 0.49 0.48 0.47 0.46 0.46 0.4S 0.4S 0.44 0.44 0.44 0.43 0.43 
3 1.32 0.97 0.83 0.76 0.71 0.66 0.63 0.60 O.S9 O.S8 O.S7 O.S6 o.ss o.ss O.S4 O.S4 O.S3 O.S3 O.S3 O.S2 
4 1.50 1.08 0.93 0.85 0.80 0.74 0.70 0.67 0.66 0.64 0.63 0.63 0.62 0.61 0.61 0.60 0.60 O.S9 O.S9 O.S9 
s 1.66 1.18 1.01 0.92 0.86 0.79 0.76 0.73 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.6S 0.64 0.64 0.63 
8 2.01 1.38 1.17 1.06 0.99 0.91 0.87 0.84 0.81 0.80 0.79 0.78 0.77 0.76 0.7S 0.7S 0.74 0.74 0.73 0.73 
12 2.36 1.S7 1.31 1.18 1.10 1.01 0.96 0.93 0.90 0.88 0.87 0.86 0.8S 0.84 0.83 0.83 0.82 0.82 0.81 0.81 
16 2.63 1.70 1.41 1.27 1.18 1.09 1.03 0.99 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.88 0.88 0.87 0.87 0.86 
20 2.85 1.81 1.49 1.34 1.2S 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
30 3.31 2.02 1.64 1.46 1.36 1.24 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
40 3.66 2.17 1.7S 1.SS 1.44 1.31 1.24 1.18 1.1S 1.13 1.11 1.10 1.09 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
so 3.96 2.30 1.84 1.62 1.SO 1.36 1.29 1.23 1.19 1.17 1.1S 1.14 1.13 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
60 4.22 2.41 1.91 1.68 1.SS 1.41 1.33 1.27 1.23 1.20 1.19 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
7S 4.56 2.54 2.00 1.75 1.61 1.46 1.38 1.31 1.27 1.2S 1.23 1.21 1.20 1.18 1.17 1.16 1.1S 1.1S 1.14 1.13 

100 5.04 2.72 2.12 1.85 1.70 1.S3 1.44 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
12S 5.45 2.86 2.21 1.92 1.76 1.58 1.49 1.42 1.37 1.34 1.32 1.30 1.29 1.27 1.2S 1.24 1.24 1.23 1.22 1.21 
150 5.79 2.99 2.29 1.98 1.81 1.63 1.S3 1.4S 1.41 1.38 1.3S 1.33 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 
17S 6.11 3.09 2.36 2.04 1.86 1.66 1.S6 1.48 1.44 1.40 1.38 1.36 1.3S 1.32 1.31 1.30 1.29 1.28 1.27 1.26 
200 6.39 3.19 2.42 2.08 1.90 1.70 1.S9 1.Sl 1.46 1.43 1.40 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 

Table 19-12. K-Multipliers for 1-of-4 Intrawel I Prediction Limits on Observations (2 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.01 0.78 0.68 0.62 O.S9 O.S4 O.S2 o.so 0.48 0.47 0.47 0.46 0.46 0.4S 0.4S 0.44 0.44 0.44 0.43 0.43 
2 1.44 1.06 0.92 0.84 0.79 0.73 0.70 0.67 0.6S 0.64 0.63 0.63 0.62 0.61 0.61 0.60 0.60 O.S9 O.S9 O.S9 
3 1.72 1.23 1.06 0.96 0.91 0.84 0.80 0.77 0.7S 0.73 0.72 0.72 0.71 0.70 0.69 0.69 0.68 0.68 0.67 0.67 
4 1.93 1.36 1.16 1.05 0.99 0.91 0.87 0.83 0.81 0.80 0.79 0.78 0.77 0.76 0.7S 0.7S 0.74 0.74 0.73 0.73 
s 2.11 1.46 1.23 1.12 1.05 0.97 0.92 0.88 0.86 0.84 0.83 0.82 0.82 0.80 0.80 0.79 0.79 0.78 0.78 0.77 
8 2.S3 1.68 1.40 1.26 1.18 1.08 1.03 0.99 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.88 0.88 0.87 0.87 0.86 
12 2.95 1.88 1.SS 1.39 1.29 1.18 1.12 1.08 1.05 1.03 1.01 1.00 0.99 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 
16 3.27 2.03 1.66 1.48 1.37 1.2S 1.19 1.14 1.11 1.08 1.07 1.05 1.04 1.03 1.02 1.01 1.00 1.00 0.99 0.98 
20 3.54 2.1S 1.74 1.SS 1.43 1.31 1.24 1.18 1.1S 1.13 1.11 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
30 4.09 2.38 1.90 1.68 1.SS 1.40 1.33 1.27 1.23 1.20 1.19 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
40 4.52 2.SS 2.02 1.77 1.63 1.47 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
so 4.89 2.69 2.11 1.84 1.69 1.S3 1.44 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
60 5.20 2.81 2.19 1.90 1.7S 1.S7 1.48 1.41 1.36 1.33 1.31 1.29 1.28 1.26 1.2S 1.24 1.23 1.22 1.21 1.20 
7S 5.62 2.96 2.28 1.98 1.81 1.63 1.S3 1.4S 1.41 1.38 1.3S 1.33 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 

100 6.20 3.16 2.41 2.08 1.89 1.69 1.S9 1.Sl 1.46 1.43 1.40 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 
12S 6.69 3.32 2.Sl 2.16 1.96 1.7S 1.64 1.S6 1.50 1.47 1.44 1.42 1.41 1.38 1.37 1.3S 1.3S 1.34 1.33 1.32 
150 7.11 3.46 2.59 2.22 2.01 1.79 1.68 1.S9 1.S4 1.50 1.47 1.4S 1.44 1.41 1.40 1.38 1.37 1.37 1.3S 1.34 
17S 7.49 3.58 2.67 2.28 2.06 1.83 1.71 1.62 1.S7 1.S3 1.50 1.48 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 
200 7.84 3.69 2.73 2.32 2.10 1.86 1.74 1.6S 1.S9 1.SS 1.S2 1.SO 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 
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Table 19-12. K-Multipliers for 1-of-4 Intrawel I Prediction Limits on Observations (5 coc, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.8S 0.63 O.S4 0.49 0.46 0.42 0.40 0.38 0.37 0.36 0.3S 0.3S 0.34 0.34 0.33 0.33 0.33 0.32 0.32 0.32 
2 1.24 0.91 0.78 0.71 0.67 0.61 O.S8 O.S6 O.S4 O.S3 O.S2 O.S2 O.Sl O.Sl o.so o.so 0.49 0.49 0.49 0.48 
3 1.50 1.07 0.91 0.83 0.78 0.72 0.69 0.66 0.64 0.63 0.62 0.61 0.61 0.60 O.S9 O.S9 O.S8 O.S8 O.S8 O.S7 
4 1.70 1.19 1.01 0.92 0.86 0.80 0.76 0.73 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.6S 0.64 0.64 0.63 
s 1.86 1.29 1.09 0.99 0.92 0.8S 0.81 0.78 0.76 0.74 0.73 0.73 0.72 0.71 0.70 0.70 0.69 0.69 0.68 0.68 
8 2.25 1.49 1.2S 1.13 1.06 0.97 0.92 0.89 0.86 0.8S 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 
12 2.62 1.68 1.39 1.2S 1.17 1.07 1.02 0.98 0.9S 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.87 0.86 0.8S 0.8S 
16 2.91 1.82 1.50 1.34 1.2S 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
20 3.16 1.94 1.58 1.41 1.31 1.20 1.13 1.09 1.06 1.03 1.02 1.01 1.00 0.98 0.97 0.97 0.96 0.96 0.9S 0.94 
30 3.65 2.15 1.73 1.S4 1.42 1.29 1.22 1.17 1.14 1.11 1.10 1.08 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.01 
40 4.04 2.31 1.84 1.63 1.50 1.36 1.29 1.23 1.19 1.17 1.1S 1.14 1.13 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
so 4.37 2.44 1.93 1.70 1.S6 1.42 1.34 1.28 1.24 1.21 1.19 1.18 1.17 1.1S 1.14 1.13 1.12 1.11 1.11 1.10 
60 4.65 2.55 2.01 1.76 1.62 1.46 1.38 1.31 1.27 1.2S 1.23 1.21 1.20 1.18 1.17 1.16 1.1S 1.1S 1.14 1.13 
7S 5.02 2.69 2.10 1.83 1.68 1.Sl 1.43 1.36 1.32 1.29 1.27 1.2S 1.24 1.22 1.21 1.20 1.19 1.18 1.17 1.16 

100 5.55 2.88 2.22 1.92 1.76 1.58 1.49 1.42 1.37 1.34 1.32 1.30 1.29 1.27 1.2S 1.24 1.24 1.23 1.22 1.21 
12S 5.99 3.03 2.31 2.00 1.83 1.64 1.S4 1.46 1.42 1.38 1.36 1.34 1.33 1.31 1.29 1.28 1.27 1.26 1.2S 1.2S 
150 6.37 3.16 2.40 2.06 1.88 1.68 1.58 1.50 1.4S 1.42 1.39 1.37 1.36 1.34 1.32 1.31 1.30 1.29 1.28 1.27 
17S 6.71 3.27 2.46 2.1? 1.92 1.72 1.61 1.S3 1.48 1.44 1.42 1.40 1.38 1.36 1.3S 1.33 1.32 1.32 1.30 1.30 
200 7.03 3.37 2.52 2.16 1.96 1.7S 1.64 1.S6 1.SO 1.47 1.44 1.42 1.41 1.38 1.37 1.3S 1.3S 1.34 1.33 1.32 

Table 19-12. K-Multipliers for 1-of-4 Intrawell Prediction Limits on Observations (5 coc, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.21 0.89 0.77 0.70 0.66 0.61 O.S8 O.S6 O.S4 O.S3 O.S2 O.S2 O.Sl o.so o.so o.so 0.49 0.49 0.49 0.48 
2 1.66 1.18 1.01 0.92 0.86 0.79 0.76 0.73 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.6S 0.64 0.64 0.63 
3 1.96 1.3S 1.14 1.04 0.97 0.90 0.8S 0.82 0.80 0.78 0.77 0.76 0.76 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 
4 2.20 1.48 1.24 1.13 1.05 0.97 0.92 0.89 0.86 0.8S 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 
s 2.39 1.58 1.32 1.19 1.11 1.02 0.97 0.94 0.91 0.89 0.88 0.87 0.86 0.8S 0.84 0.84 0.83 0.83 0.82 0.81 
8 2.85 1.81 1.49 1.34 1.2S 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
12 3.31 2.02 1.64 1.46 1.36 1.24 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
16 3.66 2.17 1.7S 1.SS 1.44 1.31 1.24 1.18 1.1S 1.13 1.11 1.10 1.09 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
20 3.96 2.30 1.84 1.62 1.SO 1.36 1.29 1.23 1.19 1.17 1.1S 1.14 1.13 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
30 4.56 2.54 2.00 1.75 1.61 1.46 1.38 1.31 1.27 1.2S 1.23 1.21 1.20 1.18 1.17 1.16 1.1S 1.1S 1.14 1.13 
40 5.04 2.72 2.12 1.85 1.70 1.S3 1.44 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
so 5.45 2.86 2.21 1.92 1.76 1.58 1.49 1.42 1.37 1.34 1.32 1.30 1.29 1.27 1.2S 1.24 1.24 1.23 1.22 1.21 
60 5.79 2.99 2.29 1.98 1.81 1.63 1.S3 1.4S 1.41 1.38 1.3S 1.33 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 
7S 6.25 3.14 2.39 2.06 1.88 1.68 1.58 1.50 1.4S 1.42 1.39 1.37 1.36 1.34 1.32 1.31 1.30 1.29 1.28 1.27 

100 6.90 3.35 2.52 2.16 1.96 1.7S 1.64 1.S6 1.50 1.47 1.44 1.42 1.41 1.38 1.37 1.3S 1.3S 1.34 1.32 1.32 
12S 7.44 3.52 2.62 2.24 2.03 1.80 1.69 1.60 1.SS 1.Sl 1.48 1.46 1.44 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 
150 7.91 3.67 2.71 2.30 2.08 1.8S 1.72 1.64 1.58 1.S4 1.Sl 1.49 1.47 1.4S 1.43 1.42 1.41 1.40 1.39 1.38 
17S 8.33 3.79 2.78 2.36 2.13 1.89 1.76 1.67 1.61 1.S7 1.S4 1.S2 1.50 1.47 1.4S 1.44 1.43 1.42 1.41 1.40 
200 8.73 3.90 2.85 2.41 2.17 1.92 1.79 1.69 1.63 1.S9 1.S6 1.S4 1.S2 1.49 1.48 1.46 1.4S 1.44 1.43 1.42 
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Table 19-12. K-Multipliers for 1-of-4 Intrawel I Prediction Limits on Observations (5 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.S9 1.1S 0.99 0.91 0.8S 0.79 0.7S 0.72 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.64 0.64 0.64 0.63 
2 2.11 1.46 1.23 1.12 1.05 0.97 0.92 0.88 0.86 0.84 0.83 0.82 0.82 0.80 0.80 0.79 0.79 0.78 0.78 0.77 
3 2.47 1.6S 1.38 1.24 1.16 1.07 1.01 0.97 0.9S 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.86 0.86 0.8S 0.8S 
4 2.75 1.79 1.48 1.33 1.24 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
s 2.99 1.90 1.S6 1.40 1.30 1.19 1.13 1.08 1.05 1.03 1.02 1.01 1.00 0.98 0.97 0.97 0.96 0.96 0.9S 0.94 
8 3.54 2.1S 1.74 1.SS 1.43 1.31 1.24 1.18 1.1S 1.13 1.11 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
12 4.09 2.38 1.90 1.68 1.SS 1.40 1.33 1.27 1.23 1.20 1.19 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
16 4.52 2.SS 2.02 1.77 1.63 1.47 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
20 4.89 2.69 2.11 1.84 1.69 1.S3 1.44 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
30 5.62 2.96 2.28 1.98 1.81 1.63 1.S3 1.4S 1.41 1.38 1.3S 1.33 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 
40 6.20 3.16 2.41 2.08 1.89 1.69 1.S9 1.Sl 1.46 1.43 1.40 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 
so 6.69 3.32 2.Sl 2.16 1.96 1.7S 1.64 1.S6 1.50 1.47 1.44 1.42 1.41 1.38 1.37 1.3S 1.3S 1.34 1.33 1.32 
60 7.11 3.46 2.59 2.22 2.01 1.79 1.68 1.S9 1.S4 1.SO 1.47 1.4S 1.44 1.41 1.40 1.38 1.37 1.37 1.3S 1.34 
7S 7.68 3.64 2.70 2.30 2.08 1.8S 1.72 1.64 1.58 1.S4 1.Sl 1.49 1.47 1.4S 1.43 1.42 1.41 1.40 1.39 1.38 

100 8.45 3.87 2.84 2.41 2.17 1.92 1.79 1.69 1.63 1.S9 1.S6 1.S4 1.S2 1.49 1.48 1.46 1.4S 1.44 1.43 1.42 
12S 9.11 4.06 2.95 2.49 2.24 1.97 1.83 1.73 1.67 1.63 1.60 1.S7 1.S6 1.S3 1.Sl 1.50 1.48 1.48 1.46 1.4S 
150 9.70 4.23 3.05 2.56 2.29 2.02 1.88 1.77 1.71 1.66 1.63 1.60 1.S9 1.S6 1.S4 1.52 1.Sl 1.50 1.49 1.48 
17S 10.20 4.37 3.13 2.61 2.34 2.05 1.91 1.80 1.73 1.69 1.66 1.63 1.61 1.58 1.S6 1.SS 1.S3 1.S3 1.Sl 1.SO 
200 10.66 4.50 3.20 2.67 2.38 2.09 1.94 1.83 1.76 1.71 1.68 1.6S 1.63 1.60 1.58 1.57 1.SS 1.S4 1.S3 1.S2 

Table 19-12. K-Multipliers for 1-of-4 Intrawell Prediction Limits on Observations (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.24 0.91 0.78 0.71 0.67 0.61 O.S8 O.S6 O.S4 O.S3 O.S2 O.S2 O.Sl O.Sl o.so o.so 0.49 0.49 0.49 0.48 
2 1.70 1.19 1.01 0.92 0.86 0.80 0.76 0.73 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.6S 0.64 0.64 0.63 
3 2.01 1.37 1.1S 1.04 0.98 0.90 0.86 0.82 0.80 0.78 0.77 0.76 0.76 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 
4 2.25 1.49 1.2S 1.13 1.06 0.97 0.92 0.89 0.86 0.8S 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 
s 2.45 1.60 1.33 1.20 1.12 1.03 0.98 0.94 0.91 0.89 0.88 0.87 0.86 0.8S 0.84 0.84 0.83 0.83 0.82 0.81 
8 2.91 1.82 1.50 1.34 1.2S 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
12 3.37 2,03 1.6S 1.47 1.36 1.24 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
16 3.74 2.19 1.76 1.56 1.44 1.31 1.24 1.18 1.1S 1.13 1.11 1.10 1.09 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
20 4.04 2.31 1.84 1.63 1.SO 1.36 1.29 1.23 1.19 1.17 1.1S 1.14 1.13 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
30 4.65 2.55 2.00 1.76 1.62 1.46 1.38 1.31 1.27 1.2S 1.23 1.21 1.20 1.18 1.17 1.16 1.1S 1.1S 1.14 1.13 
40 5.14 2.73 2.12 1.85 1.70 1.S3 1.44 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
so 5.55 2.88 2.22 1.92 1.76 1.58 1.49 1.42 1.37 1.34 1.32 1.30 1.29 1.27 1.2S 1.24 1.24 1.23 1.22 1.21 
60 5.90 3.00 2.30 1.99 1.81 1.63 1.S3 1.4S 1.41 1.38 1.35 1.33 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 
7S 6.37 3.16 2.39 2.06 1.88 1.68 1.58 1.50 1.4S 1.42 1.39 1.37 1.36 1.34 1.32 1.31 1.30 1.29 1.28 1.27 

100 7.03 3.37 2.52 2.16 1.96 1.75 1.64 1.S6 1.50 1.47 1.44 1.42 1.41 1.38 1.37 1.35 1.3S 1.34 1.32 1.32 
12S 7.59 3.54 2.63 2.24 2.03 1.80 1.69 1.60 1.SS 1.Sl 1.48 1.46 1.44 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 
150 8.06 3.68 2.71 2.31 2.08 1.8S 1.72 1.64 1.58 1.S4 1.Sl 1.49 1.47 1.4S 1.43 1.42 1.41 1.40 1.38 1.38 
17S 8.50 3.81 2.79 2.36 2.13 1.89 1.76 1.67 1.61 1.S7 1.S4 1.S2 1.50 1.47 1.4S 1.44 1.43 1.42 1.41 1.40 
200 8.88 3.93 2.86 2.41 2.17 1.92 1.79 1.69 1.63 1.S9 1.S6 1.S4 1.S2 1.49 1.48 1.46 1.4S 1.44 1.43 1.42 

D-140 March 2009 

EPAPAV0117642 



Appendix D. Chapter 19 Intrawell K-Tables for Observations Unified Guidance 

Table 19-12. K-Multipliers for 1-of-4 Intrawel I Prediction Limits on Observations (10 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.66 1.18 1.01 0.92 0.86 0.79 0.76 0.73 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.6S 0.64 0.64 0.63 
2 2.20 1.48 1.24 1.13 1.05 0.97 0.92 0.89 0.86 0.8S 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 
3 2.56 1.67 1.39 1.2S 1.17 1.07 1.02 0.98 0.9S 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.86 0.86 0.8S 0.8S 
4 2.85 1.81 1.49 1.34 1.2S 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
s 3.10 1.92 1.57 1.41 1.31 1.19 1.13 1.09 1.06 1.03 1.02 1.01 1.00 0.98 0.97 0.97 0.96 0.96 0.9S 0.94 
8 3.66 2.17 1.7S 1.SS 1.44 1.31 1.24 1.18 1.1S 1.13 1.11 1.10 1.09 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
12 4.22 2.41 1.91 1.68 1.SS 1.41 1.33 1.27 1.23 1.20 1.19 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
16 4.67 2.58 2.03 1.78 1.63 1.48 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
20 5.04 2.72 2.12 1.8S 1.70 1.S3 1.44 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
30 5.79 2.99 2.29 1.98 1.81 1.63 1.S3 1.4S 1.41 1.38 1.3S 1.33 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 
40 6.39 3.19 2.42 2.08 1.90 1.70 1.S9 1.Sl 1.46 1.43 1.40 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 
so 6.90 3.35 2.52 2.16 1.96 1.7S 1.64 1.S6 1.SO 1.47 1.44 1.42 1.41 1.38 1.37 1.3S 1.3S 1.34 1.32 1.32 
60 7.34 3.49 2.60 2.22 2.02 1.79 1.68 1.S9 1.S4 1.SO 1.47 1.4S 1.44 1.41 1.40 1.38 1.37 1.37 1.3S 1.34 
7S 7.91 3.67 2.71 2.30 2.08 1.8S 1.72 1.64 1.58 1.S4 1.Sl 1.49 1.47 1.4S 1.43 1.42 1.41 1.40 1.39 1.38 

100 8.72 3.90 2.85 2.41 2.17 1.92 1.79 1.69 1.63 1.S9 1.S6 1.S4 1.S2 1.49 1.48 1.46 1.4S 1.44 1.43 1.42 
12S 9.40 4.10 2.96 2.49 2.24 1.97 1.83 1.74 1.67 1.63 1.60 1.S7 1.S6 1.S3 1.Sl 1.SO 1.48 1.48 1.46 1.4S 
150 9.99 4.26 3.05 2.56 2.30 2.02 1.88 1.77 1.71 1.66 1.63 1.60 1.S9 1.S6 1.S4 1.S2 1.Sl 1.50 1.49 1.48 
17S 10.55 4.41 3.13 2.62 2.34 2.05 1.91 1.80 1.73 1.69 1.66 1.63 1.61 1.58 1.S6 1.SS 1.S3 1.S3 1.Sl 1.SO 
200 11.02 4.54 3.21 2.67 2.39 2.09 1.94 1.83 1.76 1.71 1.68 1.6S 1.63 1.60 1.58 1.S7 1.SS 1.SS 1.S3 1.S2 

Table 19-12. K-Multipliers for 1-of-4 Intrawel I Prediction Limits on Observations (10 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.11 1.46 1.23 1.12 1.05 0.97 0.92 0.88 0.86 0.84 0.83 0.82 0.82 0.80 0.80 0.79 0.79 0.78 0.78 0.77 
2 2.75 1.79 1.48 1.33 1.24 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
3 3.20 2.00 1.63 1.46 1.3S 1.24 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
4 3.54 2.1S 1.74 1.SS 1.43 1.31 1.24 1.18 1.1S 1.13 1.11 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
s 3.83 2.27 1.83 1.62 1.SO 1.36 1.29 1.23 1.19 1.17 1.1S 1.14 1.13 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
8 4.52 2.SS 2.02 1.77 1.63 1.47 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
12 5.20 2.81 2.19 1.90 1.7S 1.S7 1.48 1.41 1.36 1.33 1.31 1.29 1.28 1.26 1.2S 1.24 1.23 1.22 1.21 1.20 
16 5.74 3.00 2.31 2.00 1.83 1.64 1.S4 1.47 1.42 1.39 1.36 1.34 1.33 1.31 1.29 1.28 1.28 1.27 1.26 1.2S 
20 6.20 3.16 2.41 2.08 1.89 1.69 1.S9 1.Sl 1.46 1.43 1.40 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 
30 7.11 3.46 2.59 2.22 2.01 1.79 1.68 1.S9 1.S4 1.SO 1.47 1.4S 1.44 1.41 1.40 1.38 1.37 1.37 1.3S 1.34 
40 7.84 3.69 2.73 2.32 2.10 1.86 1.74 1.6S 1.S9 1.SS 1.S2 1.50 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 
so 8.45 3.87 2.84 2.41 2.17 1.92 1.79 1.69 1.63 1.S9 1.S6 1.S4 1.S2 1.49 1.48 1.46 1.4S 1.44 1.43 1.42 
60 8.99 4.03 2.93 2.47 2.22 1.96 1.83 1.73 1.66 1.62 1.S9 1.S7 1.SS 1.S2 1.SO 1.49 1.48 1.47 1.4S 1.44 
7S 9.70 4.23 3.05 2.56 2.29 2.02 1.87 1.77 1.71 1.66 1.63 1.60 1.S9 1.S6 1.S4 1.S2 1.Sl 1.50 1.49 1.48 

100 10.66 4.50 3.20 2.67 2.38 2.09 1.94 1.83 1.76 1.71 1.68 1.6S 1.63 1.60 1.58 1.S7 1.SS 1.S4 1.S3 1.S2 
12S 11.51 4.72 3.32 2.75 2.4S 2.14 1.98 1.87 1.80 1.7S 1.71 1.69 1.67 1.64 1.61 1.60 1.S9 1.58 1.S6 1.SS 
150 12.25 4.91 3.42 2.83 2.Sl 2.19 2.03 1.90 1.83 1.78 1.74 1.72 1.70 1.66 1.64 1.62 1.61 1.60 1.58 1.S7 
17S 12.89 5.07 3.51 2.89 2.56 2.23 2.06 1.94 1.86 1.81 1.77 1.74 1.72 1.69 1.66 1.6S 1.64 1.62 1.61 1.S9 
200 13.48 5.21 3.59 2.94 2.61 2.26 2.09 1.96 1.88 1.83 1.79 1.76 1.74 1.71 1.68 1.67 1.6S 1.64 1.62 1.61 
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Appendix D. Chapter 19 Intrawell K-Tables for Observations Unified Guidance 

Table 19-12. K-Multipliers for 1-of-4 Intrawell Prediction Limits on Observations (20 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.70 1.19 1.01 0.92 0.86 0.80 0.76 0.73 0.71 0.69 0.68 0.68 0.67 0.66 0.6S 0.6S 0.6S 0.64 0.64 0.63 
2 2.25 1.49 1.2S 1.13 1.06 0.97 0.92 0.89 0.86 0.8S 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 
3 2.62 1.68 1.39 1.2S 1.17 1.07 1.02 0.98 0.9S 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.87 0.86 0.8S 0.8S 
4 2.91 1.82 1.50 1.34 1.2S 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
s 3.16 1.94 1.58 1.41 1.31 1.20 1.13 1.09 1.06 1.03 1.02 1.01 1.00 0.98 0.97 0.97 0.96 0.96 0.9S 0.94 
8 3.74 2.19 1.76 1.56 1.44 1.31 1.24 1.18 1.1S 1.13 1.11 1.10 1.09 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
12 4.31 2.42 1.91 1.68 1.SS 1.41 1.33 1.27 1.23 1.20 1.19 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
16 4.76 2.59 2.03 1.78 1.63 1.48 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
20 5.14 2.73 2.12 1.8S 1.70 1.53 1.44 1.37 1.33 1.30 1.28 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
30 5.90 3.00 2.30 1.~9 1.81 1.63 1.S3 1.4S 1.41 1.38 1.3S 1.33 1.32 1.30 1.28 1.27 1.26 1.26 1.2S 1.24 
40 6.51 3.20 2.42 2.08 1.90 1.70 1.S9 1.Sl 1.46 1.43 1.40 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 
so 7.02 3.37 2.52 2.16 1.96 1.7S 1.64 1.S6 1.50 1.47 1.44 1.42 1.41 1.38 1.37 1.3S 1.3S 1.34 1.32 1.32 
60 7.47 3.51 2.61 2.23 2.02 1.79 1.68 1.S9 1.S4 1.SO 1.47 1.4S 1.44 1.41 1.40 1.38 1.37 1.37 1.3S 1.34 
7S 8.06 3.68 2.71 2.31 2.08 1.8S 1.72 1.64 1.58 1.S4 1.Sl 1.49 1.47 1.4S 1.43 1.42 1.41 1.40 1.39 1.37 

100 8.88 3.93 2.85 2.41 2.17 1.92 1.79 1.69 1.63 1.S9 1.S6 1.S4 1.S2 1.49 1.48 1.46 1.4S 1.44 1.43 1.42 
12S 9.58 4.12 2.97 2.49 2.24 1.97 1.83 1.74 1.67 1.63 1.60 1.S7 1.S6 1.S3 1.Sl 1.50 1.48 1.48 1.46 1.4S 
150 10.20 4.28 3.06 2.56 2.30 2.02 1.88 1.77 1.71 1.66 1.63 1.60 1.S9 1.S6 1.S4 1.52 1.Sl 1.50 1.49 1.48 
17S 10.72 4.42 3.14 2.62 2.34 2.06 1.91 1.80 1.73 1.69 1.66 1.63 1.61 1.58 1.S6 1.SS 1.S3 1.S3 1.Sl 1.SO 
200 11.19 4.56 3.21 2.67 2.39 2.09 1.94 1.83 1.76 1.71 1.68 1.6S 1.63 1.60 1.58 1.57 1.SS 1.SS 1.S3 1.S2 

Table 19-12. K-Multipliers for 1-of-4 Intrawel I Prediction Limits on Observations (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.20 1.48 1.24 1.13 1.05 0.97 0.92 0.89 0.86 0.8S 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 
2 2.85 1.81 1.49 1.34 1.2S 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
3 3.31 2.02 1.64 1.46 1.36 1.24 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
4 3.66 2.17 1.7S 1.SS 1.44 1.31 1.24 1.18 1.1S 1.13 1.11 1.10 1.09 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
s 3.96 2.30 1.84 1.62 1.50 1.36 1.29 1.23 1.19 1.17 1.1S 1.14 1.13 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
8 4.67 2.58 2.03 1.78 1.63 1.48 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
12 5.37 2.84 2.19 1.91 1.7S 1.S7 1.48 1.41 1.36 1.33 1.31 1.29 1.28 1.26 1.2S 1.24 1.23 1.22 1.21 1.20 
16 5.93 3.03 2.32 2.01 1.83 1.64 1.S4 1.47 1.42 1.39 1.36 1.34 1.33 1.31 1.29 1.28 1.28 1.27 1.26 1.2S 
20 6.39 3.19 2.42 2.08 1.90 1.70 1.S9 1.Sl 1.46 1.43 1.40 1.38 1.37 1.3S 1.33 1.32 1.31 1.30 1.29 1.28 
30 7.34 3.49 2.60 2.22 2.02 1.79 1.68 1.S9 1.S4 1.SO 1.47 1.4S 1.44 1.41 1.40 1.38 1.37 1.37 1.3S 1.34 
40 8.09 3.72 2.74 2.33 2.10 1.86 1.74 1.6S 1.S9 1.SS 1.S2 1.50 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 
so 8.72 3.91 2.85 2.41 2.17 1.92 1.79 1.69 1.63 1.S9 1.S6 1.S4 1.S2 1.49 1.48 1.46 1.4S 1.44 1.43 1.42 
60 9.27 4.06 2.94 2.48 2.23 1.96 1.83 1.73 1.67 1.62 1.S9 1.S7 1.SS 1.S2 1.50 1.49 1.48 1.47 1.4S 1.44 
7S 9.99 4.26 3.05 2.56 2.29 2.02 1.88 1.77 1.71 1.66 1.63 1.60 1.S9 1.S6 1.S4 1.52 1.Sl 1.50 1.49 1.48 
100 11.02 4.53 3.21 2.67 2.39 2.09 1.94 1.83 1.76 1.71 1.68 1.6S 1.63 1.60 1.58 1.57 1.SS 1.S4 1.S3 1.S2 
12S 11.87 4.75 3.33 2.76 2.46 2.14 1.98 1.87 1.80 1.7S 1.71 1.69 1.67 1.64 1.61 1.60 1.S9 1.58 1.S6 1.SS 
150 12.60 4.94 3.43 2.83 2.52 2.19 2.03 1.90 1.83 1.78 1.74 1.72 1.70 1.66 1.64 1.62 1.61 1.60 1.58 1.S7 
17S 13.30 5.10 3.52 2.89 2.56 2.23 2.06 1.94 1.86 1.81 1.77 1.74 1.72 1.69 1.66 1.6S 1.63 1.62 1.61 1.S9 
200 13.89 5.24 3.60 2.95 2.61 2.26 2.09 1.96 1.88 1.83 1.79 1.76 1.74 1.71 1.68 1.67 1.6S 1.64 1.62 1.61 
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Appendix D. Chapter 19 Intrawell K-Tables for Observations Unified Guidance 

Table 19-12. K-Multipliers for 1-of-4 Intrawel I Prediction Limits on Observations (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.75 1.79 1.48 1.33 1.24 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.95 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
2 3.54 2.15 1.74 1.55 1.43 1.31 1.24 1.18 1.15 1.13 1.11 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
3 4.09 2.38 1.90 1.68 1.55 1.40 1.33 1.27 1.23 1.20 1.19 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
4 4.52 2.55 2.02 1.77 1.63 1.47 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.15 1.14 
5 4.88 2.69 2.11 1.84 1.69 1.53 1.44 1.37 1.33 1.30 1.28 1.26 1.25 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
8 5.74 3.00 2.31 2.00 1.83 1.64 1.54 1.47 1.42 1.39 1.36 1.34 1.33 1.31 1.29 1.28 1.28 1.27 1.26 1.25 
12 6.59 3.29 2.49 2.14 1.95 1.74 1.63 1.55 1.50 1.46 1.43 1.41 1.40 1.38 1.36 1.35 1.34 1.33 1.32 1.31 
16 7.27 3.51 2.62 2.24 2.03 1.81 1.69 1.60 1.55 1.51 1.48 1.46 1.45 1.42 1.41 1.39 1.38 1.38 1.36 1.35 
20 7.84 3.69 2.73 2.32 2.10 1.86 1.74 1.65 1.59 1.55 1.52 1.50 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 
30 8.99 4.03 2.93 2.47 2.22 1.96 1.83 1.73 1.66 1.62 1.59 1.57 1.55 1.52 1.50 1.49 1.48 1.47 1.45 1.44 
40 9.90 4.29 3.08 2.58 2.31 2.03 1.89 1.78 1.72 1.67 1.64 1.62 1.60 1.57 1.55 1.53 1.52 1.51 1.50 1.49 
50 10.68 4.50 3.20 2.67 2.38 2.09 1.94 1.83 1.76 1.71 1.68 1.65 1.63 1.60 1.58 1.57 1.55 1.54 1.53 1.52 
60 11.35 4.68 3.30 2.74 2.44 2.13 1.98 1.86 1.79 1.74 1.71 1.68 1.66 1.63 1.61 1.59 1.58 1.57 1.55 1.54 
75 12.23 4.90 3.42 2.83 2.51 2.19 2.02 1.91 1.83 1.78 1.74 1.72 1.70 1.66 1.64 1.63 1.61 1.60 1.58 1.57 

100 13.48 5.21 3.59 2.94 2.61 2.26 2.09 1.96 1.88 1.83 1.79 1.76 1.74 1.71 1.68 1.67 1.65 1.64 1.62 1.61 
125 14.53 5.46 3.72 3.04 2.68 2.32 2.14 2.00 1.92 1.87 1.83 1.80 1.77 1.74 1.72 1.70 1.68 1.67 1.65 1.64 
150 15.41 5.67 3.83 3.11 2.74 2.37 2.18 2.04 1.96 1.90 1.86 1.83 1.80 1.77 1.74 1.72 1.71 1.70 1.68 1.67 
175 16.23 5.86 3.93 3.18 2.79 2.41 2.21 2.07 1.98 1.92 1.88 1.85 1.83 1.79 1.76 1.74 1.73 1.72 1.70 1.69 
200 16.99 6.02 4.01 3.24 2.84 2.44 2.24 2.09 2.01 1.95 1.90 1.87 1.85 1.81 1.78 1.76 1.75 1.74 1.72 1.70 

Table 19-12. K-Multipliers for 1-of-4 Intrawell Prediction Limits on Observations ( 40 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.25 1.49 1.25 1.13 1.06 0.97 0.92 0.89 0.86 0.85 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.77 
2 2.91 1.82 1.50 1.34 1.25 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.95 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
3 3.37 2.03 1.65 1.47 1.36 1.24 1.17 1.12 1.09 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.97 
4 3.74 2.19 1.76 1.56 1.44 1.31 1.24 1.18 1.15 1.13 1.11 1.10 1.09 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
5 4.04 2.31 1.84 1.63 1.50 1.36 1.29 1.23 1.19 1.17 1.15 1.14 1.13 1.11 1.10 1.09 1.08 1.08 1.07 1.06 
8 4.76 2.59 2.03 1.78 1.63 1.48 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.15 1.14 
12 5.47 2.85 2.20 1.91 1.75 1.57 1.48 1.41 1.37 1.33 1.31 1.29 1.28 1.26 1.25 1.24 1.23 1.22 1.21 1.20 
16 6.04 3.05 2.32 2.01 1.83 1.64 1.54 1.47 1.42 1.39 1.36 1.34 1.33 1.31 1.29 1.28 1.28 1.27 1.26 1.25 
20 6.51 3.20 2.42 2.08 1.90 1.70 1.59 1.51 1.46 1.43 1.40 1.38 1.37 1.35 1.33 1.32 1.31 1.30 1.29 1.28 
30 7.47 3.51 2.61 2.23 2.02 1.79 1.68 1.59 1.54 1.50 1.47 1.45 1.44 1.41 1.40 1.38 1.37 1.37 1.35 1.34 
40 8.23 3.74 2.74 2.33 2.10 1.86 1.74 1.65 1.59 1.55 1.52 1.50 1.48 1.46 1.44 1.43 1.42 1.41 1.39 1.38 
50 8.88 3.93 2.85 2.41 2.17 1.92 1.79 1.69 1.63 1.59 1.56 1.54 1.52 1.49 1.48 1.46 1.45 1.44 1.43 1.42 
60 9.43 4.08 2.94 2.48 2.23 1.96 1.83 1.73 1.66 1.62 1.59 1.57 1.55 1.52 1.50 1.49 1.48 1.47 1.45 1.44 
75 10.20 4.28 3.06 2.56 2.30 2.02 1.88 1.77 1.71 1.66 1.63 1.60 1.59 1.56 1.54 1.52 1.51 1.50 1.49 1.48 
100 11.19 4.56 3.21 2.67 2.39 2.09 1.94 1.83 1.76 1.71 1.68 1.65 1.63 1.60 1.58 1.57 1.55 1.55 1.53 1.52 
125 12.07 4.78 3.33 2.76 2.46 2.15 1.98 1.87 1.80 1.75 1.71 1.69 1.67 1.64 1.61 1.60 1.59 1.58 1.56 1.55 
150 12.89 4.95 3.44 2.83 2.52 2.19 2.03 1.90 1.83 1.78 1.74 1.72 1.70 1.66 1.64 1.63 1.61 1.60 1.59 1.57 
175 13.48 5.13 3.52 2.90 2.56 2.23 2.06 1.93 1.86 1.81 1.77 1.74 1.72 1.69 1.66 1.65 1.63 1.62 1.60 1.59 
200 14.18 5.27 3.60 2.94 2.61 2.26 2.09 1.96 1.88 1.83 1.79 1.77 1.74 1.71 1.68 1.67 1.65 1.64 1.62 1.61 
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Table 19-12. K-Multipliers for 1-of-4 Intrawel I Prediction Limits on Observations ( 40 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.85 1.81 1.49 1.34 1.25 1.14 1.08 1.04 1.01 0.99 0.97 0.96 0.95 0.94 0.93 0.92 0.92 0.91 0.91 0.90 
2 3.66 2.17 1.75 1.55 1.44 1.31 1.24 1.18 1.15 1.13 1.11 1.10 1.09 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
3 4.22 2.41 1.91 1.68 1.55 1.41 1.33 1.27 1.23 1.20 1.19 1.17 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 
4 4.67 2.58 2.03 1.78 1.63 1.48 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.15 1.14 
5 5.04 2.72 2.12 1.85 1.70 1.53 1.44 1.37 1.33 1.30 1.28 1.26 1.25 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
8 5.93 3.03 2.32 2.01 1.83 1.64 1.54 1.47 1.42 1.39 1.36 1.34 1.33 1.31 1.29 1.28 1.28 1.27 1.26 1.25 
12 6.80 3.32 2.50 2.15 1.95 1.74 1.63 1.55 1.50 1.46 1.43 1.41 1.40 1.38 1.36 1.35 1.34 1.33 1.32 1.31 
16 7.50 3.54 2.63 2.25 2.04 1.81 1.69 1.60 1.55 1.51 1.48 1.46 1.45 1.42 1.41 1.39 1.38 1.38 1.36 1.35 
20 8.09 3.72 2.74 2.33 2.10 1.86 1.74 1.65 1.59 1.55 1.52 1.50 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 
30 9.27 4.06 2.94 2.48 2.23 1.96 1.83 1.73 1.67 1.62 1.59 1.57 1.55 1.52 1.50 1.49 1.48 1.47 1.45 1.44 
40 10.21 4.32 3.09 2.59 2.31 2.03 1.89 1.78 1.72 1.67 1.64 1.61 1.60 1.57 1.55 1.53 1.52 1.51 1.50 1.49 
50 11.02 4.53 3.21 2.67 2.39 2.09 1.94 1.83 1.76 1.71 1.68 1.65 1.63 1.60 1.58 1.57 1.55 1.54 1.53 1.52 
60 11.72 4.72 3.31 2.74 2.44 2.14 1.98 1.86 1.79 1.74 1.71 1.68 1.66 1.63 1.61 1.59 1.58 1.57 1.55 1.54 
75 12.60 4.94 3.43 2.83 2.52 2.19 2.03 1.90 1.83 1.78 1.74 1.72 1.70 1.66 1.64 1.62 1.61 1.60 1.58 1.57 

100 13.89 5.24 3.60 2.95 2.61 2.26 2.09 1.96 1.88 1.83 1.79 1.76 1.74 1.71 1.68 1.67 1.65 1.64 1.62 1.61 
125 15.00 5.51 3.73 3.04 2.68 2.32 2.14 2.00 1.92 1.87 1.83 1.80 1.77 1.74 1.72 1.70 1.68 1.67 1.65 1.64 
150 15.94 5.71 3.84 3.12 2.75 2.37 2.18 2.04 1.96 1.90 1.86 1.83 1.80 1.77 1.74 1.72 1.71 1.70 1.68 1.67 
175 16.76 5.89 3.94 3.18 2.80 2.40 2.21 2.07 1.98 1.93 1.88 1.85 1.83 1.79 1.77 1.75 1.73 1.72 1.70 1.69 
200 17.58 6.06 4.01 3.24 2.84 2.44 2.24 2.09 2.01 1.95 1.90 1.87 1.85 1.81 1.78 1.77 1.75 1.74 1.72 1.70 

Table 19-12. K-Multipliers for 1-of-4 Intrawel I Prediction Limits on Observations ( 40 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 3.54 2.15 1.74 1.55 1.43 1.31 1.24 1.18 1.15 1.13 1.11 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.02 
2 4.52 2.55 2.02 1.77 1.63 1.47 1.39 1.33 1.29 1.26 1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.15 1.14 
3 5.20 2.81 2.19 1.90 1.75 1.57 1.48 1.41 1.36 1.33 1.31 1.29 1.28 1.26 1.25 1.24 1.23 1.22 1.21 1.20 
4 5.74 3.00 2.31 2.00 1.83 1.64 1.54 1.47 1.42 1.39 1.36 1.34 1.33 1.31 1.29 1.28 1.28 1.27 1.26 1.25 
5 6.20 3.16 2.41 2.08 1.89 1.69 1.59 1.51 1.46 1.43 1.40 1.38 1.37 1.35 1.33 1.32 1.31 1.30 1.29 1.28 
8 7.27 3.51 2.62 2.24 2.03 1.81 1.69 1.60 1.55 1.51 1.48 1.46 1.45 1.42 1.41 1.39 1.38 1.38 1.36 1.35 
12 8.34 3.84 2.82 2.39 2.16 1.91 1.78 1.68 1.62 1.58 1.55 1.53 1.51 1.49 1.47 1.46 1.45 1.44 1.42 1.41 
16 9.18 4.09 2.96 2.50 2.24 1.98 1.84 1.74 1.68 1.63 1.60 1.58 1.56 1.53 1.51 1.50 1.49 1.48 1.46 1.45 
20 9.90 4.29 3.08 2.58 2.31 2.03 1.89 1.78 1.72 1.67 1.64 1.62 1.60 1.57 1.55 1.53 1.52 1.51 1.50 1.49 
30 11.35 4.68 3.30 2.74 2.44 2.13 1.98 1.86 1.79 1.74 1.71 1.68 1.66 1.63 1.61 1.59 1.58 1.57 1.55 1.54 
40 12.51 4.97 3.46 2.85 2.53 2.21 2.04 1.92 1.84 1.79 1.76 1.73 1.71 1.67 1.65 1.63 1.62 1.61 1.59 1.58 
50 13.48 5.21 3.59 2.94 2.61 2.26 2.09 1.96 1.88 1.83 1.79 1.76 1.74 1.71 1.68 1.67 1.65 1.64 1.62 1.61 
60 14.33 5.41 3.69 3.02 2.67 2.31 2.13 2.00 1.92 1.86 1.82 1.79 1.77 1.73 1.71 1.69 1.68 1.67 1.65 1.63 
75 15.41 5.67 3.83 3.11 2.74 2.37 2.18 2.04 1.96 1.90 1.86 1.83 1.80 1.77 1.74 1.72 1.71 1.70 1.68 1.66 
100 16.99 6.02 4.01 3.24 2.84 2.44 2.24 2.09 2.01 1.95 1.90 1.87 1.85 1.81 1.78 1.76 1.75 1.74 1.72 1.70 
125 18.28 6.30 4.15 3.34 2.92 2.50 2.29 2.14 2.05 1.98 1.94 1.91 1.88 1.84 1.81 1.79 1.78 1.77 1.74 1.73 
150 19.45 6.56 4.28 3.42 2.98 2.55 2.33 2.18 2.08 2.01 1.97 1.93 1.91 1.87 1.84 1.82 1.81 1.79 1.77 1.76 
175 20.51 6.77 4.38 3.49 3.03 2.59 2.36 2.20 2.11 2.04 1.99 1.96 1.93 1.89 1.86 1.84 1.83 1.81 1.79 1.78 
200 21.33 6.94 4.47 3.54 3.08 2.62 2.39 2.23 2.13 2.07 2.01 1.98 1.95 1.91 1.88 1.86 1.85 1.83 1.81 1.79 
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Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.71 O.S9 O.S3 o.so 0.48 0.4S 0.44 0.43 0.42 0.41 0.41 0.41 0.40 0.40 0.40 0.40 0.39 0.39 0.39 0.39 
2 1.14 0.92 0.83 0.78 0.74 0.71 0.68 0.66 0.6S 0.64 0.64 0.63 0.63 0.62 0.62 0.62 0.61 0.61 0.61 0.61 
3 1.42 1.11 0.99 0.93 0.89 0.84 0.81 0.79 0.78 0.77 0.76 0.7S 0.7S 0.74 0.74 0.73 0.73 0.73 0.73 0.72 
4 1.63 1.2S 1.11 1.04 0.99 0.94 0.90 0.88 0.86 0.8S 0.84 0.84 0.83 0.82 0.82 0.81 0.81 0.81 0.80 0.80 
s 1.80 1.36 1.20 1.12 1.07 1.01 0.97 0.94 0.93 0.91 0.90 0.90 0.89 0.88 0.88 0.87 0.87 0.87 0.86 0.86 
8 2.19 1.60 1.40 1.29 1.23 1.1S 1.11 1.08 1.05 1.04 1.03 1.02 1.01 1.00 1.00 0.99 0.99 0.98 0.98 0.97 
12 2.58 1.82 1.S7 1.44 1.36 1.27 1.22 1.19 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.09 1.08 1.08 1.07 1.07 
16 2.88 1.98 1.69 1.S4 1.46 1.36 1.30 1.26 1.23 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.14 1.13 
20 3.13 2.11 1.78 1.63 1.S3 1.42 1.37 1.32 1.29 1.27 1.26 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
30 3.63 2.3S 1.96 1.78 1.67 1.S4 1.47 1.42 1.39 1.37 1.3S 1.34 1.33 1.31 1.30 1.29 1.29 1.28 1.27 1.27 
40 4.02 2.S3 2.09 1.88 1.76 1.63 1.SS 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.3S 1.34 1.33 1.32 
so 4.36 2.68 2.20 1.97 1.84 1.69 1.61 1.SS 1.Sl 1.48 1.46 1.4S 1.44 1.42 1.41 1.40 1.39 1.39 1.38 1.37 
60 4.65 2.80 2.28 2.04 1.90 1.74 1.66 1.S9 1.SS 1.S3 1.SO 1.49 1.48 1.46 1.4S 1.44 1.43 1.42 1.41 1.40 
7S 5.02 2.96 2.39 2.12 1.97 1.81 1.72 1.6S 1.60 1.58 1.SS 1.S4 1.S2 1.SO 1.49 1.48 1.47 1.47 1.46 1.4S 

100 5.55 3.17 2.S3 2.24 2.07 1.89 1.79 1.72 1.67 1.64 1.62 1.60 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 1.50 
12S 5.99 3.34 2.64 2.32 2.1S 1.9S 1.8S 1.77 1.72 1.69 1.66 1.64 1.63 1.61 1.S9 1.58 1.S7 1.S6 1.SS 1.S4 
150 6.38 3.48 2.73 2.40 2.21 2.00 1.89 1.81 1.76 1.73 1.70 1.68 1.67 1.64 1.63 1.61 1.61 1.60 1.58 1.58 
17S 6.72 3.60 2.81 2.46 2.26 2.05 1.93 1.8S 1.80 1.76 1.73 1.71 1.70 1.67 1.66 1.64 1.63 1.63 1.61 1.60 
200 7.04 3.72 2.88 2.Sl 2.31 2.09 1.97 1.88 1.83 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 

Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (1 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.07 0.88 0.81 0.76 0.73 0.70 0.68 0.66 0.6S 0.64 0.64 0.63 0.63 0.62 0.62 0.62 0.61 0.61 0.61 0.61 
2 1.SS 1.22 1.09 1.02 0.98 0.93 0.90 0.88 0.86 0.8S 0.84 0.83 0.83 0.82 0.82 0.81 0.81 0.81 0.80 0.80 
3 1.86 1.42 1.26 1.18 1.12 1.06 1.02 0.99 0.97 0.96 0.9S 0.94 0.94 0.93 0.92 0.92 0.91 0.91 0.91 0.90 
4 2.10 1.S7 1.38 1.28 1.22 1.1S 1.11 1.07 1.05 1.04 1.03 1.02 1.01 1.00 1.00 0.99 0.99 0.98 0.98 0.97 
s 2.30 1.69 1.47 1.36 1.29 1.21 1.17 1.13 1.11 1.10 1.08 1.08 1.07 1.06 1.05 1.04 1.04 1.04 1.03 1.03 
8 2.77 1.9S 1.67 1.S4 1.4S 1.36 1.30 1.26 1.23 1.21 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.14 1.13 
12 3.23 2.18 1.8S 1.69 1.S9 1.47 1.41 1.36 1.33 1.31 1.30 1.29 1.28 1.26 1.2S 1.24 1.24 1.23 1.22 1.22 
16 3.59 2.36 1.98 1.79 1.68 1.S6 1.49 1.44 1.40 1.38 1.36 1.3S 1.34 1.32 1.31 1.31 1.30 1.29 1.29 1.28 
20 3.89 2.SO 2.08 1.88 1.76 1.62 1.SS 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.3S 1.34 1.33 1.32 
30 4.49 2.77 2.27 2.03 1.89 1.74 1.66 1.S9 1.SS 1.S3 1.SO 1.49 1.48 1.46 1.4S 1.44 1.43 1.42 1.41 1.40 
40 4.97 2.97 2.40 2.14 1.99 1.82 1.73 1.66 1.62 1.S9 1.S7 1.SS 1.S4 1.S2 1.50 1.49 1.48 1.48 1.47 1.46 
so 5.37 3.13 2.Sl 2.23 2.07 1.89 1.79 1.72 1.67 1.64 1.61 1.60 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 1.50 
60 5.72 3.27 2.60 2.30 2.13 1.94 1.84 1.76 1.71 1.68 1.6S 1.63 1.62 1.60 1.58 1.S7 1.S6 1.S6 1.S4 1.S4 
7S 6.17 3.44 2.72 2.39 2.20 2.00 1.89 1.81 1.76 1.73 1.70 1.68 1.67 1.64 1.63 1.61 1.61 1.60 1.58 1.58 

100 6.81 3.68 2.87 2.Sl 2.30 2.08 1.97 1.88 1.83 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 
12S 7.35 3.87 2.99 2.60 2.38 2.1S 2.02 1.93 1.87 1.83 1.81 1.78 1.77 1.74 1.72 1.71 1.70 1.69 1.68 1.67 
150 7.82 4.03 3.09 2.68 2.4S 2.20 2.07 1.97 1.91 1.87 1.84 1.82 1.80 1.78 1.76 1.74 1.73 1.72 1.71 1.70 
17S 8.25 4.17 3.17 2.74 2.SO 2.24 2.11 2.01 1.9S 1.91 1.87 1.8S 1.83 1.80 1.78 1.77 1.76 1.7S 1.74 1.72 
200 8.63 4.29 3.25 2.80 2.SS 2.28 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.7S 
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Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (1 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.43 1.17 1.06 1.00 0.96 0.92 0.89 0.87 0.8S 0.84 0.84 0.83 0.83 0.82 0.81 0.81 0.81 0.81 0.80 0.80 
2 1.97 1.S2 1.3S 1.26 1.20 1.14 1.10 1.07 1.05 1.04 1.02 1.02 1.01 1.00 0.99 0.99 0.99 0.98 0.98 0.97 
3 2.33 1.74 1.S2 1.41 1.34 1.26 1.22 1.18 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.09 1.08 1.08 1.07 1.07 
4 2.61 1.90 1.6S 1.S2 1.44 1.3S 1.30 1.26 1.23 1.21 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.14 1.13 
s 2.84 2.02 1.74 1.60 1.S2 1.41 1.36 1.32 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
8 3.39 2.31 1.9S 1.78 1.67 1.SS 1.49 1.44 1.40 1.38 1.36 1.3S 1.34 1.32 1.31 1.31 1.30 1.29 1.28 1.28 
12 3.93 2.S6 2.14 1.93 1.81 1.67 1.S9 1.S4 1.SO 1.47 1.4S 1.44 1.43 1.41 1.40 1.39 1.38 1.38 1.37 1.36 
16 4.35 2.76 2.27 2.04 1.91 1.7S 1.67 1.61 1.S7 1.S4 1.S2 1.SO 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 1.42 
20 4.71 2.91 2.38 2.13 1.98 1.82 1.73 1.66 1.62 1.S9 1.S7 1.SS 1.S4 1.S2 1.50 1.49 1.48 1.48 1.47 1.46 
30 5.42 3.21 2.S8 2.29 2.12 1.93 1.83 1.76 1.71 1.68 1.6S 1.63 1.62 1.60 1.58 1.57 1.S6 1.S6 1.S4 1.S4 
40 5.99 3.43 2.73 2.40 2.22 2.02 1.91 1.83 1.77 1.74 1.71 1.69 1.68 1.6S 1.64 1.63 1.62 1.61 1.60 1.S9 
so 6.47 3.61 2.84 2.SO 2.30 2.08 1.96 1.88 1.82 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 
60 6.89 3.77 2.94 2.S7 2.36 2.13 2.01 1.92 1.86 1.83 1.80 1.78 1.76 1.73 1.72 1.70 1.69 1.68 1.67 1.66 
7S 7.43 3.96 3.06 2.66 2.44 2.20 2.07 1.97 1.91 1.87 1.84 1.82 1.80 1.77 1.76 1.74 1.73 1.72 1.71 1.70 

100 8.20 4.22 3.23 2.79 2.S4 2.28 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.7S 
12S 8.84 4.43 3.35 2.88 2.62 2.3S 2.20 2.09 2.02 1.98 1.9S 1.92 1.90 1.87 1.8S 1.83 1.82 1.81 1.80 1.79 
150 9.40 4.62 3.46 2.96 2.69 2.40 2.2S 2.13 2.06 2.02 1.98 1.9S 1.93 1.90 1.88 1.87 1.8S 1.84 1.83 1.82 
17S 9.90 4.77 3.55 3.03 2.7S 2.44 2.29 2.17 2.10 2.05 2.01 1.98 1.96 1.93 1.91 1.89 1.88 1.87 1.8S 1.84 
200 10.36 4.91 3.64 3.09 2.80 2.48 2.32 2.20 2.13 2.07 2.04 2.01 1.99 1.96 1.93 1.92 1.90 1.89 1.88 1.86 

Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.14 0.92 0.83 0.78 0.74 0.71 0.68 0.66 0.6S 0.64 0.64 0.63 0.63 0.62 0.62 0.62 0.61 0.61 0.61 0.61 
2 1.63 1.2S 1.11 1.04 0.99 0.94 0.90 0.88 0.86 0.8S 0.84 0.84 0.83 0.82 0.82 0.81 0.81 0.81 0.80 0.80 
3 1.9S 1.46 1.28 1.19 1.13 1.06 1.03 1.00 0.98 0.96 0.9S 0.9S 0.94 0.93 0.92 0.92 0.92 0.91 0.91 0.90 
4 2.19 1.60 1.40 1.29 1.23 1.1S 1.11 1.08 1.05 1.04 1.03 1.02 1.01 1.00 1.00 0.99 0.99 0.98 0.98 0.97 
s 2.40 1.72 1.49 1.37 1.30 1.22 1.17 1.14 1.11 1.10 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.04 1.03 1.03 
8 2.88 1.98 1.69 1.S4 1.46 1.36 1.30 1.26 1.23 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.14 1.13 
12 3.35 2.22 1.86 1.69 1.S9 1.48 1.41 1.37 1.34 1.31 1.30 1.29 1.28 1.26 1.2S 1.24 1.24 1.23 1.23 1.22 
16 3.72 2.39 1.99 1.80 1.69 1.S6 1.49 1.44 1.41 1.38 1.36 1.3S 1.34 1.32 1.31 1.31 1.30 1.29 1.29 1.28 
20 4.02 2.S3 2.09 1.88 1.76 1.63 1.SS 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.3S 1.34 1.33 1.32 
30 4.65 2.80 2.28 2.04 1.90 1.74 1.66 1.S9 1.SS 1.S3 1.SO 1.49 1.48 1.46 1.4S 1.44 1.43 1.42 1.41 1.40 
40 5.14 3.00 2.42 2.15 1.99 1.82 1.73 1.66 1.62 1.S9 1.S7 1.SS 1.S4 1.S2 1.50 1.49 1.48 1.48 1.47 1.46 
so 5.55 3.17 2.S3 2.24 2.07 1.89 1.79 1.72 1.67 1.64 1.62 1.60 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 1.Sl 1.50 
60 5.91 3.31 2.62 2.31 2.13 1.94 1.84 1.76 1.71 1.68 1.6S 1.64 1.62 1.60 1.58 1.S7 1.S6 1.S6 1.S4 1.S4 
7S 6.38 3.48 2.73 2.40 2.21 2.00 1.89 1.81 1.76 1.73 1.70 1.68 1.67 1.64 1.63 1.61 1.61 1.60 1.58 1.58 

100 7.04 3.72 2.88 2.Sl 2.31 2.09 1.97 1.88 1.83 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 
12S 7.60 3.91 3.00 2.61 2.39 2.1S 2.03 1.93 1.88 1.83 1.81 1.78 1.77 1.74 1.72 1.71 1.70 1.69 1.68 1.67 
150 8.09 4.07 3.10 2.68 2.4S 2.20 2.07 1.98 1.92 1.87 1.84 1.82 1.80 1.78 1.76 1.74 1.73 1.72 1.71 1.70 
17S 8.51 4.21 3.19 2.75 2.SO 2.2S 2.11 2.01 1.9S 1.91 1.87 1.8S 1.83 1.80 1.79 1.77 1.76 1.7S 1.74 1.72 
200 8.91 4.34 3.26 2.81 2.55 2.29 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.7S 
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Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (2 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.SS 1.22 1.09 1.02 0.98 0.93 0.90 0.88 0.86 0.8S 0.84 0.83 0.83 0.82 0.82 0.81 0.81 0.81 0.80 0.80 
2 2.10 1.S7 1.38 1.28 1.22 1.1S 1.11 1.07 1.05 1.04 1.03 1.02 1.01 1.00 1.00 0.99 0.99 0.98 0.98 0.97 
3 2.48 1.79 1.SS 1.43 1.36 1.27 1.22 1.18 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.09 1.08 1.08 1.07 1.07 
4 2.77 1.9S 1.67 1.S4 1.4S 1.36 1.30 1.26 1.23 1.21 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.14 1.13 
s 3.01 2.08 1.77 1.62 1.S3 1.42 1.36 1.32 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
8 3.59 2.36 1.98 1.79 1.68 1.S6 1.49 1.44 1.40 1.38 1.36 1.3S 1.34 1.32 1.31 1.31 1.30 1.29 1.29 1.28 
12 4.15 2.62 2.16 1.9S 1.82 1.68 1.60 1.S4 1.50 1.47 1.46 1.44 1.43 1.41 1.40 1.39 1.38 1.38 1.37 1.36 
16 4.59 2.81 2.30 2.06 1.91 1.76 1.67 1.61 1.S7 1.S4 1.S2 1.SO 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 1.42 
20 4.97 2.97 2.40 2.14 1.99 1.82 1.73 1.66 1.62 1.S9 1.S7 1.SS 1.S4 1.S2 1.50 1.49 1.48 1.48 1.47 1.46 
30 5.72 3.27 2.60 2.30 2.13 1.94 1.84 1.76 1.71 1.68 1.6S 1.63 1.62 1.60 1.58 1.S7 1.S6 1.S6 1.S4 1.S4 
40 6.31 3.50 2.7S 2.42 2.23 2.02 1.91 1.83 1.78 1.74 1.71 1.69 1.68 1.6S 1.64 1.63 1.62 1.61 1.60 1.S9 
so 6.81 3.68 2.87 2.Sl 2.30 2.08 1.97 1.88 1.83 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 
60 7.25 3.83 2.97 2.S8 2.37 2.14 2.01 1.92 1.87 1.83 1.80 1.78 1.76 1.73 1.72 1.70 1.69 1.68 1.67 1.66 
7S 7.82 4.03 3.09 2.68 2.4S 2.20 2.07 1.97 1.91 1.87 1.84 1.82 1.80 1.78 1.76 1.74 1.73 1.72 1.71 1.70 

100 8.63 4.29 3.25 2.80 2.SS 2.28 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.7S 
12S 9.30 4.51 3.38 2.89 2.63 2.3S 2.20 2.09 2.03 1.98 1.9S 1.92 1.90 1.87 1.8S 1.83 1.82 1.81 1.80 1.79 
150 9.89 4.69 3.49 2.98 2.70 2.40 2.2S 2.14 2.06 2.02 1.98 1.9S 1.93 1.90 1.88 1.87 1.8S 1.84 1.83 1.82 
17S 10.43 4.85 3.58 3.04 2.7S 2.4S 2.29 2.17 2.10 2.05 2.01 1.98 1.96 1.93 1.91 1.89 1.88 1.87 1.8S 1.84 
200 10.90 5.00 3.66 3.11 2.80 2.48 2.32 2.20 2.13 2.07 2.04 2.01 1.99 1.96 1.93 1.92 1.90 1.89 1.88 1.86 

Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (2 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.97 1.S2 1.3S 1.26 1.20 1.14 1.10 1.07 1.05 1.04 1.02 1.02 1.01 1.00 0.99 0.99 0.99 0.98 0.98 0.97 
2 2.61 1.90 1.6S 1.S2 1.44 1.3S 1.30 1.26 1.23 1.21 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.14 1.13 
3 3.04 2.13 1.82 1.67 1.58 1.47 1.41 1.36 1.33 1.31 1.30 1.28 1.27 1.26 1.2S 1.24 1.24 1.23 1.22 1.22 
4 3.39 2.31 1.9S 1.78 1.67 1.SS 1.49 1.44 1.40 1.38 1.36 1.3S 1.34 1.32 1.31 1.31 1.30 1.29 1.28 1.28 
s 3.68 2.4S 2.05 1.86 1.7S 1.62 1.SS 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.3S 1.34 1.33 1.32 
8 4.35 2.76 2.27 2.04 1.91 1.7S 1.67 1.61 1.S7 1.S4 1.S2 1.SO 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 1.42 
12 5.02 3.04 2.47 2.20 2.04 1.87 1.78 1.70 1.66 1.63 1.61 1.S9 1.S7 1.SS 1.S4 1.S3 1.S2 1.Sl 1.50 1.49 
16 5.55 3.26 2.61 2.31 2.14 1.9S 1.8S 1.77 1.72 1.69 1.67 1.6S 1.63 1.61 1.60 1.58 1.58 1.S7 1.S6 1.SS 
20 5.99 3.43 2.73 2.40 2.22 2.02 1.91 1.83 1.77 1.74 1.71 1.69 1.68 1.6S 1.64 1.63 1.62 1.61 1.60 1.S9 
30 6.89 3.77 2.94 2.S7 2.36 2.13 2.01 1.92 1.86 1.83 1.80 1.78 1.76 1.73 1.72 1.70 1.69 1.68 1.67 1.66 
40 7.60 4.02 3.10 2.69 2.46 2.22 2.09 1.99 1.93 1.89 1.86 1.83 1.81 1.79 1.77 1.7S 1.74 1.73 1.72 1.71 
so 8.20 4.22 3.23 2.79 2.S4 2.28 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.7S 
60 8.72 4.40 3.33 2.87 2.61 2.33 2.19 2.08 2.02 1.97 1.94 1.91 1.89 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
7S 9.40 4.62 3.46 2.96 2.69 2.40 2.2S 2.13 2.06 2.02 1.98 1.9S 1.93 1.90 1.88 1.87 1.8S 1.84 1.83 1.82 

100 10.36 4.91 3.64 3.09 2.80 2.48 2.32 2.20 2.13 2.07 2.04 2.01 1.99 1.96 1.93 1.92 1.90 1.89 1.88 1.86 
12S 11.18 5.16 3.78 3.20 2.88 2.SS 2.38 2.2S 2.17 2.12 2.08 2.05 2.03 1.99 1.97 1.9S 1.94 1.93 1.91 1.90 
150 11.88 5.36 3.89 3.28 2.9S 2.60 2.42 2.29 2.21 2.16 2.12 2.09 2.06 2.03 2.00 1.98 1.97 1.96 1.94 1.93 
17S 12.51 5.54 4.00 3.35 3.01 2.6S 2.46 2.33 2.24 2.19 2.1S 2.11 2.09 2.05 2.03 2.01 2.00 1.99 1.97 1.9S 
200 13.10 5.70 4.08 3.42 3.06 2.69 2.SO 2.36 2.27 2.21 2.17 2.14 2.11 2.08 2.05 2.03 2.02 2.01 1.99 1.97 
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Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (5 coc, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.80 1.36 1.20 1.12 1.07 1.01 0.97 0.94 0.93 0.91 0.90 0.90 0.89 0.88 0.88 0.87 0.87 0.87 0.86 0.86 
2 2.40 1.72 1.49 1.37 1.30 1.22 1.17 1.14 1.11 1.10 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.04 1.03 1.03 
3 2.81 1.94 1.66 1.S2 1.44 1.34 1.29 1.2S 1.22 1.20 1.19 1.18 1.17 1.1S 1.1S 1.14 1.13 1.13 1.12 1.12 
4 3.13 2.11 1.78 1.63 1.S3 1.42 1.37 1.32 1.29 1.27 1.26 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
s 3.40 2.24 1.88 1.71 1.61 1.49 1.43 1.38 1.3S 1.32 1.31 1.30 1.29 1.27 1.26 1.2S 1.2S 1.24 1.23 1.23 
8 4.02 2.S3 2.09 1.88 1.76 1.63 1.SS 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.3S 1.34 1.33 1.32 
12 4.65 2.80 2.28 2.04 1.90 1.74 1.66 1.S9 1.SS 1.S3 1.SO 1.49 1.48 1.46 1.4S 1.44 1.43 1.42 1.41 1.40 
16 5.14 3.00 2.42 2.1S 1.99 1.82 1.73 1.66 1.62 1.S9 1.S7 1.SS 1.S4 1.S2 1.SO 1.49 1.48 1.48 1.47 1.46 
20 5.55 3.17 2.S3 2.24 2.07 1.89 1.79 1.72 1.67 1.64 1.62 1.60 1.58 1.S6 1.SS 1.54 1.S3 1.S2 1.Sl 1.50 
30 6.38 3.48 2.73 2.40 2.21 2.00 1.89 1.81 1.76 1.73 1.70 1.68 1.67 1.64 1.63 1.61 1.61 1.60 1.S9 1.58 
40 7.04 3.72 2.88 2.Sl 2.31 2.09 1.97 1.88 1.83 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 
so 7.60 3.91 3.00 2.60 2.39 2.1S 2.03 1.93 1.88 1.83 1.81 1.78 1.77 1.74 1.72 1.71 1.70 1.69 1.68 1.67 
60 8.09 4.07 3.10 2.68 2.4S 2.20 2.07 1.98 1.91 1.87 1.84 1.82 1.80 1.77 1.76 1.74 1.73 1.72 1.71 1.70 
7S 8.71 4.28 3.23 2.78 2.53 2.27 2.13 2.03 1.96 1.92 1.89 1.86 1.84 1.82 1.80 1.78 1.77 1.76 1.7S 1.74 

100 9.61 4.55 3.39 2.90 2.63 2.3S 2.20 2.09 2.03 1.98 1.9S 1.92 1.90 1.87 1.8S 1.83 1.82 1.81 1.80 1.78 
12S 10.35 4.78 3.53 3.00 2.71 2.41 2.26 2.14 2.07 2.02 1.99 1.96 1.94 1.91 1.89 1.87 1.86 1.8S 1.83 1.82 
150 11.02 4.96 3.63 3.08 2.78 2.47 2.30 2.19 2.11 2.06 2.03 2.00 1.98 1.94 1.92 1.90 1.89 1.88 1.87 1.8S 
17S 11.60 5.14 3.73 3.15 2.84 2.51 2.34 2.22 2.14 2.09 2.06 2.03 2.00 1.97 1.9S 1.93 1.92 1.91 1.89 1.88 
200 12.11 5.27 3.82 3.21 2.89 2.55 2.38 2.2S 2.17 2.12 2.08 2.05 2.03 1.99 1.97 1.9S 1.94 1.93 1.91 1.90 

Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (5 coc, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 2.30 1.69 1.47 1.36 1.29 1.21 1.17 1.13 1.11 1.10 1.08 1.08 1.07 1.06 1.05 1.04 1.04 1.04 1.03 1.03 
2 3.01 2.08 1.77 1.62 1.S3 1.42 1.36 1.32 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
3 3.50 2.32 1.9S 1.77 1.66 1.S4 1.47 1.42 1.39 1.37 1.3S 1.34 1.33 1.31 1.30 1.29 1.29 1.28 1.27 1.27 
4 3.89 2.SO 2.08 1.88 1.76 1.62 1.SS 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.3S 1.3S 1.34 1.33 1.32 
s 4.21 2.6S 2.18 1.96 1.83 1.69 1.61 1.SS 1.Sl 1.48 1.46 1.4S 1.44 1.42 1.41 1.40 1.39 1.39 1.38 1.37 
8 4.97 2.97 2.40 2.14 1.99 1.82 1.73 1.66 1.62 1.S9 1.S7 1.SS 1.S4 1.S2 1.SO 1.49 1.48 1.48 1.47 1.46 
12 5.72 3.27 2.60 2.30 2.13 1.94 1.84 1.76 1.71 1.68 1.6S 1.63 1.62 1.60 1.58 1.57 1.S6 1.S6 1.S4 1.S4 
16 6.31 3.49 2.7S 2.42 2.23 2.02 1.91 1.83 1.78 1.74 1.71 1.69 1.68 1.6S 1.64 1.63 1.62 1.61 1.60 1.S9 
20 6.81 3.68 2.87 2.Sl 2.30 2.08 1.97 1.88 1.83 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.6S 1.64 1.63 
30 7.82 4.03 3.09 2.68 2.4S 2.20 2.07 1.97 1.91 1.87 1.84 1.82 1.80 1.77 1.76 1.74 1.73 1.72 1.71 1.70 
40 8.62 4.29 3.25 2.80 2.SS 2.28 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.7S 
so 9.30 4.51 3.38 2.90 2.63 2.3S 2.20 2.09 2.03 1.98 1.9S 1.92 1.90 1.87 1.8S 1.83 1.82 1.81 1.80 1.79 
60 9.88 4.69 3.49 2.98 2.70 2.40 2.2S 2.14 2.06 2.02 1.98 1.9S 1.93 1.90 1.88 1.87 1.8S 1.84 1.83 1.82 
7S 10.66 4.92 3.62 3.08 2.78 2.47 2.30 2.19 2.11 2.06 2.03 2.00 1.98 1.94 1.92 1.90 1.89 1.88 1.86 1.8S 
100 11.76 5.23 3.80 3.21 2.89 2.SS 2.38 2.2S 2.17 2.12 2.08 2.05 2.03 1.99 1.97 1.9S 1.94 1.93 1.91 1.90 
12S 12.66 5.49 3.95 3.31 2.97 2.62 2.43 2.30 2.22 2.17 2.12 2.09 2.07 2.03 2.01 1.99 1.98 1.97 1.9S 1.93 
150 13.44 5.70 4.06 3.40 3.04 2.67 2.48 2.34 2.26 2.20 2.16 2.13 2.10 2.07 2.04 2.02 2.01 2.00 1.98 1.96 
17S 14.14 5.90 4.17 3.47 3.10 2.71 2.S2 2.38 2.29 2.23 2.19 2.16 2.13 2.09 2.07 2.05 2.03 2.02 2.00 1.99 
200 14.84 6.05 4.26 3.54 3.15 2.7S 2.SS 2.41 2.32 2.26 2.21 2.18 2.16 2.12 2.09 2.07 2.06 2.04 2.02 2.01 
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Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (5 coc, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.84 2.02 1.74 1.60 1.52 1.41 1.36 1.32 1.29 1.27 1.25 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
2 3.68 2.45 2.05 1.86 1.75 1.62 1.55 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.35 1.35 1.34 1.33 1.32 
3 4.25 2.71 2.24 2.02 1.88 1.74 1.65 1.59 1.55 1.52 1.50 1.49 1.48 1.46 1.44 1.44 1.43 1.42 1.41 1.40 
4 4.71 2.91 2.38 2.13 1.98 1.82 1.73 1.66 1.62 1.59 1.57 1.55 1.54 1.52 1.50 1.49 1.48 1.48 1.47 1.46 
5 5.09 3.07 2.49 2.22 2.06 1.88 1.79 1.71 1.67 1.64 1.61 1.60 1.58 1.56 1.55 1.54 1.53 1.52 1.51 1.50 
8 5.99 3.43 2.73 2.40 2.22 2.02 1.91 1.83 1.77 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
12 6.89 3.77 2.94 2.57 2.36 2.13 2.01 1.92 1.86 1.83 1.80 1.78 1.76 1.73 1.71 1.70 1.69 1.68 1.67 1.66 
16 7.60 4.02 3.10 2.69 2.46 2.22 2.09 1.99 1.93 1.89 1.86 1.83 1.81 1.79 1.77 1.75 1.74 1.73 1.72 1.71 
20 8.20 4.22 3.23 2.79 2.54 2.28 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.75 
30 9.40 4.62 3.46 2.97 2.69 2.40 2.25 2.13 2.06 2.02 1.98 1.95 1.93 1.90 1.88 1.87 1.85 1.84 1.83 1.82 
40 10.36 4.91 3.64 3.09 2.80 2.48 2.32 2.20 2.13 2.07 2.04 2.01 1.99 1.96 1.93 1.92 1.90 1.89 1.88 1.86 
50 11.17 5.16 3.78 3.20 2.88 2.55 2.38 2.25 2.17 2.12 2.08 2.05 2.03 2.00 1.97 1.95 1.94 1.93 1.91 1.90 
60 11.88 5.36 3.89 3.28 2.95 2.60 2.42 2.29 2.21 2.16 2.12 2.09 2.06 2.03 2.00 1.98 1.97 1.96 1.94 1.93 
75 12.81 5.62 4.04 3.39 3.03 2.67 2.48 2.34 2.26 2.20 2.16 2.13 2.10 2.07 2.04 2.02 2.01 2.00 1.98 1.96 

100 14.10 5.98 4.23 3.53 3.15 2.75 2.55 2.41 2.32 2.26 2.21 2.18 2.16 2.12 2.09 2.07 2.06 2.04 2.02 2.00 
125 15.20 6.26 4.39 3.63 3.23 2.82 2.61 2.46 2.37 2.30 2.26 2.22 2.19 2.16 2.13 2.11 2.09 2.08 2.05 2.04 
150 16.17 6.50 4.52 3.73 3.31 2.88 2.66 2.50 2.40 2.34 2.29 2.26 2.23 2.19 2.16 2.14 2.12 2.11 2.08 2.07 
175 17.03 6.72 4.63 3.81 3.37 2.92 2.70 2.54 2.44 2.37 2.32 2.29 2.26 2.21 2.18 2.16 2.15 2.13 2.11 2.09 
200 17.81 6.91 4.74 3.88 3.43 2.96 2.73 2.57 2.47 2.40 2.35 2.31 2.28 2.24 2.21 2.18 2.17 2.15 2.13 2.11 

Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.40 1.72 1.49 1.37 1.30 1.22 1.17 1.14 1.11 1.10 1.09 1.08 1.07 1.06 1.05 1.04 1.04 1.04 1.03 1.03 
2 3.13 2.11 1.78 1.63 1.53 1.42 1.37 1.32 1.29 1.27 1.26 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
3 3.63 2.35 1.96 1.78 1.67 1.54 1.47 1.42 1.39 1.37 1.35 1.34 1.33 1.31 1.30 1.29 1.29 1.28 1.27 1.27 
4 4.02 2.53 2.09 1.88 1.76 1.63 1.55 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.35 1.35 1.34 1.33 1.32 
5 4.36 2.68 2.20 1.97 1.84 1.69 1.61 1.55 1.51 1.48 1.46 1.45 1.44 1.42 1.41 1.40 1.39 1.39 1.38 1.37 
8 5.14 3.00 2.42 2.15 1.99 1.82 1.73 1.66 1.62 1.59 1.57 1.55 1.54 1.52 1.50 1.49 1.49 1.48 1.47 1.46 
12 5.91 3.31 2.62 2.31 2.13 1.94 1.84 1.76 1.71 1.68 1.65 1.63 1.62 1.60 1.58 1.57 1.56 1.56 1.54 1.54 
16 6.52 3.53 2.76 2.42 2.23 2.02 1.91 1.83 1.78 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
20 7.04 3.72 2.88 2.51 2.31 2.09 1.97 1.88 1.83 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.65 1.64 1.63 
30 8.08 4.07 3.10 2.68 2.45 2.20 2.07 1.97 1.91 1.87 1.84 1.82 1.80 1.78 1.76 1.74 1.73 1.72 1.71 1.70 
40 8.91 4.33 3.26 2.80 2.55 2.29 2.15 2.04 1.98 1.93 1.90 1.88 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.75 
50 9.62 4.55 3.39 2.90 2.63 2.35 2.20 2.09 2.02 1.98 1.95 1.92 1.90 1.87 1.85 1.83 1.82 1.81 1.80 1.79 
60 10.21 4.74 3.50 2.98 2.70 2.40 2.25 2.13 2.06 2.02 1.98 1.95 1.93 1.90 1.88 1.87 1.85 1.84 1.83 1.82 
75 11.04 4.97 3.64 3.08 2.78 2.47 2.30 2.19 2.11 2.06 2.03 2.00 1.97 1.94 1.92 1.90 1.89 1.88 1.86 1.85 
100 12.11 5.27 3.82 3.21 2.89 2.55 2.38 2.25 2.17 2.12 2.08 2.05 2.03 2.00 1.97 1.95 1.94 1.93 1.91 1.90 
125 13.09 5.54 3.96 3.32 2.97 2.62 2.44 2.30 2.22 2.17 2.12 2.09 2.07 2.04 2.01 1.99 1.98 1.97 1.95 1.93 
150 13.87 5.76 4.08 3.41 3.04 2.67 2.48 2.34 2.26 2.20 2.16 2.13 2.11 2.07 2.04 2.02 2.01 2.00 1.98 1.96 
175 14.65 5.96 4.17 3.48 3.10 2.72 2.52 2.38 2.29 2.23 2.19 2.15 2.13 2.09 2.07 2.05 2.03 2.02 2.00 1.99 
200 15.23 6.10 4.27 3.54 3.15 2.76 2.55 2.41 2.32 2.26 2.22 2.18 2.15 2.12 2.09 2.07 2.05 2.04 2.02 2.01 
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Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (10 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.01 2.08 1.77 1.62 1.53 1.42 1.36 1.32 1.29 1.27 1.25 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
2 3.89 2.50 2.08 1.88 1.76 1.62 1.55 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.35 1.35 1.34 1.33 1.32 
3 4.49 2.77 2.27 2.03 1.89 1.74 1.66 1.59 1.55 1.53 1.50 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.41 1.40 
4 4.97 2.97 2.40 2.14 1.99 1.82 1.73 1.66 1.62 1.59 1.57 1.55 1.54 1.52 1.50 1.49 1.48 1.48 1.47 1.46 
5 5.37 3.13 2.51 2.23 2.07 1.89 1.79 1.72 1.67 1.64 1.61 1.60 1.58 1.56 1.55 1.54 1.53 1.52 1.51 1.50 
8 6.31 3.50 2.75 2.42 2.23 2.02 1.91 1.83 1.78 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
12 7.25 3.83 2.97 2.58 2.37 2.14 2.01 1.92 1.87 1.83 1.80 1.78 1.76 1.73 1.72 1.70 1.69 1.68 1.67 1.66 
16 8.00 4.09 3.12 2.70 2.47 2.22 2.09 1.99 1.93 1.89 1.86 1.83 1.81 1.79 1.77 1.75 1.74 1.73 1.72 1.71 
20 8.63 4.29 3.25 2.80 2.55 2.28 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.75 
30 9.89 4.69 3.49 2.98 2.70 2.40 2.25 2.13 2.06 2.02 1.98 1.95 1.93 1.90 1.88 1.87 1.85 1.84 1.83 1.82 
40 10.89 4.99 3.66 3.10 2.80 2.48 2.32 2.20 2.13 2.08 2.04 2.01 1.99 1.96 1.93 1.92 1.90 1.89 1.88 1.86 
50 11.77 5.24 3.80 3.21 2.89 2.55 2.38 2.25 2.17 2.12 2.08 2.05 2.03 2.00 1.97 1.95 1.94 1.93 1.91 1.90 
60 12.50 5.44 3.92 3.29 2.95 2.60 2.42 2.29 2.21 2.16 2.12 2.09 2.06 2.03 2.00 1.99 1.97 1.96 1.94 1.93 
75 13.48 5.71 4.06 3.40 3.04 2.67 2.48 2.34 2.26 2.20 2.16 2.13 2.10 2.07 2.04 2.02 2.01 2.00 1.98 1.96 

100 14.84 6.05 4.26 3.54 3.15 2.76 2.55 2.41 2.32 2.26 2.22 2.18 2.15 2.12 2.09 2.07 2.06 2.04 2.02 2.00 
125 16.02 6.35 4.42 3.65 3.24 2.82 2.61 2.46 2.37 2.30 2.26 2.22 2.20 2.15 2.13 2.11 2.09 2.08 2.05 2.04 
150 16.99 6.59 4.54 3.74 3.31 2.88 2.66 2.50 2.40 2.34 2.29 2.26 2.23 2.19 2.16 2.14 2.12 2.11 2.09 2.07 
175 17.97 6.84 4.66 3.81 3.37 2.93 2.70 2.54 2.44 2.37 2.32 2.28 2.26 2.22 2.19 2.16 2.15 2.13 2.11 2.09 
200 18.75 7.03 4.76 3.88 3.43 2.97 2.73 2.56 2.47 2.39 2.34 2.31 2.28 2.23 2.20 2.19 2.17 2.15 2.13 2.11 

Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (10 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 3.68 2.45 2.05 1.86 1.75 1.62 1.55 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.35 1.35 1.34 1.33 1.32 
2 4.71 2.91 2.38 2.13 1.98 1.82 1.73 1.66 1.62 1.59 1.57 1.55 1.54 1.52 1.50 1.49 1.48 1.48 1.47 1.46 
3 5.42 3.21 2.58 2.29 2.12 1.93 1.83 1.76 1.71 1.68 1.65 1.63 1.62 1.60 1.58 1.57 1.56 1.56 1.54 1.54 
4 5.99 3.43 2.73 2.40 2.22 2.02 1.91 1.83 1.77 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
5 6.47 3.61 2.84 2.50 2.30 2.08 1.96 1.88 1.82 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.65 1.64 1.63 
8 7.60 4.02 3.10 2.69 2.46 2.22 2.09 1.99 1.93 1.89 1.86 1.83 1.81 1.79 1.77 1.75 1.74 1.73 1.72 1.71 
12 8.72 4.40 3.33 2.87 2.61 2.33 2.19 2.08 2.02 1.97 1.94 1.91 1.89 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
16 9.61 4.68 3.50 2.99 2.71 2.42 2.26 2.15 2.08 2.03 1.99 1.97 1.95 1.91 1.89 1.88 1.87 1.86 1.84 1.83 
20 10.36 4.91 3.64 3.09 2.80 2.48 2.32 2.20 2.13 2.07 2.04 2.01 1.99 1.96 1.93 1.92 1.90 1.89 1.87 1.86 
30 11.89 5.36 3.89 3.28 2.95 2.60 2.42 2.29 2.21 2.16 2.12 2.09 2.06 2.03 2.00 1.99 1.97 1.96 1.94 1.93 
40 13.09 5.70 4.08 3.42 3.06 2.69 2.50 2.36 2.27 2.21 2.17 2.14 2.11 2.08 2.05 2.03 2.02 2.01 1.99 1.97 
50 14.11 5.97 4.24 3.52 3.15 2.75 2.55 2.41 2.32 2.26 2.21 2.18 2.15 2.12 2.09 2.07 2.06 2.04 2.02 2.00 
60 14.99 6.20 4.36 3.61 3.22 2.81 2.60 2.45 2.36 2.29 2.25 2.22 2.19 2.15 2.12 2.10 2.08 2.07 2.04 2.04 
75 16.16 6.49 4.52 3.73 3.31 2.87 2.66 2.50 2.40 2.34 2.29 2.26 2.23 2.19 2.16 2.14 2.12 2.11 2.09 2.07 
100 17.77 6.91 4.74 3.88 3.42 2.97 2.73 2.57 2.47 2.40 2.35 2.31 2.28 2.24 2.21 2.19 2.17 2.15 2.13 2.11 
125 19.14 7.23 4.91 3.99 3.52 3.03 2.79 2.62 2.51 2.44 2.39 2.35 2.32 2.27 2.24 2.22 2.20 2.19 2.16 2.15 
150 20.31 7.52 5.05 4.09 3.59 3.09 2.84 2.66 2.55 2.48 2.42 2.38 2.35 2.30 2.27 2.25 2.23 2.22 2.19 2.17 
175 21.48 7.76 5.18 4.17 3.66 3.14 2.88 2.69 2.58 2.50 2.45 2.41 2.38 2.33 2.29 2.27 2.26 2.24 2.22 2.20 
200 22.46 7.96 5.27 4.25 3.71 3.17 2.92 2.72 2.61 2.53 2.48 2.44 2.40 2.35 2.32 2.29 2.28 2.26 2.23 2.22 
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Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (20 COC, Annual) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 3.13 2.11 1.78 1.63 1.53 1.42 1.37 1.32 1.29 1.27 1.26 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 
2 4.02 2.53 2.09 1.88 1.76 1.63 1.55 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.35 1.35 1.34 1.33 1.32 
3 4.65 2.80 2.28 2.04 1.90 1.74 1.66 1.59 1.55 1.53 1.50 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.41 1.40 
4 5.14 3.00 2.42 2.15 1.99 1.82 1.73 1.66 1.62 1.59 1.57 1.55 1.54 1.52 1.50 1.49 1.49 1.48 1.47 1.46 
5 5.55 3.17 2.53 2.24 2.07 1.89 1.79 1.72 1.67 1.64 1.62 1.60 1.58 1.56 1.55 1.54 1.53 1.52 1.51 1.50 
8 6.52 3.53 2.76 2.42 2.23 2.02 1.91 1.83 1.78 1.74 1.71 1.69 1.68 1.66 1.64 1.63 1.62 1.61 1.60 1.59 
12 7.49 3.87 2.98 2.59 2.37 2.14 2.01 1.92 1.87 1.83 1.80 1.78 1.76 1.73 1.72 1.70 1.69 1.68 1.67 1.66 
16 8.26 4.13 3.14 2.71 2.47 2.22 2.09 1.99 1.93 1.89 1.86 1.83 1.81 1.79 1.77 1.75 1.74 1.73 1.72 1.71 
20 8.91 4.34 3.26 2.81 2.55 2.29 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.75 
30 10.22 4.74 3.50 2.98 2.70 2.40 2.25 2.14 2.06 2.02 1.98 1.95 1.93 1.90 1.88 1.87 1.85 1.84 1.83 1.82 
40 11.25 5.04 3.68 3.11 2.81 2.49 2.32 2.20 2.13 2.07 2.04 2.01 1.99 1.96 1.93 1.92 1.90 1.89 1.88 1.86 
50 12.13 5.29 3.82 3.21 2.89 2.55 2.38 2.25 2.17 2.12 2.08 2.05 2.03 2.00 1.97 1.95 1.94 1.93 1.91 1.90 
60 12.89 5.49 3.93 3.30 2.96 2.60 2.42 2.29 2.21 2.16 2.12 2.09 2.06 2.03 2.00 1.98 1.97 1.96 1.94 1.93 
75 13.89 5.76 4.08 3.41 3.04 2.67 2.48 2.34 2.26 2.20 2.16 2.13 2.10 2.07 2.04 2.02 2.01 2.00 1.98 1.96 

100 15.35 6.12 4.28 3.54 3.16 2.76 2.56 2.41 2.32 2.26 2.22 2.18 2.16 2.12 2.09 2.07 2.05 2.04 2.02 2.00 
125 16.52 6.42 4.42 3.65 3.24 2.83 2.61 2.46 2.37 2.30 2.26 2.22 2.20 2.15 2.13 2.11 2.09 2.08 2.05 2.03 
150 17.58 6.65 4.57 3.75 3.31 2.88 2.66 2.50 2.40 2.34 2.29 2.26 2.23 2.19 2.16 2.14 2.12 2.11 2.08 2.07 
175 18.52 6.86 4.69 3.82 3.38 2.93 2.70 2.53 2.44 2.37 2.32 2.29 2.26 2.21 2.18 2.16 2.15 2.13 2.11 2.09 
200 19.22 7.09 4.78 3.90 3.43 2.97 2.73 2.56 2.47 2.40 2.34 2.31 2.28 2.23 2.20 2.18 2.17 2.15 2.13 2.12 

Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.89 2.50 2.08 1.88 1.76 1.62 1.55 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.35 1.35 1.34 1.33 1.32 
2 4.97 2.97 2.40 2.14 1.99 1.82 1.73 1.66 1.62 1.59 1.57 1.55 1.54 1.52 1.50 1.49 1.48 1.48 1.47 1.46 
3 5.72 3.27 2.60 2.30 2.13 1.94 1.84 1.76 1.71 1.68 1.65 1.63 1.62 1.60 1.58 1.57 1.56 1.56 1.54 1.54 
4 6.31 3.50 2.75 2.42 2.23 2.02 1.91 1.83 1.78 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
5 6.81 3.68 2.87 2.51 2.30 2.08 1.97 1.88 1.83 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.65 1.64 1.63 
8 8.00 4.09 3.12 2.70 2.47 2.22 2.09 1.99 1.93 1.89 1.86 1.83 1.81 1.79 1.77 1.75 1.74 1.73 1.72 1.71 
12 9.18 4.47 3.35 2.88 2.61 2.34 2.19 2.08 2.02 1.97 1.94 1.91 1.89 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
16 10.11 4.76 3.52 3.00 2.72 2.42 2.26 2.15 2.08 2.03 1.99 1.97 1.95 1.92 1.89 1.88 1.86 1.86 1.84 1.83 
20 10.90 4.99 3.66 3.10 2.80 2.48 2.32 2.20 2.13 2.07 2.04 2.01 1.99 1.96 1.93 1.92 1.90 1.89 1.88 1.86 
30 12.48 5.44 3.92 3.29 2.96 2.60 2.42 2.29 2.21 2.16 2.12 2.09 2.06 2.03 2.00 1.98 1.97 1.96 1.94 1.93 
40 13.77 5.79 4.11 3.43 3.07 2.69 2.50 2.36 2.27 2.21 2.17 2.14 2.11 2.08 2.05 2.03 2.02 2.01 1.99 1.97 
50 14.82 6.06 4.26 3.54 3.15 2.76 2.55 2.41 2.32 2.26 2.22 2.18 2.16 2.12 2.09 2.07 2.06 2.04 2.02 2.00 
60 15.76 6.30 4.39 3.63 3.22 2.81 2.60 2.45 2.36 2.30 2.25 2.22 2.19 2.15 2.12 2.10 2.08 2.07 2.04 2.04 
75 16.99 6.59 4.55 3.74 3.31 2.88 2.66 2.50 2.41 2.34 2.29 2.26 2.23 2.19 2.16 2.14 2.12 2.11 2.09 2.07 
100 18.75 7.00 4.76 3.88 3.43 2.97 2.73 2.57 2.46 2.40 2.35 2.31 2.28 2.24 2.20 2.18 2.17 2.15 2.13 2.11 
125 20.16 7.32 4.94 4.00 3.52 3.03 2.79 2.62 2.51 2.44 2.39 2.35 2.32 2.27 2.24 2.22 2.20 2.19 2.16 2.15 
150 21.33 7.62 5.07 4.10 3.60 3.09 2.84 2.66 2.55 2.48 2.42 2.38 2.35 2.31 2.27 2.25 2.23 2.22 2.19 2.18 
175 22.50 7.85 5.20 4.19 3.66 3.13 2.88 2.70 2.58 2.50 2.45 2.41 2.38 2.33 2.30 2.27 2.26 2.24 2.22 2.20 
200 23.44 8.09 5.30 4.25 3.72 3.18 2.92 2.72 2.61 2.53 2.48 2.43 2.40 2.35 2.32 2.29 2.28 2.26 2.23 2.22 
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Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 4.71 2.91 2.38 2.13 1.98 1.82 1.73 1.66 1.62 1.59 1.57 1.55 1.54 1.52 1.50 1.49 1.48 1.48 1.47 1.46 
2 5.99 3.43 2.73 2.40 2.22 2.02 1.91 1.83 1.77 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
3 6.89 3.77 2.94 2.57 2.36 2.13 2.01 1.92 1.86 1.83 1.80 1.78 1.76 1.73 1.71 1.70 1.69 1.68 1.67 1.66 
4 7.60 4.02 3.10 2.69 2.46 2.22 2.09 1.99 1.93 1.89 1.86 1.83 1.81 1.79 1.77 1.75 1.74 1.73 1.72 1.71 
5 8.20 4.22 3.23 2.79 2.54 2.28 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.75 
8 9.61 4.68 3.50 2.99 2.71 2.42 2.26 2.15 2.08 2.03 1.99 1.97 1.95 1.91 1.89 1.88 1.86 1.86 1.84 1.83 
12 11.02 5.11 3.75 3.18 2.86 2.54 2.37 2.24 2.16 2.11 2.07 2.04 2.02 1.99 1.96 1.95 1.93 1.92 1.90 1.89 
16 12.14 5.43 3.93 3.31 2.97 2.62 2.44 2.31 2.23 2.17 2.13 2.10 2.07 2.04 2.01 2.00 1.98 1.97 1.95 1.94 
20 13.08 5.70 4.08 3.42 3.06 2.69 2.50 2.36 2.27 2.21 2.17 2.14 2.11 2.08 2.05 2.03 2.02 2.01 1.99 1.97 
30 15.00 6.20 4.36 3.61 3.22 2.81 2.60 2.45 2.36 2.30 2.25 2.21 2.19 2.15 2.12 2.10 2.08 2.07 2.04 2.04 
40 16.52 6.59 4.57 3.76 3.33 2.90 2.68 2.52 2.42 2.35 2.30 2.27 2.24 2.20 2.17 2.15 2.13 2.12 2.10 2.08 
50 17.81 6.90 4.73 3.87 3.42 2.96 2.73 2.57 2.46 2.40 2.35 2.31 2.28 2.24 2.21 2.18 2.17 2.15 2.13 2.11 
60 18.93 7.18 4.87 3.97 3.50 3.02 2.78 2.61 2.50 2.43 2.38 2.34 2.31 2.27 2.24 2.21 2.20 2.18 2.16 2.14 
75 20.39 7.50 5.05 4.09 3.59 3.09 2.84 2.66 2.55 2.48 2.42 2.38 2.35 2.30 2.27 2.25 2.23 2.22 2.19 2.18 

100 22.50 7.97 5.27 4.25 3.71 3.18 2.92 2.72 2.61 2.53 2.48 2.44 2.40 2.35 2.32 2.29 2.27 2.26 2.23 2.22 
125 24.14 8.35 5.46 4.37 3.81 3.25 2.97 2.78 2.66 2.57 2.52 2.48 2.44 2.39 2.35 2.33 2.31 2.30 2.27 2.25 
150 25.78 8.67 5.62 4.48 3.90 3.31 3.02 2.82 2.70 2.61 2.55 2.50 2.47 2.42 2.38 2.36 2.34 2.32 2.29 2.27 
175 27.19 8.96 5.77 4.57 3.96 3.35 3.06 2.85 2.72 2.64 2.58 2.53 2.50 2.45 2.41 2.38 2.36 2.34 2.32 2.30 
200 28.12 9.20 5.86 4.64 4.01 3.40 3.10 2.89 2.75 2.67 2.60 2.56 2.52 2.47 2.43 2.40 2.38 2.37 2.34 2.32 

Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations (40 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 4.02 2.53 2.09 1.88 1.76 1.63 1.55 1.49 1.46 1.43 1.41 1.40 1.39 1.37 1.36 1.35 1.35 1.34 1.33 1.32 
2 5.14 3.00 2.42 2.15 1.99 1.82 1.73 1.66 1.62 1.59 1.57 1.55 1.54 1.52 1.50 1.49 1.49 1.48 1.47 1.46 
3 5.91 3.31 2.62 2.31 2.13 1.94 1.84 1.76 1.71 1.68 1.65 1.64 1.62 1.60 1.58 1.57 1.56 1.56 1.54 1.54 
4 6.52 3.53 2.76 2.42 2.23 2.02 1.91 1.83 1.78 1.74 1.71 1.69 1.68 1.66 1.64 1.63 1.62 1.61 1.60 1.59 
5 7.04 3.72 2.88 2.51 2.31 2.09 1.97 1.88 1.83 1.79 1.76 1.74 1.72 1.70 1.68 1.67 1.66 1.65 1.64 1.63 
8 8.26 4.13 3.14 2.71 2.47 2.22 2.09 1.99 1.93 1.89 1.86 1.83 1.81 1.79 1.77 1.75 1.74 1.74 1.72 1.71 
12 9.48 4.51 3.37 2.88 2.62 2.34 2.19 2.08 2.02 1.97 1.94 1.91 1.89 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
16 10.44 4.80 3.54 3.01 2.72 2.42 2.26 2.15 2.08 2.03 1.99 1.97 1.95 1.92 1.89 1.88 1.86 1.86 1.84 1.83 
20 11.25 5.04 3.68 3.11 2.81 2.49 2.32 2.20 2.13 2.07 2.04 2.01 1.99 1.96 1.93 1.92 1.90 1.89 1.87 1.86 
30 12.90 5.49 3.93 3.30 2.96 2.60 2.42 2.29 2.21 2.16 2.12 2.09 2.06 2.03 2.00 1.99 1.97 1.96 1.94 1.93 
40 14.20 5.84 4.12 3.43 3.07 2.69 2.50 2.36 2.27 2.21 2.17 2.14 2.11 2.08 2.05 2.03 2.02 2.01 1.99 1.97 
50 15.31 6.12 4.27 3.54 3.15 2.76 2.55 2.41 2.32 2.26 2.21 2.18 2.16 2.12 2.09 2.07 2.05 2.04 2.02 2.00 
60 16.27 6.36 4.40 3.63 3.23 2.81 2.60 2.45 2.36 2.29 2.25 2.21 2.19 2.15 2.12 2.10 2.08 2.07 2.04 2.02 
75 17.54 6.66 4.57 3.74 3.32 2.88 2.66 2.50 2.40 2.34 2.29 2.26 2.23 2.19 2.16 2.14 2.12 2.11 2.08 2.07 
100 19.30 7.07 4.78 3.89 3.43 2.97 2.73 2.57 2.46 2.40 2.35 2.31 2.28 2.24 2.21 2.18 2.17 2.15 2.13 2.11 
125 20.78 7.40 4.95 4.01 3.53 3.03 2.79 2.62 2.51 2.44 2.39 2.35 2.32 2.27 2.24 2.22 2.20 2.19 2.16 2.15 
150 22.11 7.70 5.09 4.11 3.60 3.09 2.84 2.66 2.55 2.48 2.42 2.38 2.35 2.30 2.27 2.25 2.23 2.22 2.19 2.18 
175 23.28 7.93 5.21 4.19 3.66 3.14 2.88 2.70 2.58 2.50 2.45 2.41 2.38 2.33 2.30 2.28 2.26 2.25 2.21 2.20 
200 24.38 8.16 5.32 4.26 3.72 3.18 2.92 2.72 2.61 2.53 2.48 2.43 2.40 2.35 2.32 2.30 2.28 2.27 2.23 2.22 
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Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations ( 40 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 4.97 2.97 2.40 2.14 1.99 1.82 1.73 1.66 1.62 1.59 1.57 1.55 1.54 1.52 1.50 1.49 1.48 1.48 1.47 1.46 
2 6.31 3.49 2.75 2.42 2.23 2.02 1.91 1.83 1.78 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
3 7.25 3.83 2.97 2.58 2.37 2.14 2.01 1.92 1.87 1.83 1.80 1.78 1.76 1.73 1.72 1.70 1.69 1.68 1.67 1.66 
4 8.00 4.09 3.12 2.70 2.47 2.22 2.09 1.99 1.93 1.89 1.86 1.83 1.81 1.79 1.77 1.75 1.74 1.73 1.72 1.71 
5 8.63 4.29 3.25 2.80 2.55 2.28 2.14 2.04 1.98 1.93 1.90 1.88 1.86 1.83 1.81 1.79 1.78 1.77 1.76 1.75 
8 10.11 4.76 3.53 3.00 2.72 2.42 2.26 2.15 2.08 2.03 1.99 1.97 1.95 1.91 1.89 1.88 1.86 1.86 1.84 1.83 
12 11.59 5.19 3.78 3.19 2.87 2.54 2.37 2.24 2.16 2.11 2.07 2.04 2.02 1.99 1.96 1.95 1.93 1.92 1.90 1.89 
16 12.76 5.52 3.96 3.32 2.98 2.62 2.44 2.31 2.23 2.17 2.13 2.10 2.07 2.04 2.01 2.00 1.98 1.97 1.95 1.94 
20 13.76 5.79 4.11 3.43 3.07 2.69 2.50 2.36 2.27 2.21 2.17 2.14 2.11 2.08 2.05 2.03 2.02 2.01 1.99 1.97 
30 15.76 6.30 4.39 3.63 3.22 2.81 2.60 2.45 2.36 2.29 2.25 2.21 2.19 2.15 2.12 2.10 2.08 2.07 2.04 2.02 
40 17.34 6.69 4.59 3.77 3.34 2.90 2.68 2.52 2.42 2.35 2.30 2.27 2.24 2.20 2.17 2.15 2.13 2.12 2.10 2.08 
50 18.71 7.01 4.76 3.89 3.43 2.97 2.73 2.57 2.46 2.40 2.35 2.31 2.28 2.24 2.21 2.18 2.17 2.15 2.13 2.11 
60 19.88 7.28 4.90 3.98 3.51 3.02 2.78 2.61 2.50 2.43 2.38 2.34 2.31 2.27 2.24 2.21 2.20 2.18 2.16 2.14 
75 21.41 7.62 5.08 4.10 3.60 3.09 2.84 2.66 2.55 2.48 2.42 2.38 2.35 2.30 2.27 2.25 2.23 2.22 2.19 2.18 

100 23.59 8.09 5.31 4.26 3.72 3.18 2.92 2.72 2.61 2.53 2.48 2.43 2.40 2.35 2.32 2.29 2.28 2.26 2.23 2.22 
125 25.47 8.48 5.49 4.38 3.82 3.25 2.97 2.77 2.66 2.57 2.52 2.47 2.44 2.39 2.36 2.33 2.31 2.29 2.27 2.25 
150 27.03 8.79 5.64 4.49 3.90 3.31 3.02 2.82 2.70 2.61 2.55 2.50 2.47 2.42 2.39 2.36 2.34 2.32 2.29 2.28 
175 28.44 9.06 5.78 4.57 3.96 3.36 3.06 2.85 2.72 2.64 2.58 2.53 2.50 2.45 2.41 2.39 2.36 2.34 2.32 2.30 
200 29.69 9.30 5.90 4.65 4.02 3.40 3.10 2.88 2.75 2.67 2.60 2.56 2.52 2.47 2.43 2.41 2.39 2.36 2.34 2.32 

Table 19-13. K-Multipliers for Modified Calif. Intrawell Prediction Limits on Observations ( 40 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 5.99 3.43 2.73 2.40 2.22 2.02 1.91 1.83 1.77 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
2 7.60 4.02 3.10 2.69 2.46 2.22 2.09 1.99 1.93 1.89 1.86 1.83 1.81 1.79 1.77 1.75 1.74 1.73 1.72 1.71 
3 8.72 4.40 3.33 2.87 2.61 2.33 2.19 2.08 2.02 1.97 1.94 1.91 1.89 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
4 9.61 4.68 3.50 2.99 2.71 2.42 2.26 2.15 2.08 2.03 1.99 1.97 1.95 1.91 1.89 1.88 1.86 1.86 1.84 1.83 
5 10.36 4.91 3.64 3.09 2.80 2.48 2.32 2.20 2.13 2.07 2.04 2.01 1.99 1.96 1.93 1.92 1.90 1.89 1.87 1.86 
8 12.14 5.43 3.93 3.31 2.97 2.62 2.44 2.31 2.23 2.17 2.13 2.10 2.07 2.04 2.01 2.00 1.98 1.97 1.95 1.94 
12 13.91 5.92 4.21 3.51 3.13 2.74 2.54 2.40 2.31 2.25 2.21 2.17 2.15 2.11 2.08 2.06 2.05 2.04 2.02 2.00 
16 15.32 6.29 4.41 3.65 3.24 2.83 2.62 2.47 2.37 2.31 2.26 2.23 2.20 2.16 2.13 2.11 2.09 2.08 2.06 2.05 
20 16.50 6.59 4.57 3.76 3.33 2.90 2.67 2.52 2.42 2.35 2.30 2.27 2.24 2.20 2.17 2.15 2.13 2.12 2.10 2.08 
30 18.91 7.17 4.87 3.97 3.50 3.02 2.78 2.61 2.50 2.43 2.38 2.34 2.31 2.27 2.24 2.21 2.20 2.18 2.16 2.14 
40 20.82 7.61 5.10 4.12 3.62 3.11 2.85 2.67 2.56 2.49 2.43 2.39 2.36 2.32 2.28 2.26 2.24 2.23 2.20 2.18 
50 22.42 7.97 5.28 4.25 3.72 3.18 2.91 2.72 2.61 2.53 2.48 2.43 2.40 2.35 2.32 2.29 2.28 2.26 2.23 2.22 
60 23.83 8.28 5.43 4.35 3.79 3.24 2.96 2.77 2.65 2.57 2.51 2.47 2.43 2.38 2.35 2.32 2.30 2.29 2.26 2.24 
75 25.70 8.67 5.62 4.47 3.89 3.31 3.02 2.82 2.69 2.61 2.55 2.51 2.47 2.42 2.38 2.36 2.34 2.32 2.29 2.27 

100 28.28 9.18 5.88 4.64 4.02 3.40 3.10 2.88 2.75 2.67 2.60 2.56 2.52 2.47 2.43 2.40 2.38 2.36 2.33 2.31 
125 30.47 9.61 6.07 4.78 4.12 3.47 3.15 2.93 2.80 2.71 2.64 2.60 2.56 2.50 2.47 2.44 2.41 2.40 2.37 2.34 
150 32.34 10.00 6.25 4.88 4.20 3.54 3,20 2.97 2.84 2.74 2.68 2.63 2.59 2.53 2.50 2.47 2.44 2.42 2.39 2.37 
175 34.06 10.31 6.41 4.98 4.28 3.58 3.25 3.01 2.87 2.77 2.71 2.66 2.62 2.56 2.52 2.49 2.47 2.45 2.42 2.40 
200 35.62 10.59 6.52 5.06 4.34 3.62 3.28 3.04 2.90 2.80 2.73 2.68 2.64 2.58 2.54 2.51 2.49 2.47 2.44 2.41 
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Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.42 1.20 1.12 1.07 1.04 1.01 0.98 0.97 0.96 0.9S 0.94 0.94 0.94 0.93 0.93 0.93 0.92 0.92 0.92 0.92 
2 2.01 1.63 1.48 1.41 1.36 1.30 1.27 1.2S 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 1.18 1.18 1.17 1.17 
3 2.41 1.88 1.70 1.60 1.S4 1.47 1.43 1.40 1.38 1.37 1.3S 1.3S 1.34 1.33 1.32 1.32 1.32 1.31 1.31 1.30 
4 2.71 2.07 1.8S 1.73 1.66 1.58 1.S4 1.SO 1.48 1.46 1.4S 1.44 1.44 1.43 1.42 1.41 1.41 1.40 1.40 1.39 
s 2.97 2.22 1.97 1.84 1.76 1.67 1.62 1.58 1.S6 1.S4 1.S3 1.S2 1.Sl 1.50 1.49 1.48 1.48 1.47 1.47 1.46 
8 3.55 2.SS 2.22 2.06 1.96 1.8S 1.79 1.74 1.71 1.69 1.67 1.66 1.6S 1.64 1.63 1.62 1.62 1.61 1.60 1.60 
12 4.13 2.8S 2.4S 2.2S 2.13 2.00 1.93 1.88 1.84 1.82 1.80 1.78 1.77 1.76 1.7S 1.74 1.73 1.73 1.72 1.71 
16 4.59 3.07 2.61 2.39 2.26 2.11 2.03 1.97 1.93 1.90 1.88 1.87 1.86 1.84 1.83 1.82 1.81 1.80 1.79 1.79 
20 4.97 3.25 2.74 2.49 2.3S 2.19 2.10 2.04 2.00 1.97 1.9S 1.93 1.92 1.90 1.89 1.88 1.87 1.86 1.8S 1.84 
30 5.74 3.59 2.98 2.69 2.S2 2.34 2.24 2.17 2.12 2.09 2.06 2.04 2.03 2.01 1.99 1.98 1.97 1.97 1.9S 1.9S 
40 6.34 3.85 3.15 2.83 2.6S 2.4S 2.34 2.26 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.05 2.04 2.02 2.02 
so 6.85 4.06 3.29 2.94 2.7S 2.S3 2.41 2.32 2.27 2.23 2.20 2.18 2.16 2.14 2.12 2.11 2.10 2.09 2.08 2.07 
60 7.30 4.23 3.41 3.04 2.83 2.S9 2.47 2.38 2.32 2.28 2.2S 2.23 2.21 2.19 2.17 2.1S 2.14 2.14 2.12 2.11 
7S 7.88 4.46 3.56 3,15 2.92 2.68 2.S4 2.4S 2.38 2.34 2.31 2.29 2.27 2.24 2.22 2.21 2.20 2.19 2.17 2.16 

100 8.69 4.76 3.75 3.30 3.05 2.78 2.64 2.S3 2.47 2.42 2.39 2.36 2.34 2.31 2.29 2.28 2.26 2.26 2.24 2.23 
12S 9.38 5.00 3.90 3.42 3.15 2.86 2.71 2.60 2.S3 2.48 2.44 2.42 2.40 2.37 2.34 2.33 2.32 2.31 2.29 2.28 
150 9.98 5.21 4.03 3.52 3.23 2.93 2.77 2.6S 2.S8 2.S3 2.49 2.46 2.44 2.41 2.39 2.37 2.36 2.3S 2.33 2.32 
17S 10.51 5.39 4.14 3.60 3.30 2.99 2.82 2.70 2.62 2.S7 2.S3 2.50 2.48 2.4S 2.42 2.41 2.39 2.38 2.36 2.3S 
200 11.00 5.54 4.24 3.67 3.36 3.04 2.86 2.74 2.66 2.60 2.S6 2.S3 2.Sl 2.48 2.4S 2.44 2.42 2.41 2.39 2.38 

Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (1 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 1.89 1.58 1.4S 1.38 1.34 1.29 1.26 1.24 1.23 1.22 1.21 1.20 1.20 1.19 1.18 1.18 1.18 1.18 1.17 1.17 
2 2.S7 2.02 1.82 1.71 1.6S 1.S7 1.S3 1.50 1.48 1.46 1.4S 1.44 1.43 1.42 1.42 1.41 1.41 1.40 1.40 1.39 
3 3.03 2.29 2.04 1.91 1.83 1.73 1.68 1.64 1.61 1.60 1.58 1.S7 1.S6 1.SS 1.S4 1.S4 1.S3 1.S3 1.S2 1.S2 
4 3.39 2.SO 2.19 2.04 1.9S 1.84 1.78 1.74 1.71 1.69 1.67 1.66 1.6S 1.64 1.63 1.62 1.62 1.61 1.60 1.60 
s 3.68 2.66 2.32 2.1S 2.04 1.93 1.86 1.81 1.78 1.76 1.74 1.73 1.72 1.70 1.69 1.69 1.68 1.67 1.67 1.66 
8 4.38 3.02 2.S8 2.37 2.2S 2.10 2.03 1.97 1.93 1.90 1.88 1.87 1.86 1.84 1.83 1.82 1.81 1.80 1.79 1.79 
12 5.07 3.35 2.82 2.S7 2.42 2.2S 2.16 2.09 2.05 2.02 2.00 1.98 1.97 1.9S 1.93 1.92 1.92 1.91 1.90 1.89 
16 5.61 3.59 2.99 2.71 2.S4 2.36 2.26 2.18 2.14 2.10 2.08 2.06 2.05 2.02 2.01 2.00 1.99 1.98 1.97 1.96 
20 6.07 3.79 3.13 2.82 2.64 2.44 2.33 2.2S 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.05 2.04 2.02 2.02 
30 6.99 4.17 3.39 3.02 2.82 2.S9 2.47 2.38 2.32 2.28 2.2S 2.23 2.21 2.19 2.17 2.1S 2.14 2.14 2.12 2.11 
40 7.72 4.46 3.57 3.17 2.94 2.70 2.S6 2.46 2.40 2.36 2.33 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
so 8.33 4.69 3.72 3.29 3.04 2.78 2.64 2.S3 2.46 2.42 2.39 2.36 2.34 2.31 2.29 2.28 2.26 2.26 2.24 2.23 
60 8.87 4.89 3.85 3.39 3.13 2.84 2.70 2.S9 2.S2 2.47 2.43 2.41 2.39 2.36 2.33 2.32 2.31 2.30 2.28 2.27 
7S 9.57 5.14 4.01 3.51 3.23 2.93 2.77 2.6S 2.S8 2.S3 2.49 2.46 2.44 2.41 2.39 2.37 2.36 2.3S 2.33 2.32 
100 10.55 5.47 4.21 3.66 3.36 3.03 2.86 2.74 2.66 2.60 2.S6 2.S3 2.Sl 2.48 2.4S 2.44 2.42 2.41 2.39 2.38 
12S 11.38 5. 75 4.38 3.79 3.46 3.12 2.93 2.80 2.72 2.66 2.62 2.S9 2.S7 2.S3 2.SO 2.48 2.47 2.46 2.44 2.43 
150 12.10 5.98 4.52 3.89 3.55 3.18 2.99 2.8S 2.77 2.71 2.67 2.63 2.61 2.S7 2.S4 2.S3 2.Sl 2.50 2.48 2.46 
17S 12.74 6.18 4.64 3.98 3.62 3.24 3.04 2.90 2.81 2.7S 2.70 2.67 2.64 2.61 2.S8 2.S6 2.S4 2.S3 2.Sl 2.SO 
200 13.33 6.36 4.74 4.06 3.68 3.29 3.09 2.94 2.8S 2.78 2.74 2.70 2.68 2.64 2.61 2.S9 2.S7 2.S6 2.S4 2.S2 
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Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.37 1.94 1.77 1.68 1.62 1.56 1.52 1.49 1.47 1.45 1.44 1.44 1.43 1.42 1.41 1.41 1.40 1.40 1.40 1.39 
2 3.14 2.41 2.15 2.01 1.93 1.83 1.77 1.73 1.70 1.68 1.67 1.66 1.65 1.64 1.63 1.62 1.61 1.61 1.60 1.60 
3 3.67 2.71 2.37 2.21 2.10 1.98 1.92 1.87 1.83 1.81 1.79 1.78 1.77 1.75 1.74 1.74 1.73 1.72 1.72 1.71 
4 4.09 2.93 2.54 2.34 2.23 2.09 2.02 1.96 1.92 1.90 1.88 1.86 1.85 1.84 1.82 1.82 1.81 1.80 1.79 1.79 
5 4.43 3.10 2.67 2.45 2.32 2.18 2.09 2.03 1.99 1.96 1.94 1.93 1.92 1.90 1.88 1.88 1.87 1.86 1.85 1.84 
8 5.25 3.50 2.95 2.68 2.53 2.35 2.25 2.18 2.13 2.10 2.08 2.06 2.05 2.02 2.01 2.00 1.99 1.98 1.97 1.96 
12 6.06 3.86 3.20 2.89 2.70 2.50 2.39 2.31 2.25 2.22 2.19 2.17 2.15 2.13 2.11 2.10 2.09 2.08 2.07 2.06 
16 6.70 4.13 3.39 3.03 2.83 2.61 2.48 2.39 2.34 2.30 2.27 2.24 2.23 2.20 2.18 2.17 2.16 2.15 2.14 2.13 
20 7.24 4.35 3.53 3.15 2.93 2.69 2.56 2.46 2.40 2.36 2.33 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
30 8.32 4.78 3.81 3.36 3.11 2.84 2.69 2.58 2.51 2.47 2.43 2.41 2.39 2.36 2.33 2.32 2.31 2.30 2.28 2.27 
40 9.18 5.10 4.01 3.52 3.24 2.94 2.79 2.67 2.59 2.54 2.51 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
50 9.90 5.35 4.17 3.64 3.35 3.03 2.86 2.73 2.66 2.60 2.56 2.53 2.51 2.48 2.45 2.43 2.42 2.41 2.39 2.38 
60 10.54 5.57 4.30 3.74 3.43 3.09 2.92 2.79 2.71 2.65 2.61 2.58 2.55 2.52 2.49 2.48 2.46 2.45 2.43 2.42 
75 11.36 5.85 4.47 3.87 3.54 3.18 2.99 2.85 2.77 2.71 2.67 2.63 2.61 2.57 2.54 2.53 2.51 2.50 2.48 2.46 

100 12.52 6.23 4.70 4.04 3.67 3.29 3.08 2.94 2.85 2.78 2.74 2.70 2.68 2.64 2.61 2.59 2.57 2.56 2.54 2.52 
125 13.50 6.53 4.88 4.17 3.78 3.37 3.16 3.00 2.91 2.84 2.79 2.76 2.73 2.69 2.66 2.64 2.62 2.61 2.58 2.57 
150 14.35 6.79 5.03 4.28 3.87 3.44 3.22 3.06 2.96 2.89 2.84 2.80 2.77 2.73 2.70 2.67 2.66 2.65 2.62 2.60 
175 15.11 7.02 5.16 4.37 3.94 3.50 3.27 3.10 3.00 2.93 2.87 2.84 2.81 2.76 2.73 2.71 2.69 2.68 2.65 2.63 
200 15.80 7.22 5.27 4.45 4.01 3.55 3.31 3.14 3.03 2.96 2.91 2.87 2.84 2.79 2.76 2.74 2.72 2.70 2.68 2.66 

Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.01 1.63 1.48 1.41 1.36 1.30 1.27 1.25 1.23 1.22 1.21 1.20 1.20 1.19 1.19 1.18 1.18 1.18 1.17 1.17 
2 2.71 2.07 1.85 1.73 1.66 1.58 1.54 1.50 1.48 1.46 1.45 1.44 1.44 1.43 1.42 1.41 1.41 1.40 1.40 1.39 
3 3.18 2.35 2.06 1.92 1.84 1.74 1.69 1.64 1.62 1.60 1.58 1.57 1.57 1.55 1.54 1.54 1.53 1.53 1.52 1.52 
4 3.55 2.55 2.22 2.06 1.96 1.85 1.79 1.74 1.71 1.69 1.67 1.66 1.65 1.64 1.63 1.62 1.62 1.61 1.60 1.60 
5 3.86 2.71 2.34 2.16 2.06 1.93 1.87 1.82 1.78 1.76 1.74 1.73 1.72 1.71 1.69 1.69 1.68 1.68 1.67 1.66 
8 4.59 3.07 2.61 2.39 2.26 2.11 2.03 1.97 1.93 1.90 1.88 1.87 1.86 1.84 1.83 1.82 1.81 1.80 1.79 1.79 
12 5.30 3.40 2.84 2.58 2.43 2.26 2.17 2.10 2.05 2.02 2.00 1.98 1.97 1.95 1.93 1.92 1.92 1.91 1.90 1.89 
16 5.87 3.65 3.02 2.72 2.55 2.36 2.26 2.19 2.14 2.11 2.08 2.06 2.05 2.03 2.01 2.00 1.99 1.98 1.97 1.96 
20 6.34 3.85 3.15 2.83 2.65 2.45 2.34 2.26 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.05 2.04 2.02 2.02 
30 7.30 4.23 3.41 3.04 2.83 2.59 2.47 2.38 2.32 2.28 2.25 2.23 2.21 2.19 2.17 2.15 2.14 2.14 2.12 2.11 
40 8.05 4.52 3.60 3.18 2.95 2.70 2.56 2.47 2.40 2.36 2.33 2.30 2.29 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
50 8.69 4.76 3.75 3.30 3.05 2.78 2.64 2.53 2.47 2.42 2.39 2.36 2.34 2.31 2.29 2.28 2.26 2.26 2.24 2.23 
60 9.25 4.95 3.87 3.40 3.13 2.85 2.70 2.59 2.52 2.47 2.43 2.41 2.39 2.36 2.33 2.32 2.31 2.30 2.28 2.27 
75 9.98 5.21 4.03 3.52 3.23 2.93 2.77 2.65 2.58 2.53 2.49 2.46 2.44 2.41 2.39 2.37 2.36 2.35 2.33 2.32 
100 11.00 5.54 4.24 3.67 3.36 3.04 2.86 2.74 2.66 2.60 2.56 2.53 2.51 2.48 2.45 2.44 2.42 2.41 2.39 2.38 
125 11.86 5.82 4.40 3.80 3.47 3.12 2.94 2.80 2.72 2.66 2.62 2.59 2.57 2.53 2.50 2.48 2.47 2.46 2.44 2.43 
150 12.61 6.05 4.54 3.90 3.55 3.19 2.99 2.86 2.77 2.71 2.67 2.63 2.61 2.57 2.55 2.53 2.51 2.50 2.48 2.46 
175 13.28 6.26 4.66 3.99 3.63 3.24 3.04 2.90 2.81 2.75 2.70 2.67 2.65 2.61 2.58 2.56 2.54 2.53 2.51 2.50 
200 13.89 6.44 4.77 4.07 3.69 3.29 3.09 2.94 2.85 2.78 2.74 2.70 2.68 2.64 2.61 2.59 2.57 2.56 2.54 2.51 
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Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (2 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.57 2.02 1.82 1.71 1.65 1.57 1.53 1.50 1.48 1.46 1.45 1.44 1.43 1.42 1.42 1.41 1.41 1.40 1.40 1.39 
2 3.39 2.50 2.19 2.04 1.95 1.84 1.78 1.74 1.71 1.69 1.67 1.66 1.65 1.64 1.63 1.62 1.62 1.61 1.60 1.60 
3 3.94 2.80 2.42 2.23 2.12 2.00 1.93 1.87 1.84 1.81 1.80 1.78 1.77 1.76 1.75 1.74 1.73 1.73 1.72 1.71 
4 4.38 3.02 2.58 2.37 2.25 2.10 2.03 1.97 1.93 1.90 1.88 1.87 1.86 1.84 1.83 1.82 1.81 1.80 1.79 1.79 
5 4.75 3.20 2.71 2.48 2.34 2.19 2.10 2.04 2.00 1.97 1.95 1.93 1.92 1.90 1.89 1.88 1.87 1.86 1.85 1.84 
8 5.61 3.59 2.99 2.71 2.54 2.36 2.26 2.18 2.14 2.10 2.08 2.06 2.05 2.02 2.01 2.00 1.99 1.98 1.97 1.96 
12 6.47 3.96 3.24 2.91 2.72 2.51 2.39 2.31 2.26 2.22 2.19 2.17 2.15 2.13 2.11 2.10 2.09 2.08 2.07 2.06 
16 7.15 4.24 3.43 3.06 2.85 2.61 2.49 2.40 2.34 2.30 2.27 2.25 2.23 2.20 2.18 2.17 2.16 2.15 2.14 2.13 
20 7.72 4.46 3.57 3.17 2.94 2.70 2.56 2.46 2.40 2.36 2.33 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
30 8.87 4.89 3.85 3.39 3.13 2.84 2.70 2.59 2.52 2.47 2.43 2.41 2.39 2.36 2.33 2.32 2.31 2.30 2.28 2.27 
40 9.78 5.21 4.05 3.54 3.26 2.95 2.79 2.67 2.60 2.54 2.51 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
50 10.55 5.47 4.21 3.66 3.36 3.03 2.86 2.74 2.66 2.60 2.56 2.53 2.51 2.48 2.45 2.44 2.42 2.41 2.39 2.38 
60 11.22 5.70 4.35 3.76 3.44 3.10 2.92 2.79 2.71 2.65 2.61 2.58 2.56 2.52 2.49 2.48 2.46 2.45 2.43 2.42 
75 12.10 5.98 4.52 3.89 3.55 3.18 2.99 2.85 2.77 2.71 2.67 2.63 2.61 2.57 2.54 2.53 2.51 2.50 2.48 2.46 

100 13.33 6.36 4.74 4.06 3.68 3.29 3.09 2.94 2.85 2.78 2.74 2.70 2.68 2.64 2.61 2.59 2.57 2.56 2.54 2.52 
125 14.36 6.67 4.92 4.19 3.79 3.37 3.16 3.00 2.91 2.84 2.79 2.76 2.73 2.69 2.66 2.64 2.62 2.61 2.58 2.57 
150 15.25 6.93 5.07 4.30 3.88 3.44 3.22 3.06 2.96 2.89 2.84 2.80 2.77 2.73 2.70 2.68 2.66 2.65 2.62 2.60 
175 16.05 7.16 5.20 4.39 3.96 3.50 3.27 3.10 3.00 2.93 2.87 2.84 2.81 2.76 2.73 2.71 2.69 2.68 2.65 2.63 
200 16.80 7.37 5.31 4.47 4.02 3.55 3.31 3.14 3.03 2.96 2.91 2.87 2.84 2.79 2.76 2.74 2.72 2.70 2.68 2.66 

Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (2 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.14 2.41 2.15 2.01 1.93 1.83 1.77 1.73 1.70 1.68 1.67 1.66 1.65 1.64 1.63 1.62 1.61 1.61 1.60 1.60 
2 4.09 2.93 2.54 2.34 2.23 2.09 2.02 1.96 1.92 1.90 1.88 1.86 1.85 1.84 1.82 1.82 1.81 1.80 1.79 1.79 
3 4.74 3.25 2.78 2.54 2.40 2.24 2.16 2.09 2.05 2.02 2.00 1.98 1.97 1.95 1.93 1.92 1.92 1.91 1.90 1.89 
4 5.25 3.50 2.95 2.68 2.53 2.35 2.25 2.18 2.13 2.10 2.08 2.06 2.05 2.02 2.01 2.00 1.99 1.98 1.97 1.96 
5 5.68 3.69 3.09 2.80 2.62 2.43 2.33 2.25 2.20 2.17 2.14 2.12 2.10 2.08 2.07 2.05 2.04 2.04 2.02 2.02 
8 6.70 4.13 3.39 3.03 2.83 2.61 2.48 2.39 2.34 2.30 2.27 2.24 2.23 2.20 2.18 2.17 2.16 2.15 2.14 2.13 
12 7.71 4.54 3.65 3.25 3.01 2.76 2.62 2.52 2.45 2.41 2.37 2.35 2.33 2.30 2.28 2.27 2.25 2.25 2.23 2.22 
16 8.51 4.85 3.85 3.40 3.14 2.86 2.71 2.60 2.53 2.48 2.45 2.42 2.40 2.37 2.35 2.33 2.32 2.31 2.29 2.28 
20 9.18 5.10 4.01 3.52 3.24 2.94 2.79 2.67 2.59 2.54 2.51 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
30 10.54 5.57 4.30 3.74 3.43 3.09 2.92 2.79 2.71 2.65 2.61 2.58 2.55 2.52 2.49 2.48 2.46 2.45 2.43 2.42 
40 11.61 5.93 4.52 3.91 3.57 3.20 3.01 2.87 2.79 2.73 2.68 2.65 2.62 2.59 2.56 2.54 2.52 2.51 2.49 2.48 
50 12.52 6.23 4.70 4.04 3.67 3.29 3.08 2.94 2.85 2.78 2.74 2.70 2.68 2.64 2.61 2.59 2.57 2.56 2.54 2.52 
60 13.32 6.48 4.84 4.14 3.76 3.35 3.14 2.99 2.90 2.83 2.78 2.75 2.72 2.68 2.65 2.63 2.61 2.60 2.57 2.56 
75 14.35 6.79 5.03 4.28 3.87 3.44 3.22 3.06 2.96 2.89 2.84 2.80 2.77 2.73 2.70 2.67 2.66 2.65 2.62 2.60 
100 15.80 7.22 5.27 4.45 4.01 3.55 3.31 3.14 3.03 2.96 2.91 2.87 2.84 2.79 2.76 2.74 2.72 2.70 2.68 2.66 
125 17.02 7.57 5.46 4.59 4.12 3.63 3.38 3.20 3.09 3.02 2.96 2.92 2.89 2.84 2.81 2.78 2.76 2.75 2.72 2.70 
150 18.10 7.87 5.63 4.71 4.22 3.70 3.44 3.26 3.14 3.06 3.01 2.96 2.93 2.88 2.84 2.82 2.80 2.78 2.76 2.74 
175 19.02 8.12 5.77 4.81 4.29 3.76 3.49 3.30 3.18 3.10 3.04 3.00 2.96 2.91 2.88 2.85 2.83 2.82 2.79 2.77 
200 19.90 8.35 5.89 4.89 4.36 3.82 3.54 3.34 3.22 3.13 3.07 3.03 2.99 2.94 2.91 2.88 2.85 2.84 2.81 2.79 
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Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (5 COC, Annual) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.97 2.22 1.97 1.84 1.76 1.67 1.62 1.58 1.56 1.54 1.53 1.52 1.51 1.50 1.49 1.48 1.48 1.47 1.47 1.46 
2 3.86 2.71 2.34 2.16 2.06 1.93 1.87 1.82 1.78 1.76 1.74 1.73 1.72 1.71 1.69 1.69 1.68 1.68 1.67 1.66 
3 4.48 3.02 2.57 2.36 2.23 2.09 2.01 1.95 1.91 1.88 1.86 1.85 1.84 1.82 1.81 1.80 1.79 1.79 1.78 1.77 
4 4.97 3.25 2.74 2.49 2.35 2.19 2.10 2.04 2.00 1.97 1.95 1.93 1.92 1.90 1.89 1.88 1.87 1.86 1.85 1.84 
5 5.38 3.44 2.87 2.60 2.45 2.27 2.18 2.11 2.07 2.03 2.01 1.99 1.98 1.96 1.95 1.94 1.93 1.92 1.91 1.90 
8 6.34 3.85 3.15 2.83 2.65 2.45 2.34 2.26 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.05 2.04 2.02 2.02 
12 7.30 4.23 3.41 3,04 2.83 2.59 2.47 2.38 2.32 2.28 2.25 2.23 2.21 2.19 2.17 2.15 2.14 2.14 2.12 2.11 
16 8.05 4.52 3.60 3.18 2.95 2.70 2.56 2.47 2.40 2.36 2.33 2.30 2.29 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
20 8.69 4.76 3.75 3.30 3.05 2.78 2.64 2.53 2.47 2.42 2.39 2.36 2.34 2.31 2.29 2.28 2.26 2.26 2.24 2.23 
30 9.98 5.21 4.03 3.52 3.23 2.93 2.77 2.65 2.58 2.53 2.49 2.46 2.44 2.41 2.39 2.37 2.36 2.35 2.33 2.32 
40 10.99 5.54 4.24 3.67 3.36 3.04 2.86 2.74 2.66 2.60 2.56 2.54 2.51 2.48 2.45 2.44 2.42 2.41 2.39 2.38 
50 11.86 5.82 4.40 3.80 3.47 3.12 2.94 2.80 2.72 2.66 2.62 2.59 2.57 2.53 2.50 2.48 2.47 2.46 2.44 2.43 
60 12.61 6.05 4.54 3.90 3.55 3.19 2.99 2.86 2.77 2.71 2.67 2.63 2.61 2.57 2.55 2.53 2.51 2.50 2.48 2.46 
75 13.59 6.35 4.71 4.03 3.66 3.27 3.07 2.92 2.83 2.77 2.72 2.69 2.66 2.62 2.59 2.57 2.56 2.55 2.52 2.51 

100 14.97 6.75 4.94 4.20 3.80 3.38 3.16 3.00 2.91 2.84 2.79 2.76 2.73 2.69 2.66 2.64 2.62 2.60 2.58 2.57 
125 16.14 7.08 5.13 4.33 3.90 3.46 3,23 3.07 2.97 2.90 2.85 2.81 2.78 2.74 2.71 2.68 2.67 2.65 2.62 2.61 
150 17.14 7.35 5.28 4.44 4.00 3.53 3.29 3.12 3.01 2.95 2.89 2.85 2.82 2.78 2.75 2.72 2.70 2.69 2.66 2.65 
175 18.05 7.59 5.41 4.53 4.06 3.59 3.34 3.16 3.05 2.98 2.92 2.89 2.86 2.81 2.78 2.75 2.74 2.72 2.70 2.68 
200 18.87 7.81 5.53 4.61 4.13 3.64 3.39 3.20 3.09 3.02 2.96 2.92 2.89 2.84 2.81 2.78 2.76 2.75 2.72 2.70 

Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (5 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.68 2.66 2.32 2.15 2.04 1.93 1.86 1.81 1.78 1.76 1.74 1.73 1.72 1.70 1.69 1.69 1.68 1.67 1.67 1.66 
2 4.75 3.20 2.71 2.48 2.34 2.19 2.10 2.04 2.00 1.97 1.95 1.93 1.92 1.90 1.89 1.88 1.87 1.86 1.85 1.84 
3 5.49 3.54 2.95 2.68 2.52 2.34 2.24 2.16 2.12 2.09 2.06 2.04 2.03 2.01 1.99 1.98 1.97 1.97 1.95 1.95 
4 6.07 3.79 3.13 2.82 2.64 2.44 2.33 2.25 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.05 2.04 2.02 2.02 
5 6.56 4.00 3.27 2.93 2.74 2.52 2.41 2.32 2.27 2.23 2.20 2.18 2.16 2.14 2.12 2.11 2.10 2.09 2.08 2.07 
8 7.72 4.46 3.57 3.17 2.94 2.70 2.56 2.46 2.40 2.36 2.33 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
12 8.87 4.89 3.85 3.39 3.13 2.84 2.70 2.59 2.52 2.47 2.43 2.41 2.39 2.36 2.33 2.32 2.31 2.30 2.28 2.27 
16 9.78 5.21 4.05 3.54 3.26 2.95 2.79 2.67 2.60 2.54 2.51 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
20 10.55 5.47 4.21 3.66 3.36 3.03 2.86 2.74 2.66 2.60 2.56 2.53 2.51 2.48 2.45 2.44 2.42 2.41 2.39 2.38 
30 12.10 5.98 4.52 3.89 3.55 3.18 2.99 2.85 2.77 2.71 2.67 2.63 2.61 2.57 2.54 2.53 2.51 2.50 2.48 2.46 
40 13.33 6.36 4.74 4.06 3.68 3.29 3.09 2.94 2.85 2.78 2.74 2.70 2.68 2.64 2.61 2.59 2.57 2.56 2.54 2.52 
50 14.36 6.67 4.92 4.19 3.79 3.37 3.16 3.00 2.91 2.84 2.79 2.76 2.73 2.69 2.66 2.64 2.62 2.61 2.58 2.57 
60 15.26 6.93 5.07 4.30 3.88 3.44 3.22 3.06 2.96 2.89 2.84 2.80 2.77 2.73 2.70 2.68 2.66 2.65 2.62 2.60 
75 16.44 7.27 5.26 4.43 3.99 3.53 3.29 3.12 3.02 2.94 2.89 2.85 2.82 2.78 2.75 2.72 2.70 2.68 2.66 2.65 
100 18.11 7.72 5.51 4.61 4.13 3.64 3.39 3.20 3.09 3.02 2.96 2.92 2.89 2.84 2.81 2.78 2.76 2.75 2.72 2.70 
125 19.51 8.09 5.71 4.75 4.24 3.72 3.46 3.27 3.15 3.07 3.01 2.97 2.94 2.89 2.85 2.83 2.81 2.79 2.77 2.75 
150 20.74 8.41 5.88 4.87 4.34 3.79 3.52 3.32 3.20 3.12 3.06 3.01 2.98 2.93 2.89 2.87 2.85 2.83 2.80 2.78 
175 21.80 8.67 6.03 4.97 4.42 3.85 3.57 3.36 3.24 3.15 3.09 3.05 3.01 2.96 2.92 2.90 2.88 2.86 2.83 2.81 
200 22.85 8.91 6.15 5.06 4.49 3.91 3.61 3.40 3.28 3.19 3.13 3.08 3.04 2.99 2.95 2.92 2.90 2.89 2.86 2.84 
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Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (5 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 4.43 3.10 2.67 2.4S 2.32 2.18 2.09 2.03 1.99 1.96 1.94 1.93 1.92 1.90 1.88 1.88 1.87 1.86 1.8S 1.84 
2 5.68 3.69 3.09 2.80 2.62 2.43 2.33 2.2S 2.20 2.17 2.14 2.12 2.10 2.08 2.07 2.05 2.04 2.04 2.02 2.02 
3 6.55 4.07 3.34 3.00 2.80 2.S8 2.46 2.37 2.32 2.28 2.2S 2.23 2.21 2.19 2.17 2.1S 2.14 2.14 2.12 2.11 
4 7.24 4.35 3.S3 3.1S 2.93 2.69 2.S6 2.46 2.40 2.36 2.33 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
s 7.81 4.58 3.68 3.27 3.03 2.77 2.63 2.S3 2.46 2.42 2.39 2.36 2.34 2.31 2.29 2.28 2.26 2.2S 2.24 2.23 
8 9.18 5.10 4.01 3.52 3.24 2.94 2.79 2.67 2.S9 2.S4 2.Sl 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
12 10.54 5.57 4.30 3.74 3.43 3.09 2.92 2.79 2.71 2.6S 2.61 2.S8 2.SS 2.S2 2.49 2.48 2.46 2.4S 2.43 2.42 
16 11.61 5.93 4.52 3.91 3.S7 3.20 3.01 2.87 2.79 2.73 2.68 2.6S 2.62 2.S9 2.S6 2.S4 2.S2 2.Sl 2.49 2.48 
20 12.52 6.23 4.70 4.04 3,67 3.29 3.08 2.94 2.85 2.78 2.74 2.70 2.68 2.64 2.61 2.S9 2.S7 2.S6 2.S4 2.S2 
30 14.35 6.79 5.03 4.28 3.87 3.44 3.22 3.06 2.96 2.89 2.84 2.80 2.77 2.73 2.70 2.67 2.66 2.6S 2.62 2.60 
40 15.81 7.22 5.27 4.45 4.01 3.SS 3.31 3.14 3.03 2.96 2.91 2.87 2.84 2.79 2.76 2.74 2.72 2.70 2.68 2.66 
so 17.02 7.57 5.46 4.59 4.12 3.63 3.38 3.20 3.09 3.02 2.96 2.92 2.89 2.84 2.81 2.78 2.76 2.7S 2.72 2.70 
60 18.09 7.87 5.63 4.71 4.22 3.70 3.44 3.26 3.14 3.06 3.01 2.96 2.93 2.88 2.84 2.82 2.80 2.78 2.76 2.74 
7S 19.48 8.24 5.83 4.85 4.33 3.79 3.S2 3.32 3.20 3.12 3.06 3.01 2.98 2.93 2.89 2.87 2.8S 2.83 2.80 2.78 

100 21.45 8.75 6.10 5.04 4.48 3.90 3.61 3.40 3.28 3.19 3.13 3.08 3.04 2.99 2.9S 2.93 2.90 2.89 2.86 2.84 
12S 23.09 9.15 6.32 5.19 4.60 3.99 3.68 3.47 3.34 3.2S 3.18 3.13 3.09 3.04 3.00 2.97 2.9S 2.93 2.90 2.88 
150 24.55 9.49 6.50 5.32 4.69 4.06 3.74 3.S2 3.39 3.29 3.22 3.18 3.13 3.07 3.03 3.00 2.98 2.96 2.93 2.91 
17S 25.84 9.79 6.67 5.43 4.78 4.12 3.80 3.S7 3.43 3.33 3.26 3.21 3.17 3.11 3.07 3.04 3.01 2.99 2.96 2.94 
200 27.07 10.03 6.80 5.52 4.85 4.18 3.84 3.61 3.46 3.36 3.29 3.24 3.20 3.13 3.09 3.06 3.04 3.02 2.99 2.96 

Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 3.86 2.71 2.34 2.16 2.06 1.93 1.87 1.82 1.78 1.76 1.74 1.73 1.72 1.71 1.69 1.69 1.68 1.68 1.67 1.66 
2 4.97 3.25 2.74 2.49 2.3S 2.19 2.10 2.04 2.00 1.97 1.9S 1.93 1.92 1.90 1.89 1.88 1.87 1.86 1.85 1.84 
3 5.74 3.59 2.98 2.69 2.S2 2.34 2.24 2.17 2.12 2.09 2.06 2.04 2.03 2.01 1.99 1.98 1.97 1.97 1.9S 1.9S 
4 6.34 3.85 3.15 2.83 2.6S 2.4S 2.34 2.26 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.05 2.04 2.02 2.02 
s 6.85 4.06 3.29 2.94 2.7S 2.S3 2.41 2.32 2.27 2.23 2.20 2.18 2.16 2.14 2.12 2.11 2.10 2.09 2.08 2.07 
8 8.05 4.52 3.60 3.18 2.95 2.70 2.S6 2.47 2.40 2.36 2.33 2.30 2.29 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
12 9.25 4.95 3.87 3.40 3,13 2.8S 2.70 2.S9 2.S2 2.47 2.43 2.41 2.39 2.36 2.33 2.32 2.31 2.30 2.28 2.27 
16 10.20 5.28 4.08 3.55 3.26 2.9S 2.79 2.67 2.60 2.S5 2.Sl 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
20 11.00 5.54 4.24 3.67 3.36 3.04 2.86 2.74 2.66 2.60 2.S6 2.S3 2.Sl 2.48 2.4S 2.44 2.42 2.41 2.39 2.38 
30 12.61 6.05 4.54 3.90 3.55 3.19 2.99 2.86 2.77 2.71 2.67 2.63 2.61 2.S7 2.SS 2.S3 2.Sl 2.50 2.48 2.46 
40 13.89 6.44 4.77 4.07 3.69 3.29 3.09 2.94 2.8S 2.78 2.74 2.70 2.68 2.64 2.61 2.S9 2.S7 2.S6 2.S4 2.S2 
so 14.96 6.75 4.94 4.20 3.80 3.38 3.16 3.00 2.91 2.84 2.79 2.76 2.73 2.69 2.66 2.64 2.62 2.60 2.S8 2.S7 
60 15.90 7.01 5.09 4.31 3.88 3.44 3.22 3.06 2.96 2.89 2.84 2.80 2.77 2.73 2.69 2.67 2.66 2.64 2.62 2.60 
7S 17.15 7.35 5.28 4.44 3.99 3.53 3.29 3.12 3.02 2.95 2.89 2.8S 2.82 2.78 2.7S 2.72 2.70 2.69 2.66 2.6S 
100 18.91 7.82 5.53 4.61 4.13 3.64 3.39 3.20 3.09 3.02 2.96 2.92 2.89 2.84 2.81 2.78 2.76 2.7S 2.72 2.70 
12S 20.31 8.19 5.74 4.76 4.25 3.73 3.46 3,27 3.15 3.07 3.02 2.97 2.94 2.89 2.8S 2.83 2.81 2.79 2.77 2.7S 
150 21.64 8.51 5.91 4.88 4.35 3.80 3.52 3.32 3.20 3.12 3.06 3.01 2.98 2.93 2.89 2.87 2.8S 2.83 2.80 2.78 
17S 22.81 8.78 6.05 4.98 4.42 3.86 3.57 3.37 3.24 3.16 3.10 3.05 3.01 2.96 2.91 2.90 2.88 2.86 2.83 2.81 
200 23.83 9.03 6.18 5.07 4.49 3.91 3.61 3.41 3.28 3.19 3.13 3.08 3.04 2.99 2.95 2.92 2.90 2.89 2.86 2.84 
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Table 19-14. K-Multi pliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (10 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 4.75 3.20 2.71 2.48 2.34 2.19 2.10 2.04 2.00 1.97 1.9S 1.93 1.92 1.90 1.89 1.88 1.87 1.86 1.8S 1.84 
2 6.07 3.79 3.13 2.82 2.64 2.44 2.33 2.2S 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.05 2.04 2.02 2.02 
3 6.99 4.17 3.39 3.02 2.82 2.S9 2.47 2.38 2.32 2.28 2.2S 2.23 2.21 2.19 2.17 2.1S 2.14 2.14 2.12 2.11 
4 7.72 4.46 3.57 3.17 2.94 2.70 2.S6 2.46 2.40 2.36 2.33 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
s 8.33 4.69 3.72 3.29 3.04 2.78 2.64 2.S3 2.46 2.42 2.39 2.36 2.34 2.31 2.29 2.28 2.26 2.26 2.24 2.23 
8 9.78 5.21 4.05 3.54 3.26 2.9S 2.79 2.67 2.60 2.S4 2.Sl 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
12 11.22 5.70 4.35 3.76 3.44 3.10 2.92 2.79 2.71 2.6S 2.61 2.S8 2.S6 2.S2 2.49 2.48 2.46 2.4S 2.43 2.42 
16 12.36 6.06 4.57 3.93 3.58 3.21 3.01 2.87 2.79 2.73 2.68 2.6S 2.62 2.S9 2.S6 2.S4 2.S2 2.Sl 2.49 2.48 
20 13.33 6.36 4.74 4.06 3.68 3.29 3.09 2.94 2.8S 2.78 2.74 2.70 2.68 2.64 2.61 2.S9 2.S7 2.S6 2.S4 2.S2 
30 15.25 6.93 5.07 4.30 3.88 3.44 3.22 3.06 2.96 2.89 2.84 2.80 2.77 2.73 2.70 2.68 2.66 2.6S 2.62 2.60 
40 16.80 7.37 5.31 4.47 4.02 3.55 3.31 3.14 3.03 2.96 2.91 2.87 2.84 2.79 2.76 2.74 2.72 2.70 2.68 2.66 
so 18.09 7.72 5.51 4.61 4.13 3.64 3.39 3.20 3.09 3.02 2.96 2.92 2.89 2.84 2.81 2.78 2.76 2.7S 2.72 2.70 
60 19.22 8.03 5.67 4.73 4.22 3.71 3.44 3.26 3.14 3.06 3.00 2.96 2.93 2.88 2.8S 2.82 2.80 2.78 2.76 2.74 
7S 20.70 8.40 5.88 4.87 4.34 3.79 3.52 3.32 3.20 3.12 3.06 3.01 2.98 2.93 2.89 2.87 2.8S 2.83 2.80 2.78 

100 22.81 8.91 6.15 5.06 4.49 3.91 3.61 3.40 3.28 3.19 3.12 3.08 3.04 2.99 2.9S 2.92 2.90 2.89 2.86 2.84 
12S 24.61 9.30 6.38 5.21 4.61 3.99 3.69 3.47 3.34 3.2S 3.17 3.13 3.09 3.04 3.00 2.97 2.9S 2.93 2.90 2.88 
150 26.09 9.65 6.56 5.34 4.71 4.07 3.75 3.52 3.39 3.30 3.22 3.17 3.13 3.07 3.03 3.00 2.98 2.96 2.93 2.91 
17S 27.50 9.96 6.72 5.45 4.79 4.13 3.80 3.57 3.43 3.33 3.26 3.21 3.17 3.11 3.07 3.04 3.01 2.99 2.96 2.94 
200 28.75 10.23 6.86 5.55 4.86 4.18 3.84 3.61 3.46 3.35 3.29 3.24 3.20 3.13 3.09 3.06 3.04 3.02 2.99 2.96 

Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (10 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 5.68 3.69 3.09 2.80 2.62 2.43 2.33 2.2S 2.20 2.17 2.14 2.12 2.10 2.08 2.07 2.05 2.04 2.04 2.02 2.02 
2 7.24 4.35 3.S3 3.1S 2.93 2.69 2.S6 2.46 2.40 2.36 2.33 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
3 8.32 4.78 3.81 3.36 3.11 2.84 2.69 2.S8 2.Sl 2.47 2.43 2.41 2.39 2.36 2.33 2.32 2.31 2.30 2.28 2.27 
4 9.18 5.10 4.01 3.52 3.24 2.94 2.79 2.67 2.S9 2.S4 2.Sl 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
s 9.90 5.35 4.17 3.64 3.3S 3.03 2.86 2.73 2.66 2.60 2.S6 2.S3 2.Sl 2.48 2.4S 2.43 2.42 2.41 2.39 2.38 
8 11.61 5.93 4.52 3.91 3.S7 3.20 3.01 2.87 2.79 2.73 2.68 2.6S 2.62 2.S9 2.S6 2.S4 2.S2 2.Sl 2.49 2.48 
12 13.32 6.48 4.84 4.14 3.76 3.3S 3.14 2.99 2.90 2.83 2.78 2.7S 2.72 2.68 2.6S 2.63 2.61 2.60 2.S7 2.S6 
16 14.67 6.89 5.08 4.32 3.90 3.46 3.24 3.07 2.97 2.90 2.8S 2.81 2.79 2.74 2.71 2.69 2.67 2.66 2.63 2.62 
20 15.80 7.22 5.27 4.45 4.01 3.SS 3.31 3.14 3.03 2.96 2.91 2.87 2.84 2.79 2.76 2.74 2.72 2.70 2.68 2.66 
30 18.10 7.87 5.63 4.71 4.22 3.70 3.44 3.26 3.14 3.06 3.01 2.96 2.93 2.88 2.84 2.82 2.80 2.78 2.76 2.74 
40 19.90 8.35 5.89 4.89 4.36 3.82 3.S4 3.34 3.22 3.13 3.07 3.03 2.99 2.94 2.91 2.88 2.86 2.84 2.81 2.79 
so 21.45 8.75 6.10 5.04 4.48 3.90 3.61 3.40 3.28 3.19 3.13 3.08 3.04 2.99 2.9S 2.92 2.90 2.89 2.86 2.84 
60 22.81 9.08 6.28 5.16 4.58 3.97 3.67 3.46 3.33 3.23 3.17 3.12 3.08 3.03 2.99 2.96 2.94 2.92 2.89 2.87 
7S 24.53 9.49 6.50 5.32 4.70 4.06 3.75 3.S2 3.39 3.29 3.22 3.17 3.13 3.07 3.03 3.00 2.98 2.96 2.93 2.91 

100 27.03 10.04 6.81 5.52 4.85 4.18 3.84 3.61 3.46 3.36 3.29 3.24 3.20 3.13 3.09 3.06 3.04 3.02 2.99 2.96 
12S 29.14 10.51 7.03 5.68 4.98 4.27 3.92 3.67 3.S2 3.42 3.34 3.29 3.24 3.18 3.14 3.11 3.08 3.06 3.03 3.00 
150 30.94 10.90 7.21 5.81 5.08 4.35 3.97 3.73 3.57 3.46 3.38 3.33 3.28 3.22 3.17 3.14 3.12 3.10 3.06 3.04 
17S 32.66 11.25 7.36 5.93 5.17 4.40 4.03 3.77 3.60 3.SO 3.42 3.36 3.32 3.2S 3.20 3.17 3.14 3.12 3.09 3.06 
200 34.06 11.56 7.46 6.04 5.24 4.46 4.07 3.81 3.64 3.S3 3.4S 3.39 3.3S 3.28 3.23 3.20 3.17 3.1S 3.11 3.09 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (20 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 4.97 3.25 2.74 2.49 2.3S 2.19 2.10 2.04 2.00 1.97 1.9S 1.93 1.92 1.90 1.89 1.88 1.87 1.86 1.8S 1.84 
2 6.34 3.85 3.15 2.83 2.6S 2.4S 2.34 2.26 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.05 2.04 2.02 2.02 
3 7.30 4.23 3.41 3.04 2.82 2.S9 2.47 2.38 2.32 2.28 2.2S 2.23 2.21 2.19 2.17 2.1S 2.14 2.14 2.12 2.11 
4 8.05 4.52 3.60 3.18 2.9S 2.70 2.S6 2.47 2.40 2.36 2.33 2.30 2.29 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
s 8.69 4.76 3.75 3.30 3.05 2.78 2.64 2.S3 2.47 2.42 2.39 2.36 2.34 2.31 2.29 2.28 2.26 2.26 2.24 2.23 
8 10.20 5.28 4.08 3.55 3.26 2.9S 2.79 2.67 2.60 2.SS 2.Sl 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
12 11.69 5.77 4.37 3.78 3.45 3.10 2.92 2.79 2.71 2.6S 2.61 2.S8 2.S6 2.S2 2.49 2.48 2.46 2.4S 2.43 2.42 
16 12.89 6.14 4.59 3.94 3.58 3.21 3.02 2.87 2.79 2.73 2.68 2.6S 2.62 2.S9 2.S6 2.S4 2.S2 2.Sl 2.49 2.48 
20 13.89 6.44 4.77 4.07 3.69 3.29 3.09 2.94 2.8S 2.78 2.74 2.70 2.68 2.64 2.61 2.S9 2.S7 2.S6 2.S4 2.S2 
30 15.92 7.02 5.10 4.31 3.88 3.45 3.22 3.06 2.96 2.89 2.84 2.80 2.77 2.73 2.70 2.67 2.66 2.64 2.62 2.60 
40 17.53 7.46 5.34 4.48 4.03 3.56 3.31 3.14 3.03 2.96 2.91 2.87 2.84 2.79 2.76 2.74 2.72 2.70 2.68 2.66 
so 18.90 7.81 5.54 4.62 4.14 3.64 3.39 3.20 3.09 3.02 2.96 2.92 2.89 2.84 2.81 2.78 2.76 2.7S 2.72 2.70 
60 20.12 8.12 5.70 4.74 4.23 3.71 3.45 3.26 3.14 3.06 3.01 2.96 2.93 2.88 2.84 2.82 2.80 2.78 2.76 2.74 
7S 21.68 8.50 5.91 4.88 4.35 3.80 3.52 3.32 3.20 3.12 3.06 3.02 2.98 2.93 2.89 2.87 2.84 2.83 2.80 2.78 

100 23.83 9.03 6.18 5.08 4.49 3.91 3.61 3.41 3.28 3.19 3.12 3.08 3.04 2.99 2.95 2.92 2.90 2.89 2.86 2.84 
12S 25.59 9.47 6.40 5.22 4.61 4.00 3.69 3.47 3.33 3.25 3.18 3.13 3.09 3.04 3.00 2.97 2.95 2.93 2.90 2.88 
150 27.34 9.81 6.59 5.35 4.71 4.06 3.75 3.52 3.38 3.29 3.22 3.17 3.13 3.08 3.03 3.00 2.98 2.97 2.93 2.91 
17S 28.71 10.16 6.74 5.46 4.80 4.13 3.80 3.56 3.42 3.33 3.26 3.21 3.17 3.11 3.06 3.03 3.02 2.99 2.96 2.94 
200 30.08 10.45 6.88 5.54 4.86 4.19 3.85 3.60 3.45 3.36 3.29 3.23 3.20 3.14 3.09 3.06 3.04 3.02 2.99 2.96 

Table 19-14. K-Multi pliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 6.07 3.79 3.13 2.82 2.64 2.44 2.33 2.2S 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.05 2.04 2.02 2.02 
2 7.72 4.46 3.57 3.17 2.94 2.70 2.S6 2.46 2.40 2.36 2.33 2.30 2.29 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
3 8.87 4.89 3.85 3.39 3.13 2.84 2.70 2.S9 2.S2 2.47 2.43 2.41 2.39 2.36 2.33 2.32 2.31 2.30 2.28 2.27 
4 9.78 5.21 4.05 3.54 3.26 2.9S 2.79 2.67 2.60 2.S4 2.Sl 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
s 10.55 5.47 4.21 3.66 3.36 3.03 2.86 2.74 2.66 2.60 2.S6 2.S3 2.Sl 2.48 2.4S 2.44 2.42 2.41 2.39 2.38 
8 12.37 6.06 4.57 3.93 3.58 3.21 3.01 2.87 2.79 2.73 2.68 2.6S 2.62 2.S9 2.S6 2.S4 2.S2 2.Sl 2.49 2.48 
12 14.17 6.61 4.89 4.16 3.77 3.36 3.1S 2.99 2.90 2.83 2.78 2.7S 2.72 2.68 2.6S 2.63 2.61 2.60 2.S7 2.S6 
16 15.61 7.03 5.12 4.34 3.91 3.47 3.24 3.08 2.97 2.90 2.8S 2.82 2.79 2.74 2.71 2.69 2.67 2.66 2.63 2.62 
20 16.82 7.37 5.32 4.47 4.02 3.55 3.31 3.14 3.03 2.96 2.91 2.87 2.84 2.79 2.76 2.74 2.72 2.70 2.68 2.66 
30 19.29 8.02 5.68 4.73 4.22 3.71 3.45 3.26 3.14 3.06 3.01 2.96 2.93 2.88 2.8S 2.82 2.80 2.78 2.76 2.74 
40 21.24 8.52 5.94 4.91 4.37 3.82 3.54 3.34 3.22 3.13 3.07 3.03 2.99 2.94 2.91 2.88 2.86 2.84 2.81 2.78 
so 22.85 8.92 6.15 5.06 4.49 3.91 3.61 3.41 3.28 3.19 3.13 3.08 3.04 2.99 2.9S 2.92 2.90 2.89 2.86 2.84 
60 24.32 9.27 6.34 5.19 4.58 3.98 3.67 3.46 3.32 3.23 3.17 3.12 3.08 3.03 2.99 2.96 2.94 2.92 2.89 2.87 
7S 26.17 9.72 6.56 5.33 4.71 4.06 3.75 3.52 3.38 3.29 3.22 3.17 3.13 3.07 3.03 3.01 2.98 2.96 2.93 2.91 

100 28.91 10.30 6.86 5.54 4.86 4.18 3.85 3.61 3.46 3.36 3.29 3.23 3.20 3.13 3.09 3.06 3.04 3.01 2.99 2.96 
12S 31.05 10.79 7.10 5.70 4.98 4.27 3.92 3.67 3.52 3.42 3.34 3.29 3.24 3.18 3.14 3.11 3.08 3.06 3.03 3.00 
150 33.01 11.18 7.30 5.83 5.09 4.35 3.98 3.72 3.56 3.46 3.39 3.33 3.28 3.22 3.17 3.14 3.12 3.10 3.06 3.04 
17S 34.77 11.52 7.47 5.96 5.18 4.41 4.03 3.77 3.61 3.50 3.42 3.36 3.31 3.2S 3.20 3.17 3.14 3.12 3.09 3.06 
200 36.33 11.87 7.62 6.05 5.25 4.47 4.08 3.81 3.64 3.53 3.45 3.39 3.34 3.28 3.23 3.20 3.17 3.1S 3.11 3.09 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 7.24 4.35 3.53 3.15 2.93 2.69 2.56 2.46 2.40 2.36 2.33 2.30 2.28 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
2 9.18 5.10 4.01 3.52 3.24 2.94 2.79 2.67 2.59 2.54 2.51 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
3 0.54 5.57 4.30 3.74 3.43 3.09 2.92 2.79 2.71 2.65 2.61 2.58 2.55 2.52 2.49 2.48 2.46 2.45 2.43 2.42 
4 11.61 5.93 4.52 3.91 3.57 3.20 3.01 2.87 2.79 2.73 2.68 2.65 2.62 2.59 2.56 2.54 2.52 2.51 2.49 2.48 
5 12.52 6.23 4.70 4.04 3.67 3.29 3.08 2.94 2.85 2.78 2.74 2.70 2.68 2.64 2.61 2.59 2.57 2.56 2.54 2.52 
8 14.67 6.89 5.08 4.32 3.90 3.46 3.24 3.07 2.97 2.90 2.85 2.81 2.79 2.74 2.71 2.69 2.67 2.66 2.63 2.62 
12 16.81 7.50 5.43 4.57 4.10 3.62 3.37 3.19 3.08 3.01 2.95 2.91 2.88 2.83 2.80 2.77 2.75 2.74 2.71 2.70 
16 18.52 7.97 5.69 4.75 4.25 3.73 3.47 3.27 3.16 3.08 3.02 2.98 2.94 2.89 2.86 2.83 2.81 2.80 2.77 2.75 
20 19.95 8.35 5.89 4.89 4.36 3.82 3.54 3.34 3.22 3.13 3.07 3.03 2.99 2.94 2.91 2.88 2.86 2.84 2.81 2.79 
30 22.85 9.09 6.28 5.16 4.57 3.98 3.67 3.46 3.32 3.23 3.17 3.12 3.08 3.03 2.99 2.96 2.94 2.92 2.89 2.87 
40 25.20 9.64 6.57 5.36 4.73 4.09 3.77 3.54 3.40 3.31 3.24 3.19 3.15 3.09 3.05 3.02 3.00 2.98 2.94 2.92 
50 27.15 10.11 6.80 5.52 4.85 4.18 3.84 3.60 3.46 3.36 3.29 3.24 3.20 3.13 3.09 3.06 3.04 3.02 2.99 2.96 
60 28.81 10.47 6.99 5.65 4.96 4.25 3.91 3.66 3.51 3.41 3.33 3.28 3.23 3.17 3.13 3.10 3.07 3.05 3.02 3.00 
75 31.05 10.99 7.25 5.81 5.08 4.35 3.98 3.72 3.56 3.46 3.38 3.33 3.28 3.22 3.17 3.14 3.11 3.10 3.06 3.04 

100 34.18 11.62 7.57 6.03 5.25 4.46 4.08 3.81 3.64 3.53 3.45 3.39 3.34 3.28 3.23 3.20 3.17 3.15 3.11 3.09 
125 36.72 12.21 7.84 6.20 5.37 4.55 4.15 3.87 3.70 3.58 3.50 3.44 3.39 3.32 3.27 3.24 3.21 3.19 3.15 3.13 
150 39.06 12.65 8.06 6.35 5.48 4.63 4.21 3.92 3.75 3.63 3.55 3.48 3.43 3.36 3.31 3.27 3.25 3.22 3.19 3.16 
175 41.41 13.09 8.25 6.47 5.57 4.70 4.27 3.97 3.78 3.67 3.58 3.52 3.47 3.39 3.34 3.30 3.27 3.25 3.21 3.19 
200 42.97 13.38 8.40 6.59 5.66 4.76 4.32 4.00 3.82 3.70 3.61 3.55 3.49 3.42 3.37 3.33 3.30 3.28 3.24 3.21 

Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 ( 40 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 6.34 3.85 3.15 2.83 2.65 2.45 2.34 2.26 2.20 2.17 2.14 2.12 2.11 2.08 2.07 2.05 2.05 2.04 2.02 2.02 
2 8.05 4.52 3.60 3.18 2.95 2.70 2.56 2.47 2.40 2.36 2.33 2.30 2.29 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
3 9.25 4.95 3.87 3.40 3.13 2.85 2.70 2.59 2.52 2.47 2.43 2.41 2.39 2.36 2.33 2.32 2.31 2.30 2.28 2.27 
4 10.20 5.28 4.08 3.55 3.26 2.95 2.79 2.67 2.60 2.55 2.51 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
5 11.00 5.55 4.24 3.67 3.36 3.04 2.86 2.74 2.66 2.60 2.56 2.54 2.51 2.48 2.45 2.44 2.42 2.41 2.39 2.38 
8 12.89 6.14 4.59 3.94 3.58 3.21 3.02 2.87 2.79 2.73 2.68 2.65 2.62 2.59 2.56 2.54 2.52 2.51 2.49 2.48 
12 14.77 6.70 4.91 4.17 3.78 3.36 3.15 2.99 2.90 2.83 2.78 2.75 2.72 2.68 2.65 2.63 2.61 2.60 2.57 2.56 
16 16.27 7.12 5.15 4.35 3.92 3.47 3.24 3.08 2.97 2.90 2.85 2.82 2.79 2.74 2.71 2.69 2.67 2.66 2.63 2.62 
20 17.53 7.46 5.34 4.48 4.03 3.55 3.31 3.14 3.03 2.96 2.91 2.87 2.84 2.79 2.76 2.74 2.72 2.70 2.68 2.66 
30 20.08 8.12 5.70 4.74 4.23 3.71 3.45 3.26 3.14 3.06 3.01 2.96 2.93 2.88 2.85 2.82 2.80 2.79 2.76 2.74 
40 22.12 8.62 5.97 4.92 4.38 3.82 3.54 3.34 3.22 3.13 3.07 3.03 2.99 2.94 2.90 2.88 2.86 2.84 2.81 2.79 
50 23.82 9.03 6.18 5.07 4.50 3.91 3.61 3.40 3.28 3.19 3.13 3.08 3.04 2.99 2.95 2.92 2.90 2.89 2.86 2.84 
60 25.31 9.38 6.36 5.20 4.59 3.98 3.67 3.46 3.33 3.23 3.17 3.12 3.08 3.03 2.99 2.96 2.94 2.92 2.89 2.87 
75 27.30 9.81 6.58 5.35 4.71 4.07 3.75 3.52 3.38 3.29 3.22 3.17 3.13 3.07 3.03 3.00 2.98 2.96 2.93 2.91 

100 30.06 10.42 6.88 5.55 4.87 4.18 3.85 3.61 3.46 3.36 3.29 3.24 3.20 3.13 3.09 3.06 3.04 3.02 2.99 2.96 
125 32.34 10.90 7.13 5.71 4.99 4.27 3.92 3.67 3.52 3.42 3.34 3.29 3.24 3.18 3.14 3.11 3.08 3.06 3.03 3.00 
150 34.45 11.31 7.32 5.84 5.10 4.35 3.98 3.72 3.57 3.46 3.38 3.33 3.28 3.22 3.17 3.14 3.12 3.10 3.06 3.04 
175 36.21 11.69 7.50 5.96 5.19 4.41 4.04 3.77 3.61 3.50 3.42 3.36 3.32 3.25 3.20 3.17 3.15 3.12 3.09 3.06 
200 37.85 12.01 7.66 6.06 5.26 4.47 4.08 3.81 3.64 3.53 3.45 3.39 3.35 3.28 3.23 3.20 3.17 3.15 3.11 3.09 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-14. K-Multi pliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (40 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 7.72 4.46 3.57 3.17 2.94 2.70 2.56 2.46 2.40 2.36 2.33 2.30 2.29 2.26 2.24 2.22 2.21 2.20 2.19 2.18 
2 9.78 5.21 4.05 3.54 3.26 2.95 2.79 2.67 2.60 2.54 2.51 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
3 11.22 5.70 4.35 3.76 3.44 3.10 2.92 2.79 2.71 2.65 2.61 2.58 2.56 2.52 2.49 2.48 2.46 2.45 2.43 2.42 
4 12.36 6.06 4.57 3.93 3.58 3.21 3.01 2.87 2.79 2.73 2.68 2.65 2.62 2.59 2.56 2.54 2.52 2.51 2.49 2.48 
5 13.33 6.36 4.74 4.06 3.68 3.29 3.09 2.94 2.85 2.78 2.74 2.70 2.68 2.64 2.61 2.59 2.57 2.56 2.54 2.52 
8 15.61 7.03 5.13 4.34 3.91 3.47 3.24 3.08 2.97 2.90 2.85 2.82 2.79 2.74 2.71 2.69 2.67 2.66 2.63 2.62 
12 17.89 7.66 5.47 4.59 4.11 3.62 3.37 3.19 3.08 3.01 2.95 2.91 2.88 2.83 2.80 2.77 2.75 2.74 2.71 2.70 
16 19.70 8.13 5.73 4.77 4.26 3.73 3.47 3.28 3.16 3.08 3.02 2.98 2.94 2.89 2.86 2.83 2.81 2.80 2.77 2.75 
20 21.23 8.52 5.94 4.91 4.37 3.82 3.54 3.34 3.22 3.13 3.07 3.03 2.99 2.94 2.90 2.88 2.86 2.84 2.81 2.78 
30 24.32 9.27 6.33 5.18 4.59 3.98 3.67 3.46 3.32 3.23 3.17 3.12 3.08 3.03 2.99 2.96 2.94 2.92 2.88 2.87 
40 26.78 9.83 6.62 5.38 4.74 4.09 3.77 3.54 3.40 3.31 3.24 3.19 3.15 3.09 3.05 3.02 2.99 2.98 2.94 2.92 
50 28.83 10.30 6.86 5.54 4.86 4.18 3.85 3.61 3.46 3.36 3.29 3.24 3.20 3.13 3.09 3.06 3.04 3.01 2.99 2.96 
60 30.64 10.69 7.05 5.67 4.96 4.26 3.91 3.66 3.51 3.41 3.33 3.28 3.23 3.17 3.13 3.10 3.07 3.05 3.02 3.00 
75 33.05 11.19 7.30 5.83 5.09 4.35 3.98 3.72 3.57 3.46 3.38 3.33 3.28 3.22 3.17 3.14 3.12 3.10 3.06 3.04 

100 36.33 11.87 7.62 6.05 5.26 4.46 4.08 3.81 3.64 3.53 3.45 3.39 3.35 3.28 3.23 3.20 3.17 3.15 3.11 3.09 
125 39.14 12.42 7.90 6.23 5.38 4.56 4.15 3.87 3.70 3.59 3.50 3.44 3.39 3.32 3.27 3.24 3.21 3.19 3.15 3.13 
150 41.60 12.89 8.12 6.36 5.49 4.64 4.22 3.93 3.75 3.63 3.54 3.48 3.43 3.36 3.31 3.27 3.25 3.22 3.19 3.16 
175 43.83 13.30 8.31 6.49 5.59 4.70 4.27 3.97 3.79 3.67 3.58 3.52 3.46 3.39 3.34 3.30 3.27 3.25 3.21 3.19 
200 45.70 13.65 8.47 6.60 5.67 4.76 4.31 4.01 3.82 3.70 3.61 3.54 3.49 3.42 3.37 3.33 3.30 3.28 3.24 3.21 

Table 19-14. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 2 (40 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 9.18 5.10 4.01 3.52 3.24 2.94 2.79 2.67 2.59 2.54 2.51 2.48 2.46 2.42 2.40 2.38 2.37 2.36 2.34 2.33 
2 11.61 5.93 4.52 3.91 3.57 3.20 3.01 2.87 2.79 2.73 2.68 2.65 2.62 2.59 2.56 2.54 2.52 2.51 2.49 2.48 
3 13.32 6.48 4.84 4.14 3.76 3.35 3.14 2.99 2.89 2.83 2.78 2.75 2.72 2.68 2.65 2.63 2.61 2.60 2.57 2.56 
4 14.67 6.89 5.08 4.32 3.90 3.46 3.24 3.07 2.97 2.90 2.85 2.81 2.79 2.74 2.71 2.69 2.67 2.66 2.63 2.62 
5 15.81 7.22 5.27 4.45 4.01 3.55 3.31 3.14 3.03 2.96 2.91 2.87 2.84 2.79 2.76 2.74 2.72 2.70 2.68 2.66 
8 18.52 7.97 5.69 4.75 4.25 3.73 3.47 3.27 3.16 3.08 3.02 2.98 2.94 2.89 2.86 2.83 2.81 2.80 2.77 2.75 
12 21.21 8.68 6.07 5.01 4.46 3.89 3.60 3.39 3.26 3.18 3.12 3.07 3.03 2.98 2.94 2.92 2.89 2.88 2.85 2.83 
16 23.36 9.21 6.35 5.21 4.61 4.00 3.69 3.48 3.34 3.25 3.19 3.14 3.10 3.04 3.00 2.97 2.95 2.93 2.90 2.88 
20 25.17 9.65 6.57 5.36 4.73 4.09 3.77 3.54 3.40 3.31 3.24 3.19 3.15 3.09 3.05 3.02 2.99 2.98 2.94 2.92 
30 28.81 10.48 7.00 5.65 4.95 4.25 3.90 3.66 3.51 3.41 3.33 3.28 3.24 3.17 3.13 3.10 3.07 3.04 3.02 3.00 
40 31.73 11.13 7.32 5.86 5.12 4.37 4.00 3.74 3.58 3.48 3.40 3.34 3.30 3.23 3.19 3.15 3.12 3.11 3.07 3.05 
50 34.16 11.65 7.57 6.03 5.24 4.46 4.08 3.81 3.64 3.53 3.45 3.39 3.35 3.28 3.23 3.20 3.17 3.15 3.11 3.09 
60 36.33 12.08 7.79 6.17 5.35 4.54 4.14 3.86 3.69 3.58 3.49 3.43 3.38 3.32 3.27 3.23 3.20 3.18 3.15 3.12 
75 39.14 12.64 8.05 6.35 5.48 4.63 4.22 3.92 3.75 3.63 3.54 3.48 3.43 3.36 3.31 3.27 3.25 3.22 3.19 3.16 

100 43.12 13.42 8.41 6.58 5.66 4.75 4.31 4.01 3.82 3.70 3.61 3.54 3.49 3.42 3.37 3.33 3.30 3.28 3.24 3.21 
125 46.41 14.03 8.70 6.76 5.79 4.85 4.39 4.07 3.88 3.75 3.66 3.59 3.54 3.46 3.41 3.37 3.34 3.32 3.28 3.25 
150 49.34 14.56 8.94 6.91 5.91 4.93 4.46 4.13 3.93 3.80 3.70 3.63 3.58 3.50 3.44 3.40 3.37 3.35 3.31 3.28 
175 52.03 15.03 9.14 7.05 6.01 5.00 4.51 4.17 3.97 3.83 3.74 3.67 3.61 3.53 3.47 3.43 3.40 3.38 3.33 3.30 
200 54.38 15.44 9.33 7.16 6.09 5.05 4.56 4.21 4.01 3.87 3.77 3.70 3.64 3.56 3.50 3.46 3.43 3.40 3.36 3.33 
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Table 19-15. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 2 (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.69 O.S6 o.so 0.47 0.4S 0.42 0.40 0.39 0.38 0.37 0.37 0.37 0.36 0.36 0.36 0.3S 0.3S 0.3S 0.3S 0.3S 
2 1.10 0.87 0.77 0.72 0.69 0.6S 0.62 0.60 O.S9 O.S8 O.S8 O.S7 O.S7 O.S6 O.S6 o.ss o.ss o.ss o.ss O.S4 
3 1.36 1.05 0.93 0.86 0.82 0.77 0.74 0.72 0.70 0.69 0.69 0.68 0.68 0.67 0.66 0.66 0.66 0.6S 0.6S 0.6S 
4 1.S6 1.18 1.04 0.96 0.91 0.86 0.82 0.80 0.78 0.77 0.76 0.7S 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 0.72 
s 1.72 1.28 1.12 1.04 0.98 0.92 0.88 0.86 0.84 0.83 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.78 0.77 0.77 
8 2.10 1.Sl 1.30 1.19 1.13 1.05 1.01 0.98 0.9S 0.94 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.88 0.88 0.87 
12 2.46 1.71 1.46 1.33 1.2S 1.16 1.11 1.08 1.05 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
16 2.75 1.86 1.S7 1.43 1.34 1.24 1.19 1.14 1.12 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.03 1.02 1.01 
20 2.99 1.98 1.66 1.SO 1.41 1.30 1.24 1.20 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
30 3.46 2.21 1.82 1.64 1.S3 1.41 1.34 1.29 1.26 1.23 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.13 
40 3.84 2.38 1.94 1.74 1.62 1.49 1.41 1.36 1.32 1.29 1.28 1.26 1.2S 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
so 4.16 2.Sl 2.04 1.82 1.69 1.S4 1.46 1.40 1.37 1.34 1.32 1.31 1.29 1.28 1.26 1.2S 1.2S 1.24 1.23 1.23 
60 4.43 2.63 2.12 1.88 1.74 1.S9 1.Sl 1.4S 1.41 1.38 1.36 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.26 1.26 
7S 4.79 2.77 2.22 1.96 1.81 1.6S 1.S6 1.49 1.4S 1.42 1.40 1.38 1.37 1.3S 1.34 1.33 1.32 1.31 1.30 1.30 

100 5.29 2.97 2.3S 2.06 1.90 1.72 1.63 1.S6 1.Sl 1.48 1.46 1.44 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 1.34 
12S 5.71 3.13 2.4S 2.14 1.97 1.78 1.68 1.60 1.S6 1.S2 1.50 1.48 1.47 1.44 1.43 1.42 1.41 1.40 1.39 1.38 
150 6.08 3.26 2.S4 2.21 2.03 1.83 1.72 1.64 1.S9 1.S6 1.S3 1.Sl 1.SO 1.48 1.46 1.4S 1.44 1.43 1.42 1.41 
17S 6.42 3.38 2.61 2.27 2.08 1.87 1.76 1.68 1.62 1.S9 1.S6 1.S4 1.S3 1.50 1.49 1.47 1.46 1.46 1.44 1.43 
200 6.71 3.48 2.68 2.32 2.12 1.90 1.79 1.70 1.6S 1.61 1.S9 1.S7 1.SS 1.S3 1.Sl 1.SO 1.49 1.48 1.46 1.46 

Table 19-15. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 2 (1 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.02 0.83 0.7S 0.70 0.67 0.64 0.62 0.60 O.S9 O.S8 O.S7 O.S7 O.S6 O.S6 o.ss o.ss o.ss o.ss O.S4 O.S4 
2 1.47 1.14 1.02 0.95 0.90 0.8S 0.82 0.79 0.78 0.77 0.76 0.7S 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 0.72 
3 1.77 1.33 1.17 1.09 1.03 0.97 0.93 0.90 0.88 0.87 0.86 0.8S 0.84 0.84 0.83 0.82 0.82 0.82 0.81 0.81 
4 2.00 1.47 1.28 1.18 1.12 1.05 1.01 0.97 0.9S 0.94 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.88 0.87 0.87 
s 2.19 1.58 1.37 1.26 1.19 1.11 1.06 1.03 1.01 0.99 0.98 0.97 0.96 0.9S 0.94 0.94 0.93 0.93 0.92 0.92 
8 2.63 1.82 1.SS 1.42 1.33 1.24 1.18 1.14 1.12 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.03 1.02 1.01 
12 3.06 2.04 1.72 1.S6 1.46 1.3S 1.29 1.24 1.21 1.19 1.17 1.16 1.1S 1.13 1.12 1.12 1.11 1.11 1.10 1.09 
16 3.40 2.21 1.84 1.65 1.SS 1.42 1.36 1.30 1.27 1.2S 1.23 1.22 1.21 1.19 1.18 1.17 1.17 1.16 1.1S 1.14 
20 3.68 2.34 1.93 1.73 1.61 1.48 1.41 1.3S 1.32 1.29 1.28 1.26 1.2S 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
30 4.26 2.S9 2.10 1.87 1.74 1.S9 1.Sl 1.44 1.40 1.38 1.36 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.26 1.26 
40 4.71 2.78 2.23 1.98 1.83 1.66 1.S7 1.51 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 
so 5.09 2.93 2.33 2.06 1.90 1.72 1.63 1.S6 1.Sl 1.48 1.46 1.44 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 1.34 
60 5.42 3.06 2.42 2.12 1.9S 1.77 1.67 1.S9 1.SS 1.Sl 1.49 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 
7S 5.85 3.22 2.S2 2.20 2.02 1.83 1.72 1.64 1.59 1.S6 1.S3 1.Sl 1.SO 1.48 1.46 1.4S 1.44 1.43 1.42 1.41 

100 6.46 3.44 2.66 2.31 2.12 1.90 1.79 1.70 1.6S 1.61 1.S9 1.S7 1.SS 1.S3 1.51 1.50 1.49 1.48 1.46 1.46 
12S 6.97 3.62 2.77 2.40 2.19 1.96 1.84 1.7S 1.69 1.66 1.63 1.61 1.S9 1.S6 1.SS 1.S3 1.S2 1.Sl 1.50 1.49 
150 7.41 3.77 2.86 2.47 2.2S 2.01 1.88 1.79 1.73 1.69 1.66 1.64 1.62 1.S9 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 
17S 7.81 3.90 2.94 2.S3 2.30 2.05 1.92 1.82 1.76 1.72 1.69 1.67 1.6S 1.62 1.60 1.S9 1.58 1.S7 1.SS 1.S4 
200 8.17 4.02 3.01 2.S8 2.34 2.08 1.9S 1.8S 1.79 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.S9 1.S7 1.S6 
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Table 19-15. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 2 (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.34 1.09 0.98 0.92 0.88 0.84 0.81 0.79 0.77 0.76 0.7S 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 0.72 0.71 
2 1.8S 1.42 1.2S 1.16 1.10 1.04 1.00 0.97 0.9S 0.93 0.92 0.92 0.91 0.90 0.89 0.89 0.88 0.88 0.87 0.87 
3 2.19 1.62 1.41 1.30 1.23 1.1S 1.11 1.07 1.05 1.03 1.02 1.01 1.00 0.99 0.98 0.97 0.97 0.97 0.96 0.96 
4 2.4S 1.77 1.S2 1.40 1.32 1.23 1.18 1.14 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 1.03 1.03 1.02 1.01 
s 2.67 1.89 1.61 1.48 1.39 1.29 1.24 1.19 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
8 3.19 2.1S 1.81 1.64 1.S4 1.42 1.3S 1.30 1.27 1.2S 1.23 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
12 3.69 2.39 1.98 1.78 1.66 1.S2 1.4S 1.39 1.36 1.33 1.31 1.30 1.28 1.27 1.26 1.2S 1.24 1.23 1.22 1.22 
16 4.09 2.S7 2.11 1.88 1.7S 1.60 1.S2 1.46 1.42 1.39 1.37 1.3S 1.34 1.32 1.31 1.30 1.29 1.29 1.28 1.27 
20 4.43 2.71 2.20 1.96 1.82 1.66 1.S7 1.51 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 
30 5.10 2.99 2.39 2.11 1.9S 1.77 1.67 1.59 1.SS 1.Sl 1.49 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 
40 5.64 3.20 2.S3 2.22 2.04 1.84 1.73 1.6S 1.60 1.S7 1.S4 1.S2 1.Sl 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
so 6.09 3.37 2.63 2.30 2.11 1.90 1.79 1.70 1.6S 1.61 1.S9 1.S7 1.SS 1.S2 1.51 1.SO 1.49 1.48 1.46 1.46 
60 6.48 3.51 2.72 2.37 2.17 1.9S 1.83 1.74 1.69 1.6S 1.62 1.60 1.58 1.S6 1.54 1.S3 1.S2 1.Sl 1.49 1.48 
7S 7.00 3.69 2.84 2.45 2.24 2.01 1.88 1.79 1.73 1.69 1.66 1.64 1.62 1.S9 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 

100 7.71 3.94 2.99 2.S7 2.33 2.08 1.9S 1.8S 1.79 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.S9 1.S7 1.S6 
12S 8.32 4.14 3.11 2.66 2.41 2.14 2.00 1.89 1.83 1.78 1.7S 1.73 1.71 1.68 1.66 1.64 1.63 1.62 1.61 1.60 
150 8.85 4.31 3,21 2.73 2.47 2.19 2.04 1.93 1.86 1.82 1.78 1.76 1.74 1.71 1.69 1.67 1.66 1.6S 1.63 1.62 
17S 9.33 4.45 3.29 2.80 2.S2 2.23 2.08 1.96 1.89 1.8S 1.81 1.79 1.76 1.73 1.71 1.70 1.68 1.67 1.66 1.6S 
200 9.76 4.58 3.37 2.8S 2.S7 2.26 2.11 1.99 1.92 1.87 1.84 1.81 1.79 1.7S 1.73 1.72 1.70 1.69 1.68 1.67 

Table 19-15. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 2 (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.10 0.87 0.77 0.72 0.69 0.6S 0.62 0.60 O.S9 O.S8 O.S8 O.S7 O.S7 O.S6 O.S6 o.ss o.ss o.ss o.ss O.S4 
2 1.S6 1.18 1.04 0.96 0.91 0.86 0.82 0.80 0.78 0.77 0.76 0.7S 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 0.72 
3 1.86 1.37 1.19 1.10 1.04 0.97 0.93 0.90 0.88 0.87 0.86 0.8S 0.8S 0.84 0.83 0.82 0.82 0.82 0.81 0.81 
4 2.10 1.Sl 1.30 1.19 1.13 1.05 1.01 0.98 0.9S 0.94 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.88 0.88 0.87 
s 2.29 1.62 1.39 1.27 1.20 1.11 1.07 1.03 1.01 0.99 0.98 0.97 0.96 0.9S 0.94 0.94 0.93 0.93 0.92 0.92 
8 2.75 1.86 1.S7 1.43 1.34 1.24 1.19 1.14 1.12 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.03 1.02 1.01 
12 3.19 2.08 1.73 1.S6 1.46 1.3S 1.29 1.24 1.21 1.19 1.17 1.16 1.1S 1.13 1.12 1.12 1.11 1.11 1.10 1.09 
16 3.54 2.24 1.8S 1.66 1.SS 1.43 1.36 1.30 1.27 1.2S 1.23 1.22 1.21 1.19 1.18 1.17 1.17 1.16 1.1S 1.1S 
20 3.84 2.38 1.94 1.74 1.62 1.49 1.41 1.36 1.32 1.29 1.28 1.26 1.2S 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
30 4.43 2.63 2.12 1.88 1.74 1.S9 1.Sl 1.4S 1.41 1.38 1.36 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.26 1.26 
40 4.90 2.82 2.2S 1.98 1.83 1.67 1.58 1.Sl 1.46 1.44 1.41 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 
so 5.29 2.97 2.3S 2.06 1.90 1.72 1.63 1.S6 1.51 1.48 1.46 1.44 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 1.34 
60 5.64 3.10 2.43 2.13 1.96 1.77 1.67 1.60 1.SS 1.Sl 1.49 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 
7S 6.09 3.26 2.S4 2.21 2.03 1.83 1.72 1.64 1.59 1.S6 1.S3 1.Sl 1.SO 1.48 1.46 1.4S 1.44 1.43 1.42 1.41 

100 6.71 3.48 2.68 2.32 2.12 1.90 1.79 1.70 1.6S 1.61 1.S9 1.S7 1.SS 1.S3 1.Sl 1.50 1.49 1.48 1.46 1.46 
12S 7.24 3.66 2.79 2.40 2.19 1.96 1.84 1.7S 1.69 1.66 1.63 1.61 1.S9 1.S6 1.SS 1.S3 1.S2 1.Sl 1.50 1.49 
150 7.71 3.82 2.88 2.48 2.2S 2.01 1.88 1.79 1.73 1.69 1.66 1.64 1.62 1.S9 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 
17S 8.12 3.95 2.96 2.S3 2.30 2.05 1.92 1.82 1.76 1.72 1.69 1.67 1.6S 1.62 1.60 1.S9 1.58 1.S7 1.SS 1.S4 
200 8.50 4.06 3.03 2.S9 2.34 2.09 1.9S 1.8S 1.79 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.S9 1.S7 1.S6 
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Table 19-15. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 2 (2 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.47 1.14 1.02 0.9S 0.90 0.8S 0.82 0.79 0.78 0.77 0.76 0.7S 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 0.72 
2 2.00 1.47 1.28 1.18 1.12 1.05 1.01 0.97 0.9S 0.94 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.88 0.87 0.87 
3 2.3S 1.68 1.44 1.32 1.2S 1.16 1.11 1.07 1.05 1.03 1.02 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 
4 2.63 1.82 1.SS 1.42 1.33 1.24 1.18 1.14 1.12 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.03 1.03 1.02 1.01 
s 2.86 1.94 1.64 1.49 1.40 1.30 1.24 1.20 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
8 3.40 2.21 1.84 1.6S 1.SS 1.42 1.36 1.30 1.27 1.2S 1.23 1.22 1.21 1.19 1.18 1.17 1.17 1.16 1.1S 1.14 
12 3.93 2.4S 2.01 1.79 1.67 1.S3 1.4S 1.39 1.36 1.33 1.31 1.30 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 1.22 
16 4.35 2.63 2.13 1.90 1.76 1.61 1.S2 1.46 1.42 1.39 1.37 1.3S 1.34 1.32 1.31 1.30 1.29 1.29 1.28 1.27 
20 4.71 2.78 2.23 1.98 1.83 1.66 1.S7 1.Sl 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 
30 5.42 3.06 2.42 2.12 1.9S 1.77 1.67 1.S9 1.SS 1.Sl 1.49 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 
40 5.98 3.27 2.SS 2.23 2.04 1.84 1.74 1.66 1.61 1.S7 1.S4 1.S2 1.Sl 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
so 6.46 3.44 2.66 2.31 2.12 1.90 1.79 1.70 1.6S 1.61 1.S9 1.S7 1.SS 1.S3 1.Sl 1.SO 1.49 1.48 1.46 1.46 
60 6.87 3.59 2.7S 2.38 2.17 1.9S 1.83 1.74 1.69 1.6S 1.62 1.60 1.58 1.S6 1.S4 1.S3 1.S2 1.Sl 1.49 1.48 
7S 7.41 3.77 2.86 2.47 2.2S 2.01 1.88 1.79 1.73 1.69 1.66 1.64 1.62 1.S9 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 

100 8.17 4.02 3.01 2.S8 2.34 2.08 1.9S 1.8S 1.79 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.S9 1.S7 1.S6 
12S 8.82 4.22 3.13 2.67 2.42 2.14 2.00 1.90 1.83 1.79 1.7S 1.73 1.71 1.68 1.66 1.64 1.63 1.62 1.61 1.60 
150 9.38 4.39 3.23 2.74 2.48 2.19 2.04 1.93 1.86 1.82 1.78 1.76 1.74 1.71 1.69 1.67 1.66 1.6S 1.63 1.62 
17S 9.87 4.53 3.32 2.81 2.S3 2.23 2.08 1.96 1.90 1.8S 1.81 1.79 1.76 1.73 1.71 1.70 1.68 1.67 1.66 1.6S 
200 10.34 4.67 3.39 2.86 2.S7 2.27 2.11 1.99 1.92 1.87 1.83 1.81 1.79 1.76 1.73 1.72 1.70 1.69 1.68 1.66 

Table 19-15. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 2 (2 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.8S 1.42 1.2S 1.16 1.10 1.04 1.00 0.97 0.9S 0.93 0.92 0.92 0.91 0.90 0.89 0.89 0.88 0.88 0.87 0.87 
2 2.4S 1.77 1.S2 1.40 1.32 1.23 1.18 1.14 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 1.03 1.02 1.02 1.01 
3 2.86 1.99 1.69 1.S4 1.4S 1.34 1.28 1.23 1.20 1.18 1.17 1.16 1.1S 1.13 1.12 1.12 1.11 1.10 1.10 1.09 
4 3.19 2.1S 1.81 1.64 1.S4 1.42 1.3S 1.30 1.27 1.2S 1.23 1.22 1.21 1.19 1.18 1.17 1.16 1.16 1.1S 1.14 
s 3.46 2.28 1.90 1.72 1.60 1.48 1.41 1.3S 1.32 1.29 1.27 1.26 1.2S 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
8 4.09 2.S7 2.11 1.88 1.7S 1.60 1.S2 1.46 1.42 1.39 1.37 1.3S 1.34 1.32 1.31 1.30 1.29 1.29 1.28 1.27 
12 4.72 2.84 2.29 2.03 1.88 1.71 1.61 1.S4 1.50 1.47 1.4S 1.43 1.42 1.40 1.38 1.37 1.36 1.36 1.34 1.34 
16 5.22 3.04 2.42 2.13 1.97 1.78 1.68 1.61 1.S6 1.S3 1.50 1.48 1.47 1.4S 1.43 1.42 1.41 1.40 1.39 1.38 
20 5.64 3.20 2.S3 2.22 2.04 1.84 1.73 1.6S 1.60 1.S7 1.S4 1.S2 1.Sl 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
30 6.48 3.51 2.72 2.37 2.17 1.9S 1.83 1.74 1.69 1.6S 1.62 1.60 1.58 1.S6 1.S4 1.S3 1.S2 1.Sl 1.49 1.48 
40 7.15 3.75 2.87 2.48 2.26 2.02 1.90 1.80 1.74 1.70 1.67 1.6S 1.63 1.60 1.S9 1.S7 1.S6 1.SS 1.S4 1.S3 
so 7.72 3.94 2.99 2.S7 2.33 2.08 1.9S 1.8S 1.79 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.S9 1.S7 1.S6 
60 8.21 4.10 3.08 2.64 2.39 2.13 1.99 1.89 1.82 1.78 1.74 1.72 1.70 1.67 1.6S 1.64 1.63 1.62 1.60 1.S9 
7S 8.85 4.31 3.21 2.73 2.47 2.19 2.04 1.93 1.86 1.82 1.78 1.76 1.74 1.71 1.69 1.67 1.66 1.6S 1.63 1.62 
100 9.76 4.58 3.37 2.8S 2.S7 2.27 2.11 1.99 1.92 1.87 1.84 1.81 1.79 1.76 1.73 1.72 1.70 1.69 1.68 1.66 
12S 10.52 4.81 3.50 2.94 2.64 2.32 2.16 2.04 1.96 1.91 1.87 1.8S 1.82 1.79 1.77 1.7S 1.74 1.73 1.71 1.70 
150 11.19 5.00 3.61 3.02 2.71 2.37 2.20 2.08 2.00 1.94 1.91 1.88 1.8S 1.82 1.80 1.78 1.77 1.7S 1.74 1.72 
17S 11.78 5.16 3.70 3.09 2.76 2.42 2.24 2.11 2.03 1.97 1.93 1.90 1.88 1.84 1.82 1.80 1.79 1.78 1.76 1.74 
200 12.30 5.32 3.78 3.15 2.81 2.4S 2.27 2.14 2.05 2.00 1.96 1.92 1.90 1.86 1.84 1.82 1.81 1.80 1.78 1.76 
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Table 19-15. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 2 (5 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.72 1.28 1.12 1.04 0.98 0.92 0.88 0.86 0.84 0.83 0.82 0.81 0.80 0.79 0.79 0.78 0.78 0.78 0.77 0.77 
2 2.29 1.62 1.39 1.27 1.20 1.11 1.07 1.03 1.01 0.99 0.98 0.97 0.96 0.9S 0.94 0.94 0.93 0.93 0.92 0.92 
3 2.68 1.82 1.SS 1.41 1.32 1.23 1.17 1.13 1.10 1.08 1.07 1.06 1.05 1.04 1.03 1.02 1.02 1.01 1.01 1.00 
4 2.99 1.98 1.66 1.SO 1.41 1.30 1.24 1.20 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
s 3.24 2.10 1.7S 1.58 1.48 1.36 1.30 1.2S 1.22 1.20 1.18 1.17 1.16 1.14 1.13 1.12 1.12 1.11 1.10 1.10 
8 3.84 2.38 1.94 1.74 1.62 1.49 1.41 1.36 1.32 1.29 1.28 1.26 1.2S 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
12 4.43 2.63 2.12 1.88 1.74 1.S9 1.Sl 1.4S 1.41 1.38 1.36 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.26 1.26 
16 4.90 2.82 2.2S 1.98 1.83 1.67 1.58 1.Sl 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.33 1.33 1.31 1.31 
20 5.29 2.97 2.3S 2.06 1.90 1.72 1.63 1.S6 1.Sl 1.48 1.46 1.44 1.42 1.40 1.39 1.38 1.37 1.36 1.3S 1.34 
30 6.08 3.26 2.S4 2.21 2.03 1.83 1.72 1.64 1.S9 1.S6 1.S3 1.Sl 1.SO 1.48 1.46 1.4S 1.44 1.43 1.42 1.41 
40 6.71 3.48 2.68 2.32 2.12 1.90 1.79 1.70 1.6S 1.61 1.S9 1.S7 1.SS 1.S3 1.Sl 1.50 1.49 1.48 1.46 1.46 
so 7.25 3.66 2.79 2.40 2.19 1.96 1.84 1.7S 1.69 1.66 1.63 1.61 1.S9 1.S6 1.SS 1.S3 1.S2 1.Sl 1.50 1.49 
60 7.71 3.81 2.88 2.48 2.2S 2.01 1.88 1.79 1.73 1.69 1.66 1.64 1.62 1.S9 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 
7S 8.30 4.00 3.00 2.S6 2.32 2.07 1.93 1.84 1.77 1.73 1.70 1.68 1.66 1.63 1.61 1.60 1.S9 1.58 1.S6 1.SS 

100 9.16 4.27 3.15 2.68 2.42 2.14 2.00 1.90 1.83 1.78 1.7S 1.73 1.71 1.68 1.66 1.64 1.63 1.62 1.61 1.60 
12S 9.88 4.47 3.27 2.77 2.49 2.20 2.05 1.94 1.87 1.83 1.79 1.77 1.7S 1.72 1.69 1.68 1.67 1.66 1.64 1.63 
150 10.51 4.66 3.37 2.84 2.SS 2.2S 2.09 1.98 1.91 1.86 1.82 1.80 1.77 1.7S 1.72 1.71 1.69 1.68 1.67 1.66 
17S 11.05 4.80 3.47 2.91 2.61 2.29 2.13 2.01 1.94 1.89 1.8S 1.82 1.80 1.77 1.7S 1.73 1.72 1.71 1.69 1.68 
200 11.56 4.96 3.54 2.96 2.65 2.33 2.16 2.04 1.96 1.91 1.88 1.8S 1.82 1.79 1.77 1.7S 1.74 1.73 1.71 1.70 

Table 19-15. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 2 (5 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.19 1.58 1.37 1.26 1.19 1.11 1.06 1.03 1.01 0.99 0.98 0.97 0.96 0.9S 0.94 0.94 0.93 0.93 0.92 0.92 
2 2.86 1.94 1.64 1.49 1.40 1.30 1.24 1.20 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
3 3.32 2.17 1.81 1.63 1.S3 1.41 1.34 1.29 1.26 1.23 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 1.1S 1.14 1.13 
4 3.68 2.34 1.93 1.73 1.61 1.48 1.41 1.3S 1.32 1.29 1.28 1.26 1.2S 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
s 3.99 2.48 2.02 1.81 1.68 1.S4 1.46 1.40 1.37 1.34 1.32 1.31 1.29 1.28 1.26 1.2S 1.2S 1.24 1.23 1.23 
8 4.71 2.78 2.23 1.98 1.83 1.66 1.S7 1.Sl 1.46 1.43 1.41 1.40 1.38 1.36 1.3S 1.34 1.33 1.32 1.31 1.31 
12 5.42 3.06 2.42 2.12 1.9S 1.77 1.67 1.S9 1.SS 1.Sl 1.49 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 
16 5.98 3.27 2.SS 2.23 2.04 1.84 1.74 1.66 1.61 1.S7 1.S4 1.S2 1.Sl 1.49 1.47 1.46 1.4S 1.44 1.43 1.42 
20 6.46 3.44 2.66 2.31 2.12 1.90 1.79 1.70 1.6S 1.61 1.S9 1.S7 1.SS 1.S3 1.Sl 1.SO 1.49 1.48 1.46 1.46 
30 7.41 3.77 2.86 2.47 2.2S 2.01 1.88 1.79 1.73 1.69 1.66 1.64 1.62 1.S9 1.58 1.S6 1.SS 1.S4 1.S3 1.S2 
40 8.17 4.02 3.01 2.S8 2.34 2.08 1.9S 1.8S 1.79 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.S9 1.S7 1.S6 
so 8.82 4.22 3.13 2.67 2.41 2.14 2.00 1.90 1.83 1.78 1.7S 1.73 1.71 1.68 1.66 1.64 1.63 1.62 1.61 1.60 
60 9.38 4.39 3.23 2.74 2.48 2.19 2.04 1.93 1.87 1.82 1.78 1.76 1.74 1.71 1.69 1.67 1.66 1.6S 1.63 1.62 
7S 10.12 4.60 3.36 2.84 2.SS 2.2S 2.09 1.98 1.91 1.86 1.82 1.80 1.78 1.74 1.72 1.71 1.69 1.68 1.67 1.66 
100 11.13 4.89 3.53 2.96 2.6S 2.33 2.16 2.04 1.96 1.91 1.88 1.8S 1.82 1.79 1.77 1.7S 1.74 1.73 1.71 1.70 
12S 11.99 5.14 3.66 3.05 2.73 2.39 2.21 2.08 2.01 1.9S 1.91 1.88 1.86 1.83 1.80 1.78 1.77 1.76 1.74 1.73 
150 12.73 5.33 3.77 3.13 2.79 2.44 2.2S 2.12 2.04 1.98 1.94 1.91 1.89 1.86 1.83 1.81 1.80 1.79 1.77 1.7S 
17S 13.44 5.51 3.87 3.20 2.85 2.48 2.29 2.1S 2.07 2.01 1.97 1.94 1.91 1.88 1.8S 1.84 1.82 1.81 1.79 1.77 
200 14.06 5.66 3.96 3.26 2.89 2.Sl 2.32 2.18 2.09 2.04 1.99 1.96 1.94 1.90 1.88 1.86 1.84 1.83 1.80 1.79 
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Table 19-15. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 2 (5 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.67 1.89 1.61 1.48 1.39 1.29 1.24 1.19 1.16 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
2 3.46 2.28 1.90 1.72 1.60 1.48 1.41 1.35 1.32 1.29 1.27 1.26 1.25 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
3 4.00 2.53 2.08 1.86 1.73 1.58 1.50 1.44 1.40 1.38 1.36 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.26 1.26 
4 4.43 2.71 2.20 1.96 1.82 1.66 1.57 1.51 1.46 1.43 1.41 1.40 1.38 1.36 1.35 1.34 1.33 1.32 1.31 1.31 
5 4.79 2.87 2.31 2.04 1.89 1.72 1.62 1.55 1.51 1.48 1.46 1.44 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.34 
8 5.64 3.20 2.53 2.22 2.04 1.84 1.73 1.65 1.60 1.57 1.54 1.52 1.51 1.49 1.47 1.46 1.45 1.44 1.43 1.42 
12 6.48 3.51 2.72 2.37 2.17 1.95 1.83 1.74 1.69 1.65 1.62 1.60 1.58 1.56 1.54 1.53 1.52 1.51 1.49 1.48 
16 7.15 3.75 2.87 2.48 2.26 2.02 1.90 1.80 1.74 1.70 1.67 1.65 1.63 1.60 1.59 1.57 1.56 1.55 1.54 1.53 
20 7.71 3.94 2.99 2.57 2.33 2.08 1.95 1.85 1.79 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.59 1.57 1.56 
30 8.85 4.31 3.21 2.73 2.47 2.19 2.04 1.93 1.86 1.82 1.78 1.76 1.74 1.71 1.69 1.67 1.66 1.65 1.63 1.62 
40 9.76 4.58 3.37 2.85 2.57 2.26 2.11 1.99 1.92 1.87 1.84 1.81 1.79 1.75 1.73 1.72 1.70 1.69 1.68 1.67 
50 10.52 4.81 3.50 2.94 2.64 2.32 2.16 2.04 1.96 1.91 1.87 1.85 1.82 1.79 1.77 1.75 1.74 1.73 1.71 1.70 
60 11.19 5.00 3.61 3.02 2.71 2.37 2.20 2.08 2.00 1.94 1.91 1.88 1.85 1.82 1.80 1.78 1.77 1.75 1.74 1.72 
75 12.05 5.24 3.74 3.12 2.79 2.43 2.25 2.12 2.04 1.98 1.94 1.91 1.89 1.85 1.83 1.81 1.80 1.79 1.77 1.75 

100 13.28 5.57 3.92 3.25 2.89 2.51 2.32 2.18 2.09 2.04 1.99 1.96 1.94 1.90 1.87 1.85 1.84 1.83 1.80 1.78 
125 14.30 5.84 4.07 3.35 2.97 2.57 2.37 2.23 2.14 2.08 2.03 2.00 1.97 1.93 1.91 1.88 1.87 1.85 1.84 1.82 
150 15.23 6.07 4.19 3.43 3.04 2.62 2.42 2.26 2.17 2.11 2.06 2.03 2.00 1.96 1.93 1.91 1.90 1.89 1.86 1.85 
175 16.02 6.27 4.30 3.51 3.09 2.67 2.45 2.30 2.20 2.14 2.09 2.06 2.03 1.99 1.96 1.94 1.92 1.91 1.88 1.87 
200 16.72 6.45 4.38 3.57 3.14 2.71 2.48 2.32 2.23 2.16 2.11 2.08 2.05 2.01 1.98 1.96 1.94 1.93 1.90 1.89 

Table 19-15. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 2 (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.29 1.62 1.39 1.27 1.20 1.11 1.07 1.03 1.01 0.99 0.98 0.97 0.96 0.95 0.94 0.94 0.93 0.93 0.92 0.92 
2 2.99 1.98 1.66 1.50 1.41 1.30 1.24 1.20 1.17 1.15 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
3 3.46 2.21 1.82 1.64 1.53 1.41 1.34 1.29 1.26 1.23 1.22 1.20 1.19 1.18 1.17 1.16 1.15 1.15 1.14 1.13 
4 3.84 2.38 1.94 1.74 1.62 1.49 1.41 1.36 1.32 1.29 1.28 1.26 1.25 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
5 4.15 2.51 2.04 1.82 1.69 1.54 1.46 1.40 1.37 1.34 1.32 1.31 1.29 1.28 1.26 1.25 1.25 1.24 1.23 1.23 
8 4.90 2.82 2.25 1.98 1.83 1.67 1.58 1.51 1.46 1.44 1.41 1.40 1.38 1.36 1.35 1.34 1.33 1.33 1.31 1.31 
12 5.63 3.10 2.43 2.13 1.96 1.77 1.67 1.60 1.55 1.51 1.49 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 
16 6.22 3.31 2.57 2.24 2.05 1.85 1.74 1.66 1.61 1.57 1.54 1.53 1.51 1.49 1.47 1.46 1.45 1.44 1.43 1.42 
20 6.71 3.48 2.68 2.32 2.12 1.90 1.79 1.70 1.65 1.61 1.59 1.57 1.55 1.53 1.51 1.50 1.49 1.48 1.46 1.46 
30 7.70 3.81 2.88 2.47 2.25 2.01 1.88 1.79 1.73 1.69 1.66 1.64 1.62 1.59 1.58 1.56 1.55 1.54 1.53 1.52 
40 8.50 4.06 3.03 2.59 2.34 2.09 1.95 1.85 1.79 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.59 1.57 1.56 
50 9.16 4.27 3.15 2.68 2.42 2.15 2.00 1.90 1.83 1.79 1.75 1.73 1.71 1.68 1.66 1.64 1.63 1.62 1.61 1.59 
60 9.74 4.44 3.25 2.75 2.48 2.19 2.04 1.93 1.86 1.82 1.79 1.76 1.74 1.71 1.69 1.67 1.66 1.65 1.63 1.62 
75 10.50 4.66 3.38 2.84 2.55 2.25 2.09 1.98 1.91 1.86 1.82 1.80 1.78 1.75 1.72 1.71 1.69 1.68 1.67 1.66 
100 11.57 4.96 3.54 2.97 2.66 2.33 2.16 2.04 1.96 1.91 1.87 1.85 1.82 1.79 1.77 1.75 1.74 1.73 1.71 1.70 
125 12.50 5.20 3.67 3.06 2.73 2.39 2.21 2.09 2.01 1.95 1.91 1.88 1.86 1.82 1.80 1.79 1.77 1.76 1.74 1.73 
150 13.28 5.40 3.78 3.14 2.80 2.44 2.26 2.12 2.04 1.98 1.94 1.91 1.89 1.86 1.83 1.81 1.80 1.79 1.77 1.75 
175 13.96 5.57 3.88 3.21 2.84 2.48 2.29 2.15 2.07 2.01 1.97 1.94 1.92 1.88 1.86 1.84 1.82 1.81 1.79 1.77 
200 14.65 5.71 3.98 3.27 2.89 2.51 2.32 2.19 2.10 2.04 2.00 1.96 1.93 1.90 1.87 1.85 1.84 1.83 1.81 1.79 
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Table 19-15. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 2 (10 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.86 1.94 1.64 1.49 1.40 1.30 1.24 1.20 1.17 1.15 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
2 3.68 2.34 1.93 1.73 1.61 1.48 1.41 1.35 1.32 1.29 1.28 1.26 1.25 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
3 4.26 2.59 2.10 1.87 1.74 1.59 1.51 1.44 1.40 1.38 1.36 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.26 1.26 
4 4.71 2.78 2.23 1.98 1.83 1.66 1.57 1.51 1.46 1.43 1.41 1.40 1.38 1.36 1.35 1.34 1.33 1.32 1.31 1.31 
5 5.09 2.93 2.33 2.06 1.90 1.72 1.63 1.56 1.51 1.48 1.46 1.44 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.34 
8 5.98 3.27 2.55 2.23 2.05 1.84 1.74 1.66 1.61 1.57 1.54 1.52 1.51 1.49 1.47 1.46 1.45 1.44 1.43 1.42 
12 6.87 3.59 2.75 2.38 2.17 1.95 1.83 1.74 1.69 1.65 1.62 1.60 1.58 1.56 1.54 1.53 1.52 1.51 1.49 1.48 
16 7.58 3.82 2.90 2.49 2.27 2.02 1.90 1.80 1.74 1.70 1.67 1.65 1.63 1.60 1.59 1.57 1.56 1.55 1.54 1.53 
20 8.18 4.02 3.01 2.58 2.34 2.08 1.95 1.85 1.79 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.59 1.57 1.56 
30 9.38 4.39 3.23 2.74 2.47 2.19 2.04 1.93 1.87 1.82 1.78 1.76 1.74 1.71 1.69 1.67 1.66 1.65 1.63 1.62 
40 10.33 4.67 3.40 2.86 2.57 2.27 2.11 1.99 1.92 1.87 1.84 1.81 1.79 1.75 1.73 1.72 1.70 1.69 1.68 1.66 
50 11.13 4.90 3.53 2.96 2.65 2.33 2.16 2.04 1.96 1.91 1.87 1.85 1.82 1.79 1.77 1.75 1.74 1.73 1.71 1.70 
60 11.84 5.09 3.63 3.03 2.71 2.38 2.20 2.08 2.00 1.94 1.91 1.88 1.85 1.82 1.80 1.78 1.77 1.75 1.73 1.72 
75 12.74 5.33 3.77 3.13 2.79 2.44 2.26 2.12 2.04 1.98 1.94 1.91 1.89 1.86 1.83 1.81 1.80 1.79 1.77 1.75 

100 14.06 5.66 3.96 3.26 2.89 2.51 2.32 2.18 2.09 2.04 1.99 1.96 1.94 1.90 1.87 1.86 1.84 1.83 1.80 1.77 
125 15.14 5.96 4.10 3.36 2.97 2.58 2.37 2.23 2.14 2.08 2.03 2.00 1.97 1.93 1.90 1.88 1.87 1.85 1.84 1.82 
150 16.11 6.18 4.22 3.44 3.04 2.62 2.42 2.26 2.17 2.11 2.06 2.03 2.00 1.96 1.93 1.91 1.89 1.89 1.86 1.85 
175 16.99 6.40 4.32 3.52 3.10 2.67 2.45 2.29 2.20 2.14 2.09 2.06 2.03 1.99 1.96 1.93 1.92 1.91 1.89 1.87 
200 17.77 6.54 4.42 3.59 3.15 2.71 2.48 2.33 2.23 2.16 2.11 2.08 2.05 2.01 1.98 1.95 1.94 1.93 1.90 1.89 

Table 19-15. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 2 (10 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.46 2.28 1.90 1.72 1.60 1.48 1.41 1.35 1.32 1.29 1.27 1.26 1.25 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
2 4.43 2.71 2.20 1.96 1.82 1.66 1.57 1.51 1.46 1.43 1.41 1.40 1.38 1.36 1.35 1.34 1.33 1.32 1.31 1.31 
3 5.11 2.99 2.39 2.11 1.95 1.77 1.67 1.59 1.55 1.51 1.49 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 
4 5.64 3.20 2.53 2.22 2.04 1.84 1.73 1.65 1.60 1.57 1.54 1.52 1.51 1.49 1.47 1.46 1.45 1.44 1.43 1.42 
5 6.09 3.37 2.63 2.30 2.11 1.90 1.79 1.70 1.65 1.61 1.59 1.56 1.55 1.52 1.51 1.50 1.49 1.48 1.46 1.46 
8 7.15 3.75 2.87 2.48 2.26 2.02 1.90 1.80 1.74 1.70 1.67 1.65 1.63 1.60 1.59 1.57 1.56 1.55 1.54 1.53 
12 8.21 4.10 3.08 2.64 2.39 2.13 1.99 1.89 1.82 1.78 1.74 1.72 1.70 1.67 1.65 1.64 1.63 1.62 1.60 1.59 
16 9.05 4.37 3.24 2.76 2.49 2.20 2.06 1.95 1.88 1.83 1.80 1.77 1.75 1.72 1.70 1.68 1.67 1.66 1.64 1.63 
20 9.75 4.58 3.37 2.85 2.57 2.26 2.11 1.99 1.92 1.87 1.83 1.81 1.79 1.75 1.73 1.72 1.70 1.69 1.68 1.66 
30 11.18 5.00 3.61 3.02 2.71 2.37 2.20 2.08 2.00 1.94 1.91 1.88 1.85 1.82 1.80 1.78 1.76 1.75 1.74 1.72 
40 12.30 5.32 3.78 3.15 2.81 2.45 2.27 2.13 2.05 2.00 1.96 1.92 1.90 1.86 1.84 1.82 1.81 1.80 1.78 1.76 
50 13.28 5.57 3.92 3.25 2.89 2.51 2.32 2.18 2.10 2.04 1.99 1.96 1.94 1.90 1.87 1.85 1.84 1.83 1.80 1.78 
60 14.11 5.79 4.04 3.33 2.95 2.56 2.36 2.22 2.13 2.07 2.02 1.99 1.97 1.93 1.90 1.88 1.86 1.85 1.83 1.82 
75 15.23 6.07 4.19 3.44 3.03 2.62 2.42 2.26 2.17 2.11 2.06 2.03 2.00 1.96 1.93 1.91 1.90 1.89 1.86 1.85 
100 16.80 6.45 4.38 3.57 3.14 2.70 2.48 2.33 2.23 2.16 2.11 2.08 2.05 2.01 1.98 1.96 1.94 1.93 1.90 1.89 
125 18.07 6.74 4.54 3.67 3.22 2.76 2.53 2.37 2.27 2.20 2.15 2.11 2.09 2.04 2.01 1.99 1.97 1.96 1.93 1.92 
150 19.14 7.01 4.68 3.77 3.30 2.82 2.58 2.41 2.30 2.23 2.19 2.15 2.12 2.07 2.04 2.01 2.00 1.98 1.96 1.94 
175 20.12 7.23 4.79 3.85 3.36 2.86 2.61 2.44 2.33 2.26 2.21 2.17 2.14 2.09 2.06 2.03 2.02 2.00 1.98 1.96 
200 21.09 7.42 4.88 3.91 3.41 2.91 2.65 2.47 2.36 2.28 2.23 2.19 2.15 2.11 2.08 2.05 2.04 2.02 1.99 1.98 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-15. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 2 (20 COC, Annual) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.99 1.98 1.66 1.50 1.41 1.30 1.24 1.20 1.17 1.15 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.06 
2 3.84 2.38 1.94 1.74 1.62 1.49 1.41 1.36 1.32 1.29 1.28 1.26 1.25 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
3 4.43 2.63 2.12 1.88 1.74 1.59 1.51 1.45 1.41 1.38 1.36 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.26 1.26 
4 4.90 2.82 2.25 1.98 1.83 1.67 1.58 1.51 1.46 1.44 1.41 1.40 1.38 1.36 1.35 1.34 1.33 1.32 1.31 1.31 
5 5.29 2.97 2.35 2.06 1.90 1.72 1.63 1.56 1.51 1.48 1.46 1.44 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.34 
8 6.22 3.31 2.57 2.24 2.05 1.85 1.74 1.66 1.61 1.57 1.54 1.53 1.51 1.49 1.47 1.46 1.45 1.44 1.43 1.42 
12 7.14 3.63 2.77 2.39 2.18 1.95 1.83 1.74 1.69 1.65 1.62 1.60 1.58 1.56 1.54 1.53 1.52 1.51 1.49 1.48 
16 7.88 3.87 2.91 2.50 2.27 2.03 1.90 1.80 1.74 1.70 1.67 1.65 1.63 1.60 1.59 1.57 1.56 1.55 1.54 1.53 
20 8.49 4.06 3.03 2.59 2.34 2.08 1.95 1.85 1.79 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.59 1.57 1.56 
30 9.74 4.44 3.25 2.75 2.48 2.19 2.04 1.93 1.86 1.82 1.78 1.76 1.74 1.71 1.69 1.67 1.66 1.65 1.63 1.62 
40 10.73 4.72 3.41 2.87 2.58 2.27 2.11 1.99 1.92 1.87 1.84 1.81 1.79 1.75 1.73 1.72 1.70 1.69 1.68 1.67 
50 11.55 4.96 3.54 2.97 2.65 2.33 2.16 2.04 1.96 1.91 1.87 1.85 1.82 1.79 1.77 1.75 1.74 1.73 1.71 1.70 
60 12.30 5.14 3.65 3.04 2.72 2.38 2.20 2.08 2.00 1.94 1.91 1.88 1.85 1.82 1.80 1.78 1.76 1.75 1.73 1.72 
75 13.26 5.40 3.79 3.14 2.79 2.44 2.26 2.12 2.04 1.98 1.94 1.91 1.89 1.85 1.83 1.81 1.80 1.79 1.77 1.75 

100 14.63 5.74 3.96 3.26 2.90 2.52 2.32 2.18 2.10 2.04 2.00 1.96 1.94 1.90 1.87 1.85 1.83 1.82 1.79 1.77 
125 15.72 6.02 4.12 3.37 2.97 2.58 2.38 2.23 2.14 2.08 2.03 2.00 1.97 1.93 1.91 1.88 1.87 1.85 1.82 1.80 
150 16.68 6.22 4.24 3.45 3.04 2.62 2.42 2.26 2.17 2.11 2.06 2.03 2.00 1.96 1.93 1.91 1.89 1.88 1.86 1.85 
175 17.64 6.43 4.34 3.52 3.10 2.67 2.45 2.30 2.20 2.14 2.09 2.06 2.03 1.99 1.96 1.94 1.92 1.91 1.88 1.87 
200 18.32 6.63 4.44 3.59 3.14 2.71 2.49 2.32 2.23 2.16 2.11 2.08 2.05 2.01 1.98 1.96 1.94 1.93 1.91 1.89 

Table 19-15. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 2 (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.68 2.34 1.93 1.73 1.61 1.48 1.41 1.35 1.32 1.29 1.28 1.26 1.25 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
2 4.71 2.78 2.23 1.98 1.83 1.66 1.57 1.51 1.46 1.43 1.41 1.40 1.38 1.36 1.35 1.34 1.33 1.32 1.31 1.31 
3 5.42 3.06 2.42 2.12 1.95 1.77 1.67 1.59 1.55 1.51 1.49 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 
4 5.98 3.27 2.55 2.23 2.04 1.84 1.74 1.66 1.61 1.57 1.54 1.52 1.51 1.49 1.47 1.46 1.45 1.44 1.43 1.42 
5 6.46 3.44 2.66 2.31 2.12 1.90 1.79 1.70 1.65 1.61 1.59 1.57 1.55 1.53 1.51 1.50 1.49 1.48 1.46 1.46 
8 7.58 3.82 2.90 2.49 2.27 2.03 1.90 1.80 1.74 1.70 1.67 1.65 1.63 1.60 1.59 1.57 1.56 1.55 1.54 1.53 
12 8.70 4.18 3.11 2.65 2.40 2.13 1.99 1.89 1.82 1.78 1.75 1.72 1.70 1.67 1.65 1.64 1.63 1.62 1.60 1.59 
16 9.59 4.45 3.27 2.77 2.50 2.21 2.06 1.95 1.88 1.83 1.80 1.77 1.75 1.72 1.70 1.68 1.67 1.66 1.64 1.63 
20 10.33 4.67 3.40 2.86 2.57 2.27 2.11 1.99 1.92 1.87 1.84 1.81 1.79 1.75 1.73 1.72 1.70 1.69 1.68 1.67 
30 11.84 5.09 3.64 3.04 2.71 2.38 2.20 2.08 2.00 1.95 1.91 1.88 1.85 1.82 1.80 1.78 1.77 1.75 1.74 1.72 
40 13.06 5.41 3.81 3.16 2.81 2.45 2.27 2.14 2.05 2.00 1.96 1.92 1.90 1.86 1.84 1.82 1.81 1.80 1.78 1.76 
50 14.05 5.67 3.95 3.26 2.89 2.51 2.32 2.18 2.10 2.04 1.99 1.96 1.94 1.90 1.87 1.85 1.84 1.83 1.80 1.77 
60 14.94 5.90 4.07 3.34 2.96 2.56 2.36 2.22 2.13 2.07 2.03 1.99 1.97 1.93 1.90 1.88 1.86 1.85 1.82 1.82 
75 16.13 6.17 4.22 3.44 3.04 2.63 2.42 2.26 2.17 2.11 2.06 2.03 2.00 1.96 1.93 1.91 1.89 1.89 1.86 1.85 
100 17.77 6.56 4.41 3.58 3.14 2.70 2.48 2.32 2.23 2.16 2.11 2.08 2.05 2.01 1.98 1.95 1.94 1.93 1.90 1.89 
125 19.14 6.87 4.58 3.69 3.23 2.77 2.54 2.37 2.27 2.20 2.15 2.11 2.08 2.04 2.01 1.99 1.97 1.96 1.93 1.92 
150 20.23 7.11 4.72 3.78 3.30 2.82 2.58 2.41 2.31 2.23 2.18 2.14 2.11 2.07 2.03 2.01 2.00 1.98 1.96 1.94 
175 21.33 7.38 4.82 3.86 3.37 2.86 2.61 2.44 2.33 2.26 2.21 2.17 2.14 2.09 2.06 2.03 2.01 2.00 1.98 1.96 
200 22.42 7.59 4.92 3.93 3.42 2.91 2.65 2.47 2.36 2.29 2.23 2.20 2.16 2.11 2.08 2.05 2.03 2.02 1.99 1.98 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-15. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 2 (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 4.43 2.71 2.20 1.96 1.82 1.66 1.57 1.51 1.46 1.43 1.41 1.40 1.38 1.36 1.35 1.34 1.33 1.32 1.31 1.31 
2 5.64 3.20 2.53 2.22 2.04 1.84 1.73 1.65 1.60 1.57 1.54 1.52 1.51 1.49 1.47 1.46 1.45 1.44 1.43 1.42 
3 6.48 3.51 2.72 2.37 2.17 1.95 1.83 1.74 1.69 1.65 1.62 1.60 1.58 1.56 1.54 1.53 1.52 1.51 1.49 1.48 
4 7.15 3.75 2.87 2.48 2.26 2.02 1.90 1.80 1.74 1.70 1.67 1.65 1.63 1.60 1.59 1.57 1.56 1.55 1.54 1.53 
5 7.72 3.94 2.99 2.57 2.33 2.08 1.95 1.85 1.79 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.59 1.57 1.56 
8 9.05 4.37 3.24 2.76 2.49 2.21 2.06 1.95 1.88 1.83 1.80 1.77 1.75 1.72 1.70 1.68 1.67 1.66 1.64 1.63 
12 10.37 4.77 3.47 2.93 2.63 2.31 2.15 2.03 1.96 1.90 1.87 1.84 1.82 1.78 1.76 1.74 1.73 1.72 1.70 1.69 
16 11.43 5.07 3.64 3.05 2.73 2.39 2.22 2.09 2.01 1.96 1.92 1.89 1.86 1.83 1.81 1.79 1.77 1.76 1.74 1.73 
20 12.32 5.31 3.78 3.15 2.81 2.45 2.27 2.14 2.05 2.00 1.96 1.92 1.90 1.86 1.84 1.82 1.81 1.80 1.78 1.76 
30 14.12 5.79 4.04 3.33 2.95 2.56 2.36 2.22 2.13 2.07 2.03 1.99 1.97 1.93 1.90 1.88 1.86 1.85 1.83 1.82 
40 15.55 6.15 4.23 3.46 3.06 2.64 2.43 2.28 2.18 2.12 2.07 2.04 2.01 1.97 1.94 1.92 1.91 1.89 1.87 1.86 
50 16.75 6.44 4.38 3.57 3.14 2.70 2.48 2.32 2.23 2.16 2.11 2.08 2.05 2.01 1.98 1.95 1.94 1.93 1.90 1.89 
60 17.77 6.68 4.51 3.66 3.21 2.76 2.53 2.36 2.26 2.19 2.14 2.11 2.08 2.03 2.00 1.98 1.96 1.95 1.93 1.91 
75 19.14 7.01 4.67 3.77 3.30 2.82 2.58 2.41 2.30 2.23 2.18 2.14 2.11 2.07 2.04 2.01 2.00 1.98 1.96 1.94 

100 21.05 7.43 4.89 3.91 3.41 2.90 2.65 2.47 2.36 2.29 2.23 2.19 2.16 2.11 2.08 2.05 2.04 2.02 1.99 1.98 
125 22.70 7.79 5.06 4.03 3.49 2.97 2.70 2.51 2.40 2.32 2.27 2.23 2.19 2.14 2.11 2.08 2.06 2.05 2.02 2.00 
150 24.20 8.07 5.21 4.12 3.57 3.02 2.74 2.55 2.44 2.36 2.30 2.26 2.22 2.17 2.14 2.11 2.09 2.07 2.05 2.03 
175 25.43 8.34 5.33 4.20 3.63 3.06 2.79 2.58 2.47 2.38 2.33 2.29 2.24 2.19 2.16 2.13 2.11 2.10 2.07 2.05 
200 26.52 8.54 5.43 4.27 3.69 3.10 2.81 2.61 2.49 2.41 2.35 2.31 2.26 2.21 2.18 2.15 2.13 2.11 2.08 2.07 

Table 19-15. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 2 ( 40 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.84 2.38 1.94 1.74 1.62 1.49 1.41 1.36 1.32 1.29 1.28 1.26 1.25 1.23 1.22 1.21 1.21 1.20 1.19 1.19 
2 4.90 2.82 2.25 1.98 1.83 1.67 1.58 1.51 1.46 1.43 1.41 1.40 1.38 1.36 1.35 1.34 1.33 1.33 1.31 1.31 
3 5.63 3.10 2.43 2.13 1.96 1.77 1.67 1.60 1.55 1.51 1.49 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 
4 6.22 3.31 2.57 2.24 2.05 1.85 1.74 1.66 1.61 1.57 1.54 1.53 1.51 1.49 1.47 1.46 1.45 1.44 1.43 1.42 
5 6.71 3.48 2.68 2.32 2.12 1.90 1.79 1.70 1.65 1.61 1.59 1.57 1.55 1.53 1.51 1.50 1.49 1.48 1.46 1.46 
8 7.88 3.87 2.91 2.50 2.27 2.03 1.90 1.80 1.74 1.70 1.67 1.65 1.63 1.61 1.59 1.57 1.56 1.55 1.54 1.53 
12 9.03 4.23 3.13 2.66 2.40 2.13 1.99 1.89 1.82 1.78 1.74 1.72 1.70 1.67 1.65 1.64 1.63 1.62 1.60 1.59 
16 9.96 4.50 3.29 2.18 2.50 2.21 2.06 1.95 1.88 1.83 1.80 1.77 1.75 1.72 1.70 1.68 1.67 1.66 1.64 1.63 
20 10.74 4.72 3.41 2.87 2.58 2.27 2.11 1.99 1.92 1.87 1.84 1.81 1.79 1.76 1.73 1.72 1.70 1.69 1.68 1.67 
30 12.30 5.15 3.65 3.04 2.71 2.38 2.20 2.08 2.00 1.95 1.91 1.88 1.85 1.82 1.80 1.78 1.77 1.75 1.74 1.72 
40 13.52 5.47 3.83 3.16 2.82 2.46 2.27 2.14 2.05 2.00 1.96 1.92 1.90 1.87 1.84 1.82 1.81 1.80 1.78 1.76 
50 14.61 5.74 3.96 3.27 2.90 2.51 2.32 2.18 2.09 2.04 1.99 1.96 1.94 1.90 1.88 1.86 1.84 1.83 1.81 1.79 
60 15.47 5.96 4.08 3.35 2.96 2.56 2.36 2.22 2.13 2.07 2.03 1.99 1.97 1.93 1.90 1.88 1.87 1.86 1.83 1.82 
75 16.72 6.25 4.24 3.46 3.05 2.63 2.42 2.27 2.17 2.11 2.06 2.03 2.00 1.96 1.93 1.91 1.90 1.88 1.87 1.85 
100 18.44 6.64 4.43 3.59 3.14 2.71 2.48 2.32 2.23 2.16 2.11 2.08 2.05 2.01 1.98 1.95 1.94 1.92 1.90 1.89 
125 19.69 6.95 4.59 3.69 3.24 2.77 2.54 2.37 2.27 2.20 2.15 2.11 2.08 2.04 2.01 1.99 1.97 1.96 1.93 1.92 
150 21.25 7.19 4.73 3.79 3.30 2.81 2.58 2.40 2.30 2.23 2.18 2.14 2.11 2.07 2.04 2.01 1.99 1.98 1.96 1.94 
175 22.19 7.42 4.84 3.87 3.36 2.87 2.62 2.44 2.32 2.26 2.21 2.17 2.14 2.09 2.06 2.03 2.02 2.00 1.98 1.96 
200 23.12 7.66 4.92 3.95 3.42 2.91 2.65 2.46 2.35 2.29 2.23 2.19 2.16 2.11 2.08 2.05 2.03 2.02 1.99 1.98 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-15. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 2 (40 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 4.71 2.78 2.23 1.98 1.83 1.66 1.57 1.51 1.46 1.43 1.41 1.40 1.38 1.36 1.35 1.34 1.33 1.32 1.31 1.31 
2 5.98 3.27 2.55 2.23 2.04 1.84 1.74 1.66 1.61 1.57 1.54 1.52 1.51 1.49 1.47 1.46 1.45 1.44 1.43 1.42 
3 6.87 3.59 2.75 2.38 2.17 1.95 1.83 1.74 1.69 1.65 1.62 1.60 1.58 1.56 1.54 1.53 1.52 1.51 1.49 1.48 
4 7.58 3.82 2.90 2.49 2.27 2.03 1.90 1.80 1.74 1.70 1.67 1.65 1.63 1.60 1.59 1.57 1.56 1.55 1.54 1.53 
5 8.17 4.02 3.01 2.58 2.34 2.08 1.95 1.85 1.79 1.74 1.71 1.69 1.67 1.64 1.62 1.61 1.60 1.59 1.57 1.56 
8 9.58 4.45 3.27 2.77 2.50 2.21 2.06 1.95 1.88 1.83 1.80 1.77 1.75 1.72 1.70 1.68 1.67 1.66 1.64 1.63 
12 10.98 4.85 3.50 2.94 2.63 2.32 2.15 2.03 1.96 1.90 1.87 1.84 1.82 1.78 1.76 1.74 1.73 1.72 1.70 1.69 
16 12.11 5.16 3.67 3.06 2.73 2.39 2.22 2.09 2.01 1.96 1.92 1.89 1.86 1.83 1.81 1.79 1.77 1.76 1.74 1.73 
20 13.05 5.41 3.81 3.16 2.81 2.45 2.27 2.14 2.05 2.00 1.96 1.93 1.90 1.87 1.84 1.82 1.81 1.80 1.78 1.76 
30 14.92 5.90 4.07 3.34 2.96 2.56 2.36 2.22 2.13 2.07 2.02 1.99 1.97 1.93 1.90 1.88 1.87 1.85 1.83 1.82 
40 16.48 6.25 4.26 3.48 3.07 2.64 2.43 2.28 2.18 2.12 2.07 2.04 2.01 1.97 1.94 1.92 1.91 1.89 1.87 1.86 
50 17.73 6.56 4.41 3.58 3.14 2.71 2.48 2.32 2.23 2.16 2.11 2.08 2.05 2.00 1.98 1.96 1.94 1.93 1.90 1.89 
60 18.91 6.80 4.55 3.67 3.21 2.75 2.52 2.36 2.26 2.19 2.14 2.10 2.08 2.03 2.00 1.98 1.97 1.95 1.93 1.91 
75 20.31 7.11 4.71 3.78 3.30 2.82 2.58 2.41 2.30 2.23 2.18 2.14 2.11 2.07 2.04 2.01 2.00 1.98 1.96 1.94 

100 22.34 7.58 4.92 3.93 3.42 2.90 2.65 2.47 2.36 2.28 2.23 2.19 2.15 2.11 2.08 2.05 2.04 2.02 2.00 1.98 
125 24.06 7.89 5.08 4.04 3.50 2.97 2.70 2.51 2.39 2.32 2.27 2.22 2.19 2.14 2.11 2.08 2.07 2.05 2.03 2.01 
150 25.62 8.20 5.23 4.14 3.57 3.02 2.74 2.55 2.43 2.35 2.29 2.25 2.22 2.17 2.14 2.11 2.09 2.08 2.05 2.03 
175 26.88 8.44 5.39 4.22 3.63 3.07 2.77 2.58 2.46 2.38 2.32 2.28 2.25 2.19 2.16 2.13 2.11 2.10 2.07 2.05 
200 28.12 8.75 5.47 4.30 3.69 3.11 2.81 2.61 2.48 2.40 2.34 2.29 2.27 2.21 2.18 2.15 2.13 2.11 2.09 2.07 

Table 19-15. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 2 (40 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 5.64 3.20 2.53 2.22 2.04 1.84 1.73 1.65 1.60 1.57 1.54 1.52 1.51 1.49 1.47 1.46 1.45 1.44 1.43 1.42 
2 7.15 3.75 2.87 2.48 2.26 2.02 1.90 1.80 1.74 1.70 1.67 1.65 1.63 1.60 1.59 1.57 1.56 1.55 1.54 1.53 
3 8.21 4.10 3.08 2.64 2.39 2.13 1.99 1.89 1.82 1.78 1.74 1.72 1.70 1.67 1.65 1.64 1.63 1.62 1.60 1.59 
4 9.05 4.37 3.24 2.76 2.49 2.21 2.06 1.95 1.88 1.83 1.80 1.77 1.75 1.72 1.70 1.68 1.67 1.66 1.64 1.63 
5 9.76 4.58 3.37 2.85 2.57 2.26 2.11 1.99 1.92 1.87 1.84 1.81 1.79 1.76 1.73 1.72 1.70 1.69 1.68 1.67 
8 11.43 5.07 3.65 3.05 2.73 2.39 2.22 2.09 2.01 1.96 1.92 1.89 1.86 1.83 1.81 1.79 1.77 1.76 1.74 1.73 
12 13.11 5.52 3.90 3.23 2.87 2.50 2.31 2.17 2.09 2.03 1.99 1.95 1.93 1.89 1.87 1.85 1.83 1.82 1.80 1.79 
16 14.41 5.87 4.08 3.36 2.98 2.58 2.38 2.23 2.14 2.08 2.04 2.00 1.98 1.94 1.91 1.89 1.88 1.86 1.84 1.83 
20 15.55 6.15 4.23 3.46 3.06 2.64 2.43 2.28 2.18 2.12 2.07 2.04 2.01 1.97 1.94 1.92 1.91 1.89 1.87 1.86 
30 17.81 6.69 4.51 3.66 3.21 2.75 2.52 2.36 2.26 2.19 2.14 2.10 2.08 2.03 2.00 1.98 1.96 1.95 1.93 1.91 
40 19.61 7.11 4.73 3.80 3.32 2.84 2.59 2.42 2.31 2.24 2.19 2.15 2.12 2.08 2.05 2.02 2.00 1.99 1.97 1.95 
50 21.09 7.42 4.88 3.92 3.41 2.90 2.65 2.47 2.36 2.28 2.23 2.19 2.16 2.11 2.08 2.05 2.04 2.02 1.99 1.98 
60 22.50 7.73 5.03 4.00 3.48 2.95 2.69 2.50 2.39 2.31 2.26 2.22 2.18 2.14 2.10 2.08 2.06 2.05 2.02 2.00 
75 24.22 8.09 5.21 4.12 3.56 3.02 2.74 2.55 2.43 2.35 2.29 2.25 2.22 2.17 2.13 2.11 2.09 2.08 2.05 2.03 
100 26.56 8.59 5.43 4.28 3.69 3.10 2.81 2.61 2.49 2.40 2.34 2.29 2.26 2.21 2.18 2.15 2.13 2.11 2.08 2.07 
125 28.75 8.98 5.62 4.39 3.77 3.16 2.86 2.66 2.53 2.44 2.38 2.33 2.29 2.25 2.21 2.18 2.16 2.14 2.11 2.09 
150 30.62 9.30 5.78 4.49 3.87 3.22 2.91 2.70 2.56 2.47 2.41 2.36 2.32 2.27 2.23 2.21 2.18 2.17 2.14 2.12 
175 31.88 9.61 5.94 4.59 3.93 3.26 2.95 2.72 2.59 2.50 2.43 2.38 2.34 2.29 2.26 2.23 2.21 2.19 2.16 2.14 
200 33.75 9.84 6.02 4.69 3.98 3.30 2.99 2.75 2.62 2.52 2.46 2.40 2.36 2.31 2.28 2.25 2.22 2.21 2.18 2.15 
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Table 19-16. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Means of Order 2 (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.37 0.27 0.22 0.19 0.17 0.14 0.13 0.11 0.11 0.10 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.07 0.07 
2 0.71 O.S3 0.4S 0.41 0.38 0.34 0.32 0.30 0.29 0.28 0.28 0.27 0.27 0.26 0.26 0.2S 0.2S 0.2S 0.2S 0.24 
3 0.92 0.68 O.S8 O.S3 0.49 0.4S 0.42 0.40 0.39 0.38 0.37 0.37 0.36 0.3S 0.3S 0.3S 0.34 0.34 0.34 0.33 
4 1.07 0.79 0.67 0.61 O.S7 O.S2 0.49 0.47 0.4S 0.44 0.44 0.43 0.42 0.42 0.41 0.41 0.40 0.40 0.40 0.39 
s 1.20 0.87 0.74 0.67 0.63 O.S8 O.S4 O.S2 o.so 0.49 0.48 0.48 0.47 0.46 0.46 0.4S 0.4S 0.4S 0.44 0.44 
8 1.49 1.05 0.89 0.81 0.7S 0.69 0.6S 0.62 0.60 O.S9 O.S8 O.S7 O.S7 O.S6 o.ss O.S4 O.S4 O.S4 O.S3 O.S3 
12 1.77 1.22 1.02 0.92 0.86 0.78 0.74 0.71 0.69 0.67 0.66 0.6S 0.64 0.63 0.62 0.62 0.61 0.61 0.61 0.60 
16 1.98 1.34 1.11 1.00 0.93 0.8S 0.80 0.77 0.74 0.73 0.71 0.70 0.70 0.68 0.68 0.67 0.67 0.66 0.6S 0.6S 
20 2.17 1.43 1.19 1.06 0.99 0.90 0.8S 0.81 0.78 0.77 0.7S 0.74 0.74 0.72 0.72 0.71 0.70 0.70 0.69 0.69 
30 2.S2 1.61 1.32 1.18 1.09 0.99 0.93 0.89 0.86 0.84 0.83 0.81 0.81 0.79 0.78 0.78 0.77 0.77 0.76 0.7S 
40 2.81 1.74 1.42 1.26 1.16 1.05 0.99 0.94 0.91 0.89 0.88 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
so 3.04 1.8S 1.49 1.32 1.22 1.10 1.04 0.99 0.9S 0.93 0.91 0.90 0.89 0.88 0.87 0.86 0.8S 0.8S 0.84 0.83 
60 3.25 1.94 1.S6 1.37 1.26 1.14 1.07 1.02 0.99 0.96 0.94 0.93 0.92 0.91 0.89 0.89 0.88 0.87 0.86 0.86 
7S 3.52 2.06 1.63 1.44 1.32 1.19 1.12 1.06 1.02 1.00 0.98 0.97 0.96 0.94 0.93 0.92 0.91 0.91 0.90 0.89 

100 3.89 2.21 1.74 1.S2 1.39 1.2S 1.17 1.11 1.07 1.05 1.03 1.01 1.00 0.98 0.97 0.96 0.96 0.9S 0.94 0.93 
12S 4.21 2.33 1.82 1.58 1.4S 1.30 1.21 1.1S 1.11 1.08 1.06 1.05 1.04 1.02 1.00 0.99 0.99 0.98 0.97 0.96 
150 4.49 2.43 1.89 1.64 1.49 1.34 1.2S 1.18 1.14 1.11 1.09 1.08 1.06 1.04 1.03 1.02 1.01 1.01 1.00 0.99 
17S 4.73 2.52 1.94 1.68 1.S3 1.37 1.28 1.21 1.17 1.14 1.12 1.10 1.09 1.07 1.05 1.04 1.04 1.03 1.02 1.01 
200 4.96 2.61 2.00 1.72 1.S7 1.40 1.30 1.24 1.19 1.16 1.14 1.12 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.03 

Table 19-16. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Means of Order 2 (1 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.64 o.so 0.43 0.39 0.36 0.33 0.31 0.30 0.29 0.28 0.27 0.27 0.26 0.26 0.2S 0.2S 0.2S 0.2S 0.24 0.24 
2 1.00 0.76 0.66 0.60 O.S6 O.Sl 0.49 0.47 0.4S 0.44 0.43 0.43 0.42 0.41 0.41 0.41 0.40 0.40 0.40 0.39 
3 1.23 0.91 0.79 0.72 0.67 0.62 O.S8 O.S6 O.S4 O.S3 O.S2 O.Sl O.Sl o.so 0.49 0.49 0.48 0.48 0.48 0.47 
4 1.41 1.03 0.88 0.80 0.7S 0.68 0.6S 0.62 0.60 O.S9 O.S8 O.S7 O.S6 O.S6 o.ss O.S4 O.S4 O.S4 O.S3 O.S3 
s 1.S6 1.11 0.9S 0.86 0.80 0.74 0.70 0.67 0.6S 0.63 0.62 0.61 0.61 0.60 O.S9 O.S9 O.S8 O.S8 O.S7 O.S7 
8 1.89 1.31 1.10 0.99 0.92 0.8S 0.80 0.76 0.74 0.72 0.71 0.70 0.70 0.68 0.68 0.67 0.67 0.66 0.6S 0.6S 
12 2.22 1.48 1.23 1.11 1.03 0.94 0.88 0.84 0.82 0.80 0.79 0.78 0.77 0.7S 0.7S 0.74 0.73 0.73 0.72 0.72 
16 2.48 1.61 1.33 1.19 1.10 1.00 0.94 0.90 0.87 0.8S 0.84 0.83 0.82 0.80 0.79 0.79 0.78 0.78 0.77 0.76 
20 2.69 1.72 1.40 1.2S 1.16 1.05 0.99 0.94 0.91 0.89 0.88 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
30 3.12 1.91 1.S4 1.36 1.26 1.14 1.07 1.02 0.99 0.96 0.94 0.93 0.92 0.90 0.89 0.89 0.88 0.87 0.86 0.86 
40 3.46 2.06 1.6S 1.45 1.33 1.20 1.13 1.07 1.04 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
so 3.75 2.18 1.73 1.Sl 1.39 1.2S 1.17 1.11 1.07 1.05 1.03 1.01 1.00 0.98 0.97 0.96 0.96 0.9S 0.94 0.93 
60 3.99 2.28 1.79 1.S7 1.43 1.29 1.21 1.14 1.10 1.08 1.06 1.04 1.03 1.01 1.00 0.99 0.98 0.98 0.96 0.96 
7S 4.32 2.40 1.88 1.63 1.49 1.33 1.2S 1.18 1.14 1.11 1.09 1.08 1.06 1.04 1.03 1.02 1.01 1.01 1.00 0.99 

100 4.77 2.S7 1.99 1.72 1.S6 1.40 1.30 1.24 1.19 1.16 1.14 1.12 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
12S 5.16 2.71 2.08 1.79 1.62 1.44 1.3S 1.27 1.23 1.20 1.17 1.1S 1.14 1.12 1.10 1.09 1.08 1.08 1.07 1.06 
150 5.47 2.82 2.1S 1.84 1.67 1.48 1.38 1.31 1.26 1.23 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 
17S 5.78 2.93 2.21 1.89 1.71 1.S2 1.41 1.33 1.28 1.2S 1.22 1.20 1.19 1.17 1.1S 1.14 1.13 1.12 1.11 1.10 
200 6.05 3.02 2.27 1.93 1.7S 1.S4 1.44 1.36 1.30 1.27 1.2S 1.22 1.21 1.19 1.17 1.16 1.1S 1.14 1.13 1.12 
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Table 19-16. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Means of Order 2 (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.90 0.71 0.62 O.S7 O.S4 o.so 0.48 0.46 0.4S 0.44 0.43 0.42 0.42 0.41 0.41 0.40 0.40 0.40 0.39 0.39 
2 1.30 0.98 0.8S 0.78 0.73 0.68 0.64 0.62 0.60 O.S9 O.S8 O.S7 O.S6 o.ss o.ss O.S4 O.S4 O.S4 O.S3 O.S3 
3 1.S6 1.14 0.98 0.89 0.84 0.77 0.73 0.70 0.68 0.67 0.66 0.6S 0.64 0.63 0.62 0.62 0.61 0.61 0.60 0.60 
4 1.76 1.26 1.08 0.98 0.91 0.84 0.79 0.76 0.74 0.72 0.71 0.70 0.69 0.68 0.67 0.67 0.66 0.66 0.6S 0.6S 
s 1.93 1.36 1.1S 1.04 0.97 0.89 0.84 0.81 0.78 0.76 0.7S 0.74 0.73 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
8 2.32 1.S7 1.31 1.17 1.09 0.99 0.94 0.90 0.87 0.8S 0.84 0.82 0.82 0.80 0.79 0.79 0.78 0.78 0.77 0.76 
12 2.71 1.76 1.44 1.29 1.19 1.08 1.02 0.97 0.94 0.92 0.91 0.89 0.88 0.87 0.86 0.8S 0.84 0.84 0.83 0.83 
16 3.01 1.90 1.S4 1.37 1.27 1.1S 1.08 1.03 1.00 0.97 0.9S 0.94 0.93 0.91 0.90 0.90 0.89 0.88 0.87 0.87 
20 3.26 2.01 1.62 1.44 1.32 1.20 1.12 1.07 1.03 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
30 3.76 2.23 1.77 1.S6 1.43 1.28 1.20 1.14 1.10 1.08 1.06 1.04 1.03 1.01 1.00 0.99 0.98 0.98 0.96 0.96 
40 4.17 2.39 1.88 1.64 1.SO 1.3S 1.26 1.19 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
so 4.50 2.S2 1.97 1.71 1.S6 1.39 1.30 1.23 1.19 1.16 1.14 1.12 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
60 4.79 2.63 2.04 1.76 1.61 1.43 1.34 1.27 1.22 1.19 1.17 1.1S 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.05 
7S 5.18 2.77 2.13 1.83 1.67 1.48 1.38 1.30 1.26 1.22 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 

100 5.72 2.96 2.2S 1.92 1.74 1.S4 1.44 1.3S 1.30 1.27 1.24 1.22 1.21 1.19 1.17 1.16 1.1S 1.14 1.13 1.12 
12S 6.17 3.12 2.34 1.99 1.80 1.S9 1.48 1.39 1.34 1.30 1.28 1.26 1.24 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 
150 6.56 3.24 2.42 2.06 1.8S 1.63 1.Sl 1.43 1.37 1.33 1.30 1.28 1.27 1.24 1.22 1.21 1.20 1.19 1.18 1.17 
17S 6.91 3.36 2.49 2.10 1.89 1.66 1.S4 1.4S 1.39 1.3S 1.33 1.31 1.29 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 
200 7.23 3.46 2.S4 2.15 1.93 1.69 1.S7 1.47 1.42 1.38 1.3S 1.32 1.31 1.28 1.26 1.2S 1.24 1.23 1.22 1.21 

Table 19-16. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Means of Order 2 (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 0.71 O.S3 0.4S 0.41 0.38 0.34 0.32 0.30 0.29 0.28 0.28 0.27 0.27 0.26 0.26 0.2S 0.2S 0.2S 0.2S 0.24 
2 1.07 0.79 0.67 0.61 O.S7 O.S2 0.49 0.47 0.4S 0.44 0.44 0.43 0.42 0.42 0.41 0.41 0.40 0.40 0.40 0.39 
3 1.31 0.94 0.80 0.73 0.68 0.62 O.S9 O.S6 O.S4 O.S3 O.S2 O.Sl O.Sl o.so 0.49 0.49 0.49 0.48 0.48 0.47 
4 1.49 1.05 0.89 0.81 0.7S 0.69 0.6S 0.62 0.60 O.S9 O.S8 O.S7 O.S7 O.S6 o.ss O.S4 O.S4 O.S4 O.S3 O.S3 
s 1.64 1.14 0.96 0.87 0.81 0.74 0.70 0.67 0.6S 0.63 0.62 0.62 0.61 0.60 O.S9 O.S9 O.S8 O.S8 O.S7 O.S7 
8 1.98 1.34 1.11 1.00 0.93 0.8S 0.80 0.77 0.74 0.73 0.71 0.70 0.70 0.68 0.68 0.67 0.67 0.66 0.6S 0.6S 
12 2.32 1.Sl 1.2S 1.11 1.03 0.94 0.89 0.8S 0.82 0.80 0.79 0.78 0.77 0.76 0.7S 0.74 0.73 0.73 0.72 0.72 
16 2.59 1.64 1.34 1.19 1.10 1.00 0.9S 0.90 0.87 0.8S 0.84 0.83 0.82 0.80 0.79 0.79 0.78 0.78 0.77 0.76 
20 2.81 1.74 1.42 1.26 1.16 1.05 0.99 0.94 0.91 0.89 0.88 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
30 3.25 1.94 1.S6 1.37 1.26 1.14 1.07 1.02 0.99 0.96 0.94 0.93 0.92 0.91 0.89 0.89 0.88 0.87 0.86 0.86 
40 3.60 2.09 1.66 1.45 1.34 1.20 1.13 1.07 1.04 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
so 3.89 2.21 1.74 1.S2 1.39 1.2S 1.17 1.11 1.07 1.05 1.03 1.01 1.00 0.98 0.97 0.96 0.96 0.9S 0.94 0.93 
60 4.15 2.30 1.80 1.S7 1.44 1.29 1.21 1.1S 1.11 1.08 1.06 1.04 1.03 1.01 1.00 0.99 0.98 0.98 0.97 0.96 
7S 4.49 2.43 1.89 1.64 1.49 1.34 1.2S 1.18 1.14 1.11 1.09 1.08 1.06 1.04 1.03 1.02 1.01 1.01 1.00 0.99 

100 4.96 2.61 2.00 1.72 1.S7 1.40 1.30 1.24 1.19 1.16 1.14 1.12 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
12S 5.35 2.74 2.09 1.79 1.63 1.4S 1.3S 1.27 1.23 1.20 1.17 1.1S 1.14 1.12 1.10 1.09 1.08 1.08 1.06 1.06 
150 5.70 2.85 2.16 1.85 1.67 1.48 1.38 1.31 1.26 1.23 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 
17S 6.02 2.97 2.23 1.89 1.72 1.S2 1.41 1.33 1.28 1.2S 1.23 1.21 1.19 1.17 1.1S 1.14 1.13 1.12 1.11 1.10 
200 6.25 3.05 2.28 1.93 1.7S 1.S4 1.44 1.36 1.30 1.27 1.2S 1.23 1.21 1.19 1.17 1.16 1.15 1.14 1.13 1.12 
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Table 19-16. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Means of Order 2 (2 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.00 0.76 0.66 0.60 O.S6 O.Sl 0.49 0.47 0.4S 0.44 0.43 0.43 0.42 0.41 0.41 0.41 0.40 0.40 0.40 0.39 
2 1.41 1.03 0.88 0.80 0.7S 0.68 0.6S 0.62 0.60 O.S9 O.S8 O.S7 O.S6 O.S6 o.ss O.S4 O.S4 O.S4 O.S3 O.S3 
3 1.68 1.19 1.01 0.91 0.8S 0.78 0.74 0.71 0.68 0.67 0.66 0.6S 0.64 0.63 0.62 0.62 0.61 0.61 0.60 0.60 
4 1.89 1.31 1.10 0.99 0.92 0.8S 0.80 0.76 0.74 0.72 0.71 0.70 0.70 0.68 0.68 0.67 0.67 0.66 0.6S 0.6S 
s 2.07 1.40 1.17 1.05 0.98 0.90 0.8S 0.81 0.78 0.77 0.7S 0.74 0.74 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
8 2.48 1.61 1.33 1.19 1.10 1.00 0.94 0.90 0.87 0.8S 0.84 0.83 0.82 0.80 0.79 0.79 0.78 0.78 0.77 0.76 
12 2.88 1.80 1.47 1.30 1.20 1.09 1.03 0.98 0.9S 0.92 0.91 0.89 0.88 0.87 0.86 0.8S 0.84 0.84 0.83 0.83 
16 3.20 1.94 1.S7 1.38 1.27 1.1S 1.08 1.03 1.00 0.97 0.96 0.94 0.93 0.91 0.90 0.90 0.89 0.88 0.87 0.87 
20 3.46 2.06 1.6S 1.45 1.33 1.20 1.13 1.07 1.04 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
30 3.99 2.28 1.79 1.S7 1.43 1.29 1.21 1.14 1.10 1.08 1.06 1.04 1.03 1.01 1.00 0.99 0.98 0.98 0.96 0.96 
40 4.41 2.44 1.90 1.65 1.Sl 1.3S 1.26 1.20 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
so 4.77 2.S7 1.99 1.72 1.S6 1.40 1.30 1.24 1.19 1.16 1.14 1.12 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
60 5.08 2.69 2.06 1.77 1.61 1.44 1.34 1.27 1.22 1.19 1.17 1.1S 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.05 
7S 5.47 2.82 2.1S 1.84 1.67 1.48 1.38 1.31 1.26 1.23 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 

100 6.05 3.02 2.27 1.93 1.7S 1.S4 1.44 1.36 1.30 1.27 1.2S 1.22 1.21 1.19 1.17 1.16 1.1S 1.14 1.13 1.12 
12S 6.52 3.16 2.36 2.00 1.81 1.S9 1.48 1.40 1.34 1.30 1.28 1.26 1.24 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 
150 6.95 3.30 2.44 2.06 1.86 1.63 1.Sl 1.43 1.37 1.33 1.30 1.28 1.26 1.24 1.23 1.21 1.20 1.19 1.18 1.17 
17S 7.34 3.42 2.SO 2.11 1.89 1.67 1.S4 1.4S 1.40 1.36 1.33 1.30 1.29 1.26 1.2S 1.23 1.22 1.21 1.20 1.19 
200 7.66 3.52 2.S6 2.16 1.93 1.69 1.S7 1.47 1.42 1.38 1.3S 1.32 1.31 1.28 1.26 1.2S 1.24 1.23 1.22 1.21 

Table 19-16. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Means of Order 2 (2 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.30 0.98 0.8S 0.78 0.73 0.68 0.64 0.62 0.60 O.S9 O.S8 O.S7 O.S6 o.ss o.ss O.S4 O.S4 O.S4 O.S3 O.S3 
2 1.76 1.26 1.08 0.98 0.91 0.84 0.79 0.76 0.74 0.72 0.71 0.70 0.69 0.68 0.67 0.67 0.66 0.66 0.6S 0.6S 
3 2.08 1.44 1.21 1.09 1.02 0.93 0.88 0.84 0.82 0.80 0.78 0.77 0.77 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 
4 2.32 1.S7 1.31 1.17 1.09 0.99 0.94 0.90 0.87 0.8S 0.84 0.82 0.82 0.80 0.79 0.79 0.78 0.78 0.77 0.76 
s 2.S3 1.67 1.38 1.24 1.1S 1.04 0.99 0.94 0.91 0.89 0.87 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
8 3.01 1.90 1.S4 1.37 1.27 1.1S 1.08 1.03 1.00 0.97 0.9S 0.94 0.93 0.91 0.90 0.90 0.89 0.88 0.87 0.87 
12 3.48 2.11 1.69 1.49 1.37 1.24 1.16 1.10 1.07 1.04 1.02 1.01 0.99 0.98 0.97 0.96 0.9S 0.94 0.93 0.93 
16 3.85 2.26 1.80 1.S7 1.44 1.30 1.22 1.1S 1.12 1.09 1.07 1.05 1.04 1.02 1.01 1.00 0.99 0.98 0.97 0.97 
20 4.17 2.39 1.88 1.64 1.50 1.3S 1.26 1.19 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
30 4.79 2.63 2.04 1.76 1.61 1.43 1.34 1.27 1.22 1.19 1.17 1.1S 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.05 
40 5.29 2.81 2.1S 1.85 1.68 1.49 1.39 1.32 1.27 1.23 1.21 1.19 1.18 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
so 5.72 2.96 2.2S 1.92 1.74 1.S4 1.44 1.3S 1.30 1.27 1.24 1.22 1.21 1.19 1.17 1.16 1.1S 1.14 1.13 1.12 
60 6.09 3.09 2.32 1.98 1.79 1.58 1.47 1.39 1.33 1.30 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 
7S 6.56 3.24 2.42 2.06 1.8S 1.63 1.Sl 1.43 1.37 1.33 1.30 1.28 1.27 1.24 1.22 1.21 1.20 1.19 1.18 1.17 

100 7.23 3.46 2.S4 2.15 1.93 1.69 1.S7 1.47 1.42 1.38 1.3S 1.32 1.31 1.28 1.26 1.2S 1.24 1.23 1.22 1.21 
12S 7.81 3.63 2.6S 2.23 1.99 1.74 1.61 1.Sl 1.4S 1.41 1.38 1.3S 1.34 1.31 1.29 1.28 1.27 1.26 1.24 1.23 
150 8.28 3.77 2.73 2.29 2.04 1.78 1.6S 1.S4 1.48 1.44 1.41 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.26 1.2S 
17S 8.75 3.91 2.80 2.34 2.08 1.82 1.67 1.S7 1.50 1.46 1.43 1.40 1.38 1.3S 1.33 1.32 1.31 1.30 1.28 1.27 
200 9.14 4.02 2.87 2.38 2.12 1.8S 1.70 1.S9 1.S2 1.48 1.4S 1.42 1.40 1.37 1.3S 1.34 1.32 1.31 1.30 1.29 
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Table 19-16. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Means of Order 2 (5 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.20 0.87 0.74 0.67 0.63 O.S8 O.S4 O.S2 o.so 0.49 0.48 0.48 0.47 0.46 0.46 0.4S 0.4S 0.4S 0.44 0.44 
2 1.64 1.14 0.96 0.87 0.81 0.74 0.70 0.67 0.6S 0.63 0.62 0.62 0.61 0.60 O.S9 O.S9 O.S8 O.S8 O.S7 O.S7 
3 1.93 1.31 1.09 0.98 0.91 0.83 0.79 0.7S 0.73 0.71 0.70 0.69 0.68 0.67 0.66 0.66 0.6S 0.6S 0.64 0.64 
4 2.16 1.43 1.19 1.06 0.99 0.90 0.8S 0.81 0.78 0.77 0.7S 0.74 0.74 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
s 2.36 1.S3 1.26 1.12 1.04 0.9S 0.90 0.8S 0.83 0.81 0.79 0.78 0.77 0.76 0.7S 0.7S 0.74 0.74 0.73 0.72 
8 2.81 1.74 1.42 1.26 1.16 1.05 0.99 0.94 0.91 0.89 0.88 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
12 3.25 1.94 1.S6 1.37 1.26 1.14 1.07 1.02 0.99 0.96 0.94 0.93 0.92 0.91 0.89 0.89 0.88 0.87 0.86 0.86 
16 3.60 2.09 1.66 1.45 1.34 1.20 1.13 1.07 1.04 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
20 3.89 2.21 1.74 1.S2 1.39 1.2S 1.17 1.11 1.07 1.05 1.03 1.01 1.00 0.98 0.97 0.96 0.96 0.9S 0.94 0.93 
30 4.48 2.43 1.89 1.64 1.49 1.34 1.2S 1.18 1.14 1.11 1.09 1.08 1.06 1.04 1.03 1.02 1.01 1.01 1.00 0.99 
40 4.95 2.60 2.00 1.72 1.S7 1.40 1.30 1.24 1.19 1.16 1.14 1.12 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
so 5.34 2.74 2.08 1.79 1.63 1.4S 1.3S 1.27 1.23 1.20 1.17 1.1S 1.14 1.12 1.10 1.09 1.08 1.08 1.07 1.06 
60 5.68 2.86 2.16 1.8S 1.67 1.48 1.38 1.31 1.26 1.22 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 
7S 6.13 3.01 2.2S 1.92 1.73 1.S3 1.42 1.3S 1.30 1.26 1.23 1.21 1.20 1.18 1.16 1.1S 1.14 1.13 1.12 1.11 

100 6.76 3.21 2.37 2.01 1.81 1.S9 1.48 1.39 1.34 1.30 1.28 1.26 1.24 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 
12S 7.30 3.37 2.47 2.08 1.87 1.64 1.S2 1.43 1.38 1.34 1.31 1.29 1.27 1.2S 1.23 1.22 1.21 1.20 1.18 1.17 
150 7.77 3.51 2.55 2.14 1.92 1.68 1.S6 1.46 1.41 1.37 1.34 1.32 1.30 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 
17S 8.16 3.63 2.62 2.19 1.96 1.71 1.S9 1.49 1.43 1.39 1.36 1.34 1.32 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 
200 8.55 3.73 2.68 2.24 2.00 1.74 1.61 1.Sl 1.4S 1.41 1.38 1.3S 1.34 1.31 1.29 1.28 1.27 1.26 1.24 1.23 

Table 19-16. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Means of Order 2 (5 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.S6 1.11 0.9S 0.86 0.80 0.74 0.70 0.67 0.6S 0.63 0.62 0.61 0.61 0.60 O.S9 O.S9 O.S8 O.S8 O.S7 O.S7 
2 2.07 1.40 1.17 1.05 0.98 0.90 0.8S 0.81 0.78 0.77 0.7S 0.74 0.74 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
3 2.42 1.58 1.31 1.17 1.08 0.99 0.93 0.89 0.86 0.84 0.83 0.81 0.81 0.79 0.78 0.78 0.77 0.77 0.76 0.7S 
4 2.69 1.72 1.40 1.2S 1.16 1.05 0.99 0.94 0.91 0.89 0.88 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
s 2.92 1.82 1.48 1.31 1.21 1.10 1.03 0.98 0.9S 0.93 0.91 0.90 0.89 0.88 0.87 0.86 0.8S 0.8S 0.84 0.83 
8 3.46 2.06 1.6S 1.4S 1.33 1.20 1.13 1.07 1.04 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
12 3.99 2.28 1.79 1.S7 1.43 1.29 1.21 1.14 1.11 1.08 1.06 1.04 1.03 1.01 1.00 0.99 0.98 0.98 0.97 0.96 
16 4.41 2.44 1.90 1.6S 1.Sl 1.3S 1.26 1.20 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
20 4.77 2.S7 1.99 1.72 1.S7 1.40 1.30 1.24 1.19 1.16 1.14 1.12 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
30 5.48 2.83 2.1S 1.84 1.67 1.48 1.38 1.31 1.26 1.22 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 
40 6.04 3.02 2.27 1.93 1.7S 1.S4 1.44 1.36 1.30 1.27 1.24 1.22 1.21 1.19 1.17 1.16 1.1S 1.14 1.13 1.12 
so 6.52 3.17 2.36 2.00 1.81 1.S9 1.48 1.39 1.34 1.30 1.28 1.26 1.24 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 
60 6.93 3.30 2.44 2.06 1.86 1.63 1.Sl 1.43 1.37 1.33 1.30 1.28 1.27 1.24 1.22 1.21 1.20 1.19 1.18 1.17 
7S 7.48 3.47 2.S4 2.14 1.92 1.68 1.S6 1.46 1.41 1.37 1.34 1.31 1.30 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 
100 8.24 3.69 2.67 2.23 1.99 1.74 1.61 1.Sl 1.4S 1.41 1.38 1.36 1.34 1.31 1.29 1.28 1.27 1.26 1.24 1.23 
12S 8.91 3.88 2.77 2.31 2.06 1.79 1.6S 1.SS 1.49 1.44 1.41 1.39 1.37 1.34 1.32 1.31 1.29 1.29 1.27 1.26 
150 9.45 4.03 2.86 2.37 2.11 1.83 1.69 1.58 1.S2 1.47 1.44 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.29 1.28 
17S 9.96 4.17 2.93 2.43 2.1S 1.87 1.72 1.61 1.S4 1.49 1.46 1.43 1.41 1.38 1.36 1.3S 1.34 1.33 1.31 1.30 
200 10.39 4.30 3.00 2.47 2.19 1.89 1.74 1.63 1.S6 1.Sl 1.48 1.4S 1.43 1.40 1.38 1.36 1.3S 1.34 1.33 1.31 
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Table 19-16. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Means of Order 2 (5 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.93 1.36 1.1S 1.04 0.97 0.89 0.84 0.81 0.78 0.76 0.7S 0.74 0.73 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
2 2.S3 1.67 1.38 1.24 1.1S 1.04 0.99 0.94 0.91 0.89 0.87 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
3 2.94 1.86 1.S2 1.3S 1.2S 1.13 1.07 1.02 0.98 0.96 0.94 0.93 0.92 0.90 0.89 0.89 0.88 0.87 0.86 0.86 
4 3.26 2.01 1.62 1.44 1.32 1.20 1.12 1.07 1.03 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
s 3.53 2.13 1.71 1.SO 1.38 1.24 1.17 1.11 1.07 1.05 1.03 1.01 1.00 0.98 0.97 0.96 0.96 0.9S 0.94 0.93 
8 4.17 2.39 1.88 1.64 1.50 1.3S 1.26 1.19 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
12 4.79 2.63 2.04 1.76 1.61 1.43 1.34 1.27 1.22 1.19 1.17 1.1S 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.05 
16 5.30 2.81 2.1S 1.8S 1.68 1.49 1.39 1.32 1.27 1.23 1.21 1.19 1.18 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
20 5.72 2.96 2.24 1.92 1.74 1.S4 1.44 1.36 1.30 1.27 1.24 1.22 1.21 1.19 1.17 1.16 1.1S 1.14 1.13 1.12 
30 6.56 3.24 2.42 2.05 1.8S 1.63 1.Sl 1.43 1.37 1.33 1.30 1.28 1.27 1.24 1.22 1.21 1.20 1.19 1.18 1.17 
40 7.24 3.45 2.S4 2.1S 1.93 1.69 1.S7 1.47 1.42 1.38 1.3S 1.32 1.31 1.28 1.26 1.2S 1.24 1.23 1.21 1.21 
so 7.80 3.63 2.6S 2.22 1.99 1.74 1.61 1.Sl 1.4S 1.41 1.38 1.36 1.34 1.31 1.29 1.28 1.27 1.26 1.24 1.23 
60 8.30 3.77 2.73 2.29 2.04 1.78 1.64 1.S4 1.48 1.44 1.41 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.26 1.2S 
7S 8.95 3.96 2.84 2.36 2.10 1.83 1.69 1.58 1.S2 1.47 1.44 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.29 1.28 

100 9.84 4.22 2.98 2.46 2.19 1.89 1.74 1.63 1.S6 1.Sl 1.48 1.4S 1.43 1.40 1.38 1.36 1.3S 1.34 1.33 1.31 
12S 10.62 4.42 3.09 2.S4 2.2S 1.94 1.78 1.67 1.60 1.SS 1.Sl 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.3S 1.34 
150 11.29 4.59 3.18 2.61 2.30 1.98 1.82 1.70 1.62 1.S7 1.S4 1.Sl 1.49 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 
17S 11.88 4.75 3.27 2.67 2.3S 2.02 1.8S 1.72 1.6S 1.60 1.S6 1.S3 1.Sl 1.47 1.4S 1.43 1.42 1.41 1.39 1.38 
200 12.42 4.88 3.34 2.71 2.39 2.05 1.87 1.7S 1.67 1.62 1.58 1.SS 1.S2 1.49 1.47 1.4S 1.44 1.43 1.41 1.39 

Table 19-16. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Means of Order 2 (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.64 1.14 0.96 0.87 0.81 0.74 0.70 0.67 0.6S 0.63 0.62 0.62 0.61 0.60 O.S9 O.S9 O.S8 O.S8 O.S7 O.S7 
2 2.16 1.43 1.19 1.06 0.99 0.90 0.8S 0.81 0.78 0.77 0.7S 0.74 0.74 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
3 2.S2 1.61 1.32 1.18 1.09 0.99 0.93 0.89 0.86 0.84 0.83 0.82 0.81 0.79 0.78 0.78 0.77 0.77 0.76 0.7S 
4 2.81 1.74 1.42 1.26 1.16 1.05 0.99 0.94 0.91 0.89 0.88 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
s 3.04 1.8S 1.49 1.32 1.22 1.10 1.04 0.99 0.9S 0.93 0.91 0.90 0.89 0.88 0.87 0.86 0.8S 0.8S 0.84 0.83 
8 3.60 2.09 1.66 1.4S 1.34 1.20 1.13 1.07 1.04 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
12 4.15 2.31 1.80 1.S7 1.44 1.29 1.21 1.1S 1.11 1.08 1.06 1.04 1.03 1.01 1.00 0.99 0.98 0.98 0.97 0.96 
16 4.58 2.47 1.91 1.66 1.Sl 1.3S 1.26 1.20 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
20 4.95 2.60 2.00 1.72 1.S7 1.40 1.30 1.24 1.19 1.16 1.14 1.12 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
30 5.68 2.86 2.16 1.8S 1.67 1.48 1.38 1.31 1.26 1.22 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 
40 6.27 3.05 2.28 1.94 1.7S 1.SS 1.44 1.36 1.30 1.27 1.24 1.22 1.21 1.19 1.17 1.16 1.1S 1.14 1.13 1.12 
so 6.76 3.21 2.37 2.01 1.81 1.S9 1.48 1.39 1.34 1.30 1.28 1.26 1.24 1.22 1.20 1.19 1.18 1.17 1.16 1.1S 
60 7.19 3.34 2.45 2.07 1.86 1.63 1.Sl 1.43 1.37 1.33 1.30 1.28 1.27 1.24 1.22 1.21 1.20 1.19 1.18 1.17 
7S 7.77 3.51 2.55 2.14 1.92 1.68 1.S6 1.46 1.41 1.37 1.34 1.32 1.30 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 
100 8.55 3.73 2.68 2.24 2.00 1.74 1.61 1.Sl 1.4S 1.41 1.38 1.3S 1.34 1.31 1.29 1.28 1.27 1.26 1.24 1.23 
12S 9.22 3.93 2.78 2.31 2.06 1.79 1.66 1.SS 1.49 1.44 1.41 1.39 1.37 1.34 1.32 1.31 1.29 1.28 1.27 1.26 
150 9.84 4.08 2.87 2.37 2.11 1.83 1.69 1.58 1.S2 1.47 1.44 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.29 1.28 
17S 10.31 4.22 2.95 2.4:3 2.16 1.87 1.72 1.61 1.S4 1.49 1.46 1.44 1.42 1.38 1.36 1.3S 1.34 1.33 1.31 1.30 
200 10.78 4.34 3.01 2.48 2.19 1.89 1.74 1.63 1.S6 1.Sl 1.48 1.46 1.43 1.40 1.38 1.36 1.3S 1.34 1.33 1.31 
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Table 19-16. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Means of Order 2 (10 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.07 1.40 1.17 1.05 0.98 0.90 0.8S 0.81 0.78 0.77 0.7S 0.74 0.74 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
2 2.69 1.72 1.40 1.2S 1.16 1.05 0.99 0.94 0.91 0.89 0.88 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
3 3.12 1.91 1.S4 1.36 1.26 1.14 1.07 1.02 0.98 0.96 0.94 0.93 0.92 0.90 0.89 0.89 0.88 0.87 0.86 0.86 
4 3.46 2.06 1.6S 1.4S 1.33 1.20 1.13 1.07 1.04 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
s 3.75 2.18 1.73 1.Sl 1.39 1.2S 1.17 1.11 1.07 1.05 1.03 1.01 1.00 0.98 0.97 0.96 0.96 0.9S 0.94 0.93 
8 4.41 2.44 1.90 1.6S 1.Sl 1.3S 1.26 1.20 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
12 5.08 2.68 2.06 1.77 1.61 1.43 1.34 1.27 1.22 1.19 1.17 1.1S 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.05 
16 5.60 2.87 2.17 1.86 1.69 1.50 1.39 1.32 1.27 1.23 1.21 1.19 1.18 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
20 6.04 3.02 2.27 1.93 1.7S 1.S4 1.44 1.36 1.30 1.27 1.24 1.22 1.21 1.19 1.17 1.16 1.1S 1.14 1.13 1.12 
30 6.93 3.30 2.44 2.06 1.86 1.63 1.Sl 1.43 1.37 1.33 1.30 1.28 1.27 1.24 1.22 1.21 1.20 1.19 1.18 1.17 
40 7.66 3.52 2.S6 2.16 1.93 1.69 1.S7 1.47 1.42 1.38 1.3S 1.32 1.31 1.28 1.26 1.2S 1.24 1.23 1.21 1.20 
so 8.24 3.69 2.67 2.23 1.99 1.74 1.61 1.Sl 1.4S 1.41 1.38 1.36 1.34 1.31 1.29 1.28 1.27 1.26 1.24 1.23 
60 8.77 3.85 2.75 2.29 2.05 1.78 1.6S 1.S4 1.48 1.44 1.41 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.26 1.2S 
7S 9.45 4.03 2.86 2.37 2.11 1.83 1.69 1.58 1.S2 1.47 1.44 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.29 1.28 

100 10.39 4.30 3.00 2.47 2.19 1.89 1.74 1.63 1.S6 1.Sl 1.48 1.4S 1.43 1.40 1.38 1.36 1.3S 1.34 1.33 1.31 
12S 11.25 4.49 3.12 2.SS 2.26 1.94 1.78 1.67 1.60 1.SS 1.Sl 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.3S 1.34 
150 11.88 4.67 3.20 2.62 2.30 1.98 1.82 1.70 1.63 1.S7 1.S4 1.Sl 1.48 1.46 1.43 1.41 1.40 1.39 1.37 1.36 
17S 12.50 4.84 3.28 2.68 2.3S 2.02 1.8S 1.72 1.6S 1.60 1.S6 1.S3 1.Sl 1.47 1.4S 1.43 1.42 1.41 1.39 1.38 
200 13.12 4.96 3.36 2.73 2.39 2.05 1.88 1.7S 1.67 1.62 1.58 1.SS 1.S2 1.49 1.46 1.4S 1.44 1.43 1.41 1.39 

Table 19-16. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Means of Order 2 (10 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.S3 1.67 1.38 1.24 1.1S 1.04 0.99 0.94 0.91 0.89 0.87 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
2 3.26 2.01 1.62 1.44 1.32 1.20 1.12 1.07 1.03 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
3 3.77 2.23 1.77 1.S6 1.43 1.28 1.20 1.14 1.10 1.08 1.06 1.04 1.03 1.01 1.00 0.99 0.98 0.98 0.97 0.96 
4 4.17 2.39 1.88 1.64 1.50 1.3S 1.26 1.19 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
s 4.50 2.S2 1.97 1.71 1.S6 1.39 1.30 1.23 1.19 1.16 1.14 1.12 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
8 5.30 2.81 2.1S 1.8S 1.68 1.49 1.39 1.32 1.27 1.23 1.21 1.19 1.18 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
12 6.08 3.08 2.32 1.98 1.79 1.58 1.47 1.39 1.33 1.30 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 
16 6.71 3.29 2.4S 2.08 1.87 1.64 1.S2 1.44 1.38 1.34 1.31 1.29 1.28 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 
20 7.24 3.45 2.S4 2.1S 1.93 1.69 1.S7 1.47 1.42 1.38 1.3S 1.32 1.31 1.28 1.26 1.2S 1.24 1.23 1.21 1.21 
30 8.30 3.77 2.73 2.29 2.04 1.78 1.64 1.S4 1.48 1.44 1.41 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.26 1.2S 
40 9.14 4.02 2.87 2.39 2.12 1.84 1.70 1.S9 1.S3 1.48 1.4S 1.42 1.40 1.37 1.3S 1.34 1.32 1.32 1.30 1.29 
so 9.84 4.22 2.98 2.46 2.19 1.89 1.74 1.63 1.S6 1.Sl 1.48 1.4S 1.43 1.40 1.38 1.36 1.3S 1.34 1.33 1.31 
60 10.47 4.38 3.07 2.S3 2.24 1.93 1.77 1.66 1.S9 1.S4 1.SO 1.48 1.46 1.42 1.40 1.39 1.37 1.36 1.3S 1.34 
7S 11.29 4.59 3.18 2.61 2.30 1.98 1.82 1.70 1.62 1.S7 1.S4 1.Sl 1.49 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 
100 12.42 4.88 3.34 2.71 2.39 2.05 1.87 1.7S 1.67 1.62 1.58 1.SS 1.S2 1.49 1.47 1.4S 1.44 1.43 1.41 1.39 
12S 13.44 5.12 3.46 2.80 2.46 2.10 1.91 1.78 1.70 1.6S 1.61 1.58 1.SS 1.S2 1.49 1.47 1.46 1.4S 1.43 1.42 
150 14.22 5.31 3.56 2.87 2.Sl 2.14 1.9S 1.82 1.73 1.67 1.63 1.60 1.58 1.S4 1.S2 1.50 1.48 1.47 1.4S 1.44 
17S 15.00 5.49 3.65 2.93 2.S6 2.18 1.98 1.84 1.7S 1.69 1.66 1.62 1.60 1.S6 1.S3 1.51 1.50 1.49 1.46 1.4S 
200 15.62 5.62 3.73 2.99 2.60 2.21 2.01 1.87 1.78 1.71 1.67 1.64 1.62 1.58 1.SS 1.53 1.Sl 1.SO 1.48 1.47 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-16. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Means of Order 2 (20 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 2.16 1.43 1.19 1.06 0.99 0.90 0.8S 0.81 0.78 0.77 0.7S 0.74 0.74 0.72 0.71 0.71 0.70 0.70 0.69 0.69 
2 2.81 1.74 1.42 1.26 1.16 1.05 0.99 0.94 0.91 0.89 0.88 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
3 3.25 1.94 1.S6 1.37 1.26 1.14 1.07 1.02 0.99 0.96 0.94 0.93 0.92 0.91 0.89 0.89 0.88 0.87 0.86 0.86 
4 3.60 2.09 1.66 1.4S 1.34 1.20 1.13 1.07 1.04 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
s 3.89 2.21 1.74 1.S2 1.39 1.2S 1.17 1.11 1.07 1.05 1.03 1.01 1.00 0.98 0.97 0.96 0.96 0.9S 0.94 0.93 
8 4.58 2.47 1.91 1.66 1.Sl 1.3S 1.26 1.20 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
12 5.27 2.72 2.07 1.78 1.62 1.44 1.34 1.27 1.22 1.19 1.17 1.1S 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.05 
16 5.82 2.90 2.19 1.87 1.69 1.SO 1.39 1.32 1.27 1.24 1.21 1.19 1.18 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
20 6.27 3.05 2.28 1.94 1.7S 1.SS 1.44 1.36 1.31 1.27 1.24 1.22 1.21 1.19 1.17 1.16 1.1S 1.14 1.13 1.12 
30 7.20 3.34 2.45 2.07 1.86 1.63 1.Sl 1.43 1.37 1.33 1.30 1.28 1.27 1.24 1.22 1.21 1.20 1.19 1.18 1.17 
40 7.93 3.56 2.58 2.16 1.94 1.70 1.S7 1.48 1.42 1.38 1.3S 1.32 1.31 1.28 1.26 1.2S 1.24 1.23 1.21 1.21 
so 8.54 3.74 2.68 2.24 2.00 1.74 1.61 1.Sl 1.4S 1.41 1.38 1.36 1.34 1.31 1.29 1.28 1.27 1.26 1.24 1.23 
60 9.08 3.88 2.76 2.30 2.05 1.78 1.64 1.S4 1.48 1.44 1.41 1.38 1.36 1.34 1.32 1.30 1.29 1.28 1.26 1.2S 
7S 9.81 4.08 2.87 2.37 2.11 1.83 1.69 1.58 1.S2 1.47 1.44 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.29 1.28 

100 10.79 4.33 3.02 2.48 2.19 1.90 1.74 1.63 1.S6 1.Sl 1.48 1.4S 1.43 1.40 1.38 1.36 1.3S 1.34 1.32 1.32 
12S 11.62 4.54 3.12 2.56 2.26 1.9S 1.79 1.67 1.60 1.SS 1.Sl 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.3S 1.34 
150 12.40 4.71 3.22 2.62 2.31 1.98 1.82 1.70 1.62 1.S7 1.S4 1.Sl 1.49 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 
17S 13.09 4.88 3.30 2.69 2.36 2.02 1.8S 1.73 1.6S 1.60 1.S6 1.S3 1.Sl 1.47 1.4S 1.43 1.42 1.41 1.39 1.38 
200 13.67 5.03 3.37 2.73 2.39 2.05 1.87 1.7S 1.67 1.62 1.S7 1.SS 1.S3 1.49 1.46 1.4S 1.43 1.42 1.41 1.39 

Table 19-16. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Means of Order 2 (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.69 1.72 1.40 1.2S 1.16 1.05 0.99 0.94 0.91 0.89 0.88 0.86 0.8S 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
2 3.46 2.06 1.6S 1.4S 1.33 1.20 1.13 1.07 1.04 1.01 0.99 0.98 0.97 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
3 3.99 2.28 1.79 1.S7 1.43 1.29 1.21 1.14 1.11 1.08 1.06 1.04 1.03 1.01 1.00 0.99 0.98 0.98 0.97 0.96 
4 4.41 2.44 1.90 1.6S 1.Sl 1.3S 1.26 1.20 1.1S 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
s 4.77 2.S7 1.99 1.72 1.S7 1.40 1.30 1.24 1.19 1.16 1.14 1.12 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
8 5.60 2.87 2.17 1.86 1.69 1.50 1.39 1.32 1.27 1.23 1.21 1.19 1.18 1.1S 1.14 1.13 1.12 1.11 1.10 1.09 
12 6.43 3.14 2.34 1.99 1.80 1.58 1.47 1.39 1.33 1.30 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 
16 7.09 3.35 2.47 2.08 1.87 1.6S 1.S3 1.44 1.38 1.34 1.31 1.29 1.28 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 
20 7.65 3.52 2.S7 2.16 1.93 1.69 1.S7 1.47 1.42 1.38 1.3S 1.32 1.31 1.28 1.26 1.2S 1.24 1.23 1.21 1.21 
30 8.76 3.85 2.75 2.29 2.05 1.78 1.64 1.S4 1.48 1.44 1.41 1.38 1.36 1.33 1.32 1.30 1.29 1.28 1.26 1.2S 
40 9.67 4.09 2.89 2.39 2.13 1.84 1.70 1.S9 1.S3 1.48 1.4S 1.42 1.40 1.37 1.3S 1.34 1.32 1.32 1.30 1.29 
so 10.40 4.28 3.00 2.47 2.19 1.90 1.74 1.63 1.S6 1.Sl 1.48 1.4S 1.43 1.40 1.38 1.36 1.3S 1.34 1.33 1.31 
60 11.08 4.46 3.09 2.S4 2.24 1.93 1.78 1.66 1.S9 1.S4 1.SO 1.48 1.46 1.43 1.40 1.39 1.37 1.36 1.3S 1.34 
7S 11.91 4.68 3.21 2.62 2.31 1.98 1.82 1.70 1.62 1.S7 1.S4 1.Sl 1.49 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 
100 13.13 4.96 3.36 2.73 2.39 2.05 1.87 1.7S 1.67 1.61 1.58 1.SS 1.S2 1.49 1.47 1.4S 1.43 1.43 1.41 1.39 
12S 14.16 5.20 3.49 2.81 2.46 2.10 1.92 1.79 1.70 1.6S 1.61 1.58 1.SS 1.S2 1.49 1.47 1.46 1.4S 1.43 1.42 
150 15.04 5.40 3.59 2.88 2.Sl 2.14 1.9S 1.82 1.73 1.67 1.63 1.60 1.58 1.S4 1.S2 1.SO 1.48 1.47 1.4S 1.44 
17S 15.82 5.57 3.69 2.94 2.S6 2.17 1.98 1.84 1.7S 1.70 1.6S 1.62 1.60 1.S6 1.S4 1.Sl 1.50 1.49 1.47 1.4S 
200 16.60 5.74 3.76 3.00 2.60 2.21 2.01 1.86 1.78 1.72 1.67 1.64 1.61 1.S7 1.SS 1.S3 1.Sl 1.SO 1.48 1.47 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-16. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Means of Order 2 (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 3.26 2.01 1.62 1.44 1.32 1.20 1.12 1.07 1.03 1.01 0.99 0.98 0.97 0.95 0.94 0.93 0.92 0.92 0.91 0.90 
2 4.17 2.39 1.88 1.64 1.50 1.35 1.26 1.19 1.15 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
3 4.80 2.63 2.04 1.76 1.61 1.43 1.34 1.27 1.22 1.19 1.17 1.15 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.05 
4 5.29 2.81 2.15 1.85 1.68 1.49 1.39 1.32 1.27 1.23 1.21 1.19 1.18 1.15 1.14 1.13 1.12 1.11 1.10 1.09 
5 5.72 2.96 2.24 1.92 1.74 1.54 1.44 1.36 1.30 1.27 1.24 1.22 1.21 1.19 1.17 1.16 1.15 1.14 1.13 1.12 
8 6.71 3.29 2.45 2.08 1.87 1.64 1.52 1.44 1.38 1.34 1.31 1.29 1.28 1.25 1.23 1.22 1.21 1.20 1.19 1.18 
12 7.70 3.60 2.63 2.21 1.98 1.73 1.60 1.51 1.45 1.40 1.37 1.35 1.33 1.30 1.29 1.27 1.26 1.25 1.24 1.23 
16 8.48 3.83 2.76 2.31 2.06 1.79 1.66 1.55 1.49 1.45 1.41 1.39 1.37 1.34 1.32 1.31 1.30 1.29 1.27 1.26 
20 9.14 4.02 2.87 2.38 2.12 1.84 1.70 1.59 1.53 1.48 1.45 1.42 1.40 1.37 1.35 1.34 1.32 1.32 1.30 1.29 
30 10.47 4.38 3.07 2.53 2.24 1.93 1.78 1.66 1.59 1.54 1.50 1.48 1.46 1.43 1.40 1.39 1.37 1.36 1.35 1.34 
40 11.55 4.66 3.22 2.63 2.32 2.00 1.83 1.71 1.63 1.58 1.54 1.52 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
50 12.45 4.88 3.34 2.72 2.39 2.05 1.87 1.75 1.67 1.61 1.58 1.55 1.52 1.49 1.47 1.45 1.44 1.43 1.41 1.39 
60 13.23 5.07 3.44 2.79 2.44 2.09 1.91 1.78 1.70 1.64 1.60 1.57 1.55 1.51 1.49 1.47 1.46 1.45 1.43 1.41 
75 14.26 5.31 3.56 2.87 2.51 2.14 1.95 1.82 1.73 1.67 1.63 1.60 1.58 1.54 1.52 1.50 1.48 1.47 1.45 1.43 

100 15.72 5.64 3.74 2.99 2.60 2.20 2.01 1.86 1.78 1.72 1.67 1.64 1.61 1.58 1.55 1.53 1.52 1.50 1.48 1.46 
125 16.89 5.91 3.87 3.08 2.67 2.26 2.05 1.90 1.81 1.75 1.70 1.67 1.64 1.61 1.58 1.56 1.54 1.53 1.51 1.49 
150 17.97 6.15 3.98 3.15 2.73 2.30 2.08 1.93 1.84 1.77 1.73 1.69 1.67 1.63 1.60 1.58 1.56 1.55 1.53 1.51 
175 18.95 6.35 4.08 3.22 2.78 2.33 2.11 1.96 1.86 1.79 1.75 1.72 1.68 1.64 1.62 1.60 1.58 1.57 1.54 1.53 
200 19.73 6.49 4.15 3.27 2.82 2.37 2.14 1.98 1.88 1.81 1.77 1.73 1.70 1.66 1.63 1.61 1.60 1.58 1.56 1.54 

Table 19-16. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Means of Order 2 ( 40 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.81 1.74 1.42 1.26 1.16 1.05 0.99 0.94 0.91 0.89 0.88 0.86 0.85 0.84 0.83 0.82 0.82 0.81 0.80 0.80 
2 3.60 2.09 1.66 1.45 1.34 1.20 1.13 1.07 1.04 1.01 0.99 0.98 0.97 0.95 0.94 0.93 0.92 0.92 0.91 0.90 
3 4.15 2.31 1.80 1.57 1.44 1.29 1.21 1.15 1.11 1.08 1.06 1.04 1.03 1.01 1.00 0.99 0.98 0.98 0.97 0.96 
4 4.58 2.47 1.91 1.66 1.51 1.35 1.26 1.20 1.15 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
5 4.95 2.60 2.00 1.72 1.57 1.40 1.31 1.24 1.19 1.16 1.14 1.12 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.03 
8 5.82 2.90 2.18 1.87 1.69 1.50 1.39 1.32 1.27 1.24 1.21 1.19 1.18 1.15 1.14 1.13 1.12 1.11 1.10 1.09 
12 6.68 3.18 2.35 2.00 1.80 1.59 1.47 1.39 1.33 1.30 1.27 1.25 1.23 1.21 1.19 1.18 1.17 1.16 1.15 1.14 
16 7.36 3.39 2.48 2.09 1.88 1.65 1.53 1.44 1.38 1.34 1.31 1.29 1.28 1.25 1.23 1.22 1.21 1.20 1.19 1.18 
20 7.93 3.56 2.58 2.16 1.94 1.70 1.57 1.48 1.42 1.38 1.35 1.32 1.31 1.28 1.26 1.25 1.24 1.23 1.21 1.21 
30 9.10 3.89 2.76 2.30 2.05 1.78 1.65 1.54 1.48 1.44 1.41 1.38 1.36 1.33 1.32 1.30 1.29 1.28 1.26 1.25 
40 10.02 4.13 2.90 2.40 2.13 1.85 1.70 1.59 1.53 1.48 1.45 1.42 1.40 1.37 1.35 1.34 1.32 1.32 1.30 1.29 
50 10.81 4.34 3.01 2.48 2.19 1.90 1.74 1.63 1.56 1.51 1.48 1.45 1.43 1.40 1.38 1.36 1.35 1.34 1.33 1.31 
60 11.48 4.50 3.11 2.54 2.24 1.94 1.78 1.66 1.59 1.54 1.51 1.48 1.46 1.42 1.40 1.39 1.37 1.36 1.35 1.33 
75 12.36 4.72 3.22 2.63 2.31 1.98 1.82 1.70 1.62 1.57 1.54 1.51 1.49 1.45 1.43 1.41 1.40 1.39 1.37 1.36 
100 13.59 5.01 3.38 2.73 2.40 2.05 1.88 1.75 1.67 1.61 1.58 1.55 1.52 1.49 1.47 1.45 1.44 1.42 1.40 1.39 
125 14.65 5.24 3.50 2.82 2.46 2.10 1.92 1.78 1.70 1.65 1.61 1.58 1.55 1.52 1.49 1.48 1.46 1.45 1.43 1.42 
150 15.59 5.45 3.60 2.89 2.52 2.14 1.95 1.82 1.73 1.67 1.63 1.60 1.58 1.54 1.52 1.50 1.48 1.47 1.45 1.44 
175 16.41 5.62 3.69 2.94 2.56 2.18 1.98 1.84 1.75 1.70 1.66 1.62 1.60 1.56 1.53 1.52 1.50 1.49 1.47 1.45 
200 17.11 5.80 3.76 3.00 2.61 2.20 2.01 1.86 1.78 1.71 1.67 1.64 1.61 1.57 1.55 1.53 1.52 1.51 1.48 1.47 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-16. K-Multipliers for 1-of-3 Intrawel I Prediction Limits on Means of Order 2 (40 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.46 2.06 1.65 1.45 1.33 1.20 1.13 1.07 1.04 1.01 0.99 0.98 0.97 0.95 0.94 0.93 0.92 0.92 0.91 0.90 
2 4.41 2.44 1.90 1.65 1.51 1.35 1.26 1.20 1.15 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
3 5.08 2.68 2.06 1.77 1.61 1.44 1.34 1.27 1.22 1.19 1.17 1.15 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.05 
4 5.60 2.87 2.17 1.86 1.69 1.50 1.39 1.32 1.27 1.23 1.21 1.19 1.18 1.15 1.14 1.13 1.12 1.11 1.10 1.09 
5 6.05 3.02 2.27 1.93 1.75 1.54 1.44 1.36 1.30 1.27 1.24 1.22 1.21 1.19 1.17 1.16 1.15 1.14 1.13 1.12 
8 7.09 3.35 2.47 2.08 1.87 1.65 1.53 1.44 1.38 1.34 1.31 1.29 1.28 1.25 1.23 1.22 1.21 1.20 1.19 1.18 
12 8.13 3.66 2.65 2.22 1.98 1.73 1.60 1.51 1.45 1.40 1.37 1.35 1.33 1.30 1.29 1.27 1.26 1.25 1.24 1.23 
16 8.96 3.90 2.78 2.32 2.06 1.80 1.66 1.56 1.49 1.45 1.41 1.39 1.37 1.34 1.32 1.31 1.30 1.29 1.27 1.26 
20 9.66 4.09 2.89 2.39 2.13 1.85 1.70 1.59 1.53 1.48 1.45 1.42 1.40 1.37 1.35 1.34 1.32 1.32 1.30 1.29 
30 11.07 4.46 3.09 2.54 2.24 1.93 1.78 1.66 1.59 1.54 1.50 1.48 1.46 1.43 1.40 1.39 1.37 1.36 1.35 1.34 
40 12.19 4.74 3.24 2.64 2.33 2.00 1.83 1.71 1.63 1.58 1.55 1.52 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
50 13.12 4.97 3.36 2.73 2.39 2.05 1.87 1.75 1.67 1.61 1.58 1.55 1.52 1.49 1.47 1.45 1.44 1.42 1.41 1.39 
60 13.95 5.16 3.46 2.80 2.45 2.09 1.91 1.78 1.70 1.64 1.60 1.57 1.55 1.51 1.49 1.47 1.46 1.44 1.42 1.41 
75 15.06 5.41 3.59 2.88 2.52 2.14 1.95 1.81 1.73 1.67 1.63 1.60 1.58 1.54 1.52 1.50 1.48 1.47 1.45 1.43 

100 16.58 5.74 3.76 3.00 2.60 2.21 2.01 1.86 1.78 1.72 1.67 1.64 1.61 1.58 1.55 1.53 1.52 1.50 1.48 1.47 
125 17.81 6.01 3.90 3.09 2.67 2.26 2.05 1.90 1.81 1.75 1.70 1.67 1.64 1.60 1.58 1.56 1.54 1.53 1.51 1.49 
150 18.98 6.24 4.00 3.16 2.73 2.30 2.08 1.93 1.84 1.77 1.73 1.69 1.67 1.63 1.60 1.58 1.56 1.55 1.53 1.51 
175 19.92 6.45 4.10 3.22 2.78 2.34 2.12 1.96 1.86 1.79 1.75 1.71 1.68 1.64 1.62 1.60 1.58 1.57 1.55 1.53 
200 20.86 6.62 4.19 3.28 2.83 2.37 2.14 1.98 1.88 1.82 1.77 1.73 1.70 1.66 1.63 1.61 1.60 1.58 1.56 1.55 

Table 19-16. K-Multipliers for 1-of-3 Intrawell Prediction Limits on Means of Order 2 (40 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 4.17 2.39 1.88 1.64 1.50 1.35 1.26 1.19 1.15 1.12 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
2 5.29 2.81 2.15 1.85 1.68 1.49 1.39 1.32 1.27 1.23 1.21 1.19 1.18 1.15 1.14 1.13 1.12 1.11 1.10 1.09 
3 6.08 3.08 2.32 1.98 1.79 1.58 1.47 1.39 1.33 1.30 1.27 1.25 1.23 1.21 1.19 1.18 1.17 1.16 1.15 1.14 
4 6.71 3.29 2.45 2.08 1.87 1.64 1.52 1.44 1.38 1.34 1.31 1.29 1.28 1.25 1.23 1.22 1.21 1.20 1.19 1.18 
5 7.23 3.46 2.54 2.15 1.93 1.69 1.57 1.47 1.42 1.38 1.35 1.32 1.31 1.28 1.26 1.25 1.24 1.23 1.21 1.21 
8 8.48 3.83 2.76 2.31 2.06 1.79 1.66 1.55 1.49 1.45 1.41 1.39 1.37 1.34 1.32 1.31 1.30 1.29 1.27 1.26 
12 9.72 4.18 2.96 2.45 2.17 1.88 1.73 1.62 1.55 1.51 1.47 1.45 1.43 1.40 1.37 1.36 1.35 1.34 1.32 1.31 
16 10.71 4.44 3.10 2.55 2.26 1.95 1.79 1.67 1.60 1.55 1.51 1.49 1.46 1.43 1.41 1.39 1.38 1.37 1.35 1.34 
20 11.54 4.66 3.22 2.63 2.32 2.00 1.83 1.71 1.63 1.58 1.54 1.52 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
30 13.21 5.07 3.44 2.79 2.44 2.09 1.91 1.78 1.70 1.64 1.60 1.57 1.55 1.51 1.49 1.47 1.46 1.45 1.43 1.41 
40 14.56 5.38 3.60 2.90 2.53 2.15 1.96 1.83 1.74 1.68 1.64 1.61 1.58 1.55 1.52 1.50 1.49 1.48 1.46 1.44 
50 15.70 5.64 3.73 2.99 2.60 2.20 2.01 1.86 1.78 1.72 1.67 1.64 1.61 1.58 1.55 1.53 1.52 1.50 1.48 1.47 
60 16.67 5.86 3.84 3.06 2.66 2.25 2.04 1.89 1.80 1.74 1.70 1.66 1.64 1.60 1.57 1.55 1.54 1.52 1.50 1.49 
75 17.99 6.14 3.98 3.15 2.73 2.30 2.08 1.93 1.84 1.77 1.73 1.69 1.67 1.63 1.60 1.58 1.56 1.55 1.53 1.51 
100 19.80 6.50 4.16 3.27 2.82 2.37 2.14 1.98 1.88 1.81 1.77 1.73 1.70 1.66 1.63 1.61 1.59 1.58 1.56 1.54 
125 21.33 6.83 4.31 3.37 2.89 2.42 2.18 2.02 1.92 1.85 1.80 1.76 1.73 1.69 1.66 1.64 1.62 1.61 1.58 1.57 
150 22.62 7.09 4.42 3.45 2.96 2.46 2.22 2.05 1.94 1.87 1.82 1.78 1.75 1.71 1.68 1.66 1.64 1.63 1.60 1.59 
175 23.91 7.29 4.54 3.52 3.01 2.50 2.25 2.07 1.97 1.89 1.84 1.80 1.77 1.73 1.70 1.68 1.66 1.64 1.62 1.60 
200 24.84 7.50 4.63 3.57 3.05 2.53 2.28 2.09 1.99 1.91 1.86 1.82 1.79 1.74 1.71 1.69 1.67 1.66 1.64 1.62 
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Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 1.25 1.04 0.96 0.91 0.88 0.84 0.82 0.81 0.79 0.79 0.78 0.78 0.77 0.77 0.76 0.76 0.76 0.76 0.75 0.75 
2 1.78 1.41 1.27 1.20 1.15 1.09 1.06 1.04 1.02 1.01 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.97 0.96 0.96 
3 2.12 1.63 1.45 1.36 1.30 1.23 1.19 1.16 1.14 1.13 1.12 1.11 1.11 1.10 1.09 1.08 1.08 1.08 1.07 1.07 
4 2.39 1.79 1.58 1.47 1.41 1.33 1.28 1.25 1.23 1.21 1.20 1.19 1.18 1.17 1.17 1.16 1.16 1.15 1.15 1.14 
5 2.62 1.92 1.68 1.56 1.49 1.40 1.35 1.31 1.29 1.27 1.26 1.25 1.24 1.23 1.22 1.22 1.21 1.21 1.20 1.20 
8 3.14 2.21 1.90 1.75 1.66 1.55 1.49 1.45 1.42 1.40 1.38 1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.31 1.31 
12 3.64 2.47 2.09 1.91 1.80 1.68 1.61 1.56 1.53 1.50 1.49 1.47 1.46 1.45 1.44 1.43 1.42 1.42 1.41 1.40 
16 4.05 2.66 2.23 2.03 1.91 1.77 1.69 1.64 1.60 1.57 1.56 1.54 1.53 1.51 1.50 1.49 1.49 1.48 1.47 1.46 
20 4.38 2.82 2.34 2.12 1.99 1.84 1.76 1.70 1.66 1.63 1.61 1.59 1.58 1.56 1.55 1.54 1.53 1.53 1.52 1.51 
30 5.06 3.11 2.55 2.29 2.13 1.96 1.87 1.80 1.76 1.73 1.70 1.69 1.67 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
40 5.59 3.33 2.70 2.41 2.24 2.05 1.95 1.88 1.83 1.79 1.77 1.75 1.74 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
50 6.04 3.51 2.82 2.50 2.32 2.12 2.01 1.93 1.88 1.85 1.82 1.80 1.78 1.76 1.75 1.73 1.72 1.72 1.70 1.69 
60 6.43 3.67 2.92 2.58 2.39 2.18 2.06 1.98 1.92 1.89 1.86 1.84 1.82 1.80 1.78 1.77 1.76 1.75 1.74 1.73 
75 6.95 3.86 3.04 2.68 2.47 2.24 2.12 2.03 1.98 1.94 1.91 1.89 1.87 1.85 1.83 1.81 1.80 1.80 1.78 1.77 

100 7.66 4.12 3.21 2.81 2.58 2.33 2.20 2.11 2.04 2.00 1.97 1.95 1.93 1.90 1.88 1.87 1.86 1.85 1.84 1.82 
125 8.27 4.33 3.34 2.91 2.66 2.40 2.26 2.16 2.10 2.05 2.02 2.00 1.98 1.95 1.93 1.91 1.90 1.89 1.88 1.87 
150 8.80 4.51 3.45 2.99 2.73 2.46 2.31 2.21 2.14 2.09 2.06 2.03 2.01 1.98 1.96 1.95 1.94 1.93 1.91 1.90 
175 9.27 4.66 3.54 3.06 2.79 2.50 2.35 2.24 2.17 2.13 2.09 2.06 2.04 2.01 1.99 1.98 1.96 1.95 1.94 1.93 
200 9.70 4.80 3.63 3.12 2.84 2.55 2.39 2.28 2.20 2.15 2.12 2.09 2.07 2.04 2.02 2.00 1.99 1.98 1.96 1.95 

Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (1 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 1.65 1.35 1.24 1.17 1.13 1.08 1.05 1.03 1.01 1.00 1.00 0.99 0.99 0.98 0.97 0.97 0.97 0.96 0.96 0.96 
2 2.24 1.74 1.55 1.45 1.39 1.32 1.28 1.24 1.22 1.21 1.20 1.19 1.18 1.17 1.16 1.16 1.15 1.15 1.15 1.14 
3 2.64 1.98 1.74 1.62 1.54 1.45 1.40 1.36 1.34 1.32 1.31 1.30 1.29 1.28 1.27 1.26 1.26 1.25 1.25 1.24 
4 2.96 2.15 1.87 1.73 1.64 1.54 1.49 1.44 1.42 1.40 1.38 1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.31 1.31 
5 3.22 2.29 1.98 1.82 1.73 1.62 1.55 1.51 1.48 1.45 1.44 1.43 1.42 1.40 1.39 1.38 1.38 1.37 1.37 1.36 
8 3.83 2.60 2.21 2.01 1.90 1.76 1.69 1.63 1.60 1.57 1.55 1.54 1.53 1.51 1.50 1.49 1.48 1.48 1.47 1.46 
12 4.43 2.89 2.41 2.18 2.04 1.89 1.81 1.74 1.70 1.67 1.65 1.64 1.62 1.60 1.59 1.58 1.57 1.57 1.56 1.55 
16 4.91 3.10 2.56 2.30 2.15 1.98 1.89 1.82 1.77 1.74 1.72 1.70 1.69 1.67 1.65 1.64 1.63 1.63 1.61 1.61 
20 5.31 3.27 2.67 2.39 2.23 2.05 1.95 1.87 1.83 1.79 1.77 1.75 1.74 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
30 6.11 3.60 2.89 2.57 2.38 2.17 2.06 1.98 1.92 1.89 1.86 1.84 1.82 1.80 1.78 1.77 1.76 1.75 1.74 1.73 
40 6.75 3.85 3.05 2.69 2.49 2.26 2.14 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
50 7.28 4.05 3.18 2.79 2.57 2.33 2.20 2.10 2.04 2.00 1.97 1.95 1.93 1.90 1.88 1.87 1.86 1.85 1.84 1.82 
60 7.75 4.22 3.29 2.87 2.64 2.39 2.25 2.15 2.09 2.04 2.01 1.99 1.97 1.94 1.92 1.90 1.89 1.88 1.87 1.86 
75 8.36 4.43 3.42 2.98 2.73 2.45 2.31 2.20 2.14 2.09 2.06 2.03 2.01 1.98 1.96 1.95 1.94 1.93 1.91 1.90 
100 9.22 4.72 3.60 3.11 2.84 2.54 2.39 2.27 2.20 2.15 2.12 2.09 2.07 2.04 2.02 2.00 1.99 1.98 1.96 1.95 
125 9.95 4.96 3.74 3.22 2.92 2.61 2.45 2.33 2.25 2.20 2.17 2.14 2.11 2.08 2.06 2.04 2.03 2.02 2.00 1.99 
150 10.58 5.16 3.86 3.30 3.00 2.67 2.50 2.37 2.30 2.24 2.20 2.17 2.15 2.12 2.09 2.07 2.06 2.05 2.03 2.02 
175 11.14 5.33 3.96 3.38 3.06 2.72 2.54 2.41 2.33 2.27 2.23 2.20 2.18 2.14 2.12 2.10 2.09 2.08 2.06 2.04 
200 11.65 5.49 4.05 3.44 3.11 2.76 2.58 2.44 2.36 2.30 2.26 2.23 2.21 2.17 2.14 2.13 2.11 2.10 2.08 2.07 
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Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.03 1.65 1.50 1.42 1.36 1.30 1.26 1.23 1.22 1.20 1.19 1.18 1.18 1.17 1.16 1.16 1.15 1.15 1.14 1.14 
2 2.71 2.06 1.82 1.70 1.62 1.53 1.48 1.44 1.41 1.39 1.38 1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.31 1.31 
3 3.17 2.32 2.02 1.86 1.77 1.66 1.60 1.55 1.52 1.50 1.48 1.47 1.46 1.44 1.43 1.43 1.42 1.41 1.41 1.40 
4 3.53 2.51 2.16 1.98 1.88 1.75 1.68 1.63 1.59 1.57 1.55 1.54 1.53 1.51 1.50 1.49 1.48 1.48 1.47 1.46 
5 3.83 2.66 2.27 2.08 1.96 1.82 1.75 1.69 1.65 1.62 1.61 1.59 1.58 1.56 1.55 1.54 1.53 1.53 1.52 1.51 
8 4.54 3.00 2.51 2.27 2.13 1.97 1.88 1.81 1.77 1.74 1.72 1.70 1.69 1.67 1.65 1.64 1.63 1.63 1.61 1.61 
12 5.24 3.31 2.73 2.45 2.28 2.09 1.99 1.92 1.87 1.83 1.81 1.79 1.77 1.75 1.74 1.72 1.72 1.71 1.70 1.69 
16 5.80 3.55 2.88 2.57 2.39 2.18 2.07 1.99 1.94 1.90 1.87 1.85 1.84 1.81 1.79 1.78 1.77 1.76 1.75 1.74 
20 6.26 3.74 3.01 2.67 2.47 2.25 2.13 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
30 7.20 4.10 3.24 2.85 2.63 2.38 2.25 2.15 2.08 2.04 2.01 1.99 1.97 1.94 1.92 1.90 1.89 1.88 1.87 1.86 
40 7.95 4.38 3.42 2.98 2.74 2.47 2.32 2.22 2.15 2.10 2.07 2.05 2.02 2.00 1.97 1.96 1.95 1.94 1.92 1.91 
50 8.58 4.60 3.56 3.09 2.82 2.54 2.39 2.27 2.20 2.15 2.12 2.09 2.07 2.04 2.02 2.00 1.99 1.98 1.96 1.95 
60 9.12 4.79 3.67 3.17 2.90 2.59 2.43 2.32 2.24 2.19 2.16 2.13 2.11 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
75 9.84 5.03 3.81 3.28 2.98 2.66 2.50 2.37 2.29 2.24 2.20 2.17 2.15 2.12 2.09 2.07 2.06 2.05 2.03 2.02 

100 10.84 5.35 4.01 3.42 3.10 2.75 2.57 2.44 2.36 2.30 2.26 2.23 2.21 2.17 2.14 2.13 2.11 2.10 2.08 2.07 
125 11.69 5.62 4.16 3.53 3.19 2.83 2.63 2.50 2.41 2.35 2.31 2.27 2.25 2.21 2.18 2.17 2.15 2.14 2.12 2.10 
150 12.43 5.84 4.29 3.63 3.27 2.88 2.68 2.54 2.45 2.39 2.34 2.31 2.28 2.24 2.22 2.20 2.18 2.17 2.15 2.13 
175 13.09 6.03 4.40 3.71 3.33 2.93 2.73 2.58 2.48 2.42 2.37 2.34 2.31 2.27 2.24 2.22 2.21 2.20 2.17 2.16 
200 13.68 6.21 4.50 3.78 3.39 2.97 2.76 2.61 2.51 2.45 2.40 2.37 2.34 2.30 2.27 2.25 2.23 2.22 2.20 2.18 

Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 1.78 1.41 1.27 1.20 1.15 1.09 1.06 1.04 1.02 1.01 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.97 0.96 0.96 
2 2.39 1.79 1.58 1.47 1.41 1.33 1.28 1.25 1.23 1.21 1.20 1.19 1.18 1.17 1.17 1.16 1.16 1.15 1.15 1.14 
3 2.81 2.03 1.77 1.63 1.55 1.46 1.41 1.37 1.34 1.32 1.31 1.30 1.29 1.28 1.27 1.26 1.26 1.25 1.25 1.24 
4 3.14 2.21 1.90 1.75 1.66 1.55 1.49 1.45 1.42 1.40 1.38 1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.31 1.31 
5 3.41 2.35 2.01 1.84 1.74 1.62 1.56 1.51 1.48 1.46 1.44 1.43 1.42 1.40 1.39 1.39 1.38 1.37 1.37 1.36 
8 4.05 2.66 2.23 2.03 1.91 1.77 1.69 1.64 1.60 1.57 1.56 1.54 1.53 1.51 1.50 1.49 1.49 1.48 1.47 1.46 
12 4.68 2.95 2.44 2.19 2.05 1.89 1.81 1.74 1.70 1.67 1.65 1.64 1.62 1.60 1.59 1.58 1.57 1.57 1.56 1.55 
16 5.17 3.16 2.58 2.31 2.16 1.98 1.89 1.82 1.77 1.74 1.72 1.70 1.69 1.67 1.65 1.64 1.63 1.63 1.62 1.61 
20 5.59 3.33 2.70 2.41 2.24 2.05 1.95 1.88 1.83 1.79 1.77 1.75 1.74 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
30 6.43 3.67 2.92 2.58 2.39 2.18 2.06 1.98 1.92 1.89 1.86 1.84 1.82 1.80 1.78 1.77 1.76 1.75 1.74 1.73 
40 7.10 3.92 3.08 2.71 2.49 2.26 2.14 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
50 7.66 4.12 3.21 2.81 2.58 2.33 2.20 2.11 2.04 2.00 1.97 1.95 1.93 1.90 1.88 1.87 1.86 1.85 1.84 1.82 
60 8.15 4.29 3.32 2.89 2.65 2.39 2.25 2.15 2.09 2.04 2.01 1.99 1.97 1.94 1.92 1.90 1.89 1.88 1.87 1.86 
75 8.80 4.51 3.45 2.99 2.73 2.46 2.31 2.21 2.14 2.09 2.06 2.03 2.01 1.98 1.96 1.95 1.94 1.93 1.91 1.90 
100 9.70 4.80 3.63 3.1;2 2.84 2.55 2.39 2.28 2.20 2.15 2.12 2.09 2.07 2.04 2.02 2.00 1.99 1.98 1.96 1.95 
125 10.46 5.04 3.77 3.23 2.93 2.62 2.45 2.33 2.25 2.20 2.17 2.14 2.11 2.08 2.06 2.04 2.03 2.02 2.00 1.99 
150 11.12 5.24 3.89 3.32 3.00 2.67 2.50 2.37 2.30 2.24 2.20 2.17 2.15 2.12 2.09 2.07 2.06 2.05 2.03 2.02 
175 11.71 5.42 3.99 3.39 3.06 2.72 2.54 2.41 2.33 2.28 2.23 2.20 2.18 2.15 2.12 2.10 2.09 2.08 2.06 2.04 
200 12.26 5.58 4.08 3.46 3.12 2.76 2.58 2.44 2.36 2.30 2.26 2.23 2.21 2.17 2.14 2.13 2.11 2.10 2.08 2.07 
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Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (2 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.24 1.74 1.55 1.45 1.39 1.32 1.28 1.24 1.22 1.21 1.20 1.19 1.18 1.17 1.16 1.16 1.15 1.15 1.15 1.14 
2 2.96 2.15 1.87 1.73 1.64 1.54 1.49 1.44 1.42 1.40 1.38 1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.31 1.31 
3 3.44 2.41 2.07 1.89 1.79 1.67 1.61 1.56 1.52 1.50 1.48 1.47 1.46 1.45 1.43 1.43 1.42 1.42 1.41 1.40 
4 3.83 2.60 2.21 2.01 1.90 1.76 1.69 1.63 1.60 1.57 1.55 1.54 1.53 1.51 1.50 1.49 1.48 1.48 1.47 1.46 
5 4.15 2.76 2.32 2.10 1.98 1.83 1.75 1.69 1.65 1.63 1.61 1.59 1.58 1.56 1.55 1.54 1.53 1.53 1.52 1.51 
8 4.91 3.10 2.56 2.30 2.15 1.98 1.89 1.82 1.77 1.74 1.72 1.70 1.69 1.67 1.65 1.64 1.63 1.63 1.61 1.61 
12 5.65 3.42 2.77 2.47 2.30 2.10 2.00 1.92 1.87 1.84 1.81 1.79 1.78 1.75 1.74 1.72 1.72 1.71 1.70 1.69 
16 6.25 3.65 2.93 2.59 2.40 2.19 2.08 1.99 1.94 1.90 1.87 1.85 1.84 1.81 1.80 1.78 1.77 1.76 1.75 1.74 
20 6.75 3.85 3.05 2.69 2.49 2.26 2.14 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
30 7.75 4.22 3.29 2.87 2.64 2.39 2.25 2.15 2.09 2.04 2.01 1.99 1.97 1.94 1.92 1.90 1.89 1.88 1.87 1.86 
40 8.55 4.50 3.46 3.01 2.75 2.47 2.33 2.22 2.15 2.11 2.07 2.05 2.03 2.00 1.97 1.96 1.95 1.94 1.92 1.91 
50 9.22 4.72 3.60 3.11 2.84 2.54 2.39 2.27 2.20 2.15 2.12 2.09 2.07 2.04 2.02 2.00 1.99 1.98 1.96 1.95 
60 9.81 4.92 3.72 3.20 2.91 2.60 2.44 2.32 2.24 2.19 2.16 2.13 2.11 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
75 10.58 5.16 3.86 3.30 3.00 2.67 2.50 2.37 2.30 2.24 2.20 2.17 2.15 2.12 2.09 2.07 2.06 2.05 2.03 2.02 

100 11.65 5.49 4.05 3.44 3.11 2.76 2.58 2.44 2.36 2.30 2.26 2.23 2.21 2.17 2.14 2.13 2.11 2.10 2.08 2.07 
125 12.55 5.76 4.21 3.56 3.20 2.83 2.64 2.50 2.41 2.35 2.31 2.27 2.25 2.21 2.19 2.17 2.15 2.14 2.12 2.10 
150 13.33 5.98 4.34 3.65 3.28 2.89 2.69 2.54 2.45 2.39 2.34 2.31 2.28 2.24 2.22 2.20 2.18 2.17 2.15 2.13 
175 14.04 6.18 4.45 3.73 3.34 2.94 2.73 2.58 2.48 2.42 2.38 2.34 2.31 2.27 2.24 2.22 2.21 2.20 2.17 2.16 
200 14.69 6.36 4.54 3.80 3.40 2.98 2.76 2.61 2.51 2.45 2.40 2.37 2.34 2.30 2.27 2.25 2.23 2.22 2.20 2.18 

Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (2 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.71 2.06 1.82 1.70 1.62 1.53 1.48 1.44 1.41 1.39 1.38 1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.31 1.31 
2 3.53 2.51 2.16 1.98 1.88 1.75 1.68 1.63 1.59 1.57 1.55 1.54 1.53 1.51 1.50 1.49 1.48 1.48 1.47 1.46 
3 4.10 2.79 2.36 2.15 2.02 1.88 1.80 1.74 1.70 1.67 1.65 1.63 1.62 1.60 1.59 1.58 1.57 1.57 1.56 1.55 
4 4.54 3.00 2.51 2.27 2.13 1.97 1.88 1.81 1.77 1.74 1.72 1.70 1.69 1.67 1.65 1.64 1.63 1.63 1.61 1.61 
5 4.92 3.17 2.63 2.37 2.21 2.04 1.94 1.87 1.82 1.79 1.77 1.75 1.73 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
8 5.80 3.55 2.88 2.57 2.39 2.18 2.07 1.99 1.94 1.90 1.87 1.85 1.84 1.81 1.79 1.78 1.77 1.76 1.75 1.74 
12 6.67 3.90 3.11 2.75 2.54 2.31 2.18 2.09 2.03 1.99 1.96 1.94 1.92 1.89 1.88 1.86 1.85 1.84 1.83 1.82 
16 7.36 4.16 3.28 2.88 2.65 2.40 2.26 2.16 2.10 2.06 2.02 2.00 1.98 1.95 1.93 1.92 1.91 1.90 1.88 1.87 
20 7.95 4.38 3.42 2.98 2.74 2.47 2.32 2.22 2.15 2.10 2.07 2.05 2.03 2.00 1.97 1.96 1.95 1.94 1.92 1.91 
30 9.12 4.79 3.67 3.17 2.90 2.59 2.43 2.32 2.24 2.19 2.16 2.13 2.11 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
40 10.06 5.10 3.86 3.31 3.01 2.68 2.51 2.39 2.31 2.26 2.22 2.19 2.16 2.13 2.10 2.09 2.07 2.06 2.04 2.03 
50 10.84 5.35 4.01 3.42 3.10 2.75 2.57 2.44 2.36 2.30 2.26 2.23 2.21 2.17 2.14 2.13 2.11 2.10 2.08 2.07 
60 11.53 5.57 4.13 3.51 3.17 2.81 2.62 2.49 2.40 2.34 2.30 2.27 2.24 2.20 2.18 2.16 2.14 2.13 2.11 2.10 
75 12.43 5.84 4.29 3.63 3.27 2.88 2.68 2.54 2.45 2.39 2.34 2.31 2.28 2.24 2.22 2.20 2.18 2.17 2.15 2.13 
100 13.68 6.21 4.50 3.78 3.39 2.97 2.76 2.61 2.51 2.45 2.40 2.37 2.34 2.30 2.27 2.25 2.23 2.22 2.20 2.18 
125 14.75 6.51 4.66 3.89 3.48 3.05 2.82 2.66 2.56 2.50 2.45 2.41 2.38 2.34 2.31 2.29 2.27 2.25 2.23 2.22 
150 15.66 6.76 4.80 3.99 3.56 3.11 2.87 2.71 2.60 2.53 2.48 2.44 2.41 2.37 2.34 2.32 2.30 2.29 2.26 2.24 
175 16.49 6.98 4.92 4.08 3.62 3.16 2.92 2.74 2.64 2.57 2.51 2.47 2.44 2.40 2.37 2.34 2.32 2.31 2.28 2.27 
200 17.24 7.18 5.03 4.15 3.68 3.20 2.95 2.77 2.67 2.59 2.54 2.50 2.47 2.42 2.39 2.36 2.35 2.33 2.31 2.29 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (5 COC, Annual) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.62 1.92 1.68 1.56 1.49 1.40 1.35 1.31 1.29 1.27 1.26 1.25 1.24 1.23 1.22 1.22 1.21 1.21 1.20 1.20 
2 3.41 2.35 2.01 1.84 1.74 1.62 1.56 1.51 1.48 1.46 1.44 1.43 1.42 1.40 1.39 1.39 1.38 1.37 1.37 1.36 
3 3.95 2.62 2.20 2.00 1.88 1.75 1.68 1.62 1.58 1.56 1.54 1.53 1.51 1.50 1.49 1.48 1.47 1.47 1.46 1.45 
4 4.38 2.82 2.34 2.12 1.99 1.84 1.76 1.70 1.66 1.63 1.61 1.59 1.58 1.56 1.55 1.54 1.53 1.53 1.52 1.51 
5 4.74 2.98 2.46 2.21 2.07 1.91 1.82 1.75 1.71 1.68 1.66 1.65 1.63 1.61 1.60 1.59 1.58 1.58 1.56 1.56 
8 5.59 3.33 2.70 2.41 2.24 2.05 1.95 1.88 1.83 1.79 1.77 1.75 1.74 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
12 6.43 3.67 2.92 2.58 2.39 2.18 2.06 1.98 1.92 1.89 1.86 1.84 1.82 1.80 1.78 1.77 1.76 1.75 1.74 1.73 
16 7.10 3.92 3.08 2.71 2.49 2.26 2.14 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
20 7.66 4.12 3.21 2.81 2.58 2.33 2.20 2.11 2.04 2.00 1.97 1.95 1.93 1.90 1.88 1.87 1.86 1.85 1.84 1.82 
30 8.80 4.51 3.45 2.99 2.73 2.46 2.31 2.21 2.14 2.09 2.06 2.03 2.01 1.98 1.96 1.95 1.94 1.93 1.91 1.90 
40 9.70 4.80 3.63 3.U 2.84 2.55 2.39 2.28 2.20 2.15 2.12 2.09 2.07 2.04 2.02 2.00 1.99 1.98 1.96 1.95 
50 10.46 5.04 3.77 3.23 2.93 2.62 2.45 2.33 2.25 2.20 2.17 2.14 2.11 2.08 2.06 2.04 2.03 2.02 2.00 1.99 
60 11.12 5.24 3.89 3.32 3.00 2.67 2.50 2.37 2.30 2.24 2.20 2.17 2.15 2.12 2.09 2.07 2.06 2.05 2.03 2.02 
75 11.99 5.50 4.04 3.43 3.09 2.74 2.56 2.43 2.35 2.29 2.25 2.22 2.19 2.16 2.13 2.11 2.10 2.09 2.07 2.06 

100 13.21 5.85 4.23 3.57 3.21 2.83 2.64 2.50 2.41 2.35 2.31 2.27 2.25 2.21 2.19 2.17 2.15 2.14 2.12 2.10 
125 14.23 6.13 4.39 3.68 3.30 2.90 2.70 2.55 2.46 2.40 2.35 2.32 2.29 2.25 2.24 2.19 2.19 2.18 2.15 2.14 
150 15.14 6.36 4.52 3.77 3.37 2.96 2.75 2.60 2.50 2.44 2.39 2.35 2.33 2.29 2.26 2.24 2.22 2.21 2.18 2.17 
175 15.92 6.57 4.63 3.85 3.44 3.01 2.79 2.63 2.53 2.47 2.42 2.38 2.36 2.31 2.28 2.26 2.25 2.23 2.21 2.19 
200 16.65 6.75 4.73 3.92 3.49 3.05 2.83 2.66 2.56 2.49 2.45 2.41 2.38 2.34 2.31 2.29 2.27 2.25 2.23 2.22 

Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (5 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.22 2.29 1.98 1.82 1.73 1.62 1.55 1.51 1.48 1.45 1.44 1.43 1.42 1.40 1.39 1.38 1.38 1.37 1.37 1.36 
2 4.15 2.76 2.32 2.10 1.98 1.83 1.75 1.69 1.65 1.63 1.61 1.59 1.58 1.56 1.55 1.54 1.53 1.53 1.52 1.51 
3 4.80 3.05 2.52 2.27 2.12 1.96 1.87 1.80 1.76 1.73 1.70 1.69 1.67 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
4 5.31 3.27 2.67 2.39 2.23 2.05 1.95 1.87 1.83 1.79 1.77 1.75 1.74 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
5 5.74 3.45 2.79 2.49 2.31 2.12 2.01 1.93 1.88 1.84 1.82 1.80 1.78 1.76 1.75 1.73 1.72 1.72 1.70 1.69 
8 6.75 3.85 3.05 2.69 2.49 2.26 2.14 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
12 7.75 4.22 3.29 2.87 2.64 2.39 2.25 2.15 2.09 2.04 2.01 1.99 1.97 1.94 1.92 1.90 1.89 1.88 1.87 1.86 
16 8.55 4.50 3.46 3.01 2.75 2.47 2.33 2.22 2.15 2.11 2.07 2.05 2.03 2.00 1.97 1.96 1.95 1.94 1.92 1.91 
20 9.22 4.72 3.60 3.11 2.84 2.54 2.39 2.27 2.20 2.15 2.12 2.09 2.07 2.04 2.02 2.00 1.99 1.98 1.96 1.95 
30 10.58 5.16 3.86 3.30 3.00 2.67 2.50 2.37 2.30 2.24 2.20 2.17 2.15 2.12 2.09 2.07 2.06 2.05 2.03 2.02 
40 11.65 5.49 4.05 3.44 3.11 2.76 2.58 2.44 2.36 2.30 2.26 2.23 2.21 2.17 2.14 2.13 2.11 2.10 2.08 2.07 
50 12.55 5.76 4.21 3.56 3.20 2.83 2.64 2.50 2.41 2.35 2.31 2.27 2.25 2.21 2.19 2.17 2.15 2.14 2.12 2.10 
60 13.33 5.98 4.34 3.65 3,28 2.89 2.69 2.54 2.45 2.39 2.34 2.31 2.28 2.24 2.22 2.20 2.18 2.17 2.15 2.13 
75 14.38 6.27 4.50 3.76 3.37 2.96 2.75 2.59 2.50 2.44 2.39 2.35 2.33 2.29 2.26 2.24 2.22 2.21 2.18 2.17 
100 15.82 6.67 4.71 3.92 3.49 3.05 2.83 2.66 2.56 2.50 2.45 2.41 2.38 2.34 2.31 2.29 2.27 2.25 2.23 2.22 
125 17.04 6.98 4.88 4.04 3.59 3.12 2.89 2.72 2.61 2.54 2.49 2.45 2.42 2.38 2.35 2.31 2.31 2.29 2.27 2.25 
150 18.12 7.25 5.03 4.14 3.67 3.18 2.94 2.76 2.65 2.58 2.53 2.49 2.46 2.41 2.37 2.35 2.34 2.32 2.30 2.28 
175 19.09 7.47 5.15 4.22 3.74 3.23 2.98 2.80 2.69 2.61 2.56 2.51 2.48 2.44 2.40 2.38 2.36 2.35 2.32 2.30 
200 19.97 7.67 5.26 4.30 3.79 3.28 3.02 2.83 2.72 2.64 2.59 2.54 2.51 2.46 2.43 2.40 2.38 2.37 2.34 2.32 
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Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (5 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 3.83 2.66 2.27 2.08 1.96 1.82 1.75 1.69 1.65 1.62 1.61 1.59 1.58 1.56 1.55 1.54 1.53 1.53 1.52 1.51 
2 4.92 3.17 2.63 2.37 2.21 2.04 1.94 1.87 1.82 1.79 1.77 1.75 1.73 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
3 5.67 3.49 2.85 2.54 2.36 2.16 2.06 1.97 1.92 1.89 1.86 1.84 1.82 1.80 1.78 1.77 1.76 1.75 1.74 1.73 
4 6.26 3.74 3.01 2.67 2.47 2.25 2.13 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
5 6.76 3.94 3.14 2.77 2.56 2.32 2.20 2.10 2.04 2.00 1.97 1.95 1.93 1.90 1.88 1.87 1.86 1.85 1.83 1.82 
8 7.95 4.38 3.42 2.98 2.74 2.47 2.32 2.22 2.15 2.10 2.07 2.05 2.03 2.00 1.97 1.96 1.95 1.94 1.92 1.91 
12 9.12 4.79 3.67 3.17 2.90 2.59 2.43 2.32 2.24 2.19 2.16 2.13 2.11 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
16 10.06 5.10 3.86 3.31 3.01 2.68 2.51 2.39 2.31 2.26 2.22 2.19 2.16 2.13 2.10 2.09 2.07 2.06 2.04 2.03 
20 10.84 5.35 4.01 3.42 3.10 2.75 2.57 2.44 2.36 2.30 2.26 2.23 2.21 2.17 2.14 2.13 2.11 2.10 2.08 2.07 
30 12.43 5.84 4.29 3.63 3.27 2.88 2.68 2.54 2.45 2.39 2.34 2.31 2.28 2.24 2.22 2.20 2.18 2.17 2.15 2.13 
40 13.68 6.21 4.50 3.78 3.39 2.97 2.76 2.61 2.51 2.45 2.40 2.37 2.34 2.30 2.27 2.25 2.23 2.22 2.20 2.18 
50 14.75 6.51 4.66 3.89 3.48 3.05 2.82 2.66 2.56 2.50 2.45 2.41 2.38 2.34 2.31 2.29 2.27 2.25 2.23 2.22 
60 15.66 6.76 4.80 3.99 3.56 3.11 2.87 2.71 2.60 2.53 2.48 2.44 2.41 2.37 2.34 2.32 2.30 2.29 2.26 2.24 
75 16.87 7.08 4.98 4.11 3,65 3.18 2.94 2.76 2.65 2.58 2.53 2.49 2.45 2.41 2.38 2.35 2.34 2.32 2.30 2.28 

100 18.58 7.52 5.21 4.28 3.78 3.27 3.01 2.83 2.72 2.64 2.58 2.54 2.51 2.46 2.43 2.40 2.38 2.37 2.34 2.32 
125 20.02 7.86 5.40 4.40 3.88 3.35 3.08 2.88 2.77 2.69 2.63 2.58 2.55 2.49 2.46 2.44 2.42 2.40 2.38 2.36 
150 21.29 8.15 5.55 4.51 3.96 3.41 3.13 2.93 2.81 2.73 2.66 2.62 2.58 2.53 2.49 2.47 2.45 2.43 2.40 2.39 
175 22.41 8.40 5.69 4.60 4.03 3.46 3.17 2.96 2.84 2.75 2.69 2.64 2.60 2.56 2.52 2.49 2.47 2.46 2.43 2.41 
200 23.44 8.64 5.80 4.68 4.10 3.50 3.21 2.99 2.87 2.78 2.72 2.67 2.63 2.58 2.54 2.52 2.49 2.48 2.45 2.43 

Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.41 2.35 2.01 1.84 1.74 1.62 1.56 1.51 1.48 1.46 1.44 1.43 1.42 1.40 1.39 1.39 1.38 1.37 1.37 1.36 
2 4.38 2.82 2.34 2.12 1.99 1.84 1.76 1.70 1.66 1.63 1.61 1.59 1.58 1.56 1.55 1.54 1.53 1.53 1.52 1.51 
3 5.06 3.11 2.55 2.29 2.13 1.96 1.87 1.80 1.76 1.73 1.70 1.69 1.67 1.65 1.64 1.63 1.62 1.61 1.60 1.59 
4 5.59 3.33 2.70 2.41 2.24 2.05 1.95 1.88 1.83 1.79 1.77 1.75 1.74 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
5 6.04 3.51 2.82 2.50 2.32 2.12 2.01 1.93 1.88 1.85 1.82 1.80 1.78 1.76 1.75 1.73 1.72 1.72 1.70 1.69 
8 7.10 3.92 3.08 2.71 2.49 2.26 2.14 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
12 8.16 4.29 3.32 2.89 2.65 2.39 2.25 2.15 2.09 2.04 2.01 1.99 1.97 1.94 1.92 1.90 1.89 1.88 1.87 1.86 
16 8.99 4.57 3.49 3.02 2.76 2.48 2.33 2.22 2.15 2.11 2.07 2.05 2.03 2.00 1.97 1.96 1.95 1.94 1.92 1.91 
20 9.70 4.80 3.63 3,12 2.84 2.55 2.39 2.28 2.20 2.15 2.12 2.09 2.07 2.04 2.02 2.00 1.99 1.98 1.96 1.95 
30 11.12 5.24 3.89 3.32 3.00 2.67 2.50 2.37 2.30 2.24 2.20 2.17 2.15 2.12 2.09 2.07 2.06 2.05 2.03 2.02 
40 12.25 5.57 4.08 3.46 3.12 2.76 2.58 2.44 2.36 2.30 2.26 2.23 2.21 2.17 2.15 2.13 2.11 2.10 2.08 2.07 
50 13.20 5.84 4.23 3.57 3.21 2.83 2.64 2.50 2.41 2.35 2.31 2.27 2.25 2.21 2.19 2.17 2.15 2.14 2.12 2.10 
60 14.03 6.07 4.36 3.66 3.28 2.89 2.69 2.54 2.45 2.39 2.34 2.31 2.28 2.24 2.22 2.19 2.18 2.17 2.15 2.13 
75 15.12 6.36 4.53 3.78 3.37 2.96 2.75 2.59 2.50 2.44 2.39 2.35 2.33 2.29 2.26 2.24 2.22 2.21 2.18 2.17 
100 16.66 6.77 4.74 3.93 3.50 3.05 2.83 2.66 2.56 2.49 2.45 2.41 2.38 2.34 2.31 2.29 2.27 2.25 2.23 2.22 
125 17.96 7.09 4.91 4.05 3.59 3.13 2.89 2.70 2.61 2.54 2.49 2.45 2.42 2.38 2.35 2.32 2.31 2.29 2.27 2.25 
150 19.09 7.37 5.06 4.15 3.67 3.18 2.94 2.76 2.65 2.58 2.53 2.49 2.46 2.41 2.38 2.35 2.34 2.32 2.30 2.28 
175 20.10 7.61 5.18 4.24 3.74 3.24 2.98 2.80 2.69 2.61 2.56 2.52 2.48 2.44 2.40 2.38 2.36 2.35 2.32 2.30 
200 21.01 7.82 5.29 4.31 3.80 3.28 3.02 2.83 2.72 2.64 2.58 2.54 2.51 2.46 2.43 2.40 2.38 2.37 2.34 2.32 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (10 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 4.15 2.76 2.32 2.10 1.98 1.83 1.75 1.69 1.65 1.63 1.61 1.59 1.58 1.56 1.55 1.54 1.53 1.53 1.52 1.51 
2 5.31 3.27 2.67 2.39 2.23 2.05 1.95 1.87 1.83 1.79 1.77 1.75 1.74 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
3 6.11 3.60 2.89 2.57 2.38 2.17 2.06 1.98 1.92 1.89 1.86 1.84 1.82 1.80 1.78 1.77 1.76 1.75 1.74 1.73 
4 6.75 3.85 3.05 2.69 2.49 2.26 2.14 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
5 7.28 4.05 3.18 2.79 2.57 2.33 2.20 2.10 2.04 2.00 1.97 1.95 1.93 1.90 1.88 1.87 1.86 1.85 1.83 1.82 
8 8.55 4.50 3.46 3.01 2.75 2.47 2.33 2.22 2.15 2.11 2.07 2.05 2.03 2.00 1.97 1.96 1.95 1.94 1.92 1.91 
12 9.81 4.92 3.72 3.20 2.91 2.60 2.44 2.32 2.24 2.19 2.16 2.13 2.11 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
16 10.81 5.23 3.90 3.33 3.02 2.69 2.52 2.39 2.31 2.26 2.22 2.19 2.16 2.13 2.10 2.09 2.07 2.06 2.04 2.03 
20 11.65 5.49 4.05 3.44 3.11 2.76 2.58 2.44 2.36 2.30 2.26 2.23 2.21 2.17 2.14 2.13 2.11 2.10 2.08 2.07 
30 13.33 5.98 4.34 3.65 3.28 2.89 2.69 2.54 2.45 2.39 2.34 2.31 2.28 2.24 2.22 2.20 2.18 2.17 2.15 2.13 
40 14.68 6.36 4.54 3.80 3.40 2.98 2.76 2.61 2.51 2.45 2.40 2.37 2.34 2.30 2.27 2.25 2.23 2.22 2.20 2.18 
50 15.82 6.67 4.71 3.91 3.49 3.05 2.83 2.66 2.56 2.50 2.45 2.41 2.38 2.34 2.31 2.29 2.27 2.25 2.23 2.22 
60 16.82 6.92 4.85 4.01 3.57 3.11 2.88 2.71 2.60 2.53 2.48 2.44 2.41 2.37 2.34 2.32 2.30 2.29 2.26 2.24 
75 18.13 7.25 5.03 4.14 3.67 3.18 2.94 2.76 2.65 2.58 2.53 2.49 2.45 2.41 2.38 2.35 2.34 2.32 2.30 2.28 

100 19.98 7.66 5.27 4.30 3.79 3.28 3.02 2.83 2.72 2.64 2.59 2.54 2.51 2.46 2.43 2.40 2.38 2.37 2.34 2.32 
125 21.50 8.03 5.45 4.42 3.89 3.35 3.08 2.88 2.77 2.69 2.63 2.58 2.55 2.50 2.46 2.44 2.42 2.40 2.38 2.36 
150 22.85 8.33 5.61 4.53 3.98 3.41 3.13 2.93 2.81 2.72 2.66 2.62 2.58 2.53 2.49 2.47 2.45 2.43 2.40 2.39 
175 24.02 8.61 5.74 4.63 4.04 3.46 3.17 2.96 2.84 2.76 2.69 2.65 2.61 2.56 2.52 2.49 2.47 2.46 2.43 2.41 
200 25.20 8.85 5.80 4.70 4.11 3.51 3.21 3.00 2.87 2.79 2.72 2.67 2.63 2.58 2.54 2.52 2.49 2.48 2.45 2.43 

Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (10 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 4.92 3.17 2.63 2.37 2.21 2.04 1.94 1.87 1.82 1.79 1.77 1.75 1.73 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
2 6.26 3.74 3.01 2.67 2.47 2.25 2.13 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
3 7.20 4.10 3.24 2.85 2.63 2.38 2.25 2.15 2.08 2.04 2.01 1.99 1.97 1.94 1.92 1.90 1.89 1.88 1.87 1.86 
4 7.95 4.38 3.42 2.98 2.74 2.47 2.32 2.22 2.15 2.10 2.07 2.05 2.03 2.00 1.97 1.96 1.95 1.94 1.92 1.91 
5 8.57 4.60 3.56 3.09 2.82 2.54 2.39 2.27 2.20 2.15 2.12 2.09 2.07 2.04 2.02 2.00 1.99 1.98 1.96 1.95 
8 10.06 5.10 3.86 3.31 3.01 2.68 2.51 2.39 2.31 2.26 2.22 2.19 2.16 2.13 2.10 2.09 2.07 2.06 2.04 2.03 
12 11.53 5.57 4.13 3.51 3.17 2.81 2.62 2.49 2.40 2.34 2.30 2.27 2.24 2.20 2.18 2.16 2.14 2.13 2.11 2.10 
16 12.70 5.92 4.33 3.66 3.29 2.90 2.70 2.56 2.46 2.40 2.36 2.32 2.30 2.26 2.23 2.21 2.19 2.18 2.16 2.14 
20 13.68 6.21 4.50 3.78 3.39 2.98 2.76 2.61 2.51 2.45 2.40 2.37 2.34 2.30 2.27 2.25 2.23 2.22 2.20 2.18 
30 15.66 6.76 4.80 3.99 3.56 3.11 2.87 2.71 2.60 2.53 2.48 2.44 2.41 2.37 2.34 2.32 2.30 2.29 2.26 2.24 
40 17.24 7.18 5.03 4.15 3.68 3.20 2.95 2.77 2.67 2.59 2.54 2.50 2.47 2.42 2.39 2.36 2.35 2.33 2.31 2.29 
50 18.57 7.51 5.21 4.28 3.78 3.27 3.01 2.83 2.72 2.64 2.58 2.54 2.51 2.46 2.43 2.40 2.38 2.37 2.34 2.32 
60 19.75 7.80 5.36 4.38 3.86 3.33 3.07 2.87 2.76 2.68 2.62 2.57 2.54 2.49 2.46 2.43 2.41 2.40 2.37 2.35 
75 21.27 8.16 5.55 4.51 3.97 3.41 3.13 2.92 2.81 2.72 2.66 2.62 2.58 2.53 2.49 2.47 2.45 2.43 2.40 2.39 
100 23.44 8.64 5.80 4.68 4.10 3.50 3.21 2.99 2.87 2.78 2.72 2.67 2.63 2.58 2.54 2.52 2.49 2.48 2.45 2.43 
125 25.25 9.04 5.99 4.82 4.20 3.58 3.27 3.05 2.92 2.83 2.76 2.71 2.67 2.62 2.58 2.55 2.53 2.51 2.48 2.46 
150 26.84 9.38 6.14 4.94 4.29 3.64 3.32 3.11 2.96 2.86 2.80 2.75 2.71 2.65 2.61 2.58 2.56 2.54 2.51 2.49 
175 28.24 9.70 6.27 5.03 4.37 3.70 3.36 3.14 3.00 2.89 2.83 2.77 2.73 2.67 2.63 2.60 2.58 2.56 2.53 2.51 
200 29.53 9.96 6.39 5.11 4.43 3.74 3.40 3.18 3.02 2.92 2.85 2.80 2.76 2.70 2.66 2.63 2.60 2.58 2.55 2.53 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (20 COC, Annual) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 4.38 2.82 2.34 2.12 1.99 1.84 1.76 1.70 1.66 1.63 1.61 1.59 1.58 1.56 1.55 1.54 1.53 1.53 1.52 1.51 
2 5.59 3.33 2.70 2.41 2.24 2.05 1.95 1.88 1.83 1.79 1.77 1.75 1.74 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
3 6.44 3.67 2.92 2.58 2.39 2.18 2.06 1.98 1.92 1.89 1.86 1.84 1.82 1.80 1.78 1.77 1.76 1.75 1.74 1.73 
4 7.10 3.92 3.08 2.71 2.49 2.26 2.14 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
5 7.67 4.12 3.21 2.81 2.58 2.33 2.20 2.11 2.04 2.00 1.97 1.95 1.93 1.90 1.88 1.87 1.86 1.85 1.84 1.82 
8 8.99 4.57 3.49 3.02 2.76 2.48 2.33 2.22 2.15 2.11 2.07 2.05 2.03 2.00 1.97 1.96 1.95 1.94 1.92 1.91 
12 10.32 5.00 3.74 3.21 2.92 2.60 2.44 2.32 2.25 2.19 2.16 2.13 2.11 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
16 11.37 5.32 3.93 3.35 3.03 2.69 2.52 2.39 2.31 2.26 2.22 2.19 2.16 2.13 2.10 2.09 2.07 2.06 2.04 2.03 
20 12.25 5.58 4.08 3.46 3.12 2.76 2.58 2.44 2.36 2.30 2.26 2.23 2.21 2.17 2.14 2.13 2.11 2.10 2.08 2.07 
30 14.04 6.08 4.36 3.66 3.28 2.89 2.69 2.54 2.45 2.39 2.34 2.31 2.28 2.24 2.22 2.20 2.18 2.17 2.15 2.13 
40 15.47 6.46 4.58 3.81 3.40 2.98 2.77 2.61 2.51 2.45 2.40 2.37 2.34 2.30 2.27 2.25 2.23 2.22 2.19 2.18 
50 16.66 6.77 4.74 3.93 3.50 3.05 2.83 2.66 2.57 2.50 2.45 2.41 2.38 2.34 2.31 2.29 2.27 2.25 2.23 2.22 
60 17.71 7.03 4.88 4.03 3.58 3.11 2.88 2.71 2.60 2.54 2.48 2.44 2.41 2.37 2.34 2.32 2.30 2.29 2.26 2.24 
75 19.07 7.36 5.05 4.15 3.67 3.19 2.94 2.76 2.65 2.58 2.53 2.49 2.46 2.41 2.38 2.35 2.33 2.32 2.30 2.28 

100 21.01 7.82 5.30 4.31 3.80 3,28 3.02 2.83 2.72 2.64 2.58 2.54 2.51 2.46 2.43 2.40 2.38 2.37 2.34 2.32 
125 22.68 8.17 5.48 4.44 3.90 3.35 3.08 2.88 2.77 2.69 2.63 2.58 2.55 2.50 2.46 2.44 2.42 2.40 2.38 2.36 
150 24.08 8.53 5.65 4.55 3.98 3.42 3.13 2.93 2.81 2.72 2.66 2.61 2.58 2.53 2.49 2.47 2.45 2.43 2.40 2.38 
175 25.31 8.79 5.78 4.64 4.05 3.46 3.18 2.97 2.84 2.75 2.69 2.65 2.61 2.56 2.52 2.49 2.47 2.46 2.43 2.41 
200 26.37 9.05 5.89 4.72 4.11 3.52 3.21 3.00 2.87 2.78 2.72 2.67 2.64 2.58 2.54 2.52 2.49 2.48 2.45 2.43 

Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 5.31 3.27 2.67 2.39 2.23 2.05 1.95 1.87 1.83 1.79 1.77 1.75 1.74 1.71 1.70 1.69 1.68 1.67 1.66 1.65 
2 6.75 3.85 3.05 2.69 2.49 2.26 2.14 2.05 1.99 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
3 7.75 4.22 3.29 2.87 2.64 2.39 2.25 2.15 2.09 2.04 2.01 1.99 1.97 1.94 1.92 1.90 1.89 1.88 1.87 1.86 
4 8.55 4.50 3.46 3.01 2.75 2.47 2.33 2.22 2.15 2.11 2.07 2.05 2.03 2.00 1.97 1.96 1.95 1.94 1.92 1.91 
5 9.22 4.72 3.60 3.11 2.84 2.54 2.39 2.27 2.20 2.15 2.12 2.09 2.07 2.04 2.02 2.00 1.99 1.98 1.96 1.95 
8 10.81 5.23 3.90 3.34 3.02 2.69 2.52 2.39 2.31 2.26 2.22 2.19 2.16 2.13 2.10 2.09 2.07 2.06 2.04 2.03 
12 12.39 5.71 4.18 3.54 3.19 2.82 2.63 2.49 2.40 2.34 2.30 2.27 2.24 2.20 2.18 2.16 2.14 2.13 2.11 2.10 
16 13.66 6.07 4.38 3.68 3.30 2.91 2.70 2.56 2.47 2.40 2.36 2.32 2.30 2.26 2.23 2.21 2.19 2.18 2.16 2.14 
20 14.72 6.36 4.55 3.80 3.40 2.98 2.77 2.61 2.51 2.45 2.40 2.37 2.34 2.30 2.27 2.25 2.23 2.22 2.20 2.18 
30 16.85 6.93 4.85 4.02 3.57 3.11 2.88 2.71 2.60 2.53 2.48 2.44 2.41 2.37 2.34 2.32 2.30 2.29 2.26 2.24 
40 18.54 7.35 5.08 4.17 3.69 3.20 2.96 2.78 2.67 2.59 2.54 2.50 2.47 2.42 2.39 2.36 2.35 2.33 2.31 2.29 
50 20.00 7.70 5.26 4.30 3.79 3.28 3.02 2.83 2.72 2.64 2.58 2.54 2.51 2.46 2.43 2.40 2.38 2.37 2.34 2.32 
60 21.27 8.00 5.42 4.41 3.87 3.34 3.07 2.88 2.76 2.68 2.62 2.58 2.54 2.49 2.46 2.43 2.41 2.40 2.37 2.35 
75 22.85 8.37 5.60 4.54 3.98 3.41 3.13 2.93 2.80 2.72 2.66 2.62 2.58 2.53 2.49 2.47 2.45 2.43 2.40 2.39 

100 25.22 8.88 5.87 4.70 4.11 3.51 3.21 3.00 2.87 2.78 2.72 2.67 2.63 2.58 2.54 2.52 2.49 2.48 2.45 2.43 
125 27.07 9.32 6.06 4.84 4.22 3.58 3.27 3.05 2.92 2.83 2.76 2.71 2.68 2.62 2.58 2.55 2.53 2.51 2.48 2.46 
150 28.83 9.67 6.24 4.95 4.31 3.65 3.32 3.10 2.96 2.86 2.80 2.75 2.71 2.65 2.61 2.58 2.56 2.54 2.51 2.49 
175 30.23 9.98 6.39 5.05 4.37 3.70 3.37 3.13 2.99 2.89 2.82 2.77 2.74 2.68 2.64 2.60 2.58 2.56 2.53 2.51 
200 31.64 10.28 6.53 5.14 4.44 3.75 3.41 3.16 3.02 2.92 2.85 2.80 2.76 2.70 2.66 2.63 2.60 2.58 2.55 2.53 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 

1 6.26 3.74 3.01 2.67 2.47 2.2S 2.13 2.05 1.99 1.9S 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
2 7.95 4.38 3.42 2.98 2.74 2.47 2.32 2.22 2.1S 2.10 2.07 2.05 2.03 2.00 1.97 1.96 1.9S 1.94 1.92 1.91 
3 9.12 4.79 3.67 3.17 2.90 2.S9 2.44 2.32 2.24 2.19 2.16 2.13 2.11 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
4 10.06 5.10 3.86 3.31 3.01 2.68 2.Sl 2.39 2.31 2.2S 2.22 2.19 2.16 2.13 2.10 2.09 2.07 2.06 2.04 2.03 
s 10.85 5.35 4.01 3.42 3.10 2.7S 2.S7 2.44 2.36 2.30 2.26 2.23 2.21 2.17 2.14 2.13 2.11 2.10 2.08 2.07 
8 12.71 5.92 4.33 3.66 3.29 2.90 2.70 2.S6 2.46 2.40 2.36 2.32 2.30 2.26 2.23 2.21 2.19 2.18 2.16 2.14 
12 14.57 6.45 4.63 3.87 3.46 3.03 2.81 2.6S 2.SS 2.49 2.44 2.40 2.37 2.33 2.30 2.28 2.26 2.2S 2.22 2.21 
16 16.04 6.86 4.85 4.03 3.59 3.13 2.89 2.72 2.62 2.SS 2.50 2.46 2.43 2.38 2.3S 2.33 2.31 2.30 2.27 2.2S 
20 17.29 7.18 5.03 4.15 3.68 3.20 2.9S 2.78 2.67 2.S9 2.S4 2.SO 2.47 2.42 2.39 2.36 2.3S 2.33 2.31 2.29 
30 19.80 7.81 5.36 4.38 3.86 3.33 3.07 2.87 2.76 2.68 2.62 2.S7 2.S4 2.49 2.46 2.43 2.41 2.40 2.37 2.3S 
40 21.80 8.29 5.61 4.55 3.99 3.43 3.14 2.94 2.82 2.74 2.68 2.63 2.S9 2.S4 2.SO 2.48 2.46 2.44 2.41 2.39 
so 23.47 8.68 5.81 4.68 4.10 3.50 3.21 3.00 2.87 2.78 2.72 2.67 2.63 2.S8 2.S4 2.Sl 2.49 2.48 2.4S 2.43 
60 24.96 9.01 5.98 4.80 4.19 3.57 3.26 3.04 2.91 2.82 2.7S 2.71 2.67 2.61 2.S7 2.S4 2.S2 2.50 2.48 2.46 
7S 26.89 9.45 6.19 4.93 4.29 3.64 3.32 3.10 2.96 2.86 2.80 2.7S 2.71 2.6S 2.61 2.S8 2.S6 2.S4 2.Sl 2.49 

100 29.53 10.02 6.46 5.12 4.43 3.74 3.41 3.16 3.02 2.92 2.8S 2.80 2.76 2.70 2.66 2.63 2.60 2.S8 2.SS 2.S3 
12S 31.99 10.46 6.68 5.26 4.54 3.82 3.47 3.22 3.07 2.97 2.89 2.84 2.80 2.74 2.69 2.66 2.64 2.62 2.S8 2.S6 
150 33.75 10.90 6.88 5.38 4.64 3.89 3.52 3.26 3.11 3.00 2.93 2.87 2.83 2.77 2.72 2.69 2.66 2.6S 2.61 2.S9 
17S 35.86 11.25 7.03 5.49 4.70 3.94 3.56 3.30 3.14 3.03 2.96 2.90 2.86 2.79 2.7S 2.71 2.69 2.67 2.63 2.61 
200 37.27 11.51 7.16 5.58 4.77 3.99 3.60 3.33 3.17 3.06 2.98 2.92 2.88 2.81 2.77 2.73 2.71 2.69 2.6S 2.63 

Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 ( 40 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 5.59 3.33 2.70 2.41 2.24 2.05 1.9S 1.88 1.83 1.79 1.77 1.7S 1.74 1.71 1.70 1.69 1.68 1.67 1.66 1.6S 
2 7.10 3.92 3.08 2.71 2.49 2.26 2.14 2.05 1.99 1.9S 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
3 8.16 4.29 3.32 2.89 2.6S 2.39 2.2S 2.1S 2.09 2.04 2.01 1.99 1.97 1.94 1.92 1.90 1.89 1.88 1.87 1.86 
4 8.99 4.57 3.49 3.02 2.76 2.48 2.33 2.22 2.1S 2.11 2.07 2.05 2.03 2.00 1.97 1.96 1.9S 1.94 1.92 1.91 
s 9.70 4.80 3.63 3.12 2.84 2.SS 2.39 2.28 2.20 2.1S 2.12 2.09 2.07 2.04 2.02 2.00 1.99 1.98 1.96 1.9S 
8 11.37 5.32 3.93 3.35 3.03 2.69 2.S2 2.39 2.31 2.26 2.22 2.19 2.16 2.13 2.10 2.09 2.07 2.06 2.04 2.03 
12 13.03 5.80 4.21 3.55 3.19 2.82 2.63 2.49 2.40 2.34 2.30 2.27 2.24 2.20 2.18 2.16 2.14 2.13 2.11 2.10 
16 14.35 6.16 4.41 3.69 3.31 2.91 2.71 2.S6 2.47 2.40 2.36 2.32 2.30 2.26 2.23 2.21 2.19 2.18 2.16 2.14 
20 15.46 6.46 4.57 3.81 3.40 2.98 2.77 2.61 2.Sl 2.4S 2.40 2.37 2.34 2.30 2.27 2.2S 2.23 2.22 2.19 2.18 
30 17.71 7.03 4.88 4.03 3.58 3.11 2.88 2.71 2.60 2.S3 2.48 2.44 2.41 2.37 2.34 2.32 2.30 2.28 2.26 2.24 
40 19.51 7.46 5.11 4.19 3.70 3.21 2.96 2.78 2.67 2.S9 2.S4 2.SO 2.47 2.42 2.39 2.36 2.3S 2.33 2.31 2.29 
so 21.01 7.82 5.30 4.31 3.80 3.28 3.02 2.83 2.72 2.64 2.S8 2.S4 2.Sl 2.46 2.43 2.40 2.38 2.37 2.34 2.32 
60 22.32 8.12 5.45 4.42 3.88 3.34 3.07 2.87 2.76 2.68 2.62 2.S8 2.S4 2.49 2.46 2.43 2.41 2.40 2.37 2.3S 
7S 24.08 8.50 5.64 4.54 3.98 3.41 3.13 2.93 2.81 2.72 2.66 2.62 2.S8 2.S3 2.49 2.47 2.4S 2.43 2.40 2.39 

100 26.48 9.02 5.90 4.72 4.11 3.51 3.21 3.00 2.87 2.78 2.72 2.67 2.63 2.S8 2.S4 2.Sl 2.49 2.48 2.4S 2.43 
12S 28.54 9.43 6.11 4.86 4.22 3.59 3.27 3.05 2.92 2.83 2.76 2.71 2.67 2.62 2.S8 2.SS 2.S3 2.Sl 2.48 2.46 
150 30.35 9.80 6.28 4.97 4.31 3.65 3.33 3.09 2.96 2.86 2.80 2.7S 2.71 2.6S 2.61 2.S8 2.S6 2.S4 2.Sl 2.49 
17S 31.88 10.11 6.43 5.07 4.38 3.70 3.37 3.13 2.99 2.89 2.83 2.77 2.73 2.68 2.63 2.60 2.S8 2.S6 2.S3 2.Sl 
200 33.40 10.40 6.56 5.16 4.45 3.75 3.41 3.16 3.02 2.92 2.8S 2.80 2.76 2.70 2.66 2.63 2.60 2.S8 2.SS 2.S3 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-17. K-Multi pliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (40 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 6.75 3.85 3.05 2.69 2.49 2.26 2.14 2.05 1.99 1.9S 1.92 1.90 1.88 1.86 1.84 1.83 1.82 1.81 1.79 1.78 
2 8.55 4.50 3.46 3.01 2.7S 2.47 2.33 2.22 2.1S 2.11 2.07 2.05 2.03 2.00 1.97 1.96 1.9S 1.94 1.92 1.91 
3 9.81 4.92 3.72 3.20 2.91 2.60 2.44 2.32 2.24 2.19 2.16 2.13 2.11 2.07 2.05 2.03 2.02 2.01 1.99 1.98 
4 10.81 5.23 3.90 3.33 3.02 2.69 2.S2 2.39 2.31 2.26 2.22 2.19 2.16 2.13 2.10 2.09 2.07 2.06 2.04 2.03 
s 11.66 5.49 4.05 3.44 3.11 2.76 2.S8 2.44 2.36 2.30 2.26 2.23 2.21 2.17 2.14 2.13 2.11 2.10 2.08 2.07 
8 13.65 6.07 4.38 3.68 3.30 2.91 2.70 2.S6 2.47 2.40 2.36 2.32 2.30 2.26 2.23 2.21 2.19 2.18 2.16 2.14 
12 15.64 6.61 4.68 3.89 3.47 3.04 2.82 2.6S 2.S6 2.49 2.44 2.40 2.37 2.33 2.30 2.28 2.26 2.2S 2.22 2.21 
16 17.23 7.02 4.90 4.05 3.60 3.13 2.89 2.72 2.62 2.SS 2.50 2.46 2.43 2.38 2.3S 2.33 2.31 2.30 2.27 2.2S 
20 18.56 7.35 5.08 4.17 3.69 3.20 2.96 2.78 2.67 2.S9 2.S4 2.SO 2.47 2.42 2.39 2.36 2.3S 2.33 2.31 2.29 
30 21.25 8.00 5.42 4.40 3.87 3.34 3.07 2.87 2.76 2.68 2.62 2.S8 2.S4 2.49 2.46 2.43 2.41 2.40 2.37 2.3S 
40 23.41 8.49 5.67 4.57 4.00 3.43 3.1S 2.94 2.82 2.74 2.68 2.63 2.S9 2.S4 2.Sl 2.48 2.46 2.44 2.41 2.39 
so 25.22 8.89 5.86 4.71 4.11 3.51 3.21 3.00 2.87 2.78 2.72 2.67 2.63 2.S8 2.S4 2.Sl 2.49 2.48 2.4S 2.43 
60 26.81 9.23 6.03 4.82 4.19 3.57 3.26 3.04 2.91 2.82 2.7S 2.70 2.67 2.61 2.S7 2.S4 2.S2 2.Sl 2.48 2.46 
7S 28.89 9.66 6.24 4.95 4.30 3.65 3.32 3.10 2.96 2.86 2.80 2.7S 2.71 2.6S 2.61 2.S8 2.S6 2.S4 2.Sl 2.49 

100 31.76 10.24 6.53 5.14 4.44 3.75 3.40 3.16 3.02 2.92 2.8S 2.80 2.76 2.70 2.66 2.63 2.60 2.S8 2.SS 2.S3 
12S 34.22 10.72 6.75 5.29 4.55 3.82 3.47 3.22 3.07 2.97 2.89 2.84 2.80 2.74 2.69 2.66 2.64 2.62 2.S8 2.S6 
150 36.33 11.13 6.94 5.41 4.64 3.89 3.52 3.26 3.11 3.00 2.93 2.87 2.83 2.76 2.72 2.69 2.66 2.6S 2.61 2.S9 
17S 38.32 11.48 7.10 5.51 4.72 3.94 3.56 3.30 3.14 3.03 2.96 2.90 2.86 2.79 2.7S 2.71 2.69 2.67 2.63 2.61 
200 40.08 11.81 7.25 5.60 4.79 3.99 3.60 3.33 3.17 3.06 2.98 2.93 2.88 2.81 2.77 2.73 2.71 2.69 2.6S 2.63 

Table 19-17. K-Multipliers for 1-of-1 Intrawell Prediction Limits on Means of Order 3 (40 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 150 
1 7.95 4.38 3.42 2.98 2.74 2.47 2.32 2.22 2.1S 2.10 2.07 2.05 2.03 2.00 1.97 1.96 1.9S 1.94 1.92 1.91 
2 10.06 5.10 3.86 3.31 3.01 2.68 2.Sl 2.39 2.31 2.26 2.22 2.19 2.16 2.13 2.10 2.09 2.07 2.06 2.04 2.03 
3 11.53 5.57 4.13 3.51 3.17 2.81 2.62 2.49 2.40 2.34 2.30 2.27 2.24 2.20 2.18 2.16 2.14 2.13 2.11 2.10 
4 12.71 5.92 4.33 3.66 3.29 2.90 2.70 2.S6 2.46 2.40 2.36 2.32 2.30 2.26 2.23 2.21 2.19 2.18 2.16 2.14 
s 13.70 6.21 4.50 3.78 3.39 2.98 2.76 2.61 2.Sl 2.4S 2.40 2.37 2.34 2.30 2.27 2.2S 2.23 2.22 2.19 2.18 
8 16.04 6.85 4.85 4.03 3.59 3.13 2.89 2.72 2.62 2.SS 2.SO 2.46 2.43 2.38 2.3S 2.33 2.31 2.30 2.27 2.2S 
12 18.37 7.46 5.18 4.25 3.76 3.26 3.00 2.82 2.71 2.63 2.S8 2.S3 2.SO 2.4S 2.42 2.39 2.38 2.36 2.33 2.32 
16 20.23 7.92 5.42 4.42 3.89 3.3S 3.08 2.89 2.77 2.69 2.63 2.S9 2.SS 2.50 2.47 2.44 2.42 2.41 2.38 2.36 
20 21.80 8.29 5.61 4.55 3.99 3.43 3.1S 2.94 2.82 2.74 2.67 2.63 2.S9 2.S4 2.Sl 2.48 2.46 2.44 2.41 2.39 
30 24.96 9.02 5.97 4.79 4.18 3.57 3.26 3.04 2.91 2.82 2.7S 2.70 2.67 2.61 2.S7 2.S4 2.S2 2.Sl 2.48 2.46 
40 27.48 9.57 6.24 4.97 4.32 3.66 3.34 3.11 2.97 2.88 2.81 2.76 2.72 2.66 2.62 2.S9 2.S7 2.SS 2.S2 2.50 
so 29.59 10.01 6.46 5.12 4.43 3.74 3.40 3.16 3.02 2.92 2.8S 2.80 2.76 2.70 2.66 2.63 2.60 2.S8 2.SS 2.S3 
60 31.46 10.39 6.64 5.24 4.52 3.81 3.46 3.21 3.06 2.96 2.89 2.83 2.79 2.73 2.69 2.6S 2.63 2.61 2.S8 2.S6 
7S 33.87 10.88 6.87 5.38 4.63 3.88 3.52 3.26 3.11 3.00 2.93 2.87 2.83 2.77 2.72 2.69 2.66 2.6S 2.61 2.S9 

100 37.32 11.53 7.18 5.58 4.78 3.99 3.60 3.33 3.17 3.06 2.98 2.93 2.88 2.81 2.77 2.73 2.71 2.69 2.6S 2.63 
12S 40.20 12.07 7.43 5.73 4.89 4.07 3.67 3.39 3.22 3.11 3.02 2.96 2.92 2.8S 2.80 2.77 2.74 2.72 2.68 2.66 
150 42.66 12.51 7.63 5.87 4.99 4.13 3.72 3.43 3.26 3.14 3.06 3.00 2.9S 2.88 2.83 2.80 2.77 2.7S 2.71 2.68 
17S 45.00 12.92 7.81 5.98 5.07 4.19 3.76 3.47 3.29 3.18 3.09 3.02 2.98 2.91 2.86 2.82 2.79 2.77 2.73 2.71 
200 47.11 13.27 7.97 6.08 5.14 4.24 3.80 3.50 3.32 3.20 3.11 3.05 3.00 2.93 2.89 2.84 2.81 2.79 2.7S 2.73 
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Table 19-18. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 3 (1 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.67 O.S3 0.46 0.42 0.40 0.37 0.3S 0.34 0.33 0.32 0.31 0.31 0.31 0.30 0.30 0.29 0.29 0.29 0.29 0.29 
2 1.04 0.80 0.70 0.64 0.61 O.S6 O.S4 O.S2 o.so 0.49 0.49 0.48 0.47 0.47 0.46 0.46 0.46 0.4S 0.4S 0.4S 
3 1.28 0.96 0.84 0.77 0.72 0.67 0.64 0.61 0.60 O.S9 O.S8 O.S7 O.S6 O.S6 o.ss o.ss O.S4 O.S4 O.S4 O.S3 
4 1.47 1.08 0.93 0.85 0.80 0.74 0.71 0.68 0.66 0.6S 0.64 0.63 0.62 0.62 0.61 0.60 0.60 0.60 O.S9 O.S9 
s 1.62 1.17 1.01 0.92 0.86 0.80 0.76 0.73 0.71 0.70 0.68 0.68 0.67 0.66 0.6S 0.6S 0.64 0.64 0.64 0.63 
8 1.97 1.38 1.17 1.06 0.99 0.91 0.87 0.83 0.81 0.79 0.78 0.77 0.76 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 
12 2.31 1.S6 1.31 1.18 1.10 1.01 0.9S 0.91 0.89 0.87 0.86 0.84 0.84 0.82 0.81 0.81 0.80 0.80 0.79 0.79 
16 2.S8 1.69 1.41 1.26 1.17 1.07 1.02 0.97 0.94 0.92 0.91 0.90 0.89 0.87 0.86 0.86 0.8S 0.8S 0.84 0.83 
20 2.80 1.80 1.48 1.33 1.23 1.12 1.06 1.02 0.99 0.96 0.9S 0.94 0.93 0.91 0.90 0.89 0.89 0.88 0.88 0.87 
30 3.24 2.01 1.63 1.45 1.34 1.22 1.1S 1.09 1.06 1.04 1.02 1.01 1.00 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 
40 3.60 2.16 1.74 1.S3 1.42 1.28 1.21 1.1S 1.11 1.09 1.07 1.05 1.04 1.03 1.01 1.00 1.00 0.99 0.98 0.98 
so 3.89 2.28 1.82 1.60 1.47 1.33 1.2S 1.19 1.1S 1.13 1.11 1.09 1.08 1.06 1.05 1.04 1.03 1.03 1.01 1.01 
60 4.15 2.39 1.89 1.66 1.S2 1.37 1.29 1.23 1.18 1.16 1.14 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 
7S 4.48 2.S2 1.98 1.73 1.58 1.42 1.33 1.27 1.22 1.19 1.17 1.16 1.14 1.12 1.11 1.10 1.09 1.08 1.07 1.07 

100 4.95 2.70 2.09 1.82 1.66 1.48 1.39 1.32 1.27 1.24 1.22 1.20 1.19 1.17 1.1S 1.14 1.13 1.12 1.11 1.11 
12S 5.35 2.84 2.19 1.89 1.72 1.S3 1.43 1.36 1.31 1.28 1.2S 1.24 1.22 1.20 1.18 1.17 1.16 1.16 1.14 1.14 
150 5.69 2.96 2.26 1.95 1.77 1.58 1.47 1.39 1.34 1.31 1.28 1.26 1.2S 1.23 1.21 1.20 1.19 1.18 1.17 1.16 
17S 6.00 3.07 2.33 2.00 1.81 1.61 1.50 1.42 1.37 1.33 1.31 1.29 1.27 1.2S 1.23 1.22 1.21 1.20 1.19 1.18 
200 6.28 3.16 2.39 2.04 1.8S 1.64 1.S3 1.44 1.39 1.3S 1.33 1.31 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 

Table 19-18. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 3 (1 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 0.9S 0.7S 0.67 0.62 O.S9 o.ss O.S3 O.Sl o.so 0.49 0.48 0.48 0.47 0.47 0.46 0.46 0.4S 0.4S 0.4S 0.4S 
2 1.36 1.04 0.91 0.84 0.79 0.73 0.70 0.67 0.66 0.64 0.64 0.63 0.62 0.61 0.61 0.60 0.60 0.60 O.S9 O.S9 
3 1.64 1.21 1.05 0.96 0.90 0.83 0.80 0.76 0.74 0.73 0.72 0.71 0.70 0.69 0.69 0.68 0.68 0.67 0.67 0.66 
4 1.8S 1.33 1.14 1.04 0.98 0.90 0.86 0.83 0.80 0.79 0.78 0.77 0.76 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 
s 2.02 1.43 1.22 1.11 1.04 0.96 0.91 0.87 0.8S 0.83 0.82 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.76 0.76 
8 2.43 1.6S 1.38 1.2S 1.17 1.07 1.01 0.97 0.94 0.92 0.91 0.90 0.89 0.87 0.86 0.86 0.8S 0.8S 0.84 0.83 
12 2.83 1.8S 1.S3 1.37 1.27 1.16 1.10 1.05 1.02 1.00 0.98 0.97 0.96 0.94 0.93 0.92 0.92 0.91 0.90 0.90 
16 3.14 2.00 1.63 1.46 1.3S 1.23 1.16 1.11 1.07 1.05 1.03 1.02 1.01 0.99 0.98 0.97 0.96 0.96 0.9S 0.94 
20 3.41 2.12 1.72 1.S2 1.41 1.28 1.20 1.1S 1.11 1.09 1.07 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
30 3.94 2.34 1.87 1.65 1.S2 1.37 1.29 1.22 1.18 1.16 1.14 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 
40 4.35 2.Sl 1.98 1.74 1.S9 1.43 1.34 1.28 1.23 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
so 4.70 2.6S 2.07 1.81 1.6S 1.48 1.39 1.32 1.27 1.24 1.22 1.20 1.19 1.17 1.1S 1.14 1.13 1.12 1.11 1.10 
60 5.01 2.76 2.1S 1.87 1.70 1.S2 1.42 1.3S 1.30 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 1.13 
7S 5.41 2.91 2.24 1.94 1.76 1.S7 1.47 1.39 1.34 1.31 1.28 1.26 1.2S 1.23 1.21 1.20 1.19 1.18 1.17 1.16 

100 5.97 3.11 2.37 2.03 1.84 1.64 1.S3 1.44 1.39 1.3S 1.33 1.31 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 
12S 6.45 3.27 2.46 2.11 1.91 1.69 1.S7 1.48 1.43 1.39 1.36 1.34 1.32 1.30 1.28 1.27 1.26 1.2S 1.24 1.23 
150 6.86 3.40 2.SS 2.17 1.96 1.73 1.61 1.S2 1.46 1.42 1.39 1.37 1.3S 1.32 1.31 1.29 1.28 1.27 1.26 1.2S 
17S 7.22 3.52 2.62 2.22 2.00 1.76 1.64 1.S4 1.48 1.44 1.41 1.39 1.37 1.34 1.33 1.31 1.30 1.29 1.28 1.27 
200 7.56 3.63 2.68 2.27 2.04 1.79 1.66 1.S7 1.Sl 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.30 1.28 
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Table 19-18. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 3 (1 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.22 0.97 0.86 0.80 0.77 0.72 0.69 0.67 0.6S 0.64 0.63 0.62 0.62 0.61 0.61 0.60 0.60 0.60 O.S9 O.S9 
2 1.68 1.27 1.11 1.02 0.96 0.89 0.8S 0.82 0.80 0.78 0.77 0.76 0.76 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 
3 1.99 1.4S 1.2S 1.14 1.07 0.99 0.94 0.91 0.88 0.86 0.8S 0.84 0.83 0.82 0.81 0.81 0.80 0.80 0.79 0.79 
4 2.23 1.58 1.3S 1.23 1.1S 1.06 1.01 0.96 0.94 0.92 0.90 0.89 0.89 0.87 0.86 0.86 0.8S 0.8S 0.84 0.83 
s 2.43 1.69 1.43 1.29 1.21 1.11 1.05 1.01 0.98 0.96 0.9S 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
8 2.91 1.93 1.60 1.44 1.34 1.22 1.1S 1.10 1.07 1.05 1.03 1.01 1.00 0.99 0.98 0.97 0.96 0.96 0.9S 0.94 
12 3.37 2.14 1.7S 1.S6 1.44 1.31 1.24 1.18 1.14 1.12 1.10 1.08 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
16 3.73 2.31 1.86 1.65 1.S2 1.38 1.30 1.23 1.19 1.17 1.14 1.13 1.12 1.10 1.08 1.07 1.07 1.06 1.05 1.04 
20 4.04 2.44 1.9S 1.72 1.58 1.43 1.34 1.27 1.23 1.20 1.18 1.16 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
30 4.66 2.69 2.12 1.8S 1.69 1.S2 1.42 1.3S 1.30 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 1.13 
40 5.14 2.87 2.24 1.94 1.77 1.58 1.48 1.40 1.3S 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
so 5.55 3.02 2.33 2.02 1.83 1.63 1.S2 1.44 1.39 1.3S 1.33 1.31 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 
60 5.91 3.15 2.41 2.08 1.89 1.67 1.S6 1.47 1.42 1.38 1.3S 1.33 1.32 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 
7S 6.38 3.32 2.Sl 2.15 1.9S 1.72 1.60 1.Sl 1.46 1.42 1.39 1.37 1.3S 1.32 1.31 1.29 1.28 1.27 1.26 1.2S 

100 7.04 3.53 2.6S 2.2S 2.03 1.79 1.66 1.S6 1.SO 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.30 1.28 
12S 7.59 3.71 2.7S 2.33 2.09 1.84 1.70 1.60 1.S4 1.50 1.47 1.44 1.42 1.39 1.37 1.36 1.3S 1.34 1.32 1.31 
150 8.07 3.86 2.84 2.40 2.1S 1.88 1.74 1.64 1.S7 1.S3 1.49 1.47 1.4S 1.42 1.40 1.38 1.37 1.36 1.3S 1.33 
17S 8.51 4.00 2.92 2.45 2.19 1.92 1.77 1.66 1.60 1.SS 1.S2 1.49 1.47 1.44 1.42 1.40 1.39 1.38 1.36 1.3S 
200 8.90 4.11 2.98 2.SO 2.23 1.9S 1.80 1.69 1.62 1.S7 1.S3 1.Sl 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 

Table 19-18. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 3 (2 COC, Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.04 0.80 0.70 0.64 0.61 O.S6 O.S4 O.S2 o.so 0.49 0.49 0.48 0.47 0.47 0.46 0.46 0.46 0.4S 0.4S 0.4S 
2 1.47 1.08 0.93 0.85 0.80 0.74 0.71 0.68 0.66 0.6S 0.64 0.63 0.62 0.62 0.61 0.60 0.60 0.60 O.S9 O.S9 
3 1.7S 1.2S 1.07 0.97 0.91 0.84 0.80 0.77 0.7S 0.73 0.72 0.71 0.71 0.70 0.69 0.68 0.68 0.68 0.67 0.67 
4 1.97 1.38 1.17 1.06 0.99 0.91 0.87 0.83 0.81 0.79 0.78 0.77 0.76 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 
s 2.1S 1.48 1.24 1.12 1.05 0.96 0.91 0.88 0.8S 0.83 0.82 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.76 0.76 
8 2.S8 1.69 1.41 1.26 1.17 1.07 1.02 0.97 0.94 0.92 0.91 0.90 0.89 0.87 0.86 0.86 0.8S 0.8S 0.84 0.83 
12 2.99 1.89 1.SS 1.38 1.28 1.17 1.10 1.05 1.02 1.00 0.98 0.97 0.96 0.94 0.93 0.92 0.92 0.91 0.90 0.90 
16 3.32 2.04 1.6S 1.47 1.36 1.23 1.16 1.11 1.07 1.05 1.03 1.02 1.01 0.99 0.98 0.97 0.96 0.96 0.9S 0.94 
20 3.60 2.16 1.74 1.S3 1.42 1.28 1.21 1.1S 1.11 1.09 1.07 1.05 1.04 1.03 1.01 1.00 1.00 0.99 0.98 0.98 
30 4.15 2.39 1.89 1.66 1.S2 1.37 1.29 1.23 1.18 1.16 1.14 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 
40 4.58 2.S6 2.00 1.75 1.60 1.44 1.3S 1.28 1.24 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
so 4.95 2.70 2.09 1.82 1.66 1.48 1.39 1.32 1.27 1.24 1.22 1.20 1.19 1.17 1.1S 1.14 1.13 1.12 1.11 1.11 
60 5.27 2.81 2.17 1.88 1.71 1.S3 1.43 1.3S 1.30 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 1.13 
7S 5.69 2.96 2.26 1.95 1.77 1.58 1.47 1.39 1.34 1.31 1.28 1.26 1.2S 1.23 1.21 1.20 1.19 1.18 1.17 1.16 

100 6.28 3.16 2.39 2.04 1.8S 1.64 1.S3 1.44 1.39 1.3S 1.33 1.31 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 
12S 6.77 3.33 2.48 2.12 1.91 1.69 1.S7 1.48 1.43 1.39 1.36 1.34 1.32 1.30 1.28 1.27 1.26 1.2S 1.24 1.23 
150 7.21 3.46 2.S7 2.18 1.96 1.73 1.61 1.S2 1.46 1.42 1.39 1.37 1.3S 1.32 1.31 1.29 1.28 1.27 1.26 1.2S 
17S 7.59 3.58 2.64 2.23 2.01 1.77 1.64 1.S4 1.48 1.44 1.41 1.39 1.37 1.34 1.33 1.31 1.30 1.29 1.28 1.27 
200 7.94 3.69 2.70 2.28 2.04 1.79 1.66 1.S7 1.Sl 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.30 1.28 

D-193 March 2009 

EPAPAV0117695 



Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-18. K-Multi pliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 3 (2 COC, Semi-Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.36 1.04 0.91 0.84 0.79 0.73 0.70 0.67 0.66 0.64 0.64 0.63 0.62 0.61 0.61 0.60 0.60 0.60 O.S9 O.S9 
2 1.8S 1.33 1.14 1.04 0.98 0.90 0.86 0.83 0.80 0.79 0.78 0.77 0.76 0.7S 0.74 0.74 0.73 0.73 0.72 0.72 
3 2.18 1.S2 1.28 1.16 1.09 1.00 0.9S 0.91 0.89 0.87 0.8S 0.84 0.84 0.82 0.81 0.81 0.80 0.80 0.79 0.79 
4 2.43 1.6S 1.38 1.2S 1.17 1.07 1.01 0.97 0.94 0.92 0.91 0.90 0.89 0.87 0.86 0.86 0.8S 0.8S 0.84 0.83 
s 2.64 1.76 1.46 1.31 1.22 1.12 1.06 1.01 0.98 0.96 0.9S 0.94 0.93 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
8 3.14 2.00 1.63 1.46 1.3S 1.23 1.16 1.11 1.07 1.05 1.03 1.02 1.01 0.99 0.98 0.97 0.96 0.96 0.9S 0.94 
12 3.64 2.22 1.79 1.58 1.46 1.32 1.24 1.18 1.14 1.12 1.10 1.08 1.07 1.05 1.04 1.03 1.02 1.02 1.01 1.00 
16 4.03 2.38 1.90 1.67 1.S3 1.38 1.30 1.24 1.20 1.17 1.1S 1.13 1.12 1.10 1.08 1.07 1.07 1.06 1.05 1.04 
20 4.35 2.Sl 1.98 1.74 1.S9 1.43 1.34 1.28 1.23 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
30 5.01 2.76 2.1S 1.87 1.70 1.S2 1.42 1.3S 1.30 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 1.13 
40 5.53 2.95 2.27 1.96 1.78 1.S9 1.48 1.40 1.3S 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
so 5.97 3.11 2.37 2.03 1.84 1.64 1.S3 1.44 1.39 1.3S 1.33 1.31 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 
60 6.36 3.24 2.4S 2.09 1.89 1.68 1.S6 1.48 1.42 1.38 1.3S 1.33 1.32 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 
7S 6.86 3.40 2.SS 2.17 1.96 1.73 1.61 1.S2 1.46 1.42 1.39 1.37 1.3S 1.32 1.31 1.29 1.28 1.27 1.26 1.2S 

100 7.56 3.63 2.68 2.27 2.04 1.79 1.66 1.S7 1.Sl 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.30 1.28 
12S 8.15 3.81 2.79 2.35 2.10 1.84 1.71 1.60 1.S4 1.50 1.47 1.44 1.42 1.39 1.37 1.36 1.3S 1.34 1.32 1.31 
150 8.67 3.96 2.87 2.41 2.16 1.88 1.74 1.64 1.S7 1.S3 1.49 1.47 1.4S 1.42 1.40 1.38 1.37 1.36 1.3S 1.33 
17S 9.14 4.10 2.95 2.47 2.20 1.92 1.77 1.66 1.60 1.SS 1.S2 1.49 1.47 1.44 1.42 1.40 1.39 1.38 1.36 1.3S 
200 9.55 4.22 3.02 2.S2 2.24 1.9S 1.80 1.69 1.62 1.S7 1.S4 1.Sl 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 

Table 19-18. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 3 (2 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 1.68 1.27 1.11 1.02 0.96 0.89 0.8S 0.82 0.80 0.78 0.77 0.76 0.76 0.7S 0.74 0.73 0.73 0.73 0.72 0.72 
2 2.23 1.58 1.3S 1.23 1.1S 1.06 1.01 0.96 0.94 0.92 0.90 0.89 0.89 0.87 0.86 0.86 0.8S 0.8S 0.84 0.83 
3 2.61 1.78 1.49 1.3S 1.26 1.1S 1.09 1.05 1.02 0.99 0.98 0.97 0.96 0.94 0.93 0.92 0.92 0.91 0.90 0.90 
4 2.91 1.93 1.60 1.44 1.34 1.22 1.1S 1.10 1.07 1.05 1.03 1.01 1.00 0.99 0.98 0.97 0.96 0.96 0.9S 0.94 
s 3.15 2.04 1.68 1.SO 1.40 1.27 1.20 1.14 1.11 1.08 1.07 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
8 3.73 2.31 1.86 1.6S 1.S2 1.38 1.30 1.23 1.19 1.17 1.14 1.13 1.12 1.10 1.08 1.07 1.07 1.06 1.05 1.04 
12 4.31 2.SS 2.03 1.78 1.63 1.47 1.38 1.31 1.26 1.23 1.21 1.19 1.18 1.16 1.14 1.13 1.13 1.12 1.11 1.10 
16 4.76 2.73 2.14 1.87 1.71 1.S3 1.43 1.36 1.31 1.28 1.26 1.24 1.22 1.20 1.19 1.17 1.17 1.16 1.1S 1.14 
20 5.14 2.87 2.24 1.94 1.77 1.58 1.48 1.40 1.3S 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
30 5.91 3.15 2.41 2.08 1.89 1.67 1.S6 1.47 1.42 1.38 1.3S 1.33 1.32 1.29 1.27 1.26 1.2S 1.24 1.23 1.22 
40 6.52 3.36 2.S4 2.17 1.97 1.74 1.62 1.S3 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
so 7.04 3.53 2.6S 2.2S 2.03 1.79 1.66 1.S6 1.50 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.30 1.28 
60 7.49 3.68 2.73 2.32 2.08 1.83 1.70 1.60 1.S3 1.49 1.46 1.44 1.42 1.39 1.37 1.3S 1.34 1.33 1.32 1.31 
7S 8.07 3.86 2.84 2.40 2.1S 1.88 1.74 1.64 1.S7 1.S3 1.49 1.47 1.4S 1.42 1.40 1.38 1.37 1.36 1.3S 1.33 
100 8.90 4.11 2.98 2.SO 2.23 1.9S 1.80 1.69 1.62 1.S7 1.S3 1.Sl 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
12S 9.59 4.31 3.10 2.S8 2.30 2.00 1.84 1.72 1.6S 1.60 1.S7 1.S4 1.S2 1.49 1.46 1.4S 1.44 1.43 1.41 1.40 
150 10.20 4.49 3.19 2.6S 2.3S 2.04 1.88 1.76 1.68 1.63 1.S9 1.S7 1.S4 1.Sl 1.49 1.47 1.46 1.4S 1.43 1.42 
17S 10.75 4.64 3.28 2.71 2.40 2.08 1.91 1.78 1.71 1.6S 1.62 1.S9 1.S6 1.S3 1.Sl 1.49 1.48 1.47 1.4S 1.43 
200 11.25 4.77 3.35 2.76 2.44 2.11 1.93 1.81 1.73 1.67 1.64 1.61 1.58 1.SS 1.S2 1.Sl 1.49 1.48 1.46 1.4S 
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Table 19-18. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 3 (5 COC, Annual) 
w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 

1 1.62 1.17 1.01 0.92 0.86 0.80 0.76 0.73 0.71 0.70 0.68 0.68 0.67 0.66 0.6S 0.6S 0.64 0.64 0.64 0.63 
2 2.1S 1.48 1.24 1.12 1.05 0.96 0.91 0.88 0.8S 0.83 0.82 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.76 0.76 
3 2.Sl 1.66 1.38 1.24 1.16 1.06 1.00 0.96 0.93 0.91 0.90 0.89 0.88 0.86 0.8S 0.8S 0.84 0.84 0.83 0.82 
4 2.80 1.80 1.48 1.33 1.23 1.12 1.06 1.02 0.99 0.96 0.9S 0.94 0.93 0.91 0.90 0.89 0.89 0.88 0.88 0.87 
s 3.04 1.91 1.S6 1.39 1.29 1.17 1.11 1.06 1.03 1.00 0.99 0.97 0.96 0.9S 0.94 0.93 0.92 0.92 0.91 0.90 
8 3.60 2.16 1.74 1.S3 1.42 1.28 1.21 1.1S 1.11 1.09 1.07 1.05 1.04 1.03 1.01 1.00 1.00 0.99 0.98 0.98 
12 4.15 2.39 1.89 1.66 1.S2 1.37 1.29 1.23 1.18 1.16 1.14 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 
16 4.58 2.S6 2.00 1.7S 1.60 1.44 1.3S 1.28 1.24 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
20 4.95 2.70 2.09 1.82 1.66 1.48 1.39 1.32 1.27 1.24 1.22 1.20 1.19 1.17 1.1S 1.14 1.13 1.12 1.11 1.11 
30 5.69 2.96 2.26 1.9S 1.77 1.58 1.47 1.39 1.34 1.31 1.28 1.26 1.2S 1.23 1.21 1.20 1.19 1.18 1.17 1.16 
40 6.28 3.16 2.39 2.04 1.8S 1.64 1.S3 1.44 1.39 1.3S 1.33 1.31 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 
so 6.78 3.33 2.48 2.12 1.91 1.69 1.S7 1.48 1.43 1.39 1.36 1.34 1.32 1.30 1.28 1.27 1.26 1.2S 1.24 1.23 
60 7.21 3.46 2.S7 2.18 1.96 1.73 1.61 1.S2 1.46 1.42 1.39 1.37 1.3S 1.32 1.31 1.29 1.28 1.27 1.26 1.2S 
7S 7.77 3.64 2.67 2.26 2.03 1.78 1.6S 1.S6 1.49 1.4S 1.42 1.40 1.38 1.3S 1.34 1.32 1.31 1.30 1.29 1.28 

100 8.55 3.87 2.81 2.3S 2.11 1.8S 1.71 1.61 1.S4 1.50 1.47 1.44 1.42 1.39 1.37 1.36 1.3S 1.34 1.32 1.31 
12S 9.22 4.06 2.92 2.44 2.17 1.89 1.7S 1.6S 1.58 1.S3 1.SO 1.47 1.4S 1.42 1.40 1.39 1.38 1.37 1.3S 1.34 
150 9.84 4.22 3.01 2.SO 2.23 1.94 1.79 1.68 1.61 1.S6 1.S3 1.50 1.48 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 
17S 10.35 4.37 3.09 2.S6 2.27 1.97 1.82 1.70 1.63 1.58 1.SS 1.S2 1.50 1.47 1.4S 1.43 1.42 1.41 1.39 1.38 
200 10.82 4.49 3.15 2.61 2.31 2.00 1.84 1.73 1.6S 1.60 1.S7 1.S4 1.S2 1.49 1.46 1.4S 1.44 1.43 1.41 1.40 

Table 19-18. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 3 (5 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 2S 30 3S 40 4S so 60 70 80 90 100 12S 1SO 
1 2.02 1.43 1.22 1.11 1.04 0.96 0.91 0.87 0.8S 0.83 0.82 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.76 0.76 
2 2.64 1.76 1.46 1.31 1.22 1.12 1.06 1.01 0.98 0.96 0.9S 0.94 0.93 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
3 3.07 1.96 1.61 1.44 1.33 1.21 1.14 1.09 1.06 1.04 1.02 1.01 0.99 0.98 0.97 0.96 0.9S 0.9S 0.94 0.93 
4 3.41 2.12 1.72 1.S2 1.41 1.28 1.20 1.1S 1.11 1.09 1.07 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
s 3.69 2.24 1.80 1.S9 1.47 1.33 1.2S 1.19 1.1S 1.12 1.11 1.09 1.08 1.06 1.05 1.04 1.03 1.02 1.01 1.01 
8 4.35 2.Sl 1.98 1.74 1.S9 1.43 1.34 1.28 1.23 1.20 1.18 1.17 1.1S 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
12 5.01 2.76 2.1S 1.87 1.70 1.S2 1.42 1.3S 1.30 1.27 1.2S 1.23 1.21 1.19 1.18 1.17 1.16 1.1S 1.14 1.13 
16 5.53 2.95 2.27 1.96 1.78 1.S9 1.48 1.40 1.3S 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
20 5.97 3.11 2.37 2.03 1.84 1.64 1.S3 1.44 1.39 1.3S 1.33 1.31 1.29 1.27 1.2S 1.24 1.23 1.22 1.21 1.20 
30 6.86 3.40 2.SS 2.17 1.96 1.73 1.61 1.Sl 1.46 1.42 1.39 1.37 1.3S 1.32 1.31 1.29 1.28 1.27 1.26 1.2S 
40 7.56 3.63 2.68 2.27 2.04 1.79 1.66 1.S7 1.Sl 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.30 1.28 
so 8.15 3.81 2.79 2.3S 2.10 1.84 1.71 1.61 1.S4 1.50 1.47 1.44 1.42 1.39 1.37 1.36 1.3S 1.34 1.32 1.31 
60 8.67 3.96 2.88 2.41 2.16 1.88 1.74 1.64 1.S7 1.S3 1.49 1.47 1.4S 1.42 1.40 1.38 1.37 1.36 1.3S 1.33 
7S 9.34 4.16 2.99 2.49 2.22 1.94 1.79 1.68 1.61 1.S6 1.S3 1.50 1.48 1.4S 1.43 1.41 1.40 1.39 1.37 1.36 
100 10.31 4.42 3.13 2.60 2.31 2.00 1.84 1.73 1.6S 1.60 1.S7 1.S4 1.S2 1.49 1.46 1.4S 1.44 1.42 1.41 1.40 
12S 11.09 4.64 3.25 2.68 2.37 2.05 1.89 1.77 1.69 1.64 1.60 1.S7 1.SS 1.S2 1.49 1.48 1.46 1.4S 1.43 1.42 
150 11.80 4.82 3.35 2.7S 2.43 2.09 1.92 1.80 1.72 1.67 1.63 1.60 1.S7 1.S4 1.S2 1.SO 1.48 1.47 1.46 1.44 
17S 12.42 4.98 3.44 2.81 2.48 2.13 1.9S 1.82 1.74 1.69 1.6S 1.62 1.S9 1.S6 1.S4 1.S2 1.50 1.49 1.47 1.46 
200 12.97 5.12 3.52 2.86 2.S2 2.16 1.98 1.8S 1.76 1.71 1.67 1.64 1.61 1.58 1.SS 1.S3 1.S2 1.Sl 1.49 1.47 
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Table 19-18. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 3 (5 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.43 1.69 1.43 1.29 1.21 1.11 1.05 1.01 0.98 0.96 0.95 0.93 0.92 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
2 3.15 2.04 1.68 1.50 1.40 1.27 1.20 1.14 1.11 1.08 1.07 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
3 3.65 2.27 1.84 1.63 1.50 1.36 1.28 1.22 1.18 1.15 1.13 1.12 1.11 1.09 1.07 1.06 1.06 1.05 1.04 1.03 
4 4.04 2.44 1.95 1.72 1.58 1.43 1.34 1.27 1.23 1.20 1.18 1.16 1.15 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
5 4.37 2.57 2.04 1.79 1.64 1.48 1.39 1.32 1.27 1.24 1.22 1.20 1.19 1.17 1.15 1.14 1.13 1.12 1.11 1.10 
8 5.14 2.87 2.24 1.94 1.77 1.58 1.48 1.40 1.35 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
12 5.91 3.15 2.41 2.08 1.89 1.67 1.56 1.47 1.42 1.38 1.35 1.33 1.32 1.29 1.27 1.26 1.25 1.24 1.23 1.22 
16 6.52 3.36 2.54 2.17 1.97 1.74 1.62 1.53 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
20 7.04 3.54 2.65 2.25 2.03 1.79 1.66 1.56 1.50 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.30 1.28 
30 8.08 3.86 2.84 2.40 2.15 1.88 1.74 1.64 1.57 1.53 1.49 1.47 1.45 1.42 1.40 1.38 1.37 1.36 1.35 1.33 
40 8.90 4.11 2.98 2.50 2.23 1.95 1.80 1.69 1.62 1.57 1.53 1.51 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
50 9.59 4.32 3.10 2.58 2.30 2.00 1.84 1.72 1.65 1.60 1.57 1.54 1.52 1.49 1.46 1.45 1.43 1.43 1.41 1.40 
60 10.20 4.49 3.19 2.65 2.35 2.04 1.88 1.76 1.68 1.63 1.59 1.57 1.54 1.51 1.49 1.47 1.46 1.45 1.43 1.42 
75 11.00 4.71 3.32 2.74 2.42 2.09 1.92 1.80 1.72 1.67 1.63 1.60 1.57 1.54 1.52 1.50 1.48 1.47 1.46 1.44 

100 12.11 5.00 3.48 2.85 2.51 2.16 1.98 1.85 1.76 1.71 1.67 1.64 1.61 1.58 1.55 1.53 1.52 1.51 1.49 1.47 
125 13.05 5.24 3.60 2.94 2.58 2.21 2.02 1.88 1.80 1.74 1.70 1.67 1.64 1.61 1.58 1.56 1.54 1.53 1.51 1.50 
150 13.91 5.45 3.71 3.01 2.64 2.26 2.06 1.92 1.83 1.77 1.72 1.69 1.67 1.63 1.60 1.58 1.57 1.56 1.53 1.52 
175 14.61 5.62 3.80 3.08 2.69 2.29 2.09 1.94 1.85 1.79 1.75 1.71 1.69 1.65 1.62 1.60 1.58 1.57 1.55 1.54 
200 15.31 5.78 3.89 3.13 2.73 2.32 2.12 1.97 1.88 1.81 1.77 1.73 1.71 1.67 1.64 1.62 1.60 1.59 1.57 1.55 

Table 19-18. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 3 (10 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.15 1.48 1.24 1.12 1.05 0.96 0.91 0.88 0.85 0.83 0.82 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.76 0.76 
2 2.80 1.80 1.48 1.33 1.23 1.12 1.06 1.02 0.99 0.96 0.95 0.94 0.93 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
3 3.24 2.01 1.63 1.45 1.34 1.22 1.15 1.09 1.06 1.04 1.02 1.01 0.99 0.98 0.97 0.96 0.95 0.95 0.94 0.93 
4 3.60 2.16 1.74 1.53 1.42 1.28 1.21 1.15 1.11 1.09 1.07 1.05 1.04 1.03 1.01 1.00 1.00 0.99 0.98 0.98 
5 3.89 2.28 1.82 1.60 1.47 1.33 1.25 1.19 1.15 1.13 1.11 1.09 1.08 1.06 1.05 1.04 1.03 1.03 1.01 1.01 
8 4.59 2.56 2.00 1.75 1.60 1.44 1.35 1.28 1.23 1.20 1.18 1.17 1.15 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
12 5.27 2.81 2.17 1.88 1.71 1.53 1.43 1.35 1.30 1.27 1.25 1.23 1.21 1.19 1.18 1.17 1.16 1.15 1.14 1.13 
16 5.82 3.01 2.29 1.97 1.79 1.59 1.48 1.40 1.35 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
20 6.28 3.16 2.39 2.04 1.85 1.64 1.53 1.44 1.39 1.35 1.33 1.31 1.29 1.27 1.25 1.24 1.23 1.22 1.21 1.20 
30 7.21 3.46 2.57 2.18 1.96 1.73 1.61 1.52 1.46 1.42 1.39 1.37 1.35 1.32 1.31 1.29 1.28 1.27 1.26 1.25 
40 7.95 3.69 2.70 2.28 2.04 1.79 1.66 1.57 1.51 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.30 1.28 
50 8.57 3.87 2.81 2.36 2.11 1.84 1.71 1.61 1.54 1.50 1.47 1.44 1.42 1.39 1.37 1.36 1.35 1.34 1.32 1.31 
60 9.11 4.03 2.90 2.42 2.16 1.89 1.74 1.64 1.57 1.53 1.49 1.47 1.45 1.42 1.40 1.38 1.37 1.36 1.35 1.33 
75 9.81 4.22 3.01 2.50 2.23 1.94 1.79 1.68 1.61 1.56 1.53 1.50 1.48 1.45 1.43 1.41 1.40 1.39 1.37 1.36 
100 10.82 4.49 3.16 2.61 2.31 2.00 1.84 1.73 1.65 1.60 1.57 1.54 1.52 1.49 1.46 1.45 1.44 1.43 1.41 1.40 
125 11.67 4.71 3.27 2.69 2.38 2.05 1.89 1.77 1.69 1.64 1.60 1.57 1.55 1.52 1.49 1.48 1.46 1.45 1.43 1.42 
150 12.40 4.90 3.37 2.76 2.44 2.10 1.92 1.80 1.72 1.67 1.63 1.60 1.57 1.54 1.52 1.50 1.48 1.47 1.46 1.44 
175 13.09 5.05 3.45 2.82 2.48 2.13 1.95 1.82 1.74 1.69 1.65 1.62 1.59 1.56 1.54 1.52 1.50 1.49 1.47 1.46 
200 13.67 5.20 3.53 2.87 2.52 2.16 1.98 1.85 1.76 1.71 1.67 1.64 1.61 1.58 1.55 1.53 1.52 1.51 1.49 1.47 
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Table 19-18. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 3 (10 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 2.64 1.76 1.46 1.31 1.22 1.12 1.06 1.01 0.98 0.96 0.95 0.94 0.93 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
2 3.41 2.12 1.72 1.52 1.41 1.28 1.20 1.15 1.11 1.09 1.07 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
3 3.94 2.34 1.87 1.65 1.52 1.37 1.29 1.22 1.18 1.16 1.14 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 
4 4.35 2.51 1.98 1.74 1.59 1.43 1.34 1.28 1.23 1.20 1.18 1.17 1.15 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
5 4.71 2.65 2.07 1.81 1.65 1.48 1.39 1.32 1.27 1.24 1.22 1.20 1.19 1.17 1.15 1.14 1.13 1.12 1.11 1.10 
8 5.53 2.95 2.27 1.96 1.78 1.59 1.48 1.40 1.35 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
12 6.36 3.24 2.45 2.09 1.89 1.68 1.56 1.48 1.42 1.38 1.35 1.33 1.32 1.29 1.27 1.26 1.25 1.24 1.23 1.22 
16 7.01 3.45 2.58 2.19 1.98 1.74 1.62 1.53 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
20 7.56 3.63 2.68 2.27 2.04 1.79 1.66 1.57 1.50 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.30 1.28 
30 8.67 3.96 2.87 2.41 2.16 1.88 1.74 1.64 1.57 1.53 1.49 1.47 1.45 1.42 1.40 1.38 1.37 1.36 1.35 1.33 
40 9.55 4.22 3.02 2.51 2.24 1.95 1.80 1.69 1.62 1.57 1.54 1.51 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
50 10.30 4.43 3.13 2.60 2.31 2.00 1.84 1.73 1.65 1.60 1.57 1.54 1.52 1.49 1.46 1.45 1.44 1.43 1.41 1.40 
60 10.94 4.60 3.23 2.67 2.36 2.04 1.88 1.76 1.68 1.63 1.59 1.57 1.54 1.51 1.49 1.47 1.46 1.45 1.43 1.42 
75 11.79 4.82 3.35 2.75 2.43 2.10 1.92 1.80 1.72 1.66 1.63 1.60 1.57 1.54 1.52 1.50 1.48 1.47 1.45 1.44 

100 12.99 5.12 3.51 2.86 2.52 2.16 1.98 1.85 1.76 1.71 1.67 1.64 1.61 1.58 1.55 1.53 1.52 1.51 1.49 1.46 
125 14.01 5.37 3.64 2.95 2.59 2.22 2.02 1.89 1.80 1.74 1.70 1.67 1.64 1.61 1.58 1.56 1.54 1.53 1.51 1.49 
150 14.89 5.58 3.75 3.03 2.65 2.26 2.06 1.92 1.83 1.77 1.73 1.69 1.67 1.63 1.60 1.58 1.57 1.55 1.54 1.52 
175 15.67 5.76 3.85 3.09 2.70 2.29 2.09 1.94 1.85 1.79 1.75 1.72 1.69 1.65 1.62 1.60 1.59 1.57 1.55 1.54 
200 16.41 5.91 3.92 3.15 2.74 2.33 2.12 1.97 1.87 1.81 1.77 1.73 1.71 1.67 1.64 1.62 1.60 1.59 1.57 1.55 

Table 19-18. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 3 (10 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.15 2.04 1.68 1.50 1.40 1.27 1.20 1.14 1.11 1.08 1.07 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
2 4.04 2.44 1.95 1.72 1.58 1.43 1.34 1.27 1.23 1.20 1.18 1.16 1.15 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
3 4.66 2.68 2.12 1.85 1.69 1.52 1.42 1.35 1.30 1.27 1.25 1.23 1.21 1.19 1.18 1.17 1.16 1.15 1.14 1.13 
4 5.14 2.87 2.24 1.94 1.77 1.58 1.48 1.40 1.35 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
5 5.55 3.02 2.33 2.02 1.83 1.63 1.52 1.44 1.39 1.35 1.33 1.31 1.29 1.27 1.25 1.24 1.23 1.22 1.21 1.20 
8 6.52 3.36 2.54 2.17 1.97 1.74 1.62 1.53 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
12 7.49 3.68 2.73 2.32 2.08 1.83 1.70 1.60 1.53 1.49 1.46 1.44 1.42 1.39 1.37 1.35 1.34 1.33 1.32 1.31 
16 8.25 3.92 2.87 2.42 2.17 1.90 1.75 1.65 1.58 1.54 1.50 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.35 1.34 
20 8.90 4.11 2.98 2.50 2.23 1.95 1.80 1.69 1.62 1.57 1.53 1.51 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
30 10.21 4.49 3.20 2.65 2.35 2.04 1.88 1.76 1.68 1.63 1.59 1.57 1.54 1.51 1.49 1.47 1.46 1.45 1.43 1.42 
40 11.23 4.77 3.35 2.76 2.44 2.11 1.93 1.81 1.73 1.67 1.63 1.61 1.58 1.55 1.52 1.51 1.49 1.48 1.46 1.45 
50 12.11 5.00 3.48 2.85 2.51 2.16 1.98 1.85 1.76 1.71 1.67 1.64 1.61 1.58 1.55 1.53 1.52 1.51 1.49 1.47 
60 12.87 5.19 3.58 2.92 2.57 2.20 2.01 1.88 1.79 1.73 1.69 1.66 1.64 1.60 1.57 1.56 1.54 1.53 1.50 1.50 
75 13.87 5.44 3.71 3.01 2.64 2.26 2.06 1.92 1.83 1.77 1.72 1.69 1.67 1.63 1.60 1.58 1.57 1.56 1.53 1.52 
100 15.28 5.79 3.88 3.13 2.73 2.32 2.12 1.97 1.88 1.81 1.77 1.73 1.71 1.67 1.64 1.62 1.60 1.59 1.57 1.55 
125 16.46 6.05 4.03 3.22 2.81 2.38 2.16 2.01 1.91 1.85 1.80 1.76 1.74 1.70 1.66 1.64 1.63 1.61 1.59 1.58 
150 17.48 6.30 4.14 3.30 2.87 2.42 2.20 2.04 1.94 1.87 1.82 1.79 1.76 1.72 1.69 1.66 1.65 1.63 1.61 1.60 
175 18.46 6.49 4.25 3.37 2.92 2.46 2.23 2.06 1.96 1.90 1.85 1.81 1.78 1.73 1.70 1.68 1.66 1.65 1.63 1.61 
200 19.24 6.67 4.33 3.43 2.97 2.49 2.26 2.09 1.98 1.92 1.86 1.83 1.80 1.75 1.72 1.70 1.68 1.67 1.64 1.63 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-18. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 3 (20 COC, Annual) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 2.80 1.80 1.48 1.33 1.23 1.12 1.06 1.02 0.99 0.96 0.95 0.94 0.93 0.91 0.90 0.89 0.89 0.88 0.87 0.87 
2 3.60 2.16 1.74 1.53 1.42 1.28 1.21 1.15 1.11 1.09 1.07 1.05 1.04 1.03 1.01 1.00 1.00 0.99 0.98 0.98 
3 4.15 2.39 1.89 1.66 1.52 1.37 1.29 1.23 1.18 1.16 1.14 1.12 1.11 1.09 1.08 1.07 1.06 1.05 1.04 1.03 
4 4.58 2.56 2.00 1.75 1.60 1.44 1.35 1.28 1.23 1.20 1.18 1.17 1.15 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
5 4.95 2.70 2.09 1.82 1.66 1.48 1.39 1.32 1.27 1.24 1.22 1.20 1.19 1.17 1.15 1.14 1.13 1.12 1.11 1.11 
8 5.82 3.01 2.29 1.97 1.79 1.59 1.48 1.40 1.35 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
12 6.68 3.29 2.47 2.10 1.90 1.68 1.56 1.48 1.42 1.38 1.36 1.33 1.32 1.29 1.27 1.26 1.25 1.24 1.23 1.22 
16 7.37 3.51 2.60 2.20 1.98 1.74 1.62 1.53 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
20 7.95 3.69 2.70 2.28 2.04 1.79 1.66 1.57 1.51 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.30 1.28 
30 9.11 4.03 2.89 2.42 2.16 1.89 1.74 1.64 1.57 1.53 1.49 1.47 1.45 1.42 1.40 1.38 1.37 1.36 1.35 1.33 
40 10.05 4.28 3.04 2.52 2.24 1.95 1.80 1.69 1.62 1.57 1.54 1.51 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
50 10.81 4.49 3.16 2.61 2.31 2.00 1.84 1.73 1.65 1.60 1.57 1.54 1.52 1.49 1.46 1.45 1.44 1.42 1.41 1.40 
60 11.48 4.67 3.25 2.67 2.37 2.05 1.88 1.76 1.68 1.63 1.59 1.57 1.54 1.51 1.49 1.47 1.46 1.45 1.43 1.42 
75 12.42 4.89 3.37 2.76 2.44 2.10 1.92 1.80 1.72 1.67 1.63 1.60 1.57 1.54 1.52 1.50 1.48 1.47 1.46 1.44 

100 13.65 5.20 3.53 2.87 2.52 2.16 1.98 1.85 1.77 1.71 1.67 1.64 1.61 1.58 1.55 1.53 1.52 1.51 1.49 1.47 
125 14.77 5.45 3.66 2.96 2.59 2.22 2.03 1.89 1.80 1.74 1.70 1.67 1.64 1.60 1.58 1.56 1.54 1.53 1.51 1.50 
150 15.70 5.65 3.78 3.03 2.65 2.26 2.06 1.92 1.83 1.77 1.72 1.69 1.67 1.63 1.60 1.58 1.57 1.55 1.53 1.52 
175 16.41 5.86 3.87 3.11 2.70 2.29 2.09 1.94 1.85 1.79 1.75 1.71 1.69 1.65 1.62 1.60 1.59 1.57 1.55 1.54 
200 17.11 6.01 3.96 3.15 2.74 2.33 2.12 1.97 1.88 1.81 1.77 1.73 1.71 1.67 1.64 1.62 1.60 1.59 1.57 1.55 

Table 19-18. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 3 (20 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.41 2.12 1.72 1.52 1.41 1.28 1.20 1.15 1.11 1.09 1.07 1.05 1.04 1.02 1.01 1.00 1.00 0.99 0.98 0.97 
2 4.35 2.51 1.98 1.74 1.59 1.43 1.34 1.28 1.23 1.20 1.18 1.17 1.15 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
3 5.01 2.76 2.15 1.87 1.70 1.52 1.42 1.35 1.30 1.27 1.25 1.23 1.21 1.19 1.18 1.17 1.16 1.15 1.14 1.13 
4 5.53 2.95 2.27 1.96 1.78 1.59 1.48 1.40 1.35 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
5 5.97 3.11 2.37 2.03 1.84 1.64 1.53 1.44 1.39 1.35 1.33 1.31 1.29 1.27 1.25 1.24 1.23 1.22 1.21 1.20 
8 7.01 3.45 2.58 2.19 1.98 1.74 1.62 1.53 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
12 8.04 3.78 2.77 2.33 2.09 1.83 1.70 1.60 1.53 1.49 1.46 1.44 1.42 1.39 1.37 1.35 1.34 1.33 1.32 1.31 
16 8.86 4.02 2.91 2.43 2.18 1.90 1.75 1.65 1.58 1.54 1.50 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.35 1.34 
20 9.55 4.22 3.02 2.52 2.24 1.95 1.80 1.69 1.62 1.57 1.53 1.51 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
30 10.96 4.60 3.23 2.67 2.36 2.04 1.88 1.76 1.68 1.63 1.59 1.57 1.54 1.51 1.49 1.47 1.46 1.45 1.43 1.42 
40 12.07 4.89 3.39 2.78 2.45 2.11 1.94 1.81 1.73 1.67 1.64 1.61 1.58 1.55 1.52 1.51 1.49 1.48 1.46 1.45 
50 13.01 5.12 3.51 2.86 2.52 2.16 1.98 1.85 1.76 1.71 1.67 1.64 1.61 1.58 1.55 1.53 1.52 1.51 1.49 1.46 
60 13.83 5.32 3.62 2.94 2.58 2.20 2.02 1.88 1.79 1.74 1.69 1.66 1.64 1.60 1.57 1.55 1.54 1.53 1.50 1.50 
75 14.88 5.58 3.75 3.02 2.65 2.26 2.06 1.92 1.83 1.77 1.73 1.69 1.67 1.63 1.60 1.58 1.57 1.55 1.53 1.52 
100 16.41 5.92 3.93 3.15 2.74 2.33 2.12 1.97 1.88 1.81 1.77 1.73 1.71 1.67 1.64 1.62 1.60 1.59 1.57 1.55 
125 17.70 6.21 4.06 3.24 2.81 2.38 2.16 2.01 1.91 1.85 1.80 1.77 1.74 1.70 1.67 1.64 1.63 1.61 1.59 1.58 
150 18.75 6.45 4.19 3.33 2.87 2.42 2.20 2.04 1.94 1.88 1.82 1.79 1.76 1.72 1.69 1.66 1.65 1.63 1.61 1.60 
175 19.69 6.65 4.28 3.38 2.93 2.46 2.23 2.07 1.96 1.90 1.85 1.81 1.78 1.74 1.70 1.68 1.66 1.65 1.63 1.61 
200 20.62 6.86 4.37 3.44 2.97 2.49 2.26 2.09 1.98 1.92 1.87 1.83 1.80 1.76 1.72 1.70 1.68 1.67 1.64 1.63 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-18. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 3 (20 COC, Quarterly) 
w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 

1 4.04 2.44 1.95 1.72 1.58 1.43 1.34 1.27 1.23 1.20 1.18 1.16 1.15 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
2 5.14 2.87 2.24 1.94 1.77 1.58 1.48 1.40 1.35 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
3 5.91 3.15 2.41 2.08 1.89 1.67 1.56 1.47 1.42 1.38 1.35 1.33 1.32 1.29 1.27 1.26 1.25 1.24 1.23 1.22 
4 6.52 3.36 2.54 2.17 1.97 1.74 1.62 1.53 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
5 7.04 3.53 2.65 2.25 2.03 1.79 1.66 1.56 1.50 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.30 1.28 
8 8.25 3.92 2.87 2.42 2.17 1.90 1.75 1.65 1.58 1.54 1.50 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.35 1.34 
12 9.46 4.28 3.08 2.57 2.29 1.99 1.83 1.72 1.65 1.60 1.56 1.53 1.51 1.48 1.46 1.44 1.43 1.42 1.40 1.39 
16 10.43 4.55 3.23 2.68 2.37 2.05 1.89 1.77 1.69 1.64 1.60 1.57 1.55 1.52 1.50 1.48 1.47 1.45 1.44 1.42 
20 11.24 4.77 3.35 2.76 2.44 2.11 1.93 1.81 1.73 1.67 1.64 1.61 1.58 1.55 1.52 1.51 1.49 1.48 1.46 1.45 
30 12.88 5.20 3.58 2.92 2.57 2.20 2.01 1.88 1.79 1.73 1.69 1.66 1.64 1.60 1.57 1.56 1.54 1.53 1.50 1.50 
40 14.18 5.52 3.75 3.04 2.66 2.27 2.07 1.93 1.84 1.78 1.73 1.70 1.68 1.64 1.61 1.59 1.57 1.56 1.54 1.53 
50 15.29 5.79 3.89 3.13 2.73 2.32 2.12 1.97 1.88 1.81 1.77 1.73 1.71 1.67 1.64 1.62 1.60 1.59 1.57 1.55 
60 16.23 6.01 4.00 3.21 2.79 2.37 2.15 2.00 1.90 1.84 1.79 1.76 1.73 1.69 1.66 1.64 1.62 1.61 1.59 1.57 
75 17.46 6.30 4.15 3.30 2.87 2.42 2.20 2.04 1.94 1.87 1.83 1.79 1.76 1.72 1.69 1.66 1.65 1.64 1.61 1.60 

100 19.22 6.68 4.34 3.43 2.97 2.49 2.26 2.09 1.98 1.92 1.87 1.83 1.80 1.75 1.72 1.70 1.68 1.67 1.64 1.63 
125 20.74 6.97 4.48 3.53 3.04 2.55 2.30 2.13 2.02 1.95 1.90 1.86 1.83 1.78 1.75 1.72 1.71 1.69 1.67 1.65 
150 22.03 7.27 4.61 3.62 3.11 2.59 2.34 2.16 2.05 1.98 1.92 1.88 1.85 1.80 1.77 1.74 1.73 1.71 1.68 1.67 
175 23.20 7.50 4.72 3.69 3.16 2.63 2.37 2.19 2.07 2.00 1.94 1.90 1.88 1.82 1.79 1.77 1.74 1.73 1.70 1.68 
200 24.38 7.68 4.83 3.75 3.21 2.67 2.40 2.21 2.09 2.02 1.96 1.92 1.89 1.84 1.80 1.78 1.76 1.74 1.72 1.70 

Table 19-18. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 3 ( 40 COC, Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 3.60 2.16 1.74 1.53 1.42 1.28 1.21 1.15 1.11 1.09 1.07 1.05 1.04 1.03 1.01 1.00 1.00 0.99 0.98 0.98 
2 4.59 2.56 2.00 1.75 1.60 1.44 1.35 1.28 1.23 1.20 1.18 1.17 1.15 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
3 5.27 2.81 2.17 1.88 1.71 1.53 1.43 1.35 1.30 1.27 1.25 1.23 1.21 1.19 1.18 1.17 1.16 1.15 1.14 1.13 
4 5.82 3.01 2.29 1.97 1.79 1.59 1.48 1.40 1.35 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
5 6.28 3.16 2.39 2.04 1.85 1.64 1.53 1.44 1.39 1.35 1.33 1.31 1.29 1.27 1.25 1.24 1.23 1.22 1.21 1.20 
8 7.37 3.51 2.60 2.20 1.98 1.74 1.62 1.53 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
12 8.45 3.84 2.79 2.34 2.10 1.84 1.70 1.60 1.54 1.49 1.46 1.44 1.42 1.39 1.37 1.35 1.34 1.33 1.32 1.31 
16 9.31 4.08 2.93 2.44 2.18 1.90 1.76 1.65 1.58 1.54 1.50 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.35 1.34 
20 10.03 4.28 3.04 2.52 2.25 1.95 1.80 1.69 1.62 1.57 1.54 1.51 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
30 11.50 4.67 3.25 2.67 2.37 2.05 1.88 1.76 1.68 1.63 1.59 1.57 1.54 1.51 1.49 1.47 1.46 1.45 1.43 1.42 
40 12.66 4.96 3.41 2.79 2.45 2.11 1.94 1.81 1.73 1.67 1.64 1.61 1.58 1.55 1.52 1.51 1.49 1.48 1.46 1.45 
50 13.64 5.20 3.53 2.87 2.52 2.16 1.98 1.85 1.76 1.71 1.67 1.64 1.61 1.58 1.55 1.53 1.52 1.50 1.48 1.46 
60 14.49 5.40 3.64 2.94 2.58 2.21 2.02 1.88 1.79 1.74 1.69 1.66 1.64 1.60 1.57 1.55 1.54 1.53 1.50 1.48 
75 15.65 5.66 3.77 3.03 2.65 2.26 2.06 1.92 1.83 1.77 1.73 1.69 1.67 1.63 1.60 1.58 1.57 1.55 1.53 1.52 
100 17.23 6.02 3.95 3.15 2.74 2.33 2.12 1.97 1.88 1.81 1.77 1.73 1.71 1.67 1.64 1.62 1.60 1.59 1.57 1.55 
125 18.59 6.29 4.08 3.25 2.82 2.38 2.16 2.01 1.91 1.85 1.80 1.76 1.74 1.70 1.67 1.65 1.63 1.62 1.59 1.58 
150 19.69 6.53 4.20 3.33 2.88 2.43 2.20 2.04 1.94 1.87 1.82 1.79 1.76 1.72 1.69 1.67 1.66 1.64 1.61 1.60 
175 20.78 6.73 4.31 3.40 2.93 2.46 2.23 2.06 1.97 1.90 1.85 1.81 1.78 1.74 1.71 1.69 1.67 1.66 1.63 1.61 
200 21.60 6.94 4.41 3.45 2.97 2.50 2.26 2.09 1.99 1.91 1.87 1.83 1.80 1.76 1.73 1.71 1.69 1.68 1.64 1.62 
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Appendix D. Chapter 19 Intrawell K-Tables for Means Unified Guidance 

Table 19-18. K-Multipliers for 1-of-2 Intrawel I Prediction Limits on Means of Order 3 (40 COC, Semi-Annual) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 4.35 2.51 1.98 1.74 1.59 1.43 1.34 1.28 1.23 1.20 1.18 1.17 1.15 1.13 1.12 1.11 1.10 1.09 1.08 1.07 
2 5.53 2.95 2.27 1.96 1.78 1.59 1.48 1.40 1.35 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
3 6.36 3.24 2.45 2.09 1.89 1.68 1.56 1.48 1.42 1.38 1.36 1.33 1.32 1.29 1.27 1.26 1.25 1.24 1.23 1.22 
4 7.01 3.45 2.58 2.19 1.98 1.74 1.62 1.53 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
5 7.56 3.63 2.68 2.27 2.04 1.79 1.66 1.57 1.50 1.46 1.43 1.41 1.39 1.36 1.34 1.33 1.32 1.31 1.30 1.28 
8 8.86 4.02 2.91 2.43 2.18 1.90 1.75 1.65 1.58 1.54 1.50 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.35 1.34 
12 10.16 4.38 3.11 2.58 2.29 1.99 1.83 1.72 1.65 1.60 1.56 1.53 1.51 1.48 1.46 1.44 1.43 1.42 1.40 1.39 
16 11.19 4.66 3.27 2.69 2.38 2.06 1.89 1.77 1.69 1.64 1.60 1.57 1.55 1.52 1.50 1.48 1.47 1.46 1.44 1.42 
20 12.06 4.89 3.39 2.78 2.45 2.11 1.94 1.81 1.73 1.67 1.64 1.61 1.58 1.55 1.52 1.51 1.49 1.48 1.46 1.45 
30 13.81 5.32 3.62 2.94 2.58 2.20 2.02 1.88 1.79 1.74 1.69 1.66 1.64 1.60 1.57 1.55 1.54 1.53 1.50 1.48 
40 15.21 5.65 3.79 3.05 2.67 2.27 2.07 1.93 1.84 1.78 1.74 1.70 1.68 1.64 1.61 1.59 1.57 1.56 1.54 1.53 
50 16.41 5.92 3.92 3.14 2.74 2.33 2.12 1.97 1.88 1.81 1.77 1.73 1.71 1.67 1.64 1.62 1.60 1.59 1.57 1.55 
60 17.43 6.15 4.04 3.22 2.80 2.37 2.15 2.00 1.90 1.84 1.79 1.76 1.73 1.69 1.66 1.64 1.62 1.61 1.59 1.57 
75 18.80 6.44 4.18 3.32 2.88 2.42 2.20 2.04 1.94 1.87 1.82 1.79 1.76 1.72 1.69 1.66 1.65 1.63 1.61 1.60 

100 20.64 6.84 4.38 3.44 2.97 2.50 2.26 2.09 1.98 1.92 1.86 1.83 1.80 1.76 1.72 1.70 1.68 1.67 1.64 1.62 
125 22.29 7.14 4.53 3.55 3.05 2.55 2.30 2.13 2.02 1.95 1.90 1.86 1.83 1.79 1.75 1.72 1.70 1.69 1.67 1.65 
150 23.65 7.42 4.66 3.63 3.11 2.59 2.34 2.16 2.05 1.98 1.92 1.88 1.85 1.81 1.78 1.75 1.73 1.71 1.69 1.67 
175 24.88 7.66 4.77 3.71 3.16 2.63 2.37 2.19 2.07 2.00 1.94 1.91 1.87 1.83 1.80 1.76 1.74 1.73 1.70 1.69 
200 25.98 7.86 4.87 3.76 3.21 2.67 2.40 2.21 2.09 2.02 1.97 1.92 1.89 1.85 1.82 1.78 1.76 1.75 1.72 1.70 

Table 19-18. K-Multipliers for 1-of-2 Intrawell Prediction Limits on Means of Order 3 (40 COC, Quarterly) 

w/n 4 6 8 10 12 16 20 25 30 35 40 45 50 60 70 80 90 100 125 150 
1 5.14 2.87 2.24 1.94 1.77 1.58 1.48 1.40 1.35 1.32 1.29 1.27 1.26 1.23 1.22 1.21 1.20 1.19 1.18 1.17 
2 6.52 3.36 2.54 2.17 1.97 1.74 1.62 1.53 1.47 1.43 1.40 1.38 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.26 
3 7.49 3.68 2.73 2.32 2.08 1.83 1.70 1.60 1.53 1.49 1.46 1.44 1.42 1.39 1.37 1.35 1.34 1.33 1.32 1.31 
4 8.25 3.92 2.87 2.42 2.17 1.90 1.75 1.65 1.58 1.54 1.50 1.48 1.46 1.43 1.41 1.39 1.38 1.37 1.35 1.34 
5 8.90 4.11 2.98 2.50 2.23 1.95 1.80 1.69 1.62 1.57 1.53 1.51 1.49 1.46 1.44 1.42 1.41 1.40 1.38 1.37 
8 10.42 4.55 3.23 2.68 2.37 2.06 1.89 1.77 1.69 1.64 1.60 1.57 1.55 1.52 1.50 1.48 1.47 1.45 1.44 1.42 
12 11.95 4.96 3.45 2.83 2.50 2.15 1.97 1.84 1.76 1.70 1.66 1.63 1.61 1.57 1.55 1.53 1.51 1.50 1.48 1.47 
16 13.16 5.27 3.62 2.95 2.59 2.22 2.03 1.89 1.80 1.74 1.70 1.67 1.64 1.61 1.58 1.56 1.55 1.53 1.52 1.50 
20 14.18 5.52 3.75 3.04 2.66 2.27 2.07 1.93 1.84 1.78 1.73 1.70 1.68 1.64 1.61 1.59 1.57 1.56 1.54 1.53 
30 16.24 6.01 4.00 3.21 2.79 2.37 2.15 2.00 1.90 1.84 1.79 1.76 1.73 1.69 1.66 1.64 1.62 1.61 1.59 1.57 
40 17.88 6.37 4.18 3.33 2.89 2.44 2.21 2.05 1.95 1.88 1.83 1.80 1.77 1.72 1.69 1.67 1.66 1.64 1.62 1.60 
50 19.28 6.67 4.33 3.43 2.96 2.49 2.26 2.09 1.98 1.92 1.87 1.83 1.80 1.75 1.72 1.70 1.68 1.67 1.64 1.62 
60 20.47 6.93 4.46 3.51 3.02 2.54 2.29 2.12 2.01 1.94 1.89 1.85 1.82 1.77 1.74 1.72 1.70 1.69 1.66 1.64 
75 22.08 7.26 4.61 3.61 3.10 2.59 2.34 2.16 2.05 1.98 1.92 1.88 1.85 1.80 1.77 1.75 1.73 1.71 1.68 1.67 
100 24.34 7.69 4.82 3.75 3.20 2.67 2.40 2.21 2.09 2.02 1.96 1.92 1.89 1.84 1.80 1.78 1.76 1.75 1.72 1.70 
125 26.11 8.07 4.99 3.86 3.29 2.72 2.44 2.25 2.13 2.05 2.00 1.95 1.92 1.86 1.83 1.81 1.79 1.77 1.74 1.72 
150 27.89 8.37 5.13 3.95 3.35 2.77 2.48 2.28 2.16 2.08 2.02 1.98 1.94 1.89 1.85 1.83 1.81 1.79 1.76 1.74 
175 29.26 8.61 5.25 4.02 3.41 2.81 2.51 2.31 2.18 2.10 2.04 2.00 1.96 1.91 1.87 1.85 1.83 1.81 1.77 1.76 
200 30.62 8.89 5.37 4.09 3.46 2.85 2.54 2.33 2.20 2.12 2.06 2.01 1.98 1.93 1.90 1.86 1.84 1.83 1.79 1.77 
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Appendix D. Chapter 19 Non-Parametric Prediction Limit Significance Levels Unified Guidance 

Table 19-19. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-2 Plan (PL=Xn) 

w\n 4 6 8 10 12 16 20 25 30 35 40 

1 0.6667-1 0.3571-1 0.2222-1 0.1515-1 0.1099-1 0.6536-2 0.4329-2 0.2849-2 0.2016-2 0.1502-2 0.1161-2 
2 0.1190 0.6667-1 0.4242-1 0.2930-1 0.2143-1 0.1287-1 0.8564-2 0.5656-2 0.4011-2 0.2991-2 0.2316-2 
3 0.1619 0.9394-1 0.6094-1 0.4258-1 0.3137-1 0.1900-1 0.1271-1 0.8422-2 0.5984-2 0.4468-2 0.3462-2 
4 0.1980 0.1183 0.7802-1 0.5509-1 0.4087-1 0.2496-1 0.1677-1 0.1115-1 0.7937-2 0.5934-2 0.4602-2 
5 0.2290 0.1402 0.9387-1 0.6691-1 0.4995-1 0.3074-1 0.2075-1 0.1384-1 0.9870-2 0.7388-2 0.5735-2 
8 0.3016 0.1954 0.1355 0.9890-1 0.7507-1 0.4717-1 0.3222-1 0.2168-1 0.1555-1 0.1168-1 0.9091-2 
10 0.3386 0.2255 0.1594 0.1178 0.9028-1 0.5744-1 0.3952-1 0.2674-1 0.1925-1 0.1449-1 0.1130-1 
12 0.3696 0.2519 0.1808 0.1352 0.1045 0.6721-1 0.4656-1 0.3168-1 0.2287-1 0.1726-1 0.1347-1 
15 0.4080 0.2859 0.2094 0.1589 0.1241 0.8105-1 0.5667-1 0.3885-1 0.2819-1 0.2134-1 0.1669-1 
20 0.4576 0.3320 0.2496 0.1932 0.1532 0.1022 0.7248-1 0.5025-1 0.3673-1 0.2794-1 0.2194-1 
25 0.4955 0.3690 0.2830 0.2225 0.1787 0.1214 0.8714-1 0.6102-1 0.4491-1 0.3433-1 0.2704-1 
30 0.5259 0.3997 0.3116 0.2482 0.2014 0.1390 0.1008 0.7125-1 0.5276-1 0.4051-1 0.3201-1 
35 0.5509 0.4257 0.3363 0.2708 0.2218 0.1551 0.1136 0.8097-1 0.6030-1 0.4649-1 0.3685-1 
40 0.5721 0.4483 0.3582 0.2911 0.2403 0.1701 0.1257 0.9024-1 0.6757-1 0.5230-1 0.4157-1 
45 0.5904 0.4680 0.3776 0.3095 0.2572 0.1840 0.1370 0.9910-1 0.7458-1 0.5793-1 0.4618-1 
50 0.6063 0.4856 0.3951 0.3262 0.2727 0.1970 0.1478 0.1076 0.8134-1 0.6341-1 0.5068-1 
60 0.6330 0.5155 0.4256 0.3556 0.3005 0.2208 0.1677 0.1235 0.9422-1 0.7393-1 0.5938-1 
70 0.6546 0.5403 0.4512 0.3809 0.3246 0.2420 0.1858 0.1383 0.1063 0.8391-1 0.6770-1 
80 0.6726 0.5613 0.4733 0.4029 0.3460 0.2611 0.2024 0.1521 0.1177 0.9340-1 0.7568-1 
90 0.6880 0.5795 0.4927 0.4224 0.3651 0.2785 0.2178 0.1650 0.1285 0.1025 0.8334-1 
100 0.7012 0.5954 0.5098 0.4399 0.3823 0.2944 0.2320 0.1771 0.1387 0.1111 0.9072-1 
120 0.7231 0.6221 0.5389 0.4699 0.4122 0.3226 0.2576 0.1992 0.1577 0.1274 0.1047 
140 0.7407 0.6438 0.5629 0.4950 0.4376 0.3471 0.2802 0.2191 0.1751 0.1424 0.1177 
160 0.7552 0.6619 0.5832 0.5165 0.4595 0.3686 0.3004 0.2372 0.1910 0.1564 0.1300 
180 0.7674 0.6773 0.6007 0.5351 0.4787 0.3877 0.3185 0.2537 0.2057 0.1694 0.1415 
200 0.7778 0.6907 0.6160 0.5516 0.4958 0.4049 0.3351 0.2689 0.2194 0.1817 0.1524 

Footnote. PL = Prediction Limit; Xn = Maximum order statistic 
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Table 19-19. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-2 Plan (PL=Xn) 

w\n so 60 70 80 90 100 120 140 160 180 200 

1 0.7S41-3 O.S288-3 0.3912-3 0.3011-3 0.2389-3 0.1941-3 0.1355-3 0.9989-4 0.7668-4 0.6071-4 0.4926-4 
2 0.1S05-2 0.1056-2 0.7816-3 0.6017-3 0.4775-3 0.3881-3 0.2709-3 0.1997-3 0.1533-3 0.1214-3 0.9850-4 
3 0.22S3-2 0.1S82-2 0.1171-2 0.9018-3 0.7157-3 0.5818-3 0.4061-3 0.2995-3 0.2299-3 0.1821-3 0.1477-3 
4 0.2998-2 0.2106-2 0.1560-2 0.1201-2 0.9536-3 0.7752-3 0.5413-3 0.3992-3 0.3065-3 0.2427-3 0.1969-3 
s 0.3739-2 0.2628-2 0.1948-2 0.1500-2 0.1191-2 0.9685-3 0.6764-3 0.4989-3 0.3831-3 0.3033-3 0.2462-3 
8 O.S946-2 0.4187-2 0.3106-2 0.2395-2 0.1902-2 0.1547-2 0.1081-2 0. 7975-3 0.6125-3 0.4851-3 0.3937-3 
10 0.7403-2 O.S219-2 0.3874-2 0.2988-2 0.2374-2 0.1932-2 0.1350-2 0.9963-3 0.7653-3 0.6062-3 0.4919-3 
12 0.8848-2 0.6244-2 0.4638-2 0.3580-2 0.2845-2 0.2315-2 0.1619-2 0.1195-2 0.9179-3 0.7271-3 0.5902-3 
1S 0.1099-1 0.7772-2 0.5779-2 0.4463-2 0.3549-2 0.2889-2 0.2021-2 0.1492-2 0.1147-2 0.9084-3 0.7374-3 
20 0.14S1-1 0.1029-1 0.7665-2 0.5926-2 0.4717-2 0.3842-2 0.2690-2 0.1987-2 0.1527-2 0.1210-2 0.9825-3 
2S 0.1797-1 0.1277-1 0.9530-2 0.7377-2 0.5876-2 0.4789-2 0.3356-2 0.2480-2 0.1907-2 0.1511-2 0.1227-2 
30 0.2136-1 0.1S22-1 0.1138-1 0.8816-2 0.7028-2 0.5732-2 0.4019-2 0.2972-2 0.2286-2 0.1812-2 0.1472-2 
3S 0.2469-1 0.1764-1 0.1320-1 0.1024-1 0.8173-2 0.6669-2 0.4680-2 0.3462-2 0.2664-2 0.2112-2 0.1716-2 
40 0.2796-1 0.2002-1 0.1501-1 0.1166-1 0.9310-2 0.7601-2 0.5338-2 0.3951-2 0.3041-2 0.2412-2 0.1959-2 
4S 0.3118-1 0.2238-1 0.1680-1 0.1307-1 0.1044-1 0.8529-2 0.5994-2 0.4439-2 0.3417-2 0.2711-2 0.2203-2 
so 0.3434-1 0.2470-1 0.1858-1 0.1446-1 0.1156-1 0.9451-2 0.6647-2 0.4925-2 0.3793-2 0.3009-2 0.2446-2 
60 0.4051-1 0.2927-1 0.2207-1 0.1722-1 0.1379-1 0.1128-1 0.7947-2 0.5893-2 0.4541-2 0.3605-2 0.2931-2 
70 0.4648-1 0.3372-1 0.2551-1 0.1993-1 0.1598-1 0.1309-1 0.9237-2 0.6856-2 0.5287-2 0.4199-2 0.3414-2 
80 O.S227-1 0.3807-1 0.2887-1 0.2261-1 0.1815-1 0.1489-1 0.1052-1 0.7814-2 0.6029-2 0.4790-2 0.3896-2 
90 O.S789-1 0.4232-1 0.3218-1 0.2524-1 0.2030-1 0.1666-1 0.1179-1 0.8766-2 0.6768-2 0.5380-2 0.4377-2 
100 0.633S-1 0.4648-1 0.3543-1 0.2784-1 0.2242-1 0.1842-1 0.1305-1 0.9713-2 0.7504-2 0.5967-2 0.4857-2 
120 0.7382-1 O.S4S3-1 0.4176-1 0.3293-1 0.2659-1 0.2189-1 0.1555-1 0.1159-1 0.8966-2 0. 7136-2 0.5812-2 
140 0.8376-1 0.622S-1 0.4789-1 0.3788-1 0.3066-1 0.2529-1 0.1801-1 0.1345-1 0.1042-1 0.8297-2 0.6762-2 
160 0.9322-1 0.6967-1 0.5382-1 0.4270-1 0.3464-1 0.2863-1 0.2044-1 0.1529-1 0.1185-1 0.9451-2 0.7706-2 
180 0.1022 0.7682-1 0.5957-1 0.4741-1 0.3854-1 0.3191-1 0.2284-1 0.1711-1 0.1328-1 0.1060-1 0.8646-2 
200 0.1109 0.8371-1 0.6515-1 0.5199-1 0.4236-1 0.3513-1 0.2520-1 0.1892-1 0.1470-1 0.1173-1 0.9580-2 

Footnote. PL = Prediction Limit; Xn = Maximum order statistic 
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Table 19-19. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-2 Plan (PL=Xn-1) 

w\n 4 6 8 10 12 16 20 25 30 35 40 

1 0.2000 0.1071 0.6667-1 0.4545-1 0.3297-1 0.1961-1 0.1299-1 0.8547-2 0.6048-2 0.4505-2 0.3484-2 
2 0.3286 0.1905 0.1232 0.8591-1 0.6319-1 0.3818-1 0.2550-1 0.1688-1 0.1199-1 0.8948-2 0.6932-2 
3 0.4190 0.2576 0.1720 0.1223 0.9104-1 0.5582-1 0.3758-1 0.2502-1 0.1783-1 0.1333-1 0.1034-1 
4 0.4866 0.3130 0.2147 0.1551 0.1168 0.7260-1 0.4924-1 0.3296-1 0.2356-1 0.1766-1 0.1372-1 
5 0.5391 0.3598 0.2524 0.1851 0.1408 0.8860-1 0.6052-1 0.4072-1 0.2920-1 0.2193-1 0.1706-1 
8 0.6450 0.4651 0.3436 0.2612 0.2038 0.1325 0.9224-1 0.6297-1 0.4556-1 0.3442-1 0.2688-1 
10 0.6911 0.5163 0.3914 0.3030 0.2397 0.1588 0.1118 0.7702-1 0.5603-1 0.4248-1 0.3327-1 
12 0.7261 0.5577 0.4317 0.3396 0.2719 0.1831 0.1303 0.9048-1 0.6617-1 0.5036-1 0.3953-1 
15 0.7653 0.6071 0.4820 0.3867 0.3144 0.2163 0.1561 0.1097 0.8082-1 0.6182-1 0.4871-1 
20 0.8099 0.6672 0.5466 0.4499 0.3733 0.2648 0.1950 0.1394 0.1039 0.8006-1 0.6344-1 
25 0.8398 0.7103 0.5955 0.4997 0.4214 0.3063 0.2295 0.1665 0.1253 0.9732-1 0.7752-1 
30 0.8613 0.7429 0.6340 0.5402 0.4616 0.3424 0.2605 0.1914 0.1454 0.1137 0.9101-1 
35 0.8776 0.7686 0.6652 0.5739 0.4957 0.3743 0.2884 0.2145 0.1643 0.1293 0.1039 
40 0.8903 0.7893 0.6910 0.6024 0.5252 0.4026 0.3138 0.2358 0.1821 0.1441 0.1164 
45 0.9006 0.8064 0.7129 0.6270 0.5510 0.4280 0.3370 0.2558 0.1989 0.1582 0.1283 
so 0.9091 0.8208 0.7316 0.6484 0.5738 0.4509 0.3584 0.2744 0.2149 0.1717 0.1398 
60 0.9222 0.8438 0.7621 0.6840 0.6123 0.4909 0.3965 0.3084 0.2443 0.1971 0.1616 
70 0.9320 0.8613 0.7860 0.7125 0.6438 0.5246 0.4295 0.3385 0.2711 0.2205 0.1820 
80 0.9395 0.8751 0.8053 0.7359 0.6700 0.5535 0.4584 0.3656 0.2955 0.2421 0.2010 
90 0.9455 0.8864 0.8212 0.7555 0.6923 0.5787 0.4841 0.3901 0.3179 0.2622 0.2189 
100 0.9505 0.8957 0.8345 0.7722 0.7115 0.6008 0.5070 0.4124 0.3386 0.2810 0.2358 
120 0.9580 0.9102 0.8558 0.7991 0.7430 0.6380 0.5464 0.4515 0.3756 0.3151 0.2668 
140 0.9635 0.9211 0.8720 0.8200 0.7678 0.6681 0.5792 0.4849 0.4079 0.3454 0.2947 
160 0.9677 0.9296 0.8847 0.8367 0.7879 0.6931 0.6069 0.5138 0.4363 0.3725 0.3201 
180 0.9710 0.9364 0.8951 0.8505 0.8046 0.7143 0.6308 0.5391 0.4616 0.3970 0.3432 
200 0.9737 0.9419 0.9037 0.8619 0.8186 0.7325 0.6516 0.5615 0.4844 0.4192 0.3644 

Footnote. PL = Prediction Limit; Xn-1 = 2nd largest order statistic 
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Table 19-19. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-2 Plan (PL=Xn-1) 

w\n so 60 70 80 90 100 120 140 160 180 200 

1 0.2262-2 0.1S86-2 0.1174-2 0.9033-3 0.7167-3 O.S824-3 0.4064-3 0.2997-3 0.2300-3 0.1821-3 0.1478-3 
2 0.4S09-2 0.316S-2 0.2343-2 0.1804-2 0.1432-2 0.1164-2 0.8124-3 O.S990-3 0.4S99-3 0.3642-3 0.2955-3 
3 0.6740-2 0.4736-2 0.3508-2 0.2702-2 0.214S-2 0.1744-2 0.1218-2 0.8981-3 0.6896-3 0.5461-3 0.4431-3 
4 0.89S6-2 0.6299-2 0.4669-2 0.3S98-2 0.28S7-2 0.2323-2 0.1623-2 0.1197-2 0.9191-3 0.7279-3 0.5907-3 
s 0.1116-1 0.78S4-2 O.S82S-2 0.4491-2 0.3S67-2 0.2901-2 0.2027-2 0.149S-2 0.1149-2 0.9096-3 0.7382-3 
8 0.1767-1 0.1248-1 0.9270-2 0.71S5-2 O.S688-2 0.4629-2 0.3237-2 0.2389-2 0.1836-2 0.1454-2 0.1180-2 
10 0.2194-1 0.1SS2-1 0.11SS-1 0.8919-2 0.7094-2 O.S776-2 0.4041-2 0.2984-2 0.2293-2 0.1817-2 0.1475-2 
12 0.261S-1 0.18S3-1 0.1380-1 0.1067-1 0.8494-2 0.6918-2 0.4843-2 0.3S77-2 0.2749-2 0.2179-2 0.1769-2 
1S 0.3237-1 0.2300-1 0.1716-1 0.1328-1 0.1058-1 0.8624-2 0.6041-2 0.446S-2 0.3433-2 0.2721-2 0.2209-2 
20 0.4247-1 0.3032-1 0.2268-1 0.17S9-1 0.1403-1 0.114S-1 0.8029-2 O.S939-2 0.4S68-2 0.3622-2 0.2942-2 
2S O.S226-1 0.3746-1 0.2811-1 0.2184-1 0.1744-1 0.1424-1 0.1000-1 0.7406-2 O.S700-2 0.4521-2 0.3673-2 
30 0.6176-1 0.444S-1 0.3344-1 0.2603-1 0.2082-1 0.1702-1 0.1197-1 0.8866-2 0.6827-2 0.5418-2 0.4403-2 
3S 0.7098-1 O.S129-1 0.3869-1 0.3017-1 0.2415-1 0.1976-1 0.1392-1 0.1032-1 0.79S1-2 0.6311-2 0.5130-2 
40 0.7994-1 O.S799-1 0.4384-1 0.342S-1 0.2746-1 0.2249-1 0.1S86-1 0.1177-1 0.9070-2 0.7202-2 0.5856-2 
4S 0.8866-1 0.64S4-1 0.4892-1 0.3828-1 0.3073-1 0.2S19-1 0.1778-1 0.1320-1 0.1019-1 0.8091-2 0.6580-2 
so 0.9714-1 0.7096-1 O.S391-1 0.4226-1 0.3396-1 0.2786-1 0.1970-1 0.1464-1 0.1130-1 0.8977-2 0.7303-2 
60 0.1134 0.8342-1 0.6367-1 O.S006-1 0.4033-1 0.331S-1 0.2349-1 0.1748-1 0.13S1-1 0.1074-1 0.8743-2 
70 0.1289 0.9S40-1 0.7313-1 O.S768-1 0.46S8-1 0.383S-1 0.2724-1 0.2030-1 0.1S70-1 0.1250-1 0.1018-1 
80 0.1437 0.1069 0.8231-1 0.6S12-1 O.S270-1 0.4346-1 0.3094-1 0.2310-1 0.1788-1 0.1424-1 0.1160-1 
90 0.1S77 0.1181 0.9123-1 0.7238-1 O.S870-1 0.4849-1 0.3460-1 0.2S87-1 0.2004-1 0.1597-1 0.1302-1 
100 0.1712 0.1288 0.9990-1 0.7948-1 0.6459-1 0.5344-1 0.3821-1 0.2861-1 0.2219-1 0.1770-1 0.1444-1 
120 0.1963 0.1492 0.116S 0.9320-1 0.7604-1 0.6310-1 0.4S32-1 0.3403-1 0.264S-1 0.2112-1 0.1724-1 
140 0.2196 0.1683 0.1323 0.1063 0.8708-1 0.7248-1 O.S227-1 0.393S-1 0.3064-1 0.2450-1 0.2002-1 
160 0.2410 0.1863 0.1473 0.1189 0.9774-1 0.81S8-1 O.S907-1 0.44S9-1 0.3478-1 0.2785-1 0.2278-1 
180 0.2610 0.2032 0.1616 0.1310 0.1080 0.9041-1 0.6S72-1 0.4973-1 0.3886-1 0.3116-1 0.2551-1 
200 0.2797 0.2192 0.17S3 0.1427 0.1180 0.9900-1 0.7222-1 O.S480-1 0.4289-1 0.3443-1 0.2822-1 

Footnote. PL = Prediction Limit; Xn-1 = 2nd largest order statistic 
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Table 19-20. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-3 Plan (PL=Xn) 

w\n 4 6 8 10 12 16 20 25 30 35 40 

1 0.2857-1 0.1190-1 0.6061-2 0.3497-2 0.2198-2 0.1032-2 0.5647-3 0.3053-3 0.1833-3 0.1185-3 0.8103-4 
2 0.5238-1 0.2273-1 0.1179-1 0.6868-2 0.4342-2 0.2051-2 0.1125-2 0.6091-3 0.3661-3 0.2369-3 0.1620-3 
3 0.7283-1 0.3267-1 0.1722-1 0.1013-1 0.6435-2 0.3056-2 0.1681-2 0.9117-3 0.5483-3 0.3550-3 0.2428-3 
4 0.9076-1 0.4187-1 0.2240-1 0.1328-1 0.8481-2 0.4049-2 0.2233-2 0.1213-2 0.7301-3 0.4728-3 0.3235-3 
5 0.1067 0.5045-1 0.2735-1 0.1633-1 0.1048-1 0.5031-2 0.2781-2 0.1513-2 0.9113-3 0.5905-3 0.4041-3 
8 0.1463 0.7320-1 0.4101-1 0.2499-1 0.1624-1 0.7906-2 0.4401-2 0.2405-2 0.1452-2 0.9422-3 0.6453-3 
10 0.1678 0.8643-1 0.4929-1 0.3038-1 0.1990-1 0.9769-2 0.5462-2 0.2994-2 0.1810-2 0.1176-2 0.8056-3 
12 0.1865 0.9846-1 0.5704-1 0.3552-1 0.2342-1 0.1159-1 0.6509-2 0.3577-2 0.2167-2 0.1408-2 0.9654-3 
15 0.2107 0.1147 0.6780-1 0.4279-1 0.2848-1 0.1426-1 0.8054-2 0.4444-2 0.2697-2 0.1755-2 0.1204-2 
20 0.2437 0.1380 0.8386-1 0.5396-1 0.3640-1 0.1853-1 0.1056-1 0.5866-2 0.3573-2 0.2330-2 0.1601-2 
25 0.2704 0.1580 0.9810-1 0.6412-1 0.4376-1 0.2261-1 0.1300-1 0.7262-2 0.4438-2 0.2900-2 0.1995-2 
30 0.2928 0.1754 0.1109 0.7348-1 0.5065-1 0.2652-1 0.1537-1 0.8632-2 0.5292-2 0.3465-2 0.2386-2 
35 0.3121 0.1908 0.1225 0.8215-1 0.5713-1 0.3028-1 0.1767-1 0.9978-2 0.6136-2 0.4025-2 0.2776-2 
40 0.3289 0.2046 0.1332 0.9024-1 0.6326-1 0.3389-1 0.1991-1 0.1130-1 0.6971-2 0.4581-2 0.3162-2 
45 0.3438 0.2172 0.1431 0.9783-1 0.6907-1 0.3738-1 0.2210-1 0.1260-1 0.7796-2 0.5132-2 0.3547-2 
so 0.3573 0.2287 0.1523 0.1050 0.7461-1 0.4075-1 0.2423-1 0.1388-1 0.8612-2 0.5679-2 0.3929-2 
60 0.3805 0.2492 0.1689 0.1181 0.8494-1 0.4717-1 0.2836-1 0.1639-1 0.1022-1 0.6760-2 0.4688-2 
70 0.4001 0.2669 0.1837 0.1301 0.9445-1 0.5323-1 0.3231-1 0.1882-1 0.1179-1 0.7824-2 0.5437-2 
80 0.4171 0.2826 0.1970 0.1410 0.1033 0.5895-1 0.3610-1 0.2118-1 0.1333-1 0.8874-2 0.6179-2 
90 0.4319 0.2966 0.2091 0.1510 0.1115 0.6439-1 0.3975-1 0.2347-1 0.1484-1 0.9908-2 0.6913-2 
100 0.4451 0.3093 0.2202 0.1603 0.1192 0.6957-1 0.4327-1 0.2571-1 0.1632-1 0.1093-1 0.7639-2 
120 0.4677 0.3314 0.2399 0.1771 0.1333 0.7926-1 0.4996-1 0.3003-1 0.1921-1 0.1293-1 0.9069-2 
140 0.4865 0.3502 0.2570 0.1920 0.1459 0.8819-1 0.5624-1 0.3415-1 0.2200-1 0.1488-1 0.1047-1 
160 0.5026 0.3666 0.2722 0.2054 0.1574 0.9648-1 0.6216-1 0.3810-1 0.2470-1 0.1678-1 0.1185-1 
180 0.5166 0.3811 0.2858 0.2175 0.1680 0.1042 0.6777-1 0.4189-1 0.2732-1 0.1864-1 0.1320-1 
200 0.5289 0.3941 0.2980 0.2286 0.1777 0.1115 0.7311-1 0.4554-1 0.2987-1 0.2045-1 0.1453-1 

Footnote. PL = Prediction Limit; Xn = Maximum order statistic 
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Appendix D. Chapter 19 Non-Parametric Prediction Limit Significance Levels Unified Guidance 

Table 19-20. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-3 Plan (PL=Xn) 

w\n so 60 70 80 90 100 120 140 160 180 200 

1 0.4269-4 0.2518-4 0.1608-4 0.1088-4 0.7706-5 0.5654-5 0.3304-5 0.2096-5 0.1411-5 0.9953-6 0.7280-6 
2 0.8534-4 0.5035-4 0.3215-4 0.2177-4 0.1541-4 0.1131-4 0.6609-5 0.4191-5 0.2823-5 0.1991-5 0.1456-5 
3 0.1280-3 0.7551-4 0.4822-4 0.3264-4 0.2312-4 0.1696-4 0.9913-5 0.6287-5 0.4234-5 0.2986-5 0.2184-5 
4 0.1706-3 0.1007-3 0.6429-4 0.4352-4 0.3082-4 0.2261-4 0.1322-4 0.8382-5 0.5645-5 0.3981-5 0.2912-5 
s 0.2131-3 0.1258-3 0.8035-4 0.5440-4 0.3852-4 0.2827-4 0.1652-4 0.1048-4 0. 7056-5 0.4976-5 0.3640-5 
8 0.3406-3 0.2011-3 0.1285-3 0.8701-4 0.6162-4 0.4522-4 0.2643-4 0.1676-4 0.1129-4 0.7962-5 0.5823-5 
10 0.4255-3 0.2513-3 0.1606-3 0.1087-3 0.7701-4 0.5652-4 0.3304-4 0.2095-4 0.1411-4 0.9952-5 0.7279-5 
12 0.5102-3 0.3015-3 0.1926-3 0.1305-3 0.9240-4 0.6782-4 0.3964-4 0.2514-4 0.1693-4 0.1194-4 0.8735-5 
1S 0.6371-3 0.3766-3 0.2407-3 0.1630-3 0.1155-3 0.8476-4 0.4955-4 0.3143-4 0.2117-4 0.1493-4 0.1092-4 
20 0.8480-3 0.5016-3 0.3207-3 0.2173-3 0.1539-3 0.1130-3 0.6605-4 0.4190-4 0.2822-4 0.1990-4 0.1456-4 
2S 0.1058-2 0.6263-3 0.4006-3 0.2715-3 0.1923-3 0.1412-3 0.8255-4 0.5237-4 0.3527-4 0.2488-4 0.1820-4 
30 0.1268-2 0.7507-3 0.4804-3 0.3256-3 0.2307-3 0.1694-3 0.9905-4 0.6283-4 0.4232-4 0.2985-4 0.2183-4 
3S 0.1476-2 0.8749-3 0.5600-3 0.3797-3 0.2691-3 0.1976-3 0.1155-3 0.7330-4 0.4937-4 0.3482-4 0.2547-4 
40 0.1684-2 0.9989-3 0.6396-3 0.4337-3 0.3074-3 0.2257-3 0.1320-3 0.8376-4 0.5642-4 0.3980-4 0.2911-4 
4S 0.1892-2 0.1123-2 0.7191-3 0.4877-3 0.3457-3 0.2539-3 0.1485-3 0.9422-4 0.6347-4 0.4477-4 0.3275-4 
so 0.2098-2 0.1246-2 0.7984-3 0.5416-3 0.3840-3 0.2820-3 0.1650-3 0.1047-3 0.7052-4 0.4974-4 0.3639-4 
60 0.2509-2 0.1492-2 0.9568-3 0.6493-3 0.4605-3 0.3382-3 0.1979-3 0.1256-3 0.8461-4 0.5968-4 0.4366-4 
70 0.2918-2 0.1737-2 0.1115-2 0.7568-3 0.5369-3 0.3944-3 0.2308-3 0.1465-3 0.9870-4 0.6962-4 0.5093-4 
80 0.3324-2 0.1981-2 0.1272-2 0.8641-3 0.6131-3 0 .4505-3 0.2637-3 0.1674-3 0.1128-3 0.7956-4 0.5820-4 
90 0.3727-2 0.2224-2 0.1429-2 0.9712-3 0.6893-3 0.5066-3 0.2966-3 0.1883-3 0.1269-3 0.8950-4 0.6548-4 
100 0.4128-2 0.2466-2 0.1586-2 0.1078-2 0.7654-3 0.5626-3 0.3294-3 0.2092-3 0.1409-3 0.9944-4 0.7275-4 
120 0.4922-2 0.2948-2 0.1898-2 0.1291-2 0.9172-3 0.6744-3 0.3951-3 0.2509-3 0.1691-3 0.1193-3 0.8728-4 
140 0.5707-2 0.3425-2 0.2208-2 0.1504-2 0.1069-2 0.7860-3 0.4607-3 0.2926-3 0.1972-3 0.1392-3 0.1018-3 
160 0.6482-2 0.3900-2 0.2517-2 0.1715-2 0.1220-2 0.8974-3 0.5262-3 0.3343-3 0.2253-3 0.1590-3 0.1163-3 
180 0.7249-2 0.4370-2 0.2825-2 0.1926-2 0.1370-2 0.1009-2 0.5916-3 0.3759-3 0.2534-3 0.1788-3 0.1309-3 
200 0.8007-2 0.4837-2 0.3130-2 0.2136-2 0.1520-2 0.1120-2 0.6569-3 0.4175-3 0.2815-3 0.1987-3 0.1454-3 

Footnote. PL = Prediction Limit; Xn = Maximum order statistic 
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Appendix D. Chapter 19 Non-Parametric Prediction Limit Significance Levels Unified Guidance 

Table 19-20. Per-Constituent Significance Levels (a) for Non-parametric 1-of-3 Plan (PL=Xn-1) 

w\n 4 6 8 10 12 16 20 25 30 35 40 

1 0.1143 0.4762-1 0.2424-1 0.1399-1 0.8791-2 0.4128-2 0.2259-2 0.1221-2 0.7331-3 0.4742-3 0.3241-3 
2 0.1952 0.8766-1 0.4615-1 0.2710-1 0.1721-1 0.8162-2 0.4487-2 0.2432-2 0.1463-2 0.9468-3 0.6475-3 
3 0.2568 0.1221 0.6615-1 0.3944-1 0.2528-1 0.1211-1 0.6686-2 0.3635-2 0.2189-2 0.1418-2 0.9701-3 
4 0.3059 0.1523 0.8453-1 0.5111-1 0.3303-1 0.1597-1 0.8856-2 0.4828-2 0.2911-2 0.1887-2 0.1292-2 
5 0.3464 0.1791 0.1015 0.6218-1 0.4050-1 0.1975-1 0.1100-1 0.6012-2 0.3630-2 0.2355-2 0.1613-2 
8 0.4353 0.2448 0.1460 0.9230-1 0.6139-1 0.3064-1 0.1727-1 0.9512-2 0.5767-2 0.3750-2 0.2572-2 
10 0.4780 0.2799 0.1714 0.1103 0.7421-1 0.3757-1 0.2133-1 0.1180-1 0.7175-2 0.4673-2 0.3208-2 
12 0.5124 0.3101 0.1942 0.1269 0.8628-1 0.4424-1 0.2529-1 0.1406-1 0.8570-2 0.5590-2 0.3841-2 
15 0.5536 0.3485 0.2244 0.1496 0.1032 0.5384-1 0.3107-1 0.1739-1 0.1064-1 0.6955-2 0.4786-2 
20 0.6046 0.3997 0.2670 0.1827 0.1286 0.6883-1 0.4031-1 0.2280-1 0.1403-1 0.9202-2 0.6346-2 
25 0.6419 0.4399 0.3023 0.2114 0.1512 0.8274-1 0.4910-1 0.2804-1 0.1735-1 0.1142-1 0.7889-2 
30 0.6708 0.4728 0.3323 0.2366 0.1716 0.9573-1 0.5749-1 0.3312-1 0.2060-1 0.1360-1 0.9417-2 
35 0.6940 0.5004 0.3584 0.2591 0.1901 0.1079 0.6550-1 0.3805-1 0.2378-1 0.1575-1 0.1093-1 
40 0.7132 0.5240 0.3814 0.2793 0.2072 0.1194 0.7319-1 0.4285-1 0.2690-1 0.1787-1 0.1243-1 
45 0.7294 0.5445 0.4018 0.2977 0.2229 0.1302 0.8058-1 0.4751-1 0.2997-1 0.1997-1 0.1391-1 
so 0.7433 0.5626 0.4202 0.3145 0.2375 0.1405 0.8768-1 0.5206-1 0.3298-1 0.2203-1 0.1537-1 
60 0.7661 0.5932 0.4521 0.3443 0.2638 0.1596 0.1011 0.6082-1 0.3884-1 0.2608-1 0.1827-1 
70 0.7842 0.6182 0.4790 0.3701 0.2871 0.1771 0.1137 0.6917-1 0.4450-1 0.3004-1 0.2110-1 
80 0.7989 0.6392 0.5021 0.3927 0.3079 0.1931 0.1255 0.7715-1 0.4998-1 0.3389-1 0.2389-1 
90 0.8112 0.6571 0.5223 0.4128 0.3266 0.2080 0.1367 0.8480-1 0.5529-1 0.3766-1 0.2663-1 
100 0.8216 0.6727 0.5402 0.4309 0.3437 0.2218 0.1472 0.9214-1 0.6045-1 0.4135-1 0.2932-1 
120 0.8385 0.6987 0.5705 0.4621 0.3738 0.2468 0.1667 0.1060 0.7032-1 0.4848-1 0.3457-1 
140 0.8518 0.7195 0.5955 0.4885 0.3996 0.2690 0.1844 0.1189 0.7968-1 0.5532-1 0.3966-1 
160 0.8625 0.7367 0.6165 0.5111 0.4221 0.2889 0.2006 0.1310 0.8857-1 0.6190-1 0.4459-1 
180 0.8713 0.7512 0.6346 0.5308 0.4421 0.3069 0.2156 0.1424 0.9705-1 0.6824-1 0.4937-1 
200 0.8788 0.7637 0.6504 0.5482 0.4599 0.3233 0.2295 0.1531 0.1052 0.7436-1 0.5403-1 

Footnote. PL = Prediction Limit; Xn-1 = 2nd largest order statistic 
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Appendix D. Chapter 19 Non-Parametric Prediction Limit Significance Levels Unified Guidance 

Table 19-20. Per-Constituent Significance Levels (a) for Non-parametric 1-of-3 Plan (PL=Xn-1) 

w\n so 60 70 80 90 100 120 140 160 180 200 

1 0.1708-3 0.1007-3 0.6431-4 0.43S3-4 0.3082-4 0.2262-4 0.1322-4 0.8382-5 0.5645-5 0.3981-5 0.2912-5 
2 0.3413-3 0.2014-3 0.1286-3 0.8705-4 0.6164-4 0.4523-4 0.2643-4 0.1676-4 0.1129-4 0.7962-5 0.5824-5 
3 O.S116-3 0.3020-3 0.1928-3 0.1306-3 0.9245-4 0.6784-4 0.3965-4 0.2515-4 0.1693-4 0.1194-4 0.8735-5 
4 0.6817-3 0.4024-3 0.2S71-3 0.1740-3 0.1233-3 0.9045-4 0.5286-4 0.3353-4 0.2258-4 0.1592-4 0.1165-4 
s 0.8S16-3 O.S029-3 0.3212-3 0.217S-3 0.1540-3 0.1130-3 0.6608-4 0.4191-4 0.2822-4 0.1990-4 0.1456-4 
8 0.1360-2 0.8037-3 O.S136-3 0.3479-3 0.2464-3 0.1808-3 0.1057-3 0.6704-4 0.4515-4 0.3185-4 0.2329-4 
10 0.1698-2 0.1004-2 0.6417-3 0.4347-3 0.3079-3 0.2260-3 0.1321-3 0.8380-4 0.5644-4 0.3981-4 0.2912-4 
12 0.203S-2 0.1204-2 0.7697-3 O.S214-3 0.3694-3 0.2711-3 0.1585-3 0.1006-3 0.6773-4 0.4777-4 0.3494-4 
1S 0.2S39-2 0.1503-2 0.9614-3 0.6S1S-3 0.4616-3 0.3388-3 0.1981-3 0.1257-3 0.8465-4 0.5970-4 0.4367-4 
20 0.337S-2 0.2000-2 0.1280-2 0.8679-3 0.6151-3 0.4516-3 0.2641-3 0.1675-3 0.1129-3 0.7960-4 0.5822-4 
2S 0.4206-2 0.249S-2 0.1S98-2 0.1084-2 0.7684-3 0.5642-3 0.3300-3 0.2094-3 0.1411-3 0.9949-4 0.7277-4 
30 O.S032-2 0.2989-2 0.1916-2 0.1300-2 0.9215-3 0.6768-3 0.3959-3 0.2512-3 0.1692-3 0.1194-3 0.8732-4 
3S O.S8S3-2 0.3481-2 0.2232-2 0.1S1S-2 0.1074-2 0.7892-3 0.4618-3 0.2930-3 0.1974-3 0.1393-3 0.1019-3 
40 0.6669-2 0.3971-2 0.2S48-2 0.1730-2 0.1227-2 0.9015-3 0.5276-3 0.3348-3 0.2256-3 0.1591-3 0.1164-3 
4S 0.7481-2 0.44S9-2 0.2863-2 0.194S-2 0.1380-2 0.1014-2 0.5934-3 0.3766-3 0.2538-3 0.1790-3 0.1310-3 
so 0.8288-2 0.494S-2 0.3177-2 0.21S9-2 0.1532-2 0.1126-2 0.6592-3 0.4184-3 0.2819-3 0.1989-3 0.1455-3 
60 0.9888-2 O.S913-2 0.3804-2 0.2S86-2 0.1836-2 0.1350-2 0.7906-3 0.5019-3 0.3382-3 0.2386-3 0.1746-3 
70 0.1147-1 0.6874-2 0.4427-2 0.3012-2 0.2140-2 0.1573-2 0.9218-3 0.5854-3 0.3945-3 0.2784-3 0.2037-3 
80 0.1304-1 0.7828-2 O.S048-2 0.3437-2 0.2443-2 0.1797-2 0.1053-2 0.6688-3 0.4508-3 0.3181-3 0.2327-3 
90 0.14S8-1 0.8776-2 O.S66S-2 0.3860-2 0.2745-2 0.2019-2 0.1184-2 0.7521-3 0.5070-3 0.3578-3 0.2618-3 
100 0.1612-1 0.9717-2 0.6280-2 0.4282-2 0.3046-2 0.2242-2 0.1315-2 0.8354-3 0.5632-3 0.3975-3 0.2908-3 
120 0.1914-1 0.11S8-1 0.7S01-2 O.S122-2 0.3647-2 0.2685-2 0.1576-2 0.1002-2 0.6756-3 0.4768-3 0.3489-3 
140 0.2209-1 0.1342-1 0.8712-2 O.S9S7-2 0.4244-2 0.3128-2 0.1837-2 0.1168-2 0.7878-3 0.5561-3 0.4070-3 
160 0.2S00-1 0.1S24-1 0.9912-2 0.6786-2 0.4840-2 0.3568-2 0.2097-2 0.1334-2 0.8999-3 0.6353-3 0.4650-3 
180 0.2784-1 0.1703-1 0.1110-1 0.7610-2 0.5432-2 0.4007-2 0.2357-2 0.1500-2 0.1012-2 0.7145-3 0.5230-3 
200 0.3064-1 0.1880-1 0.1228-1 0.8429-2 0.6022-2 0.4445-2 0.2616-2 0.1665-2 0.1124-2 0.7936-3 0.5810-3 

Footnote. PL = Prediction Limit; Xn-i = 2nd largest order statistic 
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Appendix D. Chapter 19 Non-Parametric Prediction Limit Significance Levels Unified Guidance 

Table 19-21. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-4 Plan (PL=Xn) 

w\n 4 6 8 10 12 16 20 25 30 35 40 

1 0.1429-1 0.4762-2 0.2020-2 0.9990-3 0.5495-3 0.2064-3 0.9411-4 0.4210-4 0.2156-4 0.1216-4 0.7366-5 
2 0.2655-1 0.9191-2 0.3963-2 0.1975-2 0.1091-2 0.4114-3 0.1879-3 0.8413-4 0.4311-4 0.2431-4 0.1473-4 
3 0.3735-1 0.1334-1 0.5835-2 0.2930-2 0.1625-2 0.6151-3 0.2814-3 0.1261-3 0.6463-4 0.3645-4 0.2209-4 
4 0.4701-1 0.1725-1 0.7645-2 0.3865-2 0.2152-2 0.8176-3 0.3745-3 0.1680-3 0.8613-4 0.4859-4 0.2945-4 
5 0.5578-1 0.2096-1 0.9397-2 0.4781-2 0.2671-2 0.1019-2 0.4674-3 0.2098-3 0.1076-3 0.6072-4 0.3681-4 
8 0.7815-1 0.3105-1 0.1435-1 0.7427-2 0.4192-2 0.1615-2 0.7441-3 0.3348-3 0.1719-3 0.9707-4 0.5886-4 
10 0.9067-1 0.3710-1 0.1744-1 0.9115-2 0.5176-2 0.2006-2 0.9271-3 0.4179-3 0.2147-3 0.1213-3 0.7355-4 
12 0.1018 0.4271-1 0.2038-1 0.1075-1 0.6137-2 0.2394-2 0.1109-2 0.5006-3 0.2574-3 0.1454-3 0.8822-4 
15 0.1165 0.5045-1 0.2454-1 0.1310-1 0.7542-2 0.2966-2 0.1380-2 0.6242-3 0.3213-3 0.1817-3 0.1102-3 
20 0.1372 0.6193-1 0.3095-1 0.1682-1 0.9790-2 0.3901-2 0.1826-2 0.8290-3 0.4275-3 0.2419-3 0.1468-3 
25 0.1545 0.7203-1 0.3680-1 0.2030-1 0.1194-1 0.4812-2 0.2265-2 0.1032-2 0.5331-3 0.3019-3 0.1834-3 
30 0.1693 0.8109-1 0.4221-1 0.2358-1 0.1399-1 0.5702-2 0.2698-2 0.1234-2 0.6383-3 0.3618-3 0.2199-3 
35 0.1823 0.8931-1 0.4724-1 0.2670-1 0.1597-1 0.6571-2 0.3126-2 0.1434-2 0.7431-3 0.4215-3 0.2563-3 
40 0.1939 0.9684-1 0.5195-1 0.2966-1 0.1787-1 0.7423-2 0.3548-2 0.1633-2 0.8474-3 0.4811-3 0.2926-3 
45 0.2043 0.1038 0.5639-1 0.3249-1 0.1971-1 0.8256-2 0.3965-2 0.1830-2 0.9512-3 0.5405-3 0.3289-3 
so 0.2138 0.1103 0.6059-1 0.3521-1 0.2149-1 0.9074-2 0.4376-2 0.2026-2 0.1055-2 0.5998-3 0.3652-3 
60 0.2306 0.1220 0.6837-1 0.4032-1 0.2489-1 0.1066-1 0.5186-2 0.2414-2 0.1260-2 0.7179-3 0.4375-3 
70 0.2451 0.1325 0.7547-1 0.4508-1 0.2810-1 0.1220-1 0.5977-2 0.2796-2 0.1464-2 0.8353-3 0.5095-3 
80 0.2578 0.1419 0.8201-1 0.4954-1 0.3115-1 0.1368-1 0.6751-2 0.3174-2 0.1667-2 0.9522-3 0.5813-3 
90 0.2692 0.1505 0.8807-1 0.5373-1 0.3405-1 0.1512-1 0.7509-2 0.3548-2 0.1867-2 0.1069-2 0.6529-3 
100 0.2794 0.1584 0.9374-1 0.5770-1 0.3683-1 0.1651-1 0.8253-2 0.3917-2 0.2067-2 0.1184-2 0.7242-3 
120 0.2973 0.1725 0.1041 0.6506-1 0.4204-1 0.1919-1 0.9700-2 0.4642-2 0.2461-2 0.1414-2 0.8662-3 
140 0.3125 0.1849 0.1133 0.7177-1 0.4688-1 0.2174-1 0.1110-1 0.5352-2 0.2850-2 0.1642-2 0.1007-2 
160 0.3258 0.1959 0.1217 0.7796-1 0.5140-1 0.2416-1 0.1245-1 0.6047-2 0.3234-2 0.1868-2 0.1148-2 
180 0.3375 0.2058 0.1294 0.8370-1 0.5564-1 0.2649-1 0.1376-1 0.6728-2 0.3612-2 0.2092-2 0.1287-2 
200 0.3480 0.2148 0.1365 0.8907-1 0.5965-1 0.2872-1 0.1503-1 0.7396-2 0.3986-2 0.2313-2 0.1426-2 

Footnote. PL = Prediction Limit; Xn = Maximum order statistic 
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Appendix D. Chapter 19 Non-Parametric Prediction Limit Significance Levels Unified Guidance 

Table 19-21. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-4 Plan (PL=Xn) 

w\n so 60 70 80 90 100 120 140 160 180 200 

1 0.3162-5 0.1574-5 0.8691-6 0.5183-6 0.3279-6 0.2175-6 0.1066-6 0.5821-7 0.3442-7 0.2164-7 0.1427-7 
2 0.6324-5 0.3148-5 0.1738-5 0.1037-5 0.6558-6 0.4350-6 0.2132-6 0.1164-6 0.6884-7 0.4327-7 0.2855-7 
3 0. 9485-5 0.4721-5 0.2607-5 0.1555-5 0.9837-6 0.6524-6 0.3198-6 0.1746-6 0.1033-6 0.6491-7 0.4282-7 
4 0.1265-4 0.6295-5 0.3476-5 0.2073-5 0.1312-5 0.8699-6 0.4264-6 0.2328-6 0.1377-6 0.8655-7 0.5709-7 
s 0.1581-4 0. 7868-5 0.4345-5 0.2591-5 0.1640-5 0.1087-5 0.5330-6 0.2911-6 0.1721-6 0.1082-6 0.7137-7 
8 0.2528-4 0.1259-4 0.6952-5 0.4146-5 0.2623-5 0.1740-5 0.8527-6 0.4657-6 0.2754-6 0.1731-6 0.1142-6 
10 0.3160-4 0.1573-4 0.8689-5 0.5182-5 0.3279-5 0.2175-5 0.1066-5 0.5821-6 0.3442-6 0.2164-6 0.1427-6 
12 0.3791-4 0.1888-4 0.1043-4 0.6218-5 0.3935-5 0.2610-5 0.1279-5 0.6985-6 0.4131-6 0.2596-6 0.1713-6 
1S 0.4738-4 0.2359-4 0.1303-4 0. 7772-5 0.4918-5 0.3262-5 0.1599-5 0.8731-6 0.5163-6 0.3245-6 0.2141-6 
20 0.6314-4 0.3145-4 0.1737-4 0.1036-4 0.6557-5 0.4349-5 0.2132-5 0.1164-5 0.6884-6 0.4327-6 0.2855-6 
2S 0.7890-4 0.3931-4 0.2171-4 0.1295-4 0.8196-5 0.5436-5 0.2665-5 0.1455-5 0.8605-6 0.5409-6 0.3568-6 
30 0.9464-4 0.4716-4 0.2605-4 0.1554-4 0.9835-5 0.6523-5 0.3198-5 0.1746-5 0.1033-5 0.6491-6 0.4282-6 
3S 0.1104-3 0.5501-4 0.3039-4 0.1813-4 0.1147-4 0.7610-5 0.3730-5 0.2037-5 0.1205-5 0. 7573-6 0.4996-6 
40 0.1261-3 0.6285-4 0.3473-4 0.2072-4 0.1311-4 0.8697-5 0.4263-5 0.2328-5 0.1377-5 0.8654-6 0.5709-6 
4S 0.1418-3 0.7069-4 0.3907-4 0.2331-4 0.1475-4 0.9784-5 0.4796-5 0.2619-5 0.1549-5 0.9736-6 0.6423-6 
so 0.1575-3 0.7853-4 0.4340-4 0.2589-4 0.1639-4 0.1087-4 0.5329-5 0.2910-5 0.1721-5 0.1082-5 0. 7137-6 
60 0.1888-3 0.9420-4 0.5207-4 0.3107-4 0.1966-4 0.1304-4 0.6394-5 0.3492-5 0.2065-5 0.1298-5 0.8564-6 
70 0.2201-3 0.1098-3 0.6073-4 0.3624-4 0.2294-4 0.1522-4 0.7460-5 0.4074-5 0.2409-5 0.1515-5 0.9991-6 
80 0.2514-3 0.1255-3 0.6939-4 0.4141-4 0.2621-4 0.1739-4 0.8525-5 0.4656-5 0.2754-5 0.1731-5 0.1142-5 
90 0.2825-3 0.1411-3 0.7805-4 0.4658-4 0.2949-4 0.1956-4 0.9591-5 0.5238-5 0.3098-5 0.1947-5 0.1285-5 
100 0.3137-3 0.1567-3 0.8670-4 0.5175-4 0.3276-4 0.2173-4 0.1066-4 0.5820-5 0.3442-5 0.2164-5 0.1427-5 
120 0.3758-3 0.1879-3 0.1040-3 0.6208-4 0.3931-4 0.2608-4 0.1279-4 0.6984-5 0.4130-5 0.2596-5 0.1713-5 
140 0.4378-3 0.2191-3 0.1213-3 0.7241-4 0.4585-4 0.3042-4 0.1492-4 0.8147-5 0.4818-5 0.3029-5 0.1998-5 
160 0.4996-3 0.2501-3 0.1385-3 0.8273-4 0.5239-4 0.3476-4 0.1705-4 0.9311-5 0.5507-5 0.3462-5 0.2284-5 
180 0.5612-3 0.2812-3 0.1558-3 0.9304-4 0.5892-4 0.3910-4 0.1918-4 0.1047-4 0.6195-5 0.3894-5 0.2569-5 
200 0.6226-3 0.3122-3 0.1730-3 0.1033-3 0.6546-4 0.4344-4 0.2131-4 0.1164-4 0.6883-5 0.4327-5 0.2854-5 

Footnote. PL = Prediction Limit; Xn = Maximum order statistic 
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Appendix D. Chapter 19 Non-Parametric Prediction Limit Significance Levels Unified Guidance 

Table 19-21. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-4 Plan (PL=Xn-1) 

w\n 4 6 8 10 12 16 20 25 30 35 40 

1 0.7143-1 0.2381-1 0.1010-1 0.4995-2 0.2747-2 0.1032-2 0.4705-3 0.2105-3 0.1078-3 0.6079-4 0.3683-4 
2 0.1247 0.4462-1 0.1950-1 0.9784-2 0.5423-2 0.2052-2 0.9382-3 0.4204-3 0.2154-3 0.1215-3 0.7364-4 
3 0.1669 0.6314-1 0.2831-1 0.1439-1 0.8032-2 0.3060-2 0.1403-2 0.6296-3 0.3229-3 0.1822-3 0.1104-3 
4 0.2017 0.7983-1 0.3660-1 0.1882-1 0.1058-1 0.4056-2 0.1865-2 0.8382-3 0.4302-3 0.2428-3 0.1472-3 
5 0.2312 0.9503-1 0.4444-1 0.2310-1 0.1307-1 0.5042-2 0.2324-2 0.1046-2 0.5372-3 0.3033-3 0.1839-3 
8 0.2991 0.1339 0.6571-1 0.3514-1 0.2021-1 0.7935-2 0.3686-2 0.1666-2 0.8574-3 0.4846-3 0.2940-3 
10 0.3333 0.1557 0.7837-1 0.4258-1 0.2474-1 0.9815-2 0.4582-2 0.2077-2 0.1070-2 0.6051-3 0.3673-3 
12 0.3619 0.1750 0.9006-1 0.4962-1 0.2909-1 0.1166-1 0.5467-2 0.2485-2 0.1282-2 0.7254-3 0.4404-3 
15 0.3972 0.2004 0.1061 0.5954-1 0.3534-1 0.1436-1 0.6778-2 0.3093-2 0.1598-2 0.9054-3 0.5500-3 
20 0.4427 0.2357 0.1296 0.7463-1 0.4508-1 0.1870-1 0.8917-2 0.4094-2 0.2123-2 0.1204-2 0.7322-3 
25 0.4776 0.2649 0.1500 0.8825-1 0.5411-1 0.2286-1 0.1100-1 0.5083-2 0.2643-2 0.1502-2 0.9138-3 
30 0.5057 0.2897 0.1681 0.1007 0.6255-1 0.2686-1 0.1304-1 0.6058-2 0.3159-2 0.1798-2 0.1095-2 
35 0.5289 0.3112 0.1843 0.1121 0.7048-1 0.3071-1 0.1504-1 0.7021-2 0.3671-2 0.2092-2 0.1275-2 
40 0.5487 0.3301 0.1991 0.1228 0.7795-1 0.3443-1 0.1699-1 0.7973-2 0.4179-2 0.2385-2 0.1455-2 
45 0.5658 0.3470 0.2125 0.1327 0.8504-1 0.3803-1 0.1889-1 0.8912-2 0.4684-2 0.2677-2 0.1635-2 
50 0.5807 0.3623 0.2250 0.1420 0.9177-1 0.4152-1 0.2077-1 0.9841-2 0.5185-2 0.2968-2 0.1814-2 
60 0.6060 0.3888 0.2472 0.1590 0.1043 0.4818-1 0.2440-1 0.1167-1 0.6177-2 0.3545-2 0.2170-2 
70 0.6266 0.4114 0.2667 0.1743 0.1158 0.5449-1 0.2791-1 0.1345-1 0.7155-2 0.4117-2 0.2524-2 
80 0.6439 0.4309 0.2840 0.1882 0.1265 0.6048-1 0.3130-1 0.1520-1 0.8120-2 0.4684-2 0.2876-2 
90 0.6587 0.4480 0.2996 0.2009 0.1364 0.6618-1 0.3457-1 0.1692-1 0.9073-2 0.5247-2 0.3226-2 
100 0.6715 0.4633 0.3137 0.2127 0.1457 0.7163-1 0.3775-1 0.1860-1 0.1001-1 0.5805-2 0.3574-2 
120 0.6930 0.4895 0.3386 0.2338 0.1626 0.8187-1 0.4384-1 0.2187-1 0.1186-1 0.6907-2 0.4265-2 
140 0.7103 0.5113 0.3599 0.2523 0.1778 0.9135-1 0.4960-1 0.2502-1 0.1367-1 0.7993-2 0.4948-2 
160 0.7247 0.5300 0.3785 0.2688 0.1916 0.1002 0.5508-1 0.2807-1 0.1543-1 0.9062-2 0.5624-2 
180 0.7370 0.5462 0.3950 0.2837 0.2042 0.1085 0.6031-1 0.3103-1 0.1716-1 0.1012-1 0.6293-2 
200 0.7476 0.5605 0.4097 0.2972 0.2158 0.1163 0.6531-1 0.3390-1 0.1886-1 0.1115-1 0.6956-2 

Footnote. PL = Prediction Limit; Xn-1 = 2nd largest order statistic 
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Appendix D. Chapter 19 Non-Parametric Prediction Limit Significance Levels Unified Guidance 

Table 19-21. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-4 Plan (PL=Xn-1) 

w\n so 60 70 80 90 100 120 140 160 180 200 

1 0.1S81-4 0.7869-5 0.4345-5 0.2591-5 0.1640-5 0.1087-5 0.5330-6 0.2911-6 0.1721-6 0.1082-6 0.7137-7 
2 0.3162-4 0.1574-4 0.8691-5 0.5183-5 0.3279-5 0.2175-5 0.1066-5 0.5821-6 0.3442-6 0.2164-6 0.1427-6 
3 0.4742-4 0.2360-4 0.1304-4 0.7774-5 0.4919-5 0.3262-5 0.1599-5 0.8732-6 0.5163-6 0.3246-6 0.2141-6 
4 0.6321-4 0.3147-4 0.1738-4 0.1036-4 0.6558-5 0.4349-5 0.2132-5 0.1164-5 0.6884-6 0.4327-6 0.2855-6 
s 0.7900-4 0.3933-4 0.2172-4 0.1296-4 0.8197-5 0.5437-5 0.2665-5 0.1455-5 0.8605-6 0.5409-6 0.3568-6 
8 0.1264-3 0.6292-4 0.3475-4 0.2073-4 0.1312-4 0.8698-5 0.4264-5 0.2328-5 0.1377-5 0.8655-6 0.5709-6 
10 0.1S79-3 0.7864-4 0.4344-4 0.2591-4 0.1639-4 0.1087-4 0.5329-5 0.2910-5 0.1721-5 0.1082-5 0.7137-6 
12 0.1894-3 0.9435-4 0.5212-4 0.3109-4 0.1967-4 0.1305-4 0.6395-5 0.3493-5 0.2065-5 0.1298-5 0.8564-6 
1S 0.2367-3 0.1179-3 0.6514-4 0.3886-4 0.2459-4 0.1631-4 0.7994-5 0.4366-5 0.2582-5 0.1623-5 0.1071-5 
20 0.3153-3 0.1572-3 0.8684-4 0.5180-4 0.3278-4 0.2174-4 0.1066-4 0.5821-5 0.3442-5 0.2164-5 0.1427-5 
2S 0.3939-3 0.1964-3 0.1085-3 0.6474-4 0.4097-4 0.2718-4 0.1332-4 0.7276-5 0.4303-5 0.2705-5 0.1784-5 
30 0.4723-3 0.2356-3 0.1302-3 0.7768-4 0.4916-4 0.3261-4 0.1599-4 0.8731-5 0.5163-5 0.3245-5 0.2141-5 
3S O.S506-3 0.2747-3 0.1519-3 0.9061-4 0.5735-4 0.3804-4 0.1865-4 0.1019-4 0.6023-5 0.3786-5 0.2498-5 
40 0.6288-3 0.3138-3 0.1735-3 0.1035-3 0.6554-4 0.4348-4 0.2131-4 0.1164-4 0.6884-5 0.4327-5 0.2855-5 
4S 0.7069-3 0.3529-3 0.1952-3 0.1165-3 0.7373-4 0.4891-4 0.2398-4 0.1310-4 0. 7744-5 0.4868-5 0.3211-5 
so 0.7849-3 0.3920-3 0.2168-3 0.1294-3 0.8191-4 0.5434-4 0.2664-4 0.1455-4 0.8605-5 0.5409-5 0.3568-5 
60 0.9405-3 0.4700-3 0.2601-3 0.1552-3 0.9828-4 0.6520-4 0.3197-4 0.1746-4 0.1033-4 0.6491-5 0.4282-5 
70 0.1096-2 0.5480-3 0.3033-3 0.1811-3 0.1146-3 0.7606-4 0.3729-4 0.2037-4 0.1205-4 0.7572-5 0.4996-5 
80 0.1250-2 0.6258-3 0.3464-3 0.2069-3 0.1310-3 0.8691-4 0.4262-4 0.2328-4 0.1377-4 0.8654-5 0.5709-5 
90 0.1405-2 0.7035-3 0.3896-3 0.2327-3 0.1473-3 0.9776-4 0.4794-4 0.2619-4 0.1549-4 0.9735-5 0.6423-5 
100 0.1559-2 0.7810-3 0.4327-3 0.2584-3 0.1637-3 0.1086-3 0.5327-4 0.2910-4 0.1721-4 0.1082-4 0.7136-5 
120 0.186S-2 0.9359-3 0.5188-3 0.3100-3 0.1963-3 0.1303-3 0.6391-4 0.3491-4 0.2065-4 0.1298-4 0.8563-5 
140 0.2170-2 0.1090-2 0.6047-3 0.3614-3 0.2290-3 0.1520-3 0.7456-4 0.4073-4 0.2409-4 0.1514-4 0.9990-5 
160 0.2474-2 0.1244-2 0.6905-3 0.4129-3 0.2616-3 0.1737-3 0.8520-4 0.4654-4 0.2753-4 0.1731-4 0.1142-4 
180 0.277S-2 0.1398-2 0.7761-3 0.4642-3 0.2942-3 0.1953-3 0.9583-4 0.5236-4 0.3097-4 0.1947-4 0.1284-4 
200 0.307S-2 0.1551-2 0.8616-3 0.5155-3 0.3268-3 0.2170-3 0.1065-3 0.5817-4 0.3441-4 0.2163-4 0.1427-4 

Footnote. PL= Prediction Limit; Xn-i = 2nd largest order statistic 
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Appendix D. Chapter 19 Non-Parametric Prediction Limit Significance Levels Unified Guidance 

Table 19-22. Per-Constituent Significance Levels (a) for Non-Parametric Modified California Plan (PL=Xn) 

w\n 4 6 8 10 12 16 20 25 30 35 40 

1 0.5714-1 0.2619-1 0.1414-1 0.8492-2 0.5495-2 0.2683-2 0.1506-2 0.8315-3 0.5067-3 0.3313-3 0.2284-3 
2 0.9971-1 0.4830-1 0.2684-1 0.1638-1 0.1071-1 0.5289-2 0.2985-2 0.1654-2 0.1010-2 0.6610-3 0.4559-3 
3 0.1335 0.6746-1 0.3838-1 0.2377-1 0.1568-1 0.7824-2 0.4438-2 0.2468-2 0.1510-2 0.9892-3 0.6827-3 
4 0.1614 0.8438-1 0.4898-1 0.3072-1 0.2043-1 0.1029-1 0.5867-2 0.3274-2 0.2006-2 0.1316-2 0.9088-3 
5 0.1852 0.9954-1 0.5879-1 0.3728-1 0.2498-1 0.1270-1 0.7272-2 0.4071-2 0.2499-2 0.1641-2 0.1134-2 
8 0.2402 0.1374 0.8449-1 0.5507-1 0.3762-1 0.1958-1 0.1136-1 0.6416-2 0.3959-2 0.2607-2 0.1805-2 
10 0.2682 0.1580 0.9925-1 0.6565-1 0.4532-1 0.2391-1 0.1398-1 0.7943-2 0.4916-2 0.3244-2 0.2249-2 
12 0.2917 0.1761 0.1126 0.7541-1 0.5255-1 0.2807-1 0.1653-1 0.9442-2 0.5862-2 0.3876-2 0.2691-2 
15 0.3211 0.1996 0.1304 0.8878-1 0.6263-1 0.3401-1 0.2023-1 0.1164-1 0.7260-2 0.4813-2 0.3347-2 
20 0.3593 0.2319 0.1558 0.1084 0.7777-1 0.4323-1 0.2610-1 0.1519-1 0.9535-2 0.6349-2 0.4428-2 
25 0.3891 0.2581 0.1772 0.1255 0.9125-1 0.5173-1 0.3163-1 0.1859-1 0.1175-1 0.7854-2 0.5492-2 
30 0.4133 0.2802 0.1958 0.1406 0.1034 0.5962-1 0.3687-1 0.2187-1 0.1390-1 0.9330-2 0.6542-2 
35 0.4336 0.2992 0.2121 0.1541 0.1145 0.6701-1 0.4186-1 0.2504-1 0.1600-1 0.1078-1 0.7576-2 
40 0.4510 0.3158 0.2267 0.1665 0.1247 0.7395-1 0.4662-1 0.2811-1 0.1805-1 0.1220-1 0.8596-2 
45 0.4662 0.3307 0.2399 0.1778 0.1342 0.8051-1 0.5118-1 0.3107-1 0.2006-1 0.1360-1 0.9603-2 
50 0.4796 0.3440 0.2520 0.1882 0.1431 0.8672-1 0.5555-1 0.3395-1 0.2201-1 0.1497-1 0.1060-1 
60 0.5025 0.3671 0.2732 0.2069 0.1591 0.9825-1 0.6380-1 0.3947-1 0.2580-1 0.1766-1 0.1255-1 
70 0.5214 0.3867 0.2916 0.2233 0.1734 0.1088 0.7148-1 0.4470-1 0.2944-1 0.2025-1 0.1445-1 
80 0.5374 0.4036 0.3077 0.2379 0.1863 0.1185 0.7868-1 0.4968-1 0.3295-1 0.2278-1 0.1631-1 
90 0.5514 0.4185 0.3221 0.2510 0.1981 0.1275 0.8545-1 0.5442-1 0.3633-1 0.2523-1 0.1812-1 
100 0.5636 0.4318 0.3350 0.2630 0.2089 0.1359 0.9185-1 0.5897-1 0.3959-1 0.2762-1 0.1990-1 
120 0.5842 0.4545 0.3575 0.2841 0.2281 0.1512 0.1037 0.6752-1 0.4581-1 0.3221-1 0.2335-1 
140 0.6011 0.4734 0.3765 0.3023 0.2449 0.1649 0.1145 0.7545-1 0.5167-1 0.3658-1 0.2667-1 
160 0.6154 0.4896 0.3931 0.3183 0.2598 0.1772 0.1244 0.8286-1 0.5721-1 0.4077-1 0.2986-1 
180 0.6277 0.5038 0.4076 0.3324 0.2732 0.1885 0.1335 0.8981-1 0.6248-1 0.4478-1 0.3295-1 
200 0.6384 0.5162 0.4206 0.3452 0.2853 0.1988 0.1421 0.9637-1 0.6749-1 0.4863-1 0.3594-1 

Footnote. PL = Prediction Limit; Xn = Maximum order statistic 
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Table 19-22. Per-Constituent Significance Levels (a) for Non-Parametric Modified California Plan (PL=Xn) 

w\n so 60 70 80 90 100 120 140 160 180 200 

1 0.1217-3 0.7240-4 0.46S0-4 0.3161-4 0.2246-4 0.1653-4 0.9700-5 0.6170-5 0.4165-5 0.2943-5 0.2155-5 
2 0.2432-3 0.1447-3 0.9296-4 0.6321-4 0.4492-4 0.3305-4 0.1940-4 0.1234-4 0.8330-5 0.5885-5 0.4311-5 
3 0.364S-3 0.2169-3 0.1394-3 0.9479-4 0.6736-4 0.4957-4 0.2910-4 0.1851-4 0.1249-4 0.8827-5 0.6466-5 
4 0.48S6-3 0.2891-3 0.18S8-3 0.1264-3 0.8980-4 0.6608-4 0.3879-4 0.2468-4 0.1666-4 0.1177-4 0.8621-5 
s 0.6064-3 0.3611-3 0.2321-3 0.1S79-3 0.1122-3 0.8259-4 0.4848-4 0.3084-4 0.2082-4 0.1471-4 0.1078-4 
8 0.9674-3 O.S768-3 0.3710-3 0.2S24-3 0.179S-3 0.1321-3 0.7755-4 0.4934-4 0.3331-4 0.2354-4 0.1724-4 
10 0.1207-2 0.7202-3 0.4633-3 0.31S4-3 0.2242-3 0.1651-3 0.9693-4 0.6167-4 0.4164-4 0.2942-4 0.2155-4 
12 0.1446-2 0.8632-3 O.S556-3 0.3782-3 0.2690-3 0.1980-3 0.1163-3 0.7400-4 0.4996-4 0.3530-4 0.2586-4 
1S 0.1802-2 0.1077-2 0.6937-3 0.4724-3 0.3360-3 0.2474-3 0.1453-3 0.9248-4 0.6244-4 0.4412-4 0.3232-4 
20 0.2392-2 0.1432-2 0.9231-3 0.6291-3 0.4476-3 0.3297-3 0.1937-3 0.1233-3 0.8324-4 0.5882-4 0.4309-4 
2S 0.2977-2 0.178S-2 0.11S2-2 0.78S3-3 O.S590-3 0.4118-3 0.2420-3 0.1541-3 0.1040-3 0.7352-4 0.5386-4 
30 0.3S56-2 0.2136-2 0.1379-2 0.9411-3 0.6701-3 0.4938-3 0.2903-3 0.1848-3 0.1248-3 0.8821-4 0.6462-4 
3S 0.4131-2 0.248S-2 0.1606-2 0.1097-2 0.7810-3 0.5757-3 0.3385-3 0.2156-3 0.1456-3 0.1029-3 0.7538-4 
40 0.4700-2 0.2832-2 0.1832-2 0.12S2-2 0.8918-3 0.6574-3 0.3867-3 0.2463-3 0.1664-3 0.1176-3 0.8615-4 
4S O.S266-2 0.3178-2 0.2058-2 0.1406-2 0.1002-2 0.7391-3 0.4348-3 0.2770-3 0.1871-3 0.1323-3 0.9690-4 
so O.S826-2 0.3S21-2 0.2282-2 0.1S60-2 0.1113-2 0.8206-3 0.4830-3 0.3077-3 0.2079-3 0.1469-3 0.1077-3 
60 0.6934-2 0.4203-2 0.2729-2 0.1868-2 0.1333-2 0.9833-3 0.5790-3 0.3690-3 0.2493-3 0.1763-3 0.1292-3 
70 0.802S-2 0.4878-2 0.3172-2 0.2173-2 0.1SS2-2 0.1146-2 0.6750-3 0.4303-3 0.2908-3 0.2056-3 0.1507-3 
80 0.9100-2 O.S546-2 0.3612-2 0.2478-2 0.1770-2 0.1307-2 0.7707-3 0.4915-3 0.3322-3 0.2349-3 0.1722-3 
90 0.1016-1 0.6207-2 0.4050-2 0.2780-2 0.1988-2 0.1469-2 0.8664-3 0.5526-3 0.3736-3 0.2642-3 0.1936-3 
100 0.1120-1 0.6863-2 0.4484-2 0.3081-2 0.2205-2 0.1630-2 0.9618-3 0.6136-3 0.4149-3 0.2935-3 0.2151-3 
120 0.132S-1 0.81SS-2 O.S344-2 0.3680-2 0.2636-2 0.1950-2 0.1152-2 0.7356-3 0.4975-3 0.3520-3 0.2580-3 
140 0.1S24-1 0.9424-2 0.6194-2 0.4272-2 0.3064-2 0.2269-2 0.1342-2 0.8572-3 0.5800-3 0.4104-3 0.3009-3 
160 0.1719-1 0.1067-1 0.7032-2 0.4860-2 0.3490-2 0.2586-2 0.1531-2 0.9786-3 0.6624-3 0.4688-3 0.3438-3 
180 0.1909-1 0.1190-1 0.7861-2 O.S442-2 0.3912-2 0.2902-2 0.1720-2 0.1100-2 0.7446-3 0.5271-3 0.3866-3 
200 0.2094-1 0.1310-1 0.8680-2 0.6018-2 0.4332-2 0.3216-2 0.1908-2 0.1221-2 0.8268-3 0.5854-3 0.4293-3 

Footnote. PL = Prediction Limit; Xn = Maximum order statistic 
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Table 19-22. Per-Constituent Significance Levels (a) for Non-Parametric Modified California Plan (PL=Xn-1) 

w\n 4 6 8 10 12 16 20 25 30 35 40 

1 0.2000 0.9524-1 0.5253-1 0.3197-1 0.2088-1 0.1032-1 0.5835-2 0.3242-2 0.1984-2 0.1301-2 0.8987-3 
2 0.3182 0.1663 0.9619-1 0.6018-1 0.3998-1 0.2014-1 0.1149-1 0.6424-2 0.3944-2 0.2591-2 0.1792-2 
3 0.3981 0.2221 0.1334 0.8541-1 0.5760-1 0.2950-1 0.1698-1 0.9550-2 0.5881-2 0.3871-2 0.2680-2 
4 0.4567 0.2677 0.1658 0.1082 0.7393-1 0.3846-1 0.2232-1 0.1262-1 0.7795-2 0.5140-2 0.3563-2 
5 0.5019 0.3059 0.1943 0.1290 0.8916-1 0.4705-1 0.2751-1 0.1564-1 0.9688-2 0.6400-2 0.4441-2 
8 0.5932 0.3920 0.2635 0.1821 0.1295 0.7085-1 0.4230-1 0.2440-1 0.1524-1 0.1012-1 0.7046-2 
10 0.6335 0.4343 0.3000 0.2116 0.1528 0.8534-1 0.5157-1 0.3001-1 0.1885-1 0.1255-1 0.8758-2 
12 0.6647 0.4689 0.3313 0.2377 0.1739 0.9889-1 0.6042-1 0.3545-1 0.2238-1 0.1495-1 0.1045-1 
15 0.7004 0.5107 0.3707 0.2717 0.2022 0.1177 0.7300-1 0.4333-1 0.2754-1 0.1848-1 0.1296-1 
20 0.7422 0.5632 0.4228 0.3185 0.2424 0.1458 0.9234-1 0.5576-1 0.3582-1 0.2421-1 0.1705-1 
25 0.7715 0.6022 0.4635 0.3566 0.2761 0.1705 0.1100 0.6742-1 0.4373-1 0.2974-1 0.2104-1 
30 0.7934 0.6327 0.4964 0.3884 0.3051 0.1926 0.1262 0.7840-1 0.5131-1 0.3510-1 0.2494-1 
35 0.8105 0.6574 0.5239 0.4157 0.3304 0.2126 0.1412 0.8880-1 0.5858-1 0.4030-1 0.2874-1 
40 0.8244 0.6780 0.5474 0.4393 0.3528 0.2308 0.1552 0.9866-1 0.6558-1 0.4535-1 0.3246-1 
45 0.8358 0.6954 0.5677 0.4602 0.3729 0.2475 0.1683 0.1080 0.7232-1 0.5026-1 0.3610-1 
so 0.8455 0.7104 0.5855 0.4789 0.3910 0.2630 0.1806 0.1170 0.7882-1 0.5504-1 0.3967-1 
60 0.8611 0.7352 0.6155 0.5108 0.4227 0.2907 0.2032 0.1338 0.9119-1 0.6422-1 0.4658-1 
70 0.8732 0.7549 0.6400 0.5374 0.4496 0.3150 0.2234 0.1492 0.1028 0.7296-1 0.5322-1 
80 0.8829 0.7710 0.6604 0.5600 0.4728 0.3366 0.2419 0.1636 0.1138 0.8130-1 0.5962-1 
90 0.8909 0.7845 0.6778 0.5796 0.4931 0.3559 0.2587 0.1770 0.1241 0.8928-1 0.6580-1 
100 0.8976 0.7961 0.6929 0.5968 0.5112 0.3735 0.2742 0.1895 0.1339 0.9693-1 0.7177-1 
120 0.9083 0.8149 0.7179 0.6257 0.5421 0.4042 0.3020 0.2124 0.1522 0.1114 0.8315-1 
140 0.9165 0.8297 0.7379 0.6492 0.5676 0.4304 0.3262 0.2329 0.1689 0.1248 0.9386-1 
160 0.9231 0.8417 0.7543 0.6689 0.5893 0.4531 0.3477 0.2514 0.1843 0.1373 0.1040 
180 0.9285 0.8516 0.7682 0.6857 0.6079 0.4731 0.3669 0.2684 0.1985 0.1490 0.1136 
200 0.9330 0.8601 0.7801 0.7002 0.6243 0.4909 0.3843 0.2839 0.2118 0.1601 0.1227 

Footnote. PL = Prediction Limit; Xn-1 = 2nd largest order statistic 
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Table 19-22. Per-Constituent Significance Levels (a) for Non-Parametric Modified California Plan (PL=Xn-1) 

w\n so 60 70 80 90 100 120 140 160 180 200 

1 0.4806-3 0.2864-3 0.1842-3 0.12S4-3 0.8919-4 0.6S68-4 0.38S9-4 0.24S7-4 0.16S9-4 0.1173-4 0.8S93-S 
2 0.9S97-3 O.S723-3 0.3682-3 0.2S07-3 0.1783-3 0.1313-3 0.7716-4 0.4913-4 0.3318-4 0.234S-4 0.1718-4 
3 0.1437-2 0.8S76-3 O.S520-3 0.37S9-3 0.2674-3 0.1969-3 0.11S7-3 0.7368-4 0.4977-4 0.3S18-4 0.2S78-4 
4 0.1913-2 0.1142-2 0.73SS-3 O.S010-3 0.3S64-3 0.262S-3 0.1S43-3 0.9823-4 0.663S-4 0.4690-4 0.3437-4 
s 0.2387-2 0.1426-2 0.9187-3 0.62S9-3 0.44S4-3 0.3281-3 0.1928-3 0.1228-3 0.8294-4 O.S862-4 0.4296-4 
8 0.3801-2 0.227S-2 0.1467-2 0.1000-2 0.7119-3 O.S24S-3 0.3084-3 0.1964-3 0.1327-3 0.9379-4 0.6873-4 
10 0.4736-2 0.2838-2 0.1831-2 0.1249-2 0.8892-3 0.6S53-3 0.3853-3 0.24S4-3 0.16S8-3 0.1172-3 0.8S90-4 
12 O.S66S-2 0.3399-2 0.219S-2 0.1497-2 0.1066-2 0.7860-3 0.4623-3 0.294S-3 0.1990-3 0.1407-3 0.1031-3 
1S 0.7048-2 0.4236-2 0.2738-2 0.1869-2 0.1332-2 0.9817-3 O.S776-3 0.3680-3 0.2486-3 0.17S8-3 0.1288-3 
20 0.932S-2 O.S621-2 0.3639-2 0.2486-2 0.1773-2 0.1307-2 0.769S-3 0.4904-3 0.3314-3 0.2343-3 0.1717-3 
2S 0.11S7-1 0.6992-2 0.4S33-2 0.3101-2 0.2212-2 0.1632-2 0.9612-3 0.6127-3 0.4141-3 0.2928-3 0.2146-3 
30 0.1378-1 0.83S1-2 O.S423-2 0.3713-2 0.26S0-2 0.19S6-2 0.11S3-2 0.7349-3 0.4968-3 0.3S13-3 0.2S7S-3 
3S 0.1S96-1 0.9696-2 0.6306-2 0.4322-2 0.3086-2 0.2279-2 0.1344-2 0.8569-3 O.S794-3 0.4098-3 0.3004-3 
40 0.1810-1 0.1103-1 0.7184-2 0.4928-2 0.3S22-2 0.2602-2 0.1S34-2 0.9789-3 0.6619-3 0.4682-3 0.3432-3 
4S 0.2022-1 0.123S-1 0.8057-2 O.SS31-2 0.39SS-2 0.2923-2 0.172S-2 0.1101-2 0.7444-3 O.S266-3 0.3861-3 
so 0.2231-1 0.1366-1 0.8924-2 0.6132-2 0.4388-2 0.3244-2 0.191S-2 0.1222-2 0.8269-3 O.S8S0-3 0.4289-3 
60 0.2642-1 0.162S-1 0.1064-1 0.7327-2 O.S248-2 0.3883-2 0.229S-2 0.146S-2 0.9916-3 0.7017-3 O.S14S-3 
70 0.3041-1 0.1879-1 0.1234-1 0.8511-2 0.6103-2 0.4S20-2 0.2673-2 0.1708-2 0.11S6-2 0.8182-3 0.6000-3 
80 0.3432-1 0.2129-1 0.1402-1 0.9685-2 0.69S3-2 O.S1S3-2 0.3051-2 0.1950-2 0.1320-2 0.9347-3 0.68SS-3 
90 0.3813-1 0.237S-1 0.1S68-1 0.108S-1 0.7798-2 O.S783-2 0.3427-2 0.2192-2 0.1484-2 0.1051-2 0.7709-3 
100 0.4185-1 0.2617-1 0.1732-1 0.1200-1 0.8637-2 0.6411-2 0.3802-2 0.2433-2 0.1648-2 0.1167-2 0.8563-3 
120 0.4906-1 0.3091-1 0.205S-1 0.1429-1 0.1030-1 0.76S7-2 0.4SS0-2 0.2914-2 0.197S-2 0.1399-2 0.1027-2 
140 O.SS98-1 0.3SS1-1 0.2372-1 0.1653-1 0.119S-1 0.8891-2 O.S293-2 0.3393-2 0.2302-2 0.1631-2 0.1197-2 
160 0.6262-1 0.3998-1 0.2681-1 0.187S-1 0.13S7-1 0.1012-1 0.6032-2 0.3871-2 0.2627-2 0.1862-2 0.1367-2 
180 0.6902-1 0.4433-1 0.2985-1 0.2093-1 0.1S18-1 0.1133-1 0.6766-2 0.4347-2 0.29S1-2 0.2093-2 0.1S37-2 
200 0.7S20-1 0.48S6-1 0.3283-1 0.2308-1 0.1677-1 0.12S3-1 0.7497-2 0.4821-2 0.327S-2 0.2324-2 0.1707-2 

Footnote. PL= Prediction Limit; Xn-i = 2nd largest order statistic 
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D.4.2 PLANS ON MEDIANS OF ORDER 3 
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Table 19-23. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-1 Plan for Median (PL=Xn) 

w/n 4 6 8 10 12 16 20 25 30 35 40 

1 0.1429 0.8333-1 0.5455-1 0.3846-1 0.2857-1 0.1754-1 0.1186-1 0.7937-2 0.5682-2 0.4267-2 0.3322-2 
2 0.2333 0.1455 0.9890-1 0.7143-1 0.5392-1 0.3377-1 0.2308-1 0.1557-1 0.1120-1 0.8443-2 0.6588-2 
3 0.2979 0.1945 0.1361 0.1002 0.7669-1 0.4885-1 0.3372-1 0.2293-1 0.1658-1 0.1253-1 0.9798-2 
4 0.3473 0.2347 0.1681 0.1258 0.9735-1 0.6295-1 0.4386-1 0.3003-1 0.2181-1 0.1653-1 0.1296-1 
5 0.3867 0.2686 0.1961 0.1487 0.1162 0.7619-1 0.5353-1 0.3690-1 0.2691-1 0.2046-1 0.1606-1 
8 0.4704 0.3458 0.2630 0.2057 0.1647 0.1116 0.8012-1 0.5621-1 0.4147-1 0.3178-1 0.2509-1 
10 0.5094 0.3841 0.2980 0.2367 0.1918 0.1323 0.9614-1 0.6815-1 0.5062-1 0.3898-1 0.3089-1 
12 0.5404 0.4157 0.3277 0.2636 0.2158 0.1512 0.1110 0.7943-1 0.5937-1 0.4593-1 0.3652-1 
15 0.5770 0.4544 0.3650 0.2982 0.2473 0.1767 0.1315 0.9527-1 0.7184-1 0.5592-1 0.4467-1 
20 0.6218 0.5035 0.4139 0.3448 0.2907 0.2132 0.1618 0.1192 0.9105-1 0.7154-1 0.5756-1 
25 0.6543 0.5405 0.4520 0.3821 0.3262 0.2441 0.1882 0.1407 0.1086 0.8604-1 0.6965-1 
30 0.6794 0.5698 0.4828 0.4128 0.3560 0.2708 0.2115 0.1601 0.1248 0.9956-1 0.8106-1 
35 0.6996 0.5938 0.5084 0.4388 0.3816 0.2943 0.2324 0.1779 0.1397 0.1122 0.9185-1 
40 0.7162 0.6139 0.5303 0.4613 0.4039 0.3153 0.2513 0.1942 0.1537 0.1242 0.1021 
45 0.7303 0.6312 0.5492 0.4809 0.4236 0.3341 0.2685 0.2092 0.1667 0.1354 0.1118 
50 0.7424 0.6462 0.5658 0.4984 0.4413 0.3511 0.2844 0.2232 0.1790 0.1461 0.1211 
60 0.7623 0.6711 0.5939 0.5280 0.4716 0.3810 0.3125 0.2486 0.2014 0.1658 0.1385 
70 0.7781 0.6912 0.6167 0.5526 0.4970 0.4065 0.3369 0.2710 0.2216 0.1838 0.1545 
80 0.7911 0.7079 0.6359 0.5733 0.5187 0.4286 0.3585 0.2910 0.2398 0.2003 0.1693 
90 0.8019 0.7220 0.6523 0.5912 0.5375 0.4481 0.3777 0.3091 0.2566 0.2155 0.1831 
100 0.8112 0.7342 0.6665 0.6068 0.5540 0.4655 0.3949 0.3256 0.2719 0.2296 0.1959 
120 0.8264 0.7542 0.6902 0.6330 0.5820 0.4952 0.4249 0.3547 0.2993 0.2551 0.2194 
140 0.8383 0.7702 0.7092 0.6543 0.6049 0.5200 0.4503 0.3797 0.3232 0.2776 0.2404 
160 0.8481 0.7833 0.7249 0.6721 0.6242 0.5411 0.4721 0.4015 0.3443 0.2977 0.2593 
180 0.8562 0.7944 0.7382 0.6872 0.6407 0.5594 0.4912 0.4207 0.3632 0.3158 0.2764 
200 0.8632 0.8039 0.7497 0.7003 0.6550 0.5754 0.5081 0.4380 0.3802 0.3323 0.2922 

Footnote. PL = Prediction Limit; Xn = Maximum order statistic 
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Table 19-23. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-1 Plan for Median (PL=Xn) 

w\n so 60 70 80 90 100 120 140 160 180 200 

1 0.2177-2 0.1S36-2 0.1142-2 0.8816-3 0.7013-3 O.S711-3 0.3998-3 0.29SS-3 0.2272-3 0.1801-3 0.1463-3 
2 0.4329-2 0.3059-2 0.2276-2 0.17S9-2 0.1400-2 0.1140-2 0.7988-3 O.S905-3 0.4S41-3 0.3601-3 0.292S-3 
3 0.64S6-2 0.4S70-2 0.3403-2 0.2632-2 0.2096-2 0.1708-2 0.1197-2 0.8849-3 0.6808-3 O.S399-3 0.4386-3 
4 0.8S60-2 0.6069-2 0.4S24-2 0.3S01-2 0.2789-2 0.2273-2 0.1S94-2 0.1179-2 0.9071-3 0.719S-3 O.S84S-3 
s 0.1064-1 0.7SSS-2 O.S637-2 0.4365-2 0.3479-2 0.2837-2 0.1990-2 0.1472-2 0.1133-2 0.8989-3 0.7304-3 
8 0.167S-1 0.1194-1 0.8938-2 0.693S-2 O.SS3S-2 0.4S18-2 0.3174-2 0.23S0-2 0.1809-2 0.1436-2 0.1167-2 
10 0.2071-1 0.1481-1 0.1111-1 0.8628-2 0.6892-2 O.S630-2 0.39S8-2 0.2933-2 0.22S9-2 0.1793-2 0.14S8-2 
12 0.2460-1 0.1764-1 0.132S-1 0.1030-1 0.8239-2 0.673S-2 0.4739-2 0.3S13-2 0.2707-2 0.2149-2 0.1748-2 
1S 0.3028-1 0.2180-1 0.1642-1 0.1279-1 0.1024-1 0.8380-2 O.S904-2 0.4381-2 0.3378-2 0.2683-2 0.2182-2 
20 0.3939-1 0.28S4-1 0.21S8-1 0.1686-1 0.13S3-1 0.1109-1 0.7829-2 O.S817-2 0.4489-2 0.3S68-2 0.2903-2 
2S 0.4809-1 0.3S05-1 0.2660-1 0.2085-1 0.1676-1 0.1376-1 0.9734-2 0.7241-2 O.SS93-2 0.4448-2 0.3621-2 
30 O.S642-1 0.4134-1 0.31S0-1 0.247S-1 0.1993-1 0.1639-1 0.1162-1 0.86S5-2 0.6691-2 O.S32S-2 0.4337-2 
3S 0.6441-1 0.4743-1 0.3627-1 0.28S7-1 0.2306-1 0.1898-1 0.1348-1 0.1006-1 0.7782-2 0.6196-2 O.S049-2 
40 0.7209-1 O.S334-1 0.4092-1 0.3231-1 0.2612-1 0.21S3-1 0.1S33-1 0.114S-1 0.8866-2 0.7064-2 O.S7S8-2 
4S 0.7948-1 O.S907-1 0.4S46-1 0.3S98-1 0.2914-1 0.2406-1 0.1716-1 0.1283-1 0.9943-2 0.7927-2 0.646S-2 
so 0.8661-1 0.6464-1 0.4990-1 0.39S8-1 0.3211-1 0.26S4-1 0.1897-1 0.1420-1 0.1101-1 0.8786-2 0.7169-2 
60 0.1001 0.7S31-1 O.S847-1 0.46S9-1 0.3792-1 0.3142-1 0.22S3-1 0.1691-1 0.1314-1 0.1049-1 0.8S67-2 
70 0.1128 0.8S44-1 0.6668-1 O.S334-1 0.43S5-1 0.3617-1 0.2603-1 0.19S7-1 0.1S23-1 0.1218-1 0.99SS-2 
80 0.1247 0.9S07-1 0.74S6-1 O.S986-1 0.4901-1 0.4080-1 0.2946-1 0.2220-1 0.1731-1 0.138S-1 0.1133-1 
90 0.13S9 0.1043 0.8213-1 0.6617-1 O.S433-1 0.4S32-1 0.3282-1 0.2480-1 0.1936-1 0.1SS1-1 0.1270-1 
100 0.1466 0.1130 0.8942-1 0.7228-1 0.5949-1 0.4974-1 0.3613-1 0.2735-1 0.2138-1 0.1715-1 0.1405-1 
120 0.1662 0.129S 0.1032 0.839S-1 0.6943-1 O.S827-1 0.42S8-1 0.3236-1 0.2S37-1 0.2039-1 0.1674-1 
140 0.1841 0.1447 0.1161 0.9496-1 0.7888-1 0.6644-1 0.4881-1 0.3723-1 0.2927-1 0.23S8-1 0.1938-1 
160 0.2006 0.1S88 0.1282 0.1054 0.8789-1 0.7428-1 O.S484-1 0.4198-1 0.3309-1 0.2670-1 0.2198-1 
180 0.21S7 0.1719 0.1397 0.11S3 0.96S1-1 0.8181-1 0.6068-1 0.4661-1 0.3683-1 0.2978-1 0.24SS-1 
200 0.2297 0.1843 0.1S04 0.1247 0.1048 0.8905-1 0.663S-1 O.S113-1 0.4050-1 0.3280-1 0.2708-1 

Footnote. PL = Prediction Limit; Xn = Maximum order statistic 
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Appendix D. Chapter 19 Non-Parametric Prediction Limit Significance Levels Unified Guidance 

Table 19-23. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-1 Plan for Median (PL=Xn-1) 

w\n 4 6 8 10 12 16 20 25 30 35 40 

1 0.3714 0.2262 0.1515 0.1084 0.8132-1 0.5057-1 0.3444-1 0.2320-1 0.1668-1 0.1257-1 0.9805-2 
2 0.5381 0.3636 0.2587 0.1923 0.1480 0.9501-1 0.6589-1 0.4497-1 0.3259-1 0.2469-1 0.1933-1 
3 0.6336 0.4570 0.3394 0.2597 0.2041 0.1345 0.9476-1 0.6546-1 0.4781-1 0.3639-1 0.2860-1 
4 0.6957 0.5251 0.4026 0.3152 0.2520 0.1699 0.1214 0.8481-1 0.6238-1 0.4771-1 0.3762-1 
5 0.7395 0.5771 0.4537 0.3620 0.2935 0.2019 0.1461 0.1031 0.7634-1 0.5866-1 0.4640-1 
8 0.8173 0.6796 0.5622 0.4672 0.3913 0.2821 0.2107 0.1527 0.1151 0.8950-1 0.7144-1 
10 0.8474 0.7232 0.6120 0.5183 0.4410 0.3257 0.2474 0.1820 0.1385 0.1086 0.8714-1 
12 0.8689 0.7559 0.6509 0.5595 0.4822 0.3634 0.2801 0.2088 0.1604 0.1266 0.1021 
15 0.8916 0.7922 0.6957 0.6087 0.5327 0.4115 0.3232 0.2450 0.1907 0.1519 0.1234 
20 0.9158 0.8329 0.7483 0.6685 0.5962 0.4754 0.3827 0.2971 0.2353 0.1899 0.1559 
25 0.9311 0.8600 0.7847 0.7115 0.6432 0.5251 0.4310 0.3410 0.2741 0.2238 0.1854 
30 0.9416 0.8792 0.8115 0.7439 0.6796 0.5653 0.4713 0.3788 0.3083 0.2542 0.2122 
35 0.9493 0.8937 0.8321 0.7694 0.7087 0.5984 0.5054 0.4117 0.3387 0.2817 0.2369 
40 0.9552 0.9051 0.8484 0.7900 0.7326 0.6264 0.5348 0.4407 0.3660 0.3068 0.2596 
45 0.9599 0.9141 0.8618 0.8071 0.7527 0.6503 0.5604 0.4665 0.3907 0.3298 0.2807 
50 0.9637 0.9216 0.8729 0.8214 0.7697 0.6711 0.5831 0.4896 0.4131 0.3509 0.3003 
60 0.9694 0.9332 0.8903 0.8443 0.7972 0.7054 0.6213 0.5295 0.4526 0.3887 0.3357 
70 0.9736 0.9417 0.9034 0.8617 0.8185 0.7328 0.6523 0.5628 0.4862 0.4215 0.3670 
80 0.9767 0.9482 0.9137 0.8755 0.8356 0.7551 0.6782 0.5912 0.5153 0.4503 0.3948 
90 0.9792 0.9535 0.9219 0.8867 0.8495 0.7737 0.7002 0.6156 0.5409 0.4759 0.4198 
100 0.9812 0.9577 0.9286 0.8960 0.8612 0.7895 0.7191 0.6370 0.5635 0.4988 0.4425 
120 0.9843 0.9642 0.9391 0.9105 0.8797 0.8149 0.7500 0.6726 0.6018 0.5382 0.4819 
140 0.9864 0.9689 0.9468 0.9213 0.8936 0.8346 0.7743 0.7012 0.6331 0.5711 0.5153 
160 0.9881 0.9726 0.9527 0.9297 0.9045 0.8502 0.7940 0.7248 0.6594 0.5990 0.5440 
180 0.9894 0.9754 0.9575 0.9365 0.9134 0.8630 0.8103 0.7447 0.6818 0.6230 0.5690 
200 0.9904 0.9777 0.9613 0.9420 0.9206 0.8737 0.8241 0.7616 0.7011 0.6440 0.5910 

Footnote. PL = Prediction Limit; Xn-i = 2nd largest order statistic 

D-221 
March 2009 

EPAPAV0117723 



Appendix D. Chapter 19 Non-Parametric Prediction Limit Significance Levels Unified Guidance 

Table 19-23. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-1 Plan for Median (PL=Xn-1) 

w/n so 60 70 80 90 100 120 140 160 180 200 

1 0.6446-2 0.4S58-2 0.3393-2 0.2623-2 0.2088-2 0.1702-2 0.1193-2 0.8822-3 0.6788-3 O.S38S-3 0.437S-3 
2 0.1277-1 0.9053-2 0.67S0-2 O.S22S-2 0.4163-2 0.339S-2 0.2381-2 0.1762-2 0.13S6-2 0.1076-2 0.8744-3 
3 0.1897-1 0.1349-1 0.1007-1 0.7806-2 0.622S-2 O.S079-2 0.3S6S-2 0.2639-2 0.2032-2 0.1613-2 0.1311-2 
4 0.2S07-1 0.1786-1 0.1336-1 0.1037-1 0.8273-2 0.67S4-2 0.474S-2 0.3S14-2 0.2707-2 0.2148-2 0.1746-2 
s 0.3105-1 0.2218-1 0.1662-1 0.1291-1 0.1031-1 0.8420-2 O.S920-2 0.4387-2 0.3380-2 0.2683-2 0.2181-2 
8 0.4837-1 0.3480-1 0.2620-1 0.2041-1 0.1634-1 0.1337-1 0.9419-2 0.6989-2 O.S390-2 0.4282-2 0.3483-2 
10 O.S942-1 0.429S-1 0.3243-1 0.2S31-1 0.2029-1 0.1662-1 0.1173-1 0.8713-2 0.6723-2 O.S343-2 0.4347-2 
12 0.7012-1 O.S090-1 0.38S4-1 0.301S-1 0.2420-1 0.198S-1 0.1403-1 0.1043-1 0.8050-2 0.6401-2 O.S210-2 
1S 0.8SS3-1 0.6247-1 0.4750-1 0.3726-1 0.2998-1 0.2462-1 0.1744-1 0.1298-1 0.1003-1 0.7980-2 0.6499-2 
20 0.1097 0.8088-1 0.6189-1 0.4878-1 0.3937-1 0.3242-1 0.2304-1 0.1719-1 0.1330-1 0.1060-1 0.863S-2 
2S 0.1321 0.9829-1 0.7S66-1 O.S989-1 0.4850-1 0.4003-1 0.28SS-1 0.2134-1 0.16S4-1 0.1319-1 0.1076-1 
30 0.1S31 0.1148 0.8887-1 0.7063-1 O.S738-1 0.4747-1 0.3396-1 0.2S44-1 0.197S-1 0.1S76-1 0.1286-1 
3S 0.1727 0.1305 0.101S 0.8102-1 0.6601-1 O.S473-1 0.3928-1 0.2949-1 0.2292-1 0.1831-1 0.1496-1 
40 0.1911 0.14S4 0.1137 0.9107-1 0.7441-1 0.6183-1 0.44S1-1 0.3348-1 0.2606-1 0.2084-1 0.1704-1 
4S 0.208S 0.1S96 0.12S4 0.1008 0.82S9-1 0.6877-1 0.4966-1 0.3743-1 0.2917-1 0.233S-1 0.1910-1 
so 0.2249 0.1732 0.1367 0.1103 0.9056-1 0.7SS6-1 O.S472-1 0.4132-1 0.322S-1 0.2S84-1 0.211S-1 
60 0.2SS2 0.1987 0.1S82 0.1283 0.1059 0.8872-1 0.6460-1 0.4897-1 0.3832-1 0.3076-1 0.2S21-1 
70 0.2826 0.2222 0.1782 0.14S4 0.1206 0.1013 0.7419-1 O.S644-1 0.4427-1 0.3S60-1 0.2922-1 
80 0.307S 0.2439 0.1969 0.1616 0.134S 0.113S 0.8348-1 0.6373-1 O.S011-1 0.4037-1 0.3318-1 
90 0.3304 0.2641 0.2146 0.1769 0.1479 0.12S2 0.92S1-1 0.708S-1 O.SS8S-1 0.4S07-1 0.3709-1 
100 0.3514 0.2830 0.2312 0.1915 0.1607 0.1364 0.1013 0.7782-1 0.6148-1 0.4970-1 0.409S-1 
120 0.3889 0.3172 0.2619 0.2187 0.1848 0.1S77 0.1181 0.9129-1 0.7244-1 O.S87S-1 0.48S3-1 
140 0.4214 0.347S 0.289S 0.2436 0.2070 0.1776 0.1341 0.1042 0.8302-1 0.67S4-1 O.SS93-1 
160 0.4SOO 0.3747 0.3146 0.2665 0.2277 0.1963 0.1492 0.1166 0.9326-1 0.7609-1 0.631S-1 
180 0.47S4 0.3992 0.337S 0.2876 0.2470 0.2138 0.1636 0.128S 0.1032 0.8441-1 0.7021-1 
200 0.4981 0.4214 0.3S86 0.3072 0.26S1 0.2304 0.1774 0.1400 0.1128 0.92S1-1 0.7711-1 

Footnote. PL = Prediction Limit; Xn-i = 2nd largest order statistic 
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Table 19-24. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-2 Plan for Median (PL=Xn) 

w\n 4 6 8 10 12 16 20 25 30 35 40 

1 0.5238-1 0.2121-1 0.1019-1 0.5495-2 0.3221-2 0.1321-2 0.6385-3 0.3002-3 0.1592-3 0.9207-4 0.5690-4 
2 0.8898-1 0.3853-1 0.1918-1 0.1055-1 0.6265-2 0.2605-2 0.1266-2 0.5976-3 0.3174-3 0.1838-3 0.1137-3 
3 0.1171 0.5324-1 0.2725-1 0.1526-1 0.9157-2 0.3853-2 0.1884-2 0.8923-3 0.4749-3 0.2753-3 0.1703-3 
4 0.1400 0.6608-1 0.3461-1 0.1966-1 0.1191-1 0.5069-2 0.2492-2 0.1185-2 0.6315-3 0.3664-3 0.2268-3 
5 0.1593 0.7747-1 0.4138-1 0.2381-1 0.1455-1 0.6255-2 0.3092-2 0.1474-2 0.7873-3 0.4573-3 0.2832-3 
8 0.2035 0.1057 0.5901-1 0.3502-1 0.2187-1 0.9651-2 0.4839-2 0.2329-2 0.1250-2 0.7280-3 0.4517-3 
10 0.2259 0.1210 0.6910-1 0.4167-1 0.2633-1 0.1180-1 0.5965-2 0.2888-2 0.1555-2 0.9071-3 0.5634-3 
12 0.2448 0.1344 0.7820-1 0.4781-1 0.3052-1 0.1386-1 0.7062-2 0.3438-2 0.1856-2 0.1085-2 0.6746-3 
15 0.2683 0.1518 0.9038-1 0.5623-1 0.3638-1 0.1682-1 0.8661-2 0.4248-2 0.2304-2 0.1350-2 0.8406-3 
20 0.2991 0.1758 0.1078 0.6863-1 0.4521-1 0.2143-1 0.1121-1 0.5562-2 0.3036-2 0.1786-2 0.1115-2 
25 0.3232 0.1954 0.1226 0.7947-1 0.5312-1 0.2571-1 0.1363-1 0.6834-2 0.3753-2 0.2216-2 0.1387-2 
30 0.3430 0.2120 0.1354 0.8913-1 0.6030-1 0.2972-1 0.1594-1 0.8067-2 0.4456-2 0.2640-2 0.1656-2 
35 0.3597 0.2264 0.1468 0.9786-1 0.6690-1 0.3349-1 0.1815-1 0.9265-2 0.5145-2 0.3059-2 0.1922-2 
40 0.3741 0.2391 0.1571 0.1058 0.7301-1 0.3706-1 0.2028-1 0.1043-1 0.5821-2 0.3472-2 0.2186-2 
45 0.3867 0.2505 0.1664 0.1132 0.7871-1 0.4044-1 0.2233-1 0.1157-1 0.6486-2 0.3879-2 0.2448-2 
so 0.3980 0.2608 0.1749 0.1200 0.8404-1 0.4367-1 0.2430-1 0.1268-1 0.7139-2 0.4282-2 0.2707-2 
60 0.4173 0.2787 0.1901 0.1323 0.9382-1 0.4972-1 0.2806-1 0.1482-1 0.8413-2 0.5074-2 0.3219-2 
70 0.4334 0.2941 0.2034 0.1432 0.1026 0.5530-1 0.3160-1 0.1687-1 0.9649-2 0.5849-2 0.3723-2 
80 0.4473 0.3075 0.2151 0.1530 0.1106 0.6049-1 0.3494-1 0.1884-1 0.1085-1 0.6607-2 0.4220-2 
90 0.4593 0.3194 0.2257 0.1620 0.1180 0.6535-1 0.3812-1 0.2074-1 0.1202-1 0.7349-2 0.4708-2 
100 0.4700 0.3300 0.2352 0.1702 0.1248 0.6993-1 0.4115-1 0.2257-1 0.1315-1 0.8078-2 0.5190-2 
120 0.4882 0.3484 0.2520 0.1847 0.1371 0.7835-1 0.4683-1 0.2606-1 0.1535-1 0.9495-2 0.6133-2 
140 0.5034 0.3640 0.2665 0.1975 0.1480 0.8598-1 0.5207-1 0.2934-1 0.1744-1 0.1086-1 0.7051-2 
160 0.5163 0.3775 0.2792 0.2087 0.1578 0.9296-1 0.5695-1 0.3245-1 0.1945-1 0.1219-1 0.7947-2 
180 0.5274 0.3893 0.2904 0.2189 0.1666 0.9941-1 0.6151-1 0.3540-1 0.2138-1 0.1347-1 0.8822-2 
200 0.5373 0.3999 0.3006 0.2281 0.1748 0.1054 0.6582-1 0.3822-1 0.2324-1 0.1472-1 0.9677-2 

Footnote. PL = Prediction Limit; Xn = Maximum order statistic 

D-223 
March 2009 

EPAPAV0117725 



Appendix D. Chapter 19 Non-Parametric Prediction Limit Significance Levels Unified Guidance 

Table 19-24. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-2 Plan for Median (PL=Xn) 

w\n so 60 70 80 90 100 120 140 160 180 200 

1 0.2S13-4 0.1276-4 0.714S-S 0.4307-S 0.2749-S 0.183S-S 0.9090-6 0.5001-6 0.2974-6 0.1878-6 0.1243-6 
2 O.S024-4 0.2SS0-4 0.1429-4 0.8613-S O.S497-S 0.3671-S 0.1818-S 0.1000-5 0.5949-6 0.3756-6 0.2487-6 
3 0.7S31-4 0.382S-4 0.2143-4 0.1292-4 0.8244-S O.SS06-S 0.2727-S 0.1500-5 0.8923-6 0.5634-6 0.3730-6 
4 0.1004-3 O.S098-4 0.28S6-4 0.1722-4 0.1099-4 0.7340-S 0.3636-S 0.2000-5 0.1190-5 0.7511-6 0.4973-6 
s 0.12S4-3 0.6370-4 0.3S70-4 0.21S3-4 0.1374-4 0.917S-S 0.4S4S-S 0.2501-5 0.1487-5 0.9389-6 0.6216-6 
8 0.2003-3 0.1018-3 O.S709-4 0.3443-4 0.2198-4 0.1468-4 0.7271-S 0.4001-5 0.2379-5 0.1502-5 0.9946-6 
10 0.2S01-3 0.1272-3 0.7134-4 0.4303-4 0.2747-4 0.183S-4 0.9088-S 0.5001-5 0.2974-5 0.1878-5 0.1243-5 
12 0.2998-3 0.1S26-3 0.8SS7-4 O.S162-4 0.3296-4 0.2201-4 0.1090-4 0.6001-5 0.3569-5 0.2253-5 0.1492-5 
1S 0.3741-3 0.1905-3 0.1069-3 0.64S1-4 0.4119-4 0.27S1-4 0.1363-4 0.7501-5 0.4461-5 0.2817-5 0.1865-5 
20 0.497S-3 0.2S37-3 0.1424-3 0.8S96-4 O.S489-4 0.3667-4 0.1817-4 0.1000-4 0.5948-5 0.3755-5 0.2486-5 
2S 0.6203-3 0.3167-3 0.1779-3 0.1074-3 0.68S9-4 0.4S83-4 0.2271-4 0.1250-4 0.7434-5 0.4694-5 0.3108-5 
30 0.7424-3 0.3794-3 0.2133-3 0.1288-3 0.8228-4 O.S498-4 0.272S-4 0.1500-4 0.8921-5 0.5633-5 0.3729-5 
3S 0.8640-3 0.4420-3 0.2486-3 0.1502-3 0.9S96-4 0.6413-4 0.3179-4 0.1750-4 0.1041-4 0.6571-5 0.4351-5 
40 0.9849-3 O.S04S-3 0.2839-3 0.171S-3 0.1096-3 0.7327-4 0.3632-4 0.1999-4 0.1189-4 0.7510-5 0.4972-5 
4S 0.1105-2 O.S667-3 0.3191-3 0.1929-3 0.1233-3 0.8241-4 0.4086-4 0.2249-4 0.1338-4 0.8448-5 0.5594-5 
so 0.122S-2 0.6288-3 0.3S42-3 0.2142-3 0.1369-3 0.91SS-4 0.4S39-4 0.2499-4 0.1487-4 0.9387-5 0.6215-5 
60 0.1463-2 0.7S2S-3 0.4244-3 0.2S68-3 0.1642-3 0.1098-3 O.S446-4 0.2998-4 0.1784-4 0.1126-4 0.7458-5 
70 0.1699-2 0.87SS-3 0.4943-3 0.2992-3 0.1914-3 0.1280-3 0.63S2-4 0.3497-4 0.2081-4 0.1314-4 0.8701-5 
80 0.1933-2 0.9979-3 O.S639-3 0.3416-3 0.2186-3 0.1463-3 0.72S7-4 0.3997-4 0.2378-4 0.1502-4 0.9943-5 
90 0.2164-2 0.1120-2 0.6334-3 0.3839-3 0.24S8-3 0.164S-3 0.8162-4 0.4495-4 0.2675-4 0.1689-4 0.1119-4 
100 0.2394-2 0.1241-2 0.7026-3 0.4261-3 0.2729-3 0.1826-3 0.9067-4 0.4994-4 0.2972-4 0.1877-4 0.1243-4 
120 0.2848-2 0.1481-2 0.8405-3 O.S103-3 0.3270-3 0.2190-3 0.1087-3 0.5991-4 0.3565-4 0.2252-4 0.1491-4 
140 0.329S-2 0.1720-2 0.977S-3 O.S941-3 0.3810-3 0.2SS2-3 0.1268-3 0.6988-4 0.4159-4 0.2627-4 0.1740-4 
160 0.373S-2 0.19S6-2 0.1114-2 0.6776-3 0.4348-3 0.2914-3 0.1449-3 0.7984-4 0.4752-4 0.3002-4 0.1988-4 
180 0.4169-2 0.2189-2 0.1249-2 0.7608-3 0.488S-3 0.327S-3 0.1629-3 0.8979-4 0.5345-4 0.3377-4 0.2236-4 
200 0.4S96-2 0.2421-2 0.1384-2 0.8437-3 O.S421-3 0.363S-3 0.1809-3 0.9974-4 0.5938-4 0.3752-4 0.2485-4 

Footnote. PL = Prediction Limit; Xn = Maximum order statistic 
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Table 19-24. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-2 Plan for Median (PL=Xn-1) 

w\n 4 6 8 10 12 16 20 25 30 35 40 

1 0.2048 0.8874-1 0.4429-1 0.2448-1 0.1460-1 0.6125-2 0.3001-2 0.1427-2 0.7629-3 0.4439-3 0.2755-3 
2 0.3138 0.1515 0.8008-1 0.4576-1 0.2786-1 0.1195-1 0.5917-2 0.2832-2 0.1519-2 0.8852-3 0.5500-3 
3 0.3849 0.1996 0.1101 0.6462-1 0.4003-1 0.1751-1 0.8754-2 0.4216-2 0.2267-2 0.1324-2 0.8234-3 
4 0.4363 0.2383 0.1360 0.8158-1 0.5129-1 0.2283-1 0.1152-1 0.5579-2 0.3009-2 0.1760-2 0.1096-2 
5 0.4758 0.2705 0.1586 0.9698-1 0.6178-1 0.2794-1 0.1421-1 0.6922-2 0.3745-2 0.2194-2 0.1367-2 
8 0.5558 0.3429 0.2135 0.1363 0.8957-1 0.4215-1 0.2193-1 0.1084-1 0.5913-2 0.3480-2 0.2175-2 
10 0.5914 0.3785 0.2425 0.1582 0.1057 0.5085-1 0.2679-1 0.1337-1 0.7329-2 0.4326-2 0.2708-2 
12 0.6192 0.4079 0.2674 0.1776 0.1204 0.5902-1 0.3146-1 0.1583-1 0.8722-2 0.5163-2 0.3238-2 
15 0.6515 0.4437 0.2990 0.2031 0.1401 0.7045-1 0.3814-1 0.1942-1 0.1077-1 0.6402-2 0.4025-2 
20 0.6902 0.4892 0.3413 0.2386 0.1684 0.8764-1 0.4852-1 0.2514-1 0.1409-1 0.8427-2 0.5319-2 
25 0.7178 0.5237 0.3748 0.2678 0.1925 0.1030 0.5810-1 0.3057-1 0.1729-1 0.1040-1 0.6592-2 
30 0.7389 0.5511 0.4024 0.2925 0.2135 0.1169 0.6702-1 0.3574-1 0.2039-1 0.1233-1 0.7844-2 
35 0.7557 0.5736 0.4257 0.3140 0.2321 0.1296 0.7538-1 0.4068-1 0.2339-1 0.1422-1 0.9076-2 
40 0.7694 0.5926 0.4459 0.3329 0.2487 0.1413 0.8324-1 0.4542-1 0.2631-1 0.1607-1 0.1029-1 
45 0.7810 0.6090 0.4635 0.3498 0.2638 0.1522 0.9067-1 0.4997-1 0.2914-1 0.1789-1 0.1149-1 
so 0.7910 0.6232 0.4792 0.3650 0.2775 0.1623 0.9771-1 0.5436-1 0.3190-1 0.1967-1 0.1266-1 
60 0.8072 0.6471 0.5061 0.3915 0.3019 0.1808 0.1108 0.6268-1 0.3721-1 0.2312-1 0.1497-1 
70 0.8201 0.6665 0.5283 0.4139 0.3229 0.1973 0.1228 0.7047-1 0.4227-1 0.2646-1 0.1722-1 
80 0.8306 0.6827 0.5473 0.4334 0.3414 0.2121 0.1339 0.7781-1 0.4711-1 0.2969-1 0.1942-1 
90 0.8394 0.6965 0.5637 0.4504 0.3579 0.2257 0.1441 0.8475-1 0.5175-1 0.3281-1 0.2156-1 
100 0.8469 0.7085 0.5781 0.4656 0.3727 0.2381 0.1537 0.9134-1 0.5621-1 0.3584-1 0.2365-1 
120 0.8592 0.7283 0.6025 0.4917 0.3985 0.2604 0.1712 0.1036 0.6464-1 0.4166-1 0.2770-1 
140 0.8688 0.7443 0.6224 0.5135 0.4204 0.2797 0.1868 0.1148 0.7252-1 0.4717-1 0.3158-1 
160 0.8767 0.7575 0.6392 0.5320 0.4393 0.2969 0.2009 0.1252 0.7993-1 0.5242-1 0.3532-1 
180 0.8832 0.7687 0.6536 0.5481 0.4560 0.3123 0.2138 0.1349 0.8692-1 0.5743-1 0.3892-1 
200 0.8888 0.7783 0.6662 0.5623 0.4708 0.3263 0.2257 0.1439 0.9354-1 0.6223-1 0.4240-1 

Footnote. PL = Prediction Limit; Xn-1 = 2nd largest order statistic 

D-225 
March 2009 

EPAPAV0117727 



Appendix D. Chapter 19 Non-Parametric Prediction Limit Significance Levels Unified Guidance 

Table 19-24. Per-Constituent Significance Levels (a) for Non-Parametric 1-of-2 Plan for Median (PL=Xn-1) 

w\n so 60 70 80 90 100 120 140 160 180 200 

1 0.122S-3 0.6242-4 0.3S07-4 0.2119-4 0.13S4-4 0.9057-S 0.449S-S 0.2477-S 0.147S-S 0.9321-6 0.617S-6 
2 0.2447-3 0.1248-3 0.7011-4 0.4236-4 0.2708-4 0.1811-4 0.8991-S 0.49S4-S 0.29SO-S 0.1864-S 0.123S-S 
3 0.3667-3 0.1870-3 0.1051-3 0.63S3-4 0.4062-4 0.2717-4 0.1349-4 0.7431-S 0.442S-S 0.2796-S 0.18S3-S 
4 0.4884-3 0.2493-3 0.1401-3 0.8470-4 O.S416-4 0.3622-4 0.1798-4 0.9908-S O.S900-S 0.3728-S 0.2470-S 
s 0.6099-3 0.3114-3 0.17S1-3 0.1058-3 0.6769-4 0.4S27-4 0.2247-4 0.1239-4 0.7374-S 0.4660-S 0.3088-S 
8 0.9731-3 0.497S-3 0.2799-3 0.1693-3 0.1083-3 0.7241-4 0.3S9S-4 0.1981-4 0.1180-4 0.74S6-S 0.4940-S 
10 0.1214-2 0.6212-3 0.3497-3 0.211S-3 0.13S3-3 0.9050-4 0.4494-4 0.2477-4 0.147S-4 0.9320-S 0.617S-S 
12 0.14S4-2 0.7447-3 0.4194-3 0.2S37-3 0.1623-3 0.1086-3 O.S392-4 0.2972-4 0.1770-4 0.1118-4 0.7410-S 
1S 0.1813-2 0.9294-3 O.S237-3 0.3169-3 0.2028-3 0.13S7-3 0.6739-4 0.371S-4 0.2212-4 0.1398-4 0.9262-S 
20 0.2406-2 0.1236-2 0.6972-3 0.4222-3 0.2702-3 0.1808-3 0.8983-4 0.49S2-4 0.2949-4 0.1864-4 0.123S-4 
2S 0.2994-2 0.1S41-2 0.8702-3 O.S272-3 0.3376-3 0.2260-3 0.1123-3 0.6189-4 0.3686-4 0.2330-4 0.1S44-4 
30 0.3S77-2 0.184S-2 0.1043-2 0.6320-3 0.4048-3 0.2710-3 0.1347-3 0.7426-4 0.4423-4 0.279S-4 0.18S2-4 
3S 0.41SS-2 0.2147-2 0.121S-2 0.7367-3 0.4720-3 0.3161-3 0.1S71-3 0.8663-4 O.S160-4 0.3261-4 0.2161-4 
40 0.4728-2 0.2448-2 0.1386-2 0.8411-3 O.S391-3 0.3610-3 0.179S-3 0.9899-4 O.S896-4 0.3727-4 0.2469-4 
4S O.S297-2 0.2747-2 0.1SS7-2 0.94S3-3 0.6061-3 0.4060-3 0.2019-3 0.1114-3 0.6633-4 0.4192-4 0.2778-4 
so O.S861-2 0.304S-2 0.1727-2 0.1049-2 0.6730-3 0.4509-3 0.2243-3 0.1237-3 0.7369-4 0.46S8-4 0.3087-4 
60 0.6976-2 0.3636-2 0.2067-2 0.12S7-2 0.8066-3 O.S406-3 0.2690-3 0.1484-3 0.8841-4 O.S589-4 0.3704-4 
70 0.8074-2 0.4223-2 0.2404-2 0.1464-2 0.9398-3 0.6302-3 0.3137-3 0.1731-3 0.1031-3 0.6S20-4 0.4321-4 
80 0.91S6-2 0.4804-2 0.2740-2 0.1670-2 0.1073-2 0.7196-3 0.3S83-3 0.1978-3 0.1178-3 0.74S1-4 0.4938-4 
90 0.1022-1 O.S380-2 0.3074-2 0.187S-2 0.1205-2 0.8088-3 0.4030-3 0.2224-3 0.1326-3 0.8381-4 O.SS54-4 
100 0.1128-1 0.59S1-2 0.3406-2 0.2079-2 0.1338-2 0.8980-3 0.447S-3 0.2471-3 0.1473-3 0.9311-4 0.6171-4 
120 0.1334-1 0.7080-2 0.406S-2 0.2486-2 0.1601-2 0.1076-2 O.S366-3 0.2964-3 0.1767-3 0.1117-3 0.7404-4 
140 0.1S3S-1 0.8190-2 0.4717-2 0.2891-2 0.1864-2 0.12S3-2 0.62S4-3 0.34S6-3 0.2060-3 0.1303-3 0.8637-4 
160 0.1731-1 0.9284-2 O.S362-2 0.3292-2 0.212S-2 0.1429-2 0.7141-3 0.3947-3 0.23S4-3 0.1489-3 0.9870-4 
180 0.1923-1 0.1036-1 0.6001-2 0.3691-2 0.2385-2 0.1605-2 0.8027-3 0.4439-3 0.2647-3 0.167S-3 0.1110-3 
200 0.2111-1 0.1142-1 0.6634-2 0.4087-2 0.2643-2 0.1781-2 0.8911-3 0.4929-3 0.2941-3 0.1860-3 0.1233-3 

Footnote. PL= Prediction Limit; Xn-i = 2nd largest order statistic 
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Table 21-1. Land's Factors (H.01) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 3 4 6 7 8 9 10 11 12 13 14 

0.10 -4.435 -3.437 -3.047 -2.849 -2.730 -2.653 -2.598 -2.558 -2.527 -2.503 -2.484 -2.467 
0.20 -3.720 -3.089 -2.819 -2.677 -2.590 -2.534 -2.494 -2.465 -2.442 -2.425 -2.411 -2.400 
0.30 -3.260 -2.836 -2.646 -2.544 -2.482 -2.441 -2.413 -2.393 -2.378 -2.366 2.357 -2.350 
0.40 -2.943 -2.649 -2.514 -2.442 -2.399 -2.371 -2.353 -2.340 -2.330 -2.324 -2.319 -2.315 
0.50 -2. 714 -2.508 -2.414 -2.364 -2.337 -2.320 -2.309 -2.302 -2.298 -2.295 -2.294 -2.293 
0.60 -2.544 -2.402 -2.338 -2.307 -2.292 -2.283 -2.279 -2.278 -2.278 -2.279 -2.281 -2.283 
0.70 -2.415 -2.321 -2.282 -2.266 -2.261 -2.260 -2.262 -2.265 -2.269 -2.274 -2.278 -2.283 
0.80 -2.317 -2.260 -2.242 -2.238 -2.241 -2.247 -2.255 -2.262 -2.270 -2.277 -2.284 -2.291 
0.90 -2.242 -2.216 -2.214 -2.221 -2.232 -2.244 -2.256 -2.268 -2.279 -2.289 -2.298 -2.308 
1.00 -2.185 -2.184 -2.196 -2.214 -2.232 -2.249 -2.265 -2.280 -2.295 -2.308 -2.320 -2.331 
1.25 -2.099 -2.147 -2.189 -2.227 -2.260 -2.290 -2.316 -2.339 -2.361 -2.380 -2.398 -2.414 
1.50 -2.069 -2.153 -2.220 -2.275 -2.322 -2.362 -2.397 -2.428 -2.456 -2.481 -2.504 -2.525 
1.75 -2.075 -2.190 -2.277 -2.348 -2.407 -2.457 -2.501 -2.540 -2.574 -2.605 -2.633 -2.659 
2.00 -2.106 -2.247 -2.355 -2.440 -2.511 -2.571 -2.623 -2.668 -2.709 -2.746 -2.778 -2.809 
2.50 -2.217 -2.408 -2.552 -2.665 -2.758 -2.836 -2.904 -2.964 -3.017 -3.064 -3.107 -3.147 
3.00 -2.371 -2.610 -2.788 -2.927 -3.042 -3.140 -3.223 -3.296 -3.361 -3.419 -3.472 -3.521 
3.50 -2.553 -2.839 -3.050 -3.216 -3.352 -3.467 -3.566 -3.652 -3.729 -3.799 -3.861 -3.918 
4.00 -2.756 -3.087 -3.331 -3.523 -3.680 -3.812 -3.926 -4.026 -4.115 -4.195 -4.267 -4.333 
4.50 -2.973 -3.349 -3.626 -3.842 -4.020 -4.170 -4.299 -4.412 -4.513 -4.603 -4.685 -4.760 
5.00 -3.202 -3.622 -3. 930 -4.171 -4.370 -4.537 -4.681 -4.808 -4.920 -5.021 -5.112 -5.195 
6.00 -3.683 -4.189 -4.559 -4.850 -5.089 -5.291 -5.465 -5.618 -5.754 -5.875 -5.986 -6.087 
7.00 -4.185 -4.775 -5.208 -5.548 -5.827 -6.064 -6.267 -6.446 -6.605 -6.748 -6.877 -6.995 
8.00 -4.700 -5.374 -5.868 -6.258 -6.577 -6.847 -7.081 -7.286 -7.468 -7.632 -7.780 -7.916 
9.00 -5.223 -5.980 -6.536 -6.975 -7.334 -7.639 -7.902 -8.133 -8.339 -8.523 -8.690 -8.843 
10.00 -5. 753 -6.593 -7.211 -7.698 -8.098 -8.437 -8.730 -8.987 -9.215 -9.420 -9.607 -9.776 

Source: Land (1975) 
Footnote. Notation n = 3(1)19(2)25(3)31(5)36 is shorthand for n from 3 to 19 by unit steps, from 19 to 25 by 2's, from 25 to 31 by 
3's, and from 31 to 36 by S's 
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Table 21-1. Land's Factors (H.01) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 15 16 17 18 19 21 23 25 28 31 36 

0.10 -2.454 -2.442 -2.432 -2.424 -2.416 -2.404 -2.395 -2.386 -2.377 -2.369 -2.361 
0.20 -2.390 -2.383 -2.376 -2.370 -2.365 -2.357 -2.351 -2.346 -2.340 -2.336 -2.331 
0.30 -2.344 -2.339 -2.335 -2.332 -2.329 -2.325 -2.322 2.320 -2.317 -2.316 -2.315 
0.40 -2.312 -2.310 -2.308 -2.307 -2.306 -2.306 -2.305 -2.305 -2.306 -2.308 -2.310 
0.50 -2.293 -2.293 -2.294 -2.294 -2.295 -2.298 -2.300 -2.302 -2.306 -2.310 -2.316 
0.60 -2.285 -2.288 -2.290 -2.292 -2.295 -2.300 -2.305 -2.309 -2.316 -2.322 -2.330 
0.70 -2.287 -2.292 -2.296 -2.300 -2.304 -2.312 -2.319 -2.325 -2.334 -2.342 -2.354 
0.80 -2.298 -2.304 -2.310 -2.315 -2.321 -2.331 -2.341 -2.349 -2.361 -2.373 -2.386 
0.90 -2.316 -2.324 -2.332 -2.339 -2.346 -2.358 -2.370 -2.380 -2.394 -2.406 -2.425 
1.00 -2.341 -2.351 -2.360 -2.369 -2.377 -2.392 -2.406 -2.418 -2.434 -2.449 -2.470 
1.25 -2.429 -2.443 -2.456 -2.468 -2.479 -2.500 -2.519 -2.535 -2.558 -2.578 -2.606 
1.50 2.545 -2.563 -2.579 -2.595 -2.609 -2.635 -2.659 -2.680 -2.709 -2.734 -2.769 
1.75 -2.682 -2.704 -2.724 -2.743 -2.760 -2.792 -2.821 -2.847 -2.881 -2.911 -2.954 
2.00 -2.836 -2.862 -2.886 -2.908 -2.929 -2.966 -3.000 -3.030 -3.070 -3.105 -3.155 
2.50 -3.183 -3.216 -3.247 -3.275 -3.302 -3.351 -3.394 -3.434 -3.486 -3.531 -3.569 
3.00 -3.564 -3.605 -3.643 -3.679 -3.711 -3.771 -3.825 -3.873 -3.936 -3.992 -4.071 
3.50 -3.970 -4.019 -4.063 -4.105 -4.144 -4.215 -4.279 -4.335 -4.410 -4.476 -4.570 
4.00 -4.393 -4.449 -4.500 -4.549 -4.593 -4.676 -4.749 -4.814 -4.901 -4.977 -5.086 
4.50 -4.828 -4.891 -4.950 -5.005 -5.055 -5.148 -5.231 -5.305 -5.404 -5.491 -5.614 
5.00 -5.272 -5.343 -5.408 -5.469 -5.526 -5.630 -5.723 -5.805 -5.916 -6.012 -6.150 
6.00 -6.179 -6.264 -6.343 -6.418 -6.486 -6.612 -6.724 -6.824 -6.958 -7.075 -7.241 
7.00 -7.104 -7.204 -7.297 -7.383 -7.465 -7.611 -7.742 -7.860 -8.017 -8.154 -8.348 
8.00 -8.040 -8.154 -8.261 -8.360 -8.453 -8.621 -8.772 -8.906 -9.086 -9.244 -9.467 
9.00 -8.983 -9.113 -9.232 -9.344 -9.449 -9.640 -9.809 -9.961 -10.160 -10.340 -10.590 
10.00 -9.932 -10.080 -10.210 -10.330 -10.450 -10.660 -10.850 -11.020 -11.250 -11.440 -11.720 
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Table 21-2. Land's Factors (H.025) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 3 4 6 7 8 9 10 11 12 13 14 

0.10 -2. 988 -2.504 -2.314 -2.215 -2.157 -2.117 -2.090 -2.070 -2.055 -2.042 -2.032 -2.025 
0.20 -2.639 -2.316 -2.183 -2.113 -2.071 -2.044 -2.025 -2.012 -2.001 -1.994 -1.987 -1.982 
0.30 -2.396 -2.176 -2.083 -2.034 -2.006 -1. 988 -1.976 -1.968 -1.962 -1. 958 -1.954 -1. 952 
0.40 -2.220 -2.070 -2.007 -1. 975 -1. 958 -1.948 -1. 941 -1. 938 -1.935 -1.934 -1.933 -1.933 
0.50 -2.090 -1. 989 -1. 950 -1. 932 -1. 923 -1.919 -1.918 -1.918 -1.919 -1.920 -1. 922 -1.924 
0.60 -1. 992 -1.929 -1. 908 -1. 901 -1. 900 -1. 902 -1. 905 -1.908 -1.913 -1.917 -1.920 -1.924 
0.70 -1.919 -1.885 -1.879 -1.882 -1.887 -1.894 -1. 901 -1. 908 -1.914 -1.921 -1.926 -1.932 
0.80 -1.864 -1.854 -1.860 -1.871 -1.830 -1.894 -1.904 -1.914 -1.923 -1.932 -1.939 -1.946 
0.90 -1.823 -1.833 -1.850 -1.869 -1.885 -1. 901 -1.915 -1.927 -1.939 -1.949 -1. 958 -1.967 
1.00 -1.794 -1.820 -1.848 -1.873 -1.894 -1.913 -1.931 -1.946 -1.959 -1.972 -1. 983 -1. 993 
1.25 -1. 759 -1.819 -1.867 -1. 907 -1. 939 -1.967 -1. 992 -2.013 -2.032 -2.049 -2.064 -2.079 
1.50 -1. 761 -1.849 -1.914 -1.966 -2.009 -2.045 -2.076 -2.104 -2.128 -2.150 -2.169 -2.187 
1.75 -1.789 -1.899 -1. 981 -2.045 -2.097 -2.141 -2.179 -2.212 -2.242 -2.268 -2.291 -2.313 
2.00 -1.834 -1. 965 -2.062 -2.138 -2.200 -2.252 -2.296 -2.335 -2.369 -2.400 -2.428 -2.452 
2.50 -1. 960 -2.132 -2.259 -2.357 -2.438 -2.505 -2.562 -2.612 -2.656 -2.696 -2.731 -2.764 
3.00 -2.118 -2.331 -2.487 -2.607 -2.706 -2.788 -2.858 -2.919 -2.973 -3.022 -3.065 -3.105 
3.50 -2.299 -2.552 -2.736 -2.879 -2.994 -3.091 -3.174 -3.246 -3.310 -3.367 -3.418 -3.465 
4.00 -2.496 -2.789 -3.001 -3.164 -3.298 -3.409 -3 .505 -3.588 -3.661 -3.727 -3.786 -3.840 
4.50 -2.706 -3.037 -3.276 -3.461 -3.612 -3.738 -3.846 -3.940 -4.023 -4.097 -4.164 -4.226 
5.00 -2.925 -3.294 -3.560 -3.766 -3.934 -4.074 -4.194 -4.300 -4.392 -4.475 -4.550 -4.618 
6.00 -3.382 -3.826 -4.145 -4.393 -4.594 -4.763 -4.908 -5.035 -5.147 -5.247 -5.337 -5.419 
7.00 -3.856 -4.372 -4.744 -5.033 -5.269 -5.467 -5.637 -5. 785 -5.916 -6.033 -6.139 -6.235 
8.00 -4.341 -4.929 -5.354 -5.685 -5. 955 -6.181 -6.375 -6.545 -6.695 -6.829 -6.950 -7.060 
9.00 -4.832 -5.492 -5.971 -6.343 -6.646 -6.901 -7.120 -7.311 -7.480 -7.631 -7.768 -7.892 
10.00 -5.328 -6.061 -6.592 -7.006 -7.343 -7.626 -7.869 -8.082 -8.270 -8.438 -8.590 -8.728 

Source: Land (1975) 
Footnote. Notation n = 3(1)19(2)25(3)31(5)36 is shorthand for n from 3 to 19 by unit steps, from 19 to 25 by 2's, from 25 to 31 by 
3's, and from 31 to 36 by S's 
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Table 21-2. Land's Factors (H.025) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 15 16 17 18 19 21 23 25 28 31 36 

0.10 -2.018 -2.012 -2.008 -2.003 -2.000 -1.993 -1.989 -1. 985 -1. 980 -1. 977 -1.972 
0.20 -1. 978 -1. 974 -1.972 -1.969 -1.967 -1.964 -1.961 -1. 959 -1. 957 -1. 956 -1. 954 
0.30 -1. 950 -1.949 -1.947 -1.946 -1.946 -1.945 -1. 945 -1. 945 -1. 945 -1. 945 -1.946 
0.40 -1. 933 -1. 934 -1.934 -1.935 -1.935 -1.936 -1.938 -1.940 -1. 942 -1.944 -1.948 
0.50 -1.926 -1.928 -1.930 -1.932 -1.933 -1.937 -1. 941 -1.944 -1. 948 -1. 952 -1. 958 
0.60 -1.928 -1. 931 -1.934 -1.938 -1.940 -1.946 -1. 951 -1. 956 -1. 962 -1. 968 -1. 976 
0.70 -1.937 -1. 942 -1.946 -1. 951 -1. 955 -1.906 -1.969 -1. 975 -1.983 -1. 991 -2.001 
0.80 -1. 953 -1. 959 -1. 965 -1.971 -1.976 -1.985 -1. 993 -2.001 -2.011 -2.020 -2.032 
0.90 -1. 975 -1. 983 -1. 990 -1.996 -2.003 -2.014 -2.023 -2.003 -2.044 -2.055 -2.069 
1.00 -2.003 -2.012 -2.109 -2.027 -2.024 -2.047 -2.059 -2.069 -2.083 -2.095 -2.112 
1.25 -2.091 -2.104 -2.114 -2.125 -2.134 -2.151 -2.167 -2.181 -2.199 -2.215 -2.237 
1.50 -2.203 -2.218 -2.232 -2.245 -2.257 -2.278 -2.298 -2.315 -2.338 -2.358 -2.386 
1.75 2.332 -2.351 -2.367 -2.383 -2.396 -2.423 -2.446 -2.467 -2.495 -2.518 -2.552 
2.00 -2.476 -2.496 -2.516 -2.534 -2.551 -2.581 -2.608 -2.633 -2.665 -2.693 -2.733 
2.50 -2.793 -2.821 -2.845 -2.869 -2.890 -2.930 -2.956 -2.997 -3.038 -3.074 -3.125 
3.00 -3.141 -3.174 -3.205 -3.233 -3.260 -3.308 -3.351 -3.389 -3.440 -3.484 -3.547 
3.50 -3.508 -3.547 -3.583 -3.617 -3.649 -3.706 -3.757 -3.802 -3.862 -3. 914 -3. 988 
4.00 -3.889 -3.935 -3.976 -4.015 -4.052 -4.118 -4.176 -4.229 -4.298 -4.358 -4.444 
4.50 -4.281 -4.332 -4.380 -4.424 -4.465 -4.539 -4.606 -4.665 -4.744 -4.812 -4.910 
5.00 -4.680 -4.738 -4.790 -4.840 -4.886 -4.969 -5.043 -5.110 -5.197 -5.273 -5.382 
6.00 -5.494 -5.564 -5.628 -5.687 -5.743 -5.844 -5.933 -6.013 -6.119 -6.212 -6.343 
7.00 -6.324 -6.404 -6.480 -6.549 -6.614 -6.732 -6.837 -6.931 -7.056 -7.164 -7.318 
8.00 -7.161 -7.254 -7.340 -7.420 -7.495 -7.630 -7. 750 -7.858 -8.001 -8.125 -8.301 
9.00 -8.006 -8.111 -8.208 -8.298 -8.382 -8.535 -8.670 -8.791 -8.952 -9.092 -9.292 
10.00 -8 .855 -8.972 -9.079 -9.179 -9.273 -9.443 -9.594 -9.729 -9.908 -10.060 -10.290 
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Table 21-3. Land's Factors (H.05) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 3 4 6 7 8 9 10 11 12 13 14 

0.10 -2.130 -1.898 -1.806 -1. 759 -1. 731 -1.712 -1.699 -1.690 -1.683 -1.677 -1.673 -1.669 
0.20 -1.969 -1. 791 -1.729 -1.697 -1.678 -1.667 -1.658 -1.653 -1.649 -1.646 -1.644 -1.642 
0.30 -1.816 -1.710 -1.669 -1.650 -1.639 -1.633 -1.629 -1.627 -1.626 -1.625 -1.625 -1.624 
0.40 -1. 717 -1.650 -1.625 -1.615 -1.611 -1.610 -1.610 -1.611 -1.612 -1.613 -1.614 -1.615 
0.50 -1.644 -1.605 -1.594 -1.592 -1.594 -1.596 -1.599 -1.603 -1.606 -1.609 -1.612 -1.615 
0.60 -1.589 -1.572 -1.573 -1.578 -1.584 -1.591 -1.597 -1.602 -1.608 -1.612 -1.617 -1.621 
0.70 -1.549 -1.550 -1.560 -1.572 -1.582 -1.592 -1.600 -1.608 -1.615 -1.622 -1.628 -1.633 
0.80 -1.521 -1.537 -1.555 -1.572 -1.586 -1.599 -1.610 -1.620 -1.629 -1.636 -1.644 -1.651 
0.90 -1.502 -1.530 -1.556 -1.577 -1.595 -1.611 -1.625 -1.637 -1.647 -1.656 -1.665 -1.673 
1.00 -1.490 -1.530 -1.562 -1.588 -1.610 -1.628 -1.644 -1.658 -1.670 -1.681 -1.690 -1.699 
1.25 -1.486 -1.549 -1.596 -1.632 -1.662 -1.687 -1. 708 -1.727 -1.743 -1. 758 -1.770 -1.782 
1.50 -1.508 -1.590 -1.650 -1.696 -1. 733 -1.764 -1. 791 -1.814 -1.834 -1.853 -1.869 -1.883 
1.75 -1.547 -1.647 -1. 719 -1.774 -1.819 -1.857 -1.889 -1.916 -1.940 -1.962 -1.981 -1. 998 
2.00 -1.598 -1. 714 -1.799 -1.864 -1.917 -1. 960 -1. 998 -2.029 -2.058 -2.083 -2.106 -2.126 
2.50 -1.727 -1.877 -1. 986 -2.070 -2.138 -2.193 -2.241 -2.283 -2.319 -2.351 -2.380 -2.406 
3.00 -1.880 -2.065 -2.199 -2.301 -2.384 -2.452 -2.510 -2.560 -2.604 -2.644 -2.679 -2.711 
3.50 -2.051 -2.272 -2.429 -2.550 -2.647 -2.727 -2.795 -2.855 -2.907 -2.953 -2.995 -3.033 
4.00 -2.237 -2.491 -2.672 -2.810 -2.922 -3.015 -3.093 -3.161 -3.221 -3.275 -3.323 -3.366 
4.50 -2.434 -2.720 -2.924 -3.080 -3.206 -3.310 -3.399 -3.476 -3.544 -3.605 -3.659 -3.708 
5.00 -2.638 -2.957 -3.183 -3.356 -3.497 -3.613 -3.712 -3.798 -3.873 -3.941 -4.001 -4.056 
6.00 -3.062 -3.444 -3. 715 -3. 923 -4.092 -4.231 -4.351 -4.455 -4.546 -4.627 -4.700 -4.766 
7.00 -3.499 -3.943 -4.260 -4.502 -4.699 -4.862 -5.002 -5.123 -5.230 -5.325 -5.411 -5.488 
8.00 -3. 945 -4.451 -4.812 -5.090 -5.315 -5.502 -5.661 -5.800 -5.922 -6.031 -6.129 -6.218 
9.00 -4.397 -4.965 -5.371 -5.684 -5.936 -6.146 -6.326 -6.482 -6.620 -6.742 -6.853 -6.954 
10.00 -4.852 -5.483 -5.933 -6.280 -6.560 -6.795 -6.994 -7.168 -7.321 -7.458 -7.581 -7.592 

Source: Land (1975) 
Footnote. Notation n = 3(1)19(2)25(3)31(5)36 is shorthand for n from 3 to 19 by unit steps, from 19 to 25 by 2's, from 25 to 31 by 
3's, and from 31 to 36 by S's 
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Table 21-3. Land's Factors (H.05) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 15 16 17 18 19 21 23 25 28 31 36 

0.10 -1.666 -1.663 -1.661 -1.659 -1.658 -1.655 -1.653 -1.651 -1.649 -1.648 -1.647 
0.20 -1.640 -1.639 -1.638 -1.638 -1.637 -1.636 -1.636 -1.635 -1.636 -1.636 -1.636 
0.30 -1.625 -1.625 -1.625 -1.626 -1.626 -1.627 -1.628 -1.629 -1.630 -1.632 -1.633 
0.40 -1.617 -1.618 -1.620 -1.622 -1.622 -1.625 -1.627 -1.629 -1.632 -1.635 -1.639 
0.50 -1.618 -1.620 -1.622 -1.625 -1.627 -1.631 -1.634 -1.638 -1.642 -1.646 -1.651 
0.60 -1.625 -1.629 -1.632 -1.635 -1.638 -1.643 -1.648 -1.652 -1.658 -1.662 -1.659 
0.70 -1.638 -1.643 -1.647 -1.651 -1.654 -1.661 -1.667 -1.672 -1.679 -1.686 -2.694 
0.80 -1.656 -1.662 -1.667 -1.672 -1.677 -1.685 -1.691 -1.698 -1. 706 -1. 714 -1.724 
0.90 -1.680 -1.686 -1.692 -1.698 -1.703 -1.713 -1.721 -1.728 -1. 738 -1.747 -1. 759 
1.00 -1.707 -1.715 -1.722 -1.728 -1.734 -1. 745 -1. 755 -1. 763 -1.774 -1.784 -1.798 
1.25 -1.793 -1.803 -1.812 -1.820 -1.828 -1.842 -1.854 -1.866 -1.880 -1.893 -1.911 
1.50 -1.896 -1. 909 -1.920 -1. 930 -1.940 -1. 958 -1.973 -1.987 -2.005 -2.020 -2.043 
1.75 -2.015 -2.029 -2.043 -2.055 -2.067 -2.088 -2.107 -2.123 -2.145 -2.164 -2.190 
2.00 -2.144 -2.162 -2.177 -2.192 -2.205 -2.230 -2.251 -2.271 -2.269 -2.318 -2.349 
2.50 -2.430 -2.452 -2.472 -2.491 -2.508 -2.540 -2.568 -2.593 -2.625 -2.654 -2.694 
3.00 -2.740 -2.767 2.792 -2.815 -2.836 -2.874 -2.908 -2.939 -2.979 -3.014 -3.063 
3.50 -3.067 -3.099 3.128 -3.155 -3.180 -3.226 -3.266 -3.302 -3.349 -3.391 -3.448 
4.00 -3.406 -3.443 3.476 -3.507 -3.536 -3.589 -3.635 -3.677 -3.731 -3.779 -3.846 
4.50 -3.753 -3.794 3.833 -3.868 -3.901 -3.960 -4.013 -4.060 -4.122 -4.176 -4.252 
5.00 -4.107 -4.153 4.195 -4.235 -4.272 -4.338 -4.397 -4.449 -4.518 -4.579 -4.664 
6.00 -4.827 -4.882 4.934 -4.981 -5.026 -5.106 -5.177 -5.241 -5.325 -5.397 -5.500 
7.00 -5.559 -5.624 5.685 -5. 741 -5.793 -5.886 -5.970 -6.045 -6.142 -6.227 -6.348 
8.00 -6.300 -6.374 6.443 -6.507 -6.566 -6.674 -6.770 -6.855 -6.968 -7.066 -7.204 
9.00 -7.045 -7.129 7.207 -7.278 -7.346 -7.468 -7 .575 -7.672 -7.798 -7.909 -8.064 
10.00 -7.794 -7 .888 7.974 -8.054 -8.129 -8.264 -8.385 -8.491 -8.632 -10.060 -8.928 
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Table 21-4. Land's Factors (H.10) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 3 4 6 7 8 9 10 11 12 13 14 

0.10 -1.431 -1. 351 -1.320 -1. 305 -1.296 -1.291 -1.287 -1.285 -1.283 -1.281 -1.281 -1.280 
0.20 -1.350 -1.299 -1.281 -1.273 -1.268 -1.267 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 
0.30 -1.289 -1.260 -1.252 -1.251 -1.250 -1.251 -1.253 -1.254 -1.255 -1.257 -1.258 -1.259 
0.40 -1.245 -1.233 -1.233 -1.236 -1.239 -1.243 -1.246 -1.249 -1.252 -1.254 -1.257 -1.258 
0.50 -1.213 -1.214 -1.221 -1.228 -1.234 -1.240 -1.245 -1.250 -1.254 -1.257 -1.261 -1.264 
0.60 -1.190 -1.202 -1.215 -1.226 -1.235 -1.243 -1.250 -1.256 -1.261 -1.266 -1.270 -1.274 
0.70 -1.176 -1.197 -1.215 -1.229 -1.241 -1.251 -1.259 -1.266 -1.273 -1.278 -1.283 -1.288 
0.80 -1.168 -1.197 -1.219 -1.237 -1.251 -1.262 -1.272 -1.280 -1.288 -1.294 -1.301 -1.306 
0.90 -1.165 -1.201 -1.227 -1.248 -1.264 -1.277 -1.289 -1.298 -1.307 -1.314 -1.321 -1.327 
1.00 -1.166 -1.208 -1.239 -1.262 -1.281 -1.296 -1.309 -1.320 -1.329 -1.337 -1.345 -1.353 
1.25 -1.184 -1.240 -1.280 -1.310 -1.334 -1.353 -1.370 -1.384 -1.396 -1.407 -1.471 -1.426 
1.50 -1.217 -1.285 -1.334 -1.371 -1.400 -1.424 -1.444 -1.462 -1.477 -1.491 -1.503 -1.514 
1.75 -1.260 -1.341 -1.398 -1.442 -1.477 -1.505 -1.530 -1.551 -1.569 -1.585 -1.599 -1.612 
2.00 -1.310 -1.403 -1.470 -1.521 -1.562 -1.595 -1.623 -1.647 1.669 -1.688 -1.704 -1.719 
2.50 -1.426 -1.547 -1.634 -1. 700 -1. 751 -1.794 -1.830 -1.862 -1.889 -1.913 -1.934 -1. 953 
3.00 -1.560 -1. 712 -1.817 -1.897 -1. 960 -2.013 -2.057 -2.095 -2.128 -2.157 -2.183 -2.207 
3.50 -1. 710 -1.889 -2.014 -2.108 -2.183 -2.244 -2.296 -2.341 -2.380 -2.415 -2.446 -2.473 
4.00 -1.871 -2.078 -2.221 -2.329 -2.415 -2.485 -2.545 -2.596 -2.641 -2.681 -2.717 -2.749 
4.50 -2.041 -2.274 -2.435 -2.557 -2.653 -2. 733 -2.801 -2.858 -2.910 -2.955 -2.995 -3.031 
5.00 -2.217 -2.475 -2.654 -2.789 -2.897 -2.986 -3.061 -3.126 -3.183 -3.233 -3.278 -3.319 
6.00 -2.581 -2.889 -3.104 -3.267 -3.396 -3.503 -3.593 -3.671 -3.740 -3.800 -3.855 -3.904 
7.00 -2.955 -3.314 -3.564 -3.753 -3.904 -4.029 -4.135 -4.226 -4.306 -4.377 -4.441 -4.498 
8.00 -3.336 -3.744 -4.030 -4.246 -4.418 -4.561 -4.683 -4.787 -4.879 -4.960 -5.033 -5.099 
9.00 -3.721 -4.180 -4.500 -4.742 -4.937 -5.098 -5.234 -5.352 -5 .455 -5.547 -5.629 -5.703 
10.00 -4.109 -4.618 -4.973 -5.243 -5.459 -5.638 -5.789 -5.920 -6.035 -6.137 -6.228 -6.311 

Source: Land (1975) 
Footnote. Notation n = 3(1)19(2)25(3)31(5)36 is shorthand for n from 3 to 19 by unit steps, from 19 to 25 by 2's, from 25 to 31 by 
3's, and from 31 to 36 by S's 
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Table 21-4. Land's Factors (H.10) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 15 16 17 18 19 21 23 25 28 31 36 

0.10 -1.279 -1.278 -1.278 -1.278 -1.278 -1.277 -1.277 -1.277 -1.277 -1.277 -1.277 
0.20 -1.266 -1.267 -1.267 -1.267 -1.268 -1.268 -1.270 -1.270 -1.271 -1.272 -1.272 
0.30 -1.260 -1.261 -1.262 -1.263 -1.265 -1.266 -1.268 -1.269 -1.271 -1.272 -1.275 
0.40 -1.261 -1.262 -1.264 -1.266 -1.267 -1.270 -1.272 -1.274 -1.277 -1.279 -1.282 
0.50 -1.266 -1.269 -1.271 -1.273 -1.275 -1.279 -1.281 -1.284 -1.288 -1.291 -1.295 
0.60 -1.277 -1.280 -1.283 -1.286 -1.288 -1.292 -1.296 -1.299 -1.304 -1.307 -1.313 
0.70 -1.292 -1.296 -1.299 -1.302 -1.305 -1.310 -1.315 -1.319 -1.324 -1.329 -1.336 
0.80 -1.311 -1.315 -1.319 -1.323 -1.326 -1.332 -1.338 -1.342 -1.349 -1.354 -1.361 
0.90 -1.333 -1.338 -1.342 -1.346 -1.351 -1.358 -1.364 -1.369 -1.377 -1.383 -1.391 
1.00 -1.358 -1.364 -1.369 -1.374 -1.378 -1.387 -1.393 -1.399 -1.408 -1.414 -1.424 
1.25 -1.434 -1.441 -1.448 -1.455 -1.460 -1.470 -1.479 -1.487 -1.498 -1.507 -1.519 
1.50 -1.523 -1.533 -1.541 -1.548 -1.555 -1.568 -1.579 -1.589 -1.602 -1.613 -1.629 
1.75 -1.624 -1.634 -1.645 -1.654 -1.662 -1.677 -1.690 -1. 703 -1.718 -1. 732 -1. 750 
2.00 -1. 733 -1.746 -1. 757 -1.767 -1.777 -1.795 -1.810 -1.825 -1.843 -1.859 -1.881 
2.50 -1.971 -1.987 -2.002 -2.016 -2.029 -2.051 -2.072 -2.090 -2.113 -2.133 -2.161 
3.00 -2.229 -2.248 2.266 -2.283 -2.298 -2.326 -2.351 -2.373 -2.402 -2.427 -2.461 
3.50 -2.499 -2.522 2.544 -2.563 -2.581 -2.615 -2.644 -2.670 -2.704 -2.733 -2. 775 
4.00 -2.778 -2.805 2.830 -2.853 -2.874 -2.913 -2.946 -2.976 -3.015 -3.050 -3.097 
4.50 -3.064 -3.095 3.123 -3.149 -3.173 -3.217 -3.255 -3.288 -3.333 -3.372 -3.426 
5.00 -3.356 -3.390 3.421 -3.450 -3.477 -3.525 -3.567 -3.605 -3.655 -3.698 -3.759 
6.00 -3.949 -3. 989 4.027 -4.062 -4.094 -4.153 -4.204 -4.250 -4.311 -4.363 -4.436 
7.00 -4.549 -4.599 4.642 -4.683 -4.721 -4.790 -4.850 -4.604 -4.975 -5.037 -5.122 
8.00 -5.159 -5.213 5.264 -5.311 -5.354 -5.433 -5.002 -5.564 -5.645 -5. 715 -5.815 
9.00 -5. 771 -5.833 5.890 -5.942 -5.992 -6.080 -6 .158 -6.228 -6.319 -6.399 -6.510 
10.00 -6.386 -6 .455 6.518 -6.578 -6.632 -6. 730 -6.817 -6.894 -6.996 -8. 755 -7.208 
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Table 21-5. Land's Factors (H.90) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 3 4 6 7 8 9 10 11 12 13 14 

0.10 1.686 1.506 1.438 1.403 1.381 1.367 1.356 1.349 1.343 1.338 1.334 1.330 
0.20 1.885 1.620 1.522 1.472 1.442 1.422 1.407 1.396 1.387 1.380 1.374 1.369 
0.30 2.156 1.763 1.627 1.558 1.517 1.489 1.469 1.453 1.441 1.432 1.424 1.417 
0.40 2.521 1.942 1.755 1.662 1.607 1.569 1.543 1.523 1.507 1.494 1.483 1.474 
0.50 2.990 2.160 1.907 1.785 1.712 1.664 1.630 1.604 1.583 1.567 1.553 1.542 
0.60 3.542 2.417 2.084 1.926 1.834 1.773 1.729 1.696 1.671 1.650 1.633 1.619 
0.70 4.136 2.708 2.284 2.085 1.970 1.894 1.849 1.800 1.768 1.743 1.722 1.705 
0.80 4.742 3.023 2.503 2.260 2.119 2.027 1.962 1.914 1.876 1.845 1.820 1.799 
0.90 5.349 3.353 2.736 2.447 2.280 2.171 2.094 2.036 1.992 1.955 1.926 1.901 
1.00 5.955 3.691 2.980 2.644 2.450 2.324 2.234 2.167 2.115 2.073 2.038 2.010 
1.25 7.466 4.558 3.617 3.167 2.904 2.732 2.610 2.518 2.448 2.391 2.344 2.305 
1.50 8.973 5.436 4.276 3.713 3.383 3.166 3.012 2.896 2.806 2.733 2.674 2.623 
1.75 10.480 6.319 4.944 4.273 3.877 3.615 3.429 3.289 3.180 3.092 3.109 2.959 
2.00 11.980 7.206 5.619 4.842 4.380 4.075 3.857 3.693 3.564 3.461 3.376 3.305 
2.50 14.990 8.986 6.979 5.990 5.401 5.010 4.730 4.518 4.353 4.220 4.110 4.017 
3.00 18.000 10.770 8.346 7.147 6.434 5.958 5.617 5.359 5.157 4.994 4.860 4.746 
3.50 21.000 12.560 9.717 8.312 7.473 6.913 6.511 6.208 5.970 5.778 5.619 5.486 
4.00 24.000 14.340 11.090 9.480 8.516 7.873 7.411 7.062 6.788 6.566 6.384 6.299 
4.50 27.010 16.130 12.470 10.650 9.562 8.836 8.314 7.919 7.610 7.360 7.154 6.978 
5.00 30.010 17.920 13.840 11.820 10.610 9.800 9.219 8.779 8.434 8.155 7.924 7.729 
6.00 36.020 21.490 16.600 14.170 12.710 11.740 11.030 10.500 10.090 9.751 9.473 9.238 
7.00 42.020 25.070 19.350 16.510 14.810 13.670 12.850 12.230 11.750 11.350 11.030 10.750 
8.00 48.030 28.650 22.110 18.860 16.910 15.610 14.670 13.960 13.410 12.960 12.580 12.270 
9.00 54.030 32.230 24.870 21.210 19.020 17 .550 16.500 15.700 15.070 14.560 14.140 13.790 
10.00 60.040 35.810 27 .630 23.560 21.120 19.490 18.320 17.430 16.730 16.170 15.700 15.310 

Source: Land (1975) 
Footnote. Notation n = 3(1)19(2)25(3)31(5)36 is shorthand for n from 3 to 19 by unit steps, from 19 to 25 by 2's, from 25 to 31 by 
3's, and from 31 to 36 by S's 
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Table 21-5. Land's Factors (H.90) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 15 16 17 18 19 21 23 25 28 31 36 

0.10 1.328 1.325 1.323 1.322 1.320 1.317 1.315 1.313 1.310 1.308 1.306 
0.20 1.365 1.361 1.358 1.355 1.353 1.348 1.345 1.342 1.338 1.335 1.332 
0.30 1.411 1.406 1.402 1.398 1.394 1.388 1.383 1.379 1.374 1.370 1.364 
0.40 1.467 1.460 1.455 1.449 1.444 1.437 1.430 1.425 1.417 1.412 1.404 
0.50 1.532 1.524 1.516 1.509 1.503 1.494 1.485 1.478 1.469 1.462 1.452 
0.60 1.606 1.596 1.586 1.578 1.570 1.558 1.548 1.539 1.528 1.519 1.507 
0.70 1.690 1.766 1.666 1.655 1.646 1.631 1.618 1.607 1.594 1.583 1.568 
0.80 1.781 1.765 1.752 1.739 1.728 1.710 1.695 1.682 1.667 1.654 1.636 
0.90 1.880 1.861 1.845 1.831 1.819 1.797 1.779 1.764 1.745 1.731 1.710 
1.00 1.985 1.963 1.945 1.929 1.914 1.889 1.868 1.851 1.830 1.812 1.789 
1.25 2.271 2.242 2.217 2.195 2.174 2.141 2.113 2.089 2.060 2.036 2.005 
1.50 2.581 2.544 2.512 2.483 2.458 2.415 2.379 2.349 2.312 2.282 2.242 
1.75 2.907 2.862 2.823 2.788 2.757 2.705 2.662 2.625 2.579 2.543 2.494 
2.00 3.244 3.191 3.145 3.104 3.069 3.005 2.954 2.911 2.858 2.814 2.758 
2.50 3.938 3.870 3.810 3.757 3.710 3.629 3.562 3.506 3.463 3.380 3.305 
3.00 4.650 4.565 4.492 4.427 4.369 4.270 4.188 4.119 4.033 3.964 3.872 
3.50 5.370 5.271 5.184 5.107 5.039 4.921 4.825 4.743 4.641 4.559 4.450 
4.00 6.097 5.983 5.883 5.794 5.715 5.580 5.468 5.374 5.257 5.161 5.036 
4.50 6.829 6.699 6.586 6.485 6.396 6.243 6.116 6.009 5.876 5.769 5.626 
5.00 7.563 7.418 7.292 7.179 7.080 6.909 6.767 6.648 6.500 6.379 6.219 
6.00 9.037 8.862 8.710 8.575 8.454 8.248 8.076 -7.933 7.753 7.607 7.415 
7.00 10.520 10.310 10.130 9.975 9.833 9.592 9.391 9.222 9.013 8.842 8.616 
8.00 12.000 11.770 11.560 11.380 11.220 10.940 10.710 10.520 10.280 10.080 9.821 
9.00 13.480 13.220 12.990 12.780 12.600 12.290 12.030 11.810 11.540 11.320 11.030 
10.00 14.970 14.680 14.420 14.190 13.990 13.640 13.350 13.110 12.810 12.560 12.240 
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Table 21-6. Land's Factors (H.95) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 3 4 5 6 7 8 9 10 11 12 13 14 

0.10 2.750 2.222 2.035 1.942 1.886 1.849 1.822 1.802 1.787 1.775 1.763 1.756 
0.20 3.295 2.463 2.198 2.069 1.992 1.943 1.908 1.881 1.860 1.843 1.830 1.818 
0.30 4.109 2.777 2.402 2.226 2.125 2.058 2.011 1.977 1.949 1.927 1.909 1.894 
0.40 5.220 3.175 2.651 2.415 2.282 2.195 2.134 2.089 2.054 2.026 2.003 1.984 
0.50 6.495 3.658 2.947 2.638 2.465 2.354 2.277 2.220 2.176 2.141 2.112 2.088 
0.60 7.807 4.209 3.287 2.892 2.673 2.534 2.439 2.368 2.314 2.271 2.235 2.206 
0.70 9.120 4.801 3.662 3.173 2.904 2.735 2.618 2.532 2.466 2.414 2.371 2.336 
0.80 10.430 5.414 4.062 3.477 3.155 2.952 2.813 2.710 2.632 2.570 2.520 2.479 
0.90 11.740 6.038 4.478 3.796 3.420 3.184 3.021 2.902 2.810 2.738 2.679 2.631 
1.00 13.050 6.669 4.905 4.127 3.698 3.426 3.239 3.103 2.998 2.915 2.848 2.792 
1.25 16.330 8.265 6.001 4.990 4.426 4.069 3.820 3.639 3.500 3.389 3.300 3.226 
1.50 19.600 9.874 7.120 5.880 5.184 4.741 4.433 4.207 4.033 3.896 3.784 3.691 
1.75 22.870 11.490 8.250 6.786 5.960 5.432 5.065 4.795 4.587 4.422 4.288 4.176 
2.00 26.140 13.110 9.387 7.701 6.747 6.135 5.710 5.396 5.154 4.962 4.805 4.675 
2.50 32.690 16.350 11.670 9.546 8.339 7.563 7.021 6.621 6.312 6.067 5.866 5.698 
3.00 39.230 19.600 13.970 11.400 9.945 9.006 8.350 7.864 7.489 7.191 6.947 6.743 
3.50 45.770 22.850 16.270 13.270 11.560 10.460 9.688 9.118 8.677 8.326 8.039 7.799 
4.00 52.310 26.110 18.580 15.140 13.180 11.920 11.030 10.380 9.872 9.469 9.140 8.864 
4.50 58.850 29.360 20.880 17.010 14.800 13.380 12.380 11.640 11.070 10.620 10.240 9.933 
5.00 65.390 32.620 23.190 18.880 16.430 14.840 13.730 12.910 12.270 11. 770 11.350 11.010 
6.00 78.470 39.130 27.810 22.630 19.680 17.780 16.440 15.450 14.690 14.080 13.580 13.160 
7.00 91.550 45.650 32.430 26.390 22.940 20.720 19.160 18.000 17.100 16.390 15.810 15.320 
8.00 104.600 52.160 37 .060 30.140 26.200 23.660 21.870 20.550 19.530 18. 710 18.040 17.480 
9.00 117.700 58.680 41.680 33.900 29.460 26.600 24.590 23.100 21. 950 21.030 20.280 19.650 
10.00 130.800 65.200 46.310 37.660 32.730 29.540 27.310 25.660 24.380 23.350 22.510 21.820 

Source: Land (1975) 
Footnote. Notation n = 3(1)19(2)25(3)31(5)36 is shorthand for n from 3 to 19 by unit steps, from 19 to 25 by 2's, from 25 to 31 by 
3's, and from 31 to 36 by S's 
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Table 21-6. Land's Factors (H.95) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 15 16 17 18 19 21 23 25 28 31 36 

0.10 1.749 1.743 1.738 1.733 1.729 1.722 1.716 1.711 1.706 1.701 1.695 
0.20 1.809 1.800 1.793 1.787 1.781 1.771 1.763 1.756 1.749 1.742 1.734 
0.30 1.882 1.871 1.861 1.853 1.845 1.833 1.822 1.813 1.802 1.793 1.783 
0.40 1.968 1.954 1.942 1.931 1.921 1.905 1.892 1.881 1.867 1.856 1.841 
0.50 2.068 2.050 2.035 2.021 2.009 1.989 1.973 1.959 1.942 1.928 1.910 
0.60 2.181 2.160 2.141 2.124 2.110 2.085 2.065 2.048 2.027 2.010 1.988 
0.70 2.306 2.280 2.258 2.238 2.221 2.191 2.167 2.147 2.122 2.102 2.075 
0.80 2.443 2.412 2.386 2.362 2.342 2.307 2.279 2.255 2.225 2.202 2.171 
0.90 2.589 2.554 2.523 2.496 2.472 2.432 2.399 2.371 2.337 2.310 2.273 
1.00 2.744 2.704 2.669 2.638 2.611 2.564 2.526 2.495 2.456 2.423 2.383 
1.25 3.163 3.109 3.062 3.021 2.984 2.923 2.873 2.830 2.779 2.737 2.682 
1.50 3.612 3.544 3.485 3.434 3.388 3.311 3.248 3.195 3.130 3.077 3.008 
1.75 4.081 4.000 3.929 3.867 3.812 3.719 3.643 3.579 3.501 3.437 3.355 
2.00 4.564 4.470 4.387 4.314 4.251 4.141 4.052 3.977 3.886 3.812 3.715 
2.50 5.557 5.435 5.328 5.236 5.153 5.013 4.898 4.802 4.683 4.588 4.463 
3.00 6.570 6.422 6.293 6.179 6.078 5.907 5.766 5.649 5.504 5.388 5.234 
3.50 7.596 7.422 7.269 7.136 7.016 6.815 6.649 6.510 6.340 6.201 6.020 
4.00 8.630 8.429 8.254 8.100 7.963 7.731 7.540 7.380 7.184 7.024 6.816 
4.50 9.669 9.442 9.244 9.070 8.916 8.652 8.437 8.257 8.034 7.854 7.618 
5.00 10. 710 10.460 10.240 10.040 9.872 9.579 9.338 9.137 8.889 8.688 8.424 
6.00 12.810 12.500 12.230 12.000 11. 790 11.440 11.150 10.910 10.610 10.360 10.050 
7.00 14.900 14.550 14.240 13.960 13.720 13.310 12.970 12.680 12.330 12.050 11.680 
8.00 17.010 16.600 16.240 15.930 15.650 15.180 14.790 14.470 14.060 13.740 13.310 
9.00 19.110 18.650 18.250 17.900 17.590 17 .050 16.620 16.250 15.800 15.430 14.950 
10.00 21.220 20.710 20.260 19.870 19.520 18.930 18.440 18.040 17 .530 12.560 16.590 
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Table 21-7. Land's Factors (H.975) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 3 4 6 7 8 9 10 11 12 13 14 

0.10 4.367 3.100 2.703 2.513 2.403 2.330 2.879 2.242 2.212 2.190 2.169 2.155 
0.20 5.849 3.571 2.987 2.723 2.573 2.476 2.409 2.359 2.321 2.291 2.265 2.245 
0.30 8.166 4.210 3.348 2.982 2.781 2.653 2.565 2.501 2.451 2.411 2.380 2.353 
0.40 10.860 5.031 3.794 3.296 3.030 2.864 2.750 2.667 2.604 2.554 2.514 2.480 
0.50 13.590 5.989 4.322 3.664 3.319 3.107 2.963 2.859 2.780 2.718 2.668 2.626 
0.60 16.310 7.019 4.914 4.081 3.647 3.382 3.204 3.076 2.979 2.903 2.842 2.791 
0.70 19.040 8.083 5.548 4.534 4.005 3.684 3.469 3.314 3.198 3.106 3.033 2.973 
0.80 21.760 9.164 6.208 5.014 4.389 4.009 3.754 3.572 3.434 3.327 3.240 3.169 
0.90 24.490 10.250 6.885 5.512 4.791 4.351 4.056 3.844 3.685 3.561 3.461 3.379 
1.00 27.210 11.350 7.572 6.024 5.206 4.707 4.371 4.130 3.949 3.807 3.693 3.599 
1.25 34.020 14.110 9.320 7.339 6.285 5.636 5.199 4.884 4.647 4.461 4.312 4.189 
1.50 40.830 16.880 11.090 8.684 7.397 6.602 6.064 5.676 5.383 5.153 4.968 4.815 
1.75 47.630 19.650 12.880 10.050 8.528 7.588 6.951 6.490 6.142 5.869 5.648 5.466 
2.00 54.440 22.430 14.670 11.420 9.671 8.588 7.853 7.320 6.916 6.599 6.344 6.133 
2.50 68.050 28.000 18.270 14.180 11. 980 10.610 9.681 9.006 8.493 8.091 7.765 7.497 
3.00 81.660 33.580 21.870 16.960 14.300 12.650 11.530 10. 710 10.090 9.605 9.210 8.884 
3.50 95.270 39.160 25.490 19.740 16.640 14.710 13.390 12.430 11.700 11.130 10.670 10.290 
4.00 108.900 44.740 29.110 22.530 18.980 16.770 15.260 14.160 13.320 12.670 12.140 11.700 
4.50 122.500 50.320 32.730 25.320 21.320 18.830 17.130 15.890 14.950 14.210 13.610 13.110 
5.00 136.100 55.900 36.350 28.120 23.670 20.890 19.000 17.630 16.580 15.750 15.090 14.540 
6.00 163.300 67.070 43.590 33.710 28.370 25.030 22.760 21.100 19.850 18.850 18.050 17.390 
7.00 190.600 78.240 50.840 39.310 33.070 29.180 26.520 24.590 23.120 21.960 21.020 20.250 
8.00 217.800 89.410 58.100 44.910 37.770 33.330 30.280 28.080 26.390 25.070 23.990 23.110 
9.00 245.000 100.600 65.350 50.510 42.480 37.470 34.050 31.570 29.670 28.180 26.970 25.970 
10.00 272.200 111.800 72.600 56.110 47.190 41.620 37.820 35.060 32.950 31.290 29.950 28.840 

Source: Land (1975) 
Footnote. Notation n = 3(1)19(2)25(3)31(5)36 is shorthand for n from 3 to 19 by unit steps, from 19 to 25 by 2's, from 25 to 31 by 
3's, and from 31 to 36 by S's 
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Table 21-7. Land's Factors (H.975) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 15 16 17 18 19 21 23 25 28 31 36 

0.10 2.141 2.130 2.120 2.112 2.104 2.091 2.081 2.072 2.062 2.053 2.043 
0.20 2.227 2.212 2.199 2.188 2.178 2.161 2.147 2.135 2.121 2.110 2.096 
0.30 2.331 2.311 2.295 2.280 2.267 2.246 2.228 2.213 2.194 2.180 2.161 
0.40 2.452 2.428 2.407 2.388 2.372 2.345 2.323 2.305 2.281 2.263 2.239 
0.50 2.592 2.562 2.536 2.513 2.493 2.460 2.432 2.409 2.381 2.359 2.329 
0.60 2.749 2.712 2.681 2.653 2.630 2.588 2.555 2.528 2.494 2.467 2.432 
0.70 2.922 2.879 2.841 2.808 2.780 2.731 2.692 2.659 2.619 2.587 2.545 
0.80 3.109 3.059 3.015 2.976 2.943 2.886 2.840 2.802 2.755 2.717 2.668 
0.90 3.310 3.251 3.200 3.157 3.117 3.052 2.999 2.955 2.901 2.858 2.801 
1.00 3.521 3.454 3.397 3.347 3.302 3.227 3.167 3.116 3.056 3.007 2.943 
1.25 4.086 3.998 3.922 3.856 3.798 3.700 3.621 3.555 3.474 3.410 3.327 
1.50 4.688 4.579 4.485 4.402 4.330 4.209 4.109 4.027 3.927 3.847 3.743 
1.75 5.314 5.183 5.070 4.972 4.887 4.740 4.622 4.524 4.404 4.307 4.183 
2.00 5.956 5.804 5.674 5.559 5.461 5.289 5.151 5.037 4.897 4.784 4.639 
2.50 7.271 7.078 6.911 6.765 6.636 6.419 6.243 6.096 5.916 5.772 5.585 
3.00 8.610 8.376 8.174 7.996 7.840 7.576 7.361 7.182 6.963 6.787 6.559 
3.50 9.964 9.689 9.451 9.242 9.058 8.748 8.495 8.284 8.027 7.820 7.551 
4.00 11.330 11.010 10.740 10.500 10.290 9.930 9.639 9.397 9.101 8.863 8.554 
4.50 12.700 12.340 12.030 11.760 11.520 11.120 10.790 10.520 10.180 9.913 9.564 
5.00 14.070 13.670 13.330 13.030 12.760 12.310 11.950 11.640 11.270 10.970 10.580 
6.00 16.830 16.350 15.930 15.570 15.250 14.710 14.270 13.900 13.450 13.090 12.620 
7.00 19.590 19.030 18.550 18.130 17.750 17.120 16.600 16.170 15.650 15.220 14.670 
8.00 22.360 21.720 21.170 20.680 20.250 19.530 18.940 18.450 17.840 17.360 16.730 
9.00 25.130 24.410 23.790 23.240 22.760 21.940 21.280 20.720 20.050 19.500 18.790 
10.00 27.900 27.100 26.410 25.800 25.270 24.360 23.620 23.000 22.250 17.130 20.850 
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Table 21-8. Land's Factors (H.99) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 3 4 6 7 8 9 10 11 12 13 14 

0.10 8.328 4.665 3.760 3.360 3.137 2.994 2.897 2.825 2.770 2.727 2.691 2.663 
0.20 13.940 5.768 4.310 3.731 3.422 3.231 3.101 3.006 2.935 2.878 2.833 2.796 
0.30 20.880 7.336 5.035 4.199 3.775 3.519 3.348 3.225 3.132 3.060 3.002 2.955 
0.40 27.850 9.244 5.934 4.771 4.199 3.862 3.640 3.482 3.364 3.273 3.200 3.140 
0.50 34.820 11.290 6.966 5.434 4.691 4.258 3.976 3.778 3.631 3.517 3.426 3.353 
0.60 41.780 13.390 8.077 6.167 5.240 4.702 4.353 4.109 3.929 3.790 3.680 3.590 
0.70 48.750 15.520 9.231 6.947 5.831 5.183 4.764 4.471 4.255 4.089 3.958 3.851 
0.80 55.710 17.650 10.410 7.757 6.452 5.693 5.201 4.858 4.604 4.110 4.256 4.131 
0.90 62.580 19.800 11.600 8.856 7.095 6.225 5.659 5.264 4.973 4.750 4.572 4.428 
1.00 69.650 21.950 12.810 9.430 7.753 6.772 6.133 5.686 5.357 5.103 4.903 4.740 
1.25 87.060 27.350 15.850 11.580 9.442 8.186 7.365 6.789 6.363 6.036 5.775 5.564 
1.50 104.500 32.770 18.920 13.760 11.170 9.641 8.640 7.936 7.414 7.102 6.693 6.432 
1.75 121.900 38.190 22.010 15.950 12.920 11.120 9.940 9.109 8.492 8.016 7.638 7.330 
2.00 139.300 43.610 25.100 18.160 14.680 12.610 11.260 10.300 9.587 9.039 8.602 8.245 
2.50 174.100 54.470 31.290 22.600 18.220 15.630 13.920 12.710 11.810 11.120 10.560 10.110 
3.00 208.900 65.340 37.500 27.050 21.790 18.660 16.600 15.140 14.060 13.220 12.540 12.010 
3.50 243.800 76.210 43.720 31.520 25.360 21. 710 19.300 17 .590 16.320 15.340 14.560 13.910 
4.00 278.600 87.080 49.940 35.980 28.940 24.760 22.000 20.050 18.590 17.470 16.570 15.840 
4.50 313.400 97.960 56.160 40.450 32.530 27.820 24.710 22.510 20.870 19.600 18.590 17.760 
5.00 348.200 108.800 62.380 44.930 36.120 30.880 27.420 24.980 23.150 21.740 20.620 19.700 
6.00 417.900 130.600 74.840 53.880 43.300 37.010 32.860 29.920 27.730 26.030 24.680 23.570 
7.00 487.500 152.300 87.290 62.840 50.490 43.140 38.300 34.870 32.310 30.330 28.750 27.450 
8.00 557 .200 174.100 99.750 71.790 57 .680 49.280 43.740 39.820 36.890 34.630 32.820 31.340 
9.00 626.900 195.900 112.200 80.750 64.870 55.430 49.190 44.770 41.480 38.930 36.900 35.230 
10.00 696.500 217.600 124.700 89.720 72.070 61.570 54.640 49.730 46.070 43.240 40.980 39.130 

Source: Land (1975) 
Footnote. Notation n = 3(1)19(2)25(3)31(5)36 is shorthand for n from 3 to 19 by unit steps, from 19 to 25 by 2's, from 25 to 31 by 
3's, and from 31 to 36 by S's 
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Table 21-8. Land's Factors (H.99) for Confidence Bounds on Lognormal Arithmetic Mean for n = 

3(1) 19(2)25(3)31(5)36 

Sy\n 15 16 17 18 19 21 23 25 28 31 36 

0.10 2.638 2.618 2.600 2.584 2.571 2.548 2.529 2.514 2.495 2.480 2.462 
0.20 2.764 2.737 2.714 2.694 2.676 2.647 2.623 2.602 2.579 2.559 2.534 
0.30 2.914 2.880 2.851 2.826 2.803 2.767 2.735 2.710 2.679 2.655 2.623 
0.40 3.090 3.047 3.011 2.979 2.951 2.904 2.867 2.836 2.798 2.767 2.729 
0.50 3.291 3.239 3.194 3.155 3.121 3.064 3.017 2.979 2.933 2.896 2.849 
0.60 3.515 3.453 3.398 3.351 3.311 3.242 3.186 3.141 3.085 3.041 2.984 
0.70 3.762 3.687 3.623 3.567 3.519 3.438 3.372 3.318 3.253 3.200 3.134 
0.80 4.027 3.940 3.865 3.800 3.744 3.649 3.573 3.510 3.434 3.373 3.296 
0.90 4.309 4.209 4.123 4.049 3.983 3.875 3.787 3.716 3.628 3.559 3.471 
1.00 4.605 4.491 4.394 4.309 4.235 4.112 4.013 3.931 3.833 3.755 3.655 
1.25 5.388 5.240 5.114 5.004 4.908 4.749 4.620 4.513 4.385 4.283 4.143 
1.50 6.217 6.034 5.878 5.743 5.625 5.426 5.267 5.136 4.978 4.852 4.691 
1.75 7.074 6.857 6.671 6.510 6.369 6.134 5.944 5.788 5.599 5.449 5.256 
2.00 7.949 7.699 7.483 7.297 7.134 6.861 6.641 6.460 6.241 6.066 5.842 
2.50 9.735 9.415 9.145 8.907 8.700 8.353 8.073 7.842 7.562 7.339 7.052 
3.00 11.550 11.170 10.840 10.550 10.300 9.875 9.536 9.256 8.916 8.645 8.269 
3.50 13.380 12.930 12.540 12.210 11.910 11.420 11.020 10.690 10.290 9.970 9.560 
4.00 15.230 14.710 14.260 13.880 13.540 12.970 12.510 12.130 11.670 11.310 10.840 
4.50 17.070 16.490 15.990 15.550 15.170 14.350 14.010 13.590 13.070 12.660 12.120 
5.00 18.930 18.280 17.720 17.240 16.810 16.100 15.520 15.050 14.470 14.010 13.420 
6.00 22.650 21.870 21.190 20.610 20.100 19.240 18.550 17.980 17.280 16.730 16.010 
7.00 26.380 25.460 24.680 24.000 23.400 22.390 21.580 20.920 20.100 19.450 18.620 
8.00 30.110 29.060 28.170 27.390 26.700 25.550 24.630 23.860 22.930 22.190 21.230 
9.00 33.840 32.670 31.660 30.780 30.010 28.720 27.670 26.810 25.760 24.930 23.800 
10.00 37.580 36.280 35.150 34.180 33.320 31.880 30.720 29.770 28.600 21.640 26.470 
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Table 21-9. Factors (r) for Parametric Upper Conf. Bounds on Percentiles (P) 

p = 0.80 p = 0.90 

n\(1-a) 0.80 0.90 0.9S 0.97S 0.99 0.80 0.90 0.9S 0.97S 0.99 

2 3.417 6.987 14.051 28.140 70.376 5.049 10.253 20.581 41.201 103.029 
3 2.016 3.039 4.424 6.343 10.111 2.871 4.258 6.155 8.797 13.995 
4 1.675 2.295 3.026 3.915 5.417 2.372 3.188 4.162 5.354 7.380 
s 1.514 1.976 2.483 3.058 3.958 2.145 2.742 3.407 4.166 5.362 
6 1.417 1.795 2.191 2.621 3.262 2.012 2.494 3.006 3.568 4.411 
7 1.352 1.676 2.005 2.353 2.854 1.923 2.333 2.755 3.206 3.859 
8 1.304 1.590 1.875 2.170 2.584 1.859 2.219 2.582 2.960 3.497 
9 1.266 1.525 1.779 2.036 2.391 1.809 2.133 2.454 2.783 3.240 
10 1.237 1.474 1.703 1.933 2.246 1.770 2.066 2.355 2.647 3.048 
11 1.212 1.433 1.643 1.851 2.131 1.738 2.011 2.275 2.540 2.898 
12 1.192 1.398 1.593 1.784 2.039 1.711 1.966 2.210 2.452 2.777 
13 1.174 1.368 1.551 1.728 1.963 1.689 1.928 2.155 2.379 2.677 
14 1.159 1.343 1.514 1.681 1.898 1.669 1.895 2.109 2.317 2.593 
1S 1.145 1.321 1.483 1.639 1.843 1.652 1.867 2.068 2.264 2.521 
16 1.133 1.301 1.455 1.603 1.795 1.637 1.842 2.033 2.218 2.459 
17 1.123 1.284 1.431 1.572 1.753 1.623 1.819 2.002 2.177 2.405 
18 1.113 1.268 1.409 1.543 1.716 1.611 1.800 1.974 2.141 2.357 
19 1.104 1.254 1.389 1.518 1.682 1.600 1.782 1.949 2.108 2.314 
20 1.096 1.241 1.371 1.495 1.652 1.590 1.765 1.926 2.079 2.276 
21 1.089 1.229 1.355 1.474 1.625 1.581 1.750 1.905 2.053 2.241 
22 1.082 1.218 1.340 1.455 1.600 1.572 1.737 1.886 2.028 2.209 
23 1.076 1.208 1.326 1.437 1.577 1.564 1.724 1.869 2.006 2.180 
24 1.070 1.199 1.313 1.421 1.556 1.557 1.712 1.853 1.985 2.154 
2S 1.065 1.190 1.302 1.406 1.537 1.550 1.702 1.838 1.966 2.129 
26 1.060 1.182 1.291 1.392 1.519 1.544 1.691 1.824 1.949 2.106 
27 1.055 1.174 1.280 1.379 1.502 1.538 1.682 1.811 1.932 2.085 
28 1.051 1.167 1.271 1.367 1.486 1.533 1.673 1.799 1.917 2.065 
29 1.047 1.160 1.262 1.355 1.472 1.528 1.665 1.788 1.903 2.047 
30 1.043 1.154 1.253 1.344 1.458 1.523 1.657 1.777 1.889 2.030 
31 1.039 1.148 1.245 1.334 1.445 1.518 1.650 1.767 1.877 2.014 
32 1.035 1.143 1.237 1.325 1.433 1.514 1.643 1.758 1.865 1.998 
33 1.032 1.137 1.230 1.316 1.422 1.510 1.636 1.749 1.853 1.984 
34 1.029 1.132 1.223 1.307 1.411 1.506 1.630 1.740 1.843 1.970 
3S 1.026 1.127 1.217 1.299 1.400 1.502 1.624 1.732 1.833 1.957 
36 1.023 1.123 1.211 1.291 1.391 1.498 1.618 1.725 1.823 1.945 
37 1.020 1.118 1.205 1.284 1.381 1.495 1.613 1.717 1.814 1.934 
38 1.017 1.114 1.199 1.277 1.372 1.492 1.608 1.710 1.805 1.922 
39 1.015 1.110 1.194 1.270 1.364 1.489 1.603 1.704 1.797 1.912 
40 1.013 1.106 1.188 1.263 1.356 1.486 1.598 1.697 1.789 1.902 
41 1.010 1.103 1.183 1.257 1.348 1.483 1.593 1.691 1.781 1.892 
42 1.008 1.099 1.179 1.251 1.341 1.480 1.589 1.685 1.774 1.883 
43 1.006 1.096 1.174 1.246 1.333 1.477 1.585 1.680 1.767 1.874 
44 1.004 1.092 1.170 1.240 1.327 1.475 1.581 1.674 1.760 1.865 
4S 1.002 1.089 1.165 1.235 1.320 1.472 1.577 1.669 1.753 1.857 
46 1.000 1.086 1.161 1.230 1.314 1.470 1.573 1.664 1.747 1.849 
47 0.998 1.083 1.157 1.225 1.308 1.468 1.570 1.659 1.741 1.842 
48 0.996 1.080 1.154 1.220 1.302 1.465 1.566 1.654 1.735 1.835 
49 0.994 1.078 1.150 1.216 1.296 1.463 1.563 1.650 1.730 1.828 
so 0.993 1.075 1.146 1.211 1.291 1.461 1.559 1.646 1.724 1.821 
SS 0.985 1.063 1.130 1.191 1.266 1.452 1.545 1.626 1.700 1.790 
60 0.978 1.052 1.116 1.174 1.245 1.444 1.532 1.609 1.679 1.764 
6S 0.972 1.043 1.104 1.159 1.226 1.437 1.521 1.594 1.661 1.741 
70 0.967 1.035 1.094 1.146 1.210 1.430 1.511 1.581 1.645 1.722 
7S 0.963 1.028 1.084 1.135 1.196 1.425 1.503 1.570 1.630 1.704 
80 0.959 1.022 1.076 1.124 1.183 1.420 1.495 1.559 1.618 1.688 
85 0.955 1.016 1.068 1.115 1.171 1.415 1.488 1.550 1.606 1.674 
90 0.951 1.011 1.061 1.106 1.161 1.411 1.481 1.542 1.596 1.661 
9S 0.948 1.006 1.055 1.098 1.151 1.408 1.475 1.534 1.586 1.650 
100 0.945 1.001 1.049 1.091 1.142 1.404 1.470 1.527 1.578 1.639 

Source: Hahn & Meeker (1991) 
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Table 21-9. Factors (r) for Parametric Upper Conf. Bounds on Percentiles (P) 

p = 0.9S p = 0.99 

n\(1-a) 0.80 0.90 0.9S 0.97S 0.99 0.80 0.90 0.9S 0.97S 0.99 

2 6.464 13.090 26.260 52.559 131.426 9.156 18.500 37.094 74.234 185.617 
3 3.604 5.311 7.656 10.927 17.370 5.010 7.340 10.553 15.043 23.896 
4 2.968 3.957 5.144 6.602 9.083 4.110 5.438 7.042 9.018 12.387 
s 2.683 3.400 4.203 5.124 6.578 3.711 4.666 5.741 6.980 8.939 
6 2.517 3.092 3.708 4.385 5.406 3.482 4.243 5.062 5.967 7.335 
7 2.407 2.894 3.399 3.940 4.728 3.331 3.972 4.642 5.361 6.412 
8 2.328 2.754 3.187 3.640 4.285 3.224 3.783 4.354 4.954 5.812 
9 2.268 2.650 3.031 3.424 3.972 3.142 3.641 4.143 4.662 5.389 
10 2.220 2.568 2.911 3.259 3.738 3.078 3.532 3.981 4.440 5.074 
11 2.182 2.503 2.815 3.129 3.556 3.026 3.443 3.852 4.265 4.829 
12 2.149 2.448 2.736 3.023 3.410 2.982 3.371 3.747 4.124 4.633 
13 2.122 2.402 2.671 2.936 3.290 2.946 3.309 3.659 4.006 4.472 
14 2.098 2.363 2.614 2.861 3.189 2.914 3.257 3.585 3.907 4.337 
1S 2.078 2.329 2.566 2.797 3.102 2.887 3.212 3.520 3.822 4.222 
16 2.059 2.299 2.524 2.742 3.028 2.863 3.172 3.464 3.749 4.123 
17 2.043 2.272 2.486 2.693 2.963 2.841 3.137 3.414 3.684 4.037 
18 2.029 2.249 2.453 2.650 2.905 2.822 3.105 3.370 3.627 3.960 
19 2.016 2.227 2.423 2.611 2.854 2.804 3.077 3.331 3.575 3.892 
20 2.004 2.208 2.396 2.576 2.808 2.789 3.052 3.295 3.529 3.832 
21 1.993 2.190 2.371 2.544 2.766 2.774 3.028 3.263 3.487 3.777 
22 1.983 2.174 2.349 2.515 2.729 2.761 3.007 3.233 3.449 3.727 
23 1.973 2.159 2.328 2.489 2.694 2.749 2.987 3.206 3.414 3.681 
24 1.965 2.145 2.309 2.465 2.662 2.738 2.969 3.181 3.382 3.640 
2S 1.957 2.132 2.292 2.442 2.633 2.727 2.952 3.158 3.353 3.601 
26 1.949 2.120 2.275 2.421 2.606 2.718 2.937 3.136 3.325 3.566 
27 1.943 2.109 2.260 2.402 2.581 2.708 2.922 3.116 3.300 3.533 
28 1.936 2.099 2.246 2.384 2.558 2.700 2.909 3.098 3.276 3.502 
29 1.930 2.089 2.232 2.367 2.536 2.692 2.896 3.080 3.254 3.473 
30 1.924 2.080 2.220 2.351 2.515 2.684 2.884 3.064 3.233 3.447 
31 1.919 2.071 2.208 2.336 2.496 2.677 2.872 3.048 3.213 3.421 
32 1.914 2.063 2.197 2.322 2.478 2.671 2.862 3.034 3.195 3.398 
33 1.909 2.055 2.186 2.308 2.461 2.664 2.852 3.020 3.178 3.375 
34 1.904 2.048 2.176 2.296 2.445 2.658 2.842 3.007 3.161 3.354 
3S 1.900 2.041 2.167 2.284 2.430 2.652 2.833 2.995 3.145 3.334 
36 1.895 2.034 2.158 2.272 2.415 2.647 2.824 2.983 3.131 3.315 
37 1.891 2.028 2.149 2.262 2.402 2.642 2.816 2.972 3.116 3.297 
38 1.888 2.022 2.141 2.251 2.389 2.637 2.808 2.961 3.103 3.280 
39 1.884 2.016 2.133 2.241 2.376 2.632 2.800 2.951 3.090 3.264 
40 1.880 2.010 2.125 2.232 2.364 2.627 2.793 2.941 3.078 3.249 
41 1.877 2.005 2.118 2.223 2.353 2.623 2.786 2.932 3.066 3.234 
42 1.874 2.000 2.111 2.214 2.342 2.619 2.780 2.923 3.055 3.220 
43 1.871 1.995 2.105 2.206 2.331 2.615 2.773 2.914 3.044 3.206 
44 1.868 1.990 2.098 2.198 2.321 2.611 2.767 2.906 3.034 3.193 
4S 1.865 1.986 2.092 2.190 2.312 2.607 2.761 2.898 3.024 3.180 
46 1.862 1.981 2.086 2.183 2.303 2.604 2.756 2.890 3.014 3.168 
47 1.859 1.977 2.081 2.176 2.294 2.600 2.750 2.883 3.005 3.157 
48 1.857 1.973 2.075 2.169 2.285 2.597 2.745 2.876 2.996 3.146 
49 1.854 1.969 2.070 2.163 2.277 2.594 2.740 2.869 2.988 3.135 
so 1.852 1.965 2.065 2.156 2.269 2.590 2.735 2.862 2.980 3.125 
SS 1.841 1.948 2.042 2.128 2.233 2.576 2.713 2.833 2.943 3.078 
60 1.832 1.933 2.022 2.103 2.202 2.564 2.694 2.807 2.911 3.038 
6S 1.823 1.920 2.005 2.082 2.176 2.554 2.677 2.785 2.883 3.004 
70 1.816 1.909 1.990 2.063 2.153 2.544 2.662 2.765 2.859 2.974 
7S 1.810 1.899 1.976 2.047 2.132 2.536 2.649 2.748 2.838 2.947 
80 1.804 1.890 1.964 2.032 2.114 2.528 2.638 2.733 2.819 2.924 
85 1.799 1.882 1.954 2.019 2.097 2.522 2.627 2.719 2.802 2.902 
90 1.794 1.874 1.944 2.006 2.082 2.516 2.618 2.706 2.786 2.883 
9S 1.790 1.867 1.935 1.995 2.069 2.510 2.609 2.695 2.772 2.866 
100 1.786 1.861 1.927 1.985 2.056 2.505 2.601 2.684 2.759 2.850 
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Table 21-10. Factors (r) for Parametric Lower Conf. Bounds on Percentiles (P) 

p = 0.80 p = 0.90 

n\(1-a) 0.80 0.90 0.95 0.975 0.99 0.80 0.90 0.95 0.975 0.99 

2 0.288 -0.084 -0 .521 -1.229 -3.204 0.737 0.403 0.138 -0.143 -0.707 
3 0.377 0.111 -0.127 -0.380 -0.792 0.799 0.535 0.334 0.159 -0.072 
4 0.432 0.209 0.021 -0.158 -0.405 0.847 0.617 0.444 0.298 0.123 
5 0.470 0.272 0.110 -0.038 -0.227 0.883 0.675 0.519 0.389 0.238 
6 0.499 0.319 0.173 0.043 -0.117 0.911 0.719 0.575 0.455 0.319 
7 0.522 0.355 0.220 0.103 -0.040 0.933 0.755 0.619 0.507 0.381 
8 0.540 0.384 0.258 0.150 0.020 0.952 0.783 0.655 0.550 0.431 
9 0.556 0.408 0.290 0.188 0.067 0.968 0.808 0.686 0.585 0.472 
10 0.569 0.428 0.316 0.220 0.107 0.981 0.828 0.712 0.615 0.508 
11 0.580 0.446 0.339 0.247 0.140 0.993 0.847 0.734 0.642 0.538 
12 0.591 0.461 0.359 0.271 0.169 1.004 0.863 0.754 0.665 0.565 
13 0.599 0.475 0.376 0.292 0.194 1.013 0.877 0.772 0.685 0.589 
14 0.608 0.487 0.392 0.310 0.216 1.022 0.890 0.788 0.704 0.610 
15 0.615 0.498 0.406 0.327 0.236 1.029 0.901 0.802 0.721 0.629 
16 0.621 0.508 0.419 0.342 0.254 1.036 0.912 0.815 0.736 0.647 
17 0.627 0.518 0.430 0.356 0.271 1.043 0.921 0.827 0.750 0.663 
18 0.633 0.526 0.441 0.369 0.286 1.049 0.930 0.839 0.763 0.678 
19 0.638 0.534 0.451 0.380 0.299 1.054 0.939 0.849 0.775 0.692 
20 0.643 0.541 0.460 0.391 0.312 1.059 0.946 0.858 0.786 0.705 
21 0.647 0.548 0.468 0.401 0.324 1.064 0.953 0.867 0.796 0.716 
22 0.651 0.554 0.476 0.410 0.335 1.068 0.960 0.876 0.806 0.728 
23 0.655 0.560 0.484 0.419 0.345 1.073 0.966 0.884 0.815 0.738 
24 0.659 0.565 0.491 0.427 0.355 1.076 0.972 0.891 0.823 0.748 
25 0.662 0.570 0.497 0.435 0.364 1.080 0.978 0.898 0.831 0.757 
26 0.665 0.575 0.503 0.442 0.373 1.084 0.983 0.904 0.839 0.766 
27 0.669 0.580 0.509 0.449 0.381 1.087 0.988 0.911 0.846 0.774 
28 0.671 0.584 0.515 0.456 0.388 1.090 0.993 0.917 0.853 0.782 
29 0.674 0.588 0.520 0.462 0.396 1.093 0.997 0.922 0.860 0.790 
30 0.677 0.592 0.525 0.468 0.403 1.096 1.002 0.928 0.866 0.797 
31 0.679 0.596 0.530 0.473 0.409 1.099 1.006 0.933 0.872 0.804 
32 0.682 0.600 0.534 0.479 0.416 1.101 1.010 0.938 0.878 0.810 
33 0.684 0.603 0.539 0.484 0.422 1.104 1.013 0.942 0.883 0.817 
34 0.686 0.606 0.543 0.489 0.427 1.106 1.017 0.947 0.888 0.823 
35 0.688 0.610 0.547 0.494 0.433 1.108 1.020 0.951 0.893 0.828 
36 0.690 0.613 0.551 0.498 0.438 1.111 1.024 0.955 0.898 0.834 
37 0.692 0.616 0.554 0.502 0.443 1.113 1.027 0.959 0.903 0.839 
38 0.694 0.618 0.558 0.507 0.448 1.115 1.030 0.963 0.907 0.844 
39 0.696 0.621 0.561 0.511 0.453 1.117 1.033 0.967 0.911 0.849 
40 0.698 0.624 0.565 0.514 0.457 1.119 1.036 0.970 0.916 0.854 
41 0.699 0.626 0.568 0.518 0.462 1.120 1.038 0.974 0.920 0.859 
42 0.701 0.629 0.571 0.522 0.466 1.122 1.041 0.977 0.923 0.863 
43 0.702 0.631 0.574 0.525 0.470 1.124 1.044 0.980 0.927 0.867 
44 0.704 0.633 0.577 0.529 0.474 1.126 1.046 0.983 0.931 0.872 
45 0.705 0.635 0.579 0.532 0.478 1.127 1.048 0.986 0.934 0.876 
46 0.707 0.637 0.582 0.535 0.481 1.129 1.051 0.989 0.938 0.880 
47 0.708 0.640 0.585 0.538 0.485 1.130 1.053 0.992 0.941 0.883 
48 0.709 0.642 0.587 0.541 0.488 1.132 1.055 0.995 0.944 0.887 
49 0.711 0.643 0.590 0.544 0.492 1.133 1.057 0.997 0.947 0.891 
so 0.712 0.645 0.592 0.547 0.495 1.134 1.059 1.000 0.950 0.894 
55 0.718 0.654 0.603 0.559 0.510 1.141 1.069 1.012 0.964 0.910 
60 0.723 0.661 0.612 0.571 0.523 1.146 1.077 1.022 0.976 0.924 
65 0.727 0.668 0.621 0.581 0.535 1.151 1.085 1.032 0.987 0.937 
70 0.731 0.674 0.628 0.589 0.545 1.156 1.091 1.040 0.997 0.948 
75 0.735 0.679 0.635 0.597 0.554 1.160 1.097 1.048 1.006 0.958 
80 0.738 0.684 0.641 0.605 0.563 1.163 1.103 1.054 1.014 0.968 
85 0.741 0.689 0.647 0.611 0.571 1.167 1.108 1.061 1.021 0.976 
90 0.743 0.693 0.652 0.618 0.578 1.170 1.112 1.066 1.028 0.984 
95 0.746 0.697 0.657 0.623 0.584 1.172 1.116 1.072 1.034 0.991 
100 0.748 0.700 0.661 0.628 0.591 1.175 1.120 1.077 1.040 0.998 

Source: Adapted from Hahn & Meeker (1991) 
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Table 21-10. Factors (r) for Parametric Lower Conf. Bounds on Percentiles (P) 

p = 0.95 p = 0.99 

n\(1-a) 0.80 0.90 0.95 0.975 0.99 0.80 0.90 0.95 0.975 0.99 

2 1.077 0.717 0.475 0.273 0.000 1.672 1.225 0.954 0.761 0.564 
3 1.126 0.840 0.639 0.478 0.295 1.710 1.361 1.130 0.958 0.782 
4 1.172 0.922 0.743 0.601 0.443 1.760 1.455 1.246 1.088 0.924 
5 1.209 0.982 0.818 0.687 0.543 1.801 1.525 1.331 1.182 1.027 
6 1.238 1.028 0.875 0.752 0.618 1.834 1.578 1.396 1.256 1.108 
7 1.261 1.065 0.920 0.804 0.678 1.862 1.622 1.449 1.315 1.173 
8 1.281 1.096 0.958 0.847 0.727 1.885 1.658 1.493 1.364 1.227 
9 1.298 1.122 0.990 0.884 0.768 1.904 1.688 1.530 1.406 1.273 
10 1.313 1.144 1.017 0.915 0.804 1.922 1.715 1.563 1.442 1.314 
11 1.325 1.163 1.041 0.943 0.835 1.937 1.738 1.591 1.474 1.349 
12 1.337 1.180 1.062 0.967 0.862 1.950 1.758 1.616 1.502 1.381 
13 1.347 1.196 1.081 0.989 0.887 1.962 1.776 1.638 1.528 1.409 
14 1.356 1.210 1.098 1.008 0.909 1.973 1.793 1.658 1.551 1.434 
15 1.364 1.222 1.114 1.026 0.929 1.983 1.808 1.677 1.572 1.458 
16 1.372 1.234 1.128 1.042 0.948 1.992 1.822 1.694 1.591 1.479 
17 1.379 1.244 1.141 1.057 0.965 2.000 1.834 1.709 1.608 1.499 
18 1.385 1.254 1.153 1.071 0.980 2.008 1.846 1.724 1.625 1.517 
19 1.391 1.263 1.164 1.084 0.995 2.015 1.857 1.737 1.640 1.534 
20 1.397 1.271 1.175 1.095 1.008 2.022 1.867 1.749 1.654 1.550 
21 1.402 1.279 1.184 1.107 1.021 2.028 1.876 1.761 1.667 1.565 
22 1.407 1.286 1.193 1.117 1.033 2.034 1.885 1.772 1.680 1.579 
23 1.412 1.293 1.202 1.127 1.044 2.039 1.893 1.782 1.691 1.592 
24 1.416 1.300 1.210 1.136 1.054 2.045 1.901 1.791 1.702 1.605 
25 1.420 1.306 1.217 1.145 1.064 2.049 1.908 1.801 1.713 1.616 
26 1.424 1.311 1.225 1.153 1.074 2.054 1.915 1.809 1.723 1.627 
27 1.427 1.317 1.231 1.161 1.083 2.058 1.922 1.817 1.732 1.638 
28 1.431 1.322 1.238 1.168 1.091 2.063 1.928 1.825 1.741 1.648 
29 1.434 1.327 1.244 1.175 1.099 2.067 1.934 1.833 1.749 1.658 
30 1.437 1.332 1.250 1.182 1.107 2.070 1.940 1.840 1.757 1.667 
31 1.440 1.336 1.255 1.189 1.114 2.074 1.945 1.846 1.765 1.676 
32 1.443 1.341 1.261 1.195 1.121 2.078 1.951 1.853 1.773 1.684 
33 1.446 1.345 1.266 1.201 1.128 2.081 1.956 1.859 1.780 1.692 
34 1.449 1.349 1.271 1.206 1.135 2.084 1.960 1.865 1.787 1.700 
35 1.451 1.352 1.276 1.212 1.141 2.087 1.965 1.871 1.793 1.708 
36 1.453 1.356 1.280 1.217 1.147 2.090 1.970 1.876 1.799 1. 715 
37 1.456 1.360 1.284 1.222 1.153 2.093 1.974 1.882 1.806 1.722 
38 1.458 1.363 1.289 1.227 1.158 2.096 1.978 1.887 1.811 1.728 
39 1.460 1.366 1.293 1.232 1.164 2.098 1.982 1.892 1.817 1.735 
40 1.462 1.369 1.297 1.236 1.169 2.101 1.986 1.896 1.823 1.741 
41 1.464 1.372 1.300 1.241 1.174 2.103 1.989 1.901 1.828 1.747 
42 1.466 1.375 1.304 1.245 1.179 2.106 1.993 1.905 1.833 1. 753 
43 1.468 1.378 1.308 1.249 1.183 2.108 1.996 1.910 1.838 1. 758 
44 1.470 1.381 1.311 1.253 1.188 2.110 2.000 1.914 1.843 1.764 
45 1.472 1.383 1.314 1.257 1.192 2.112 2.003 1.918 1.847 1.769 
46 1.473 1.386 1.317 1.260 1.197 2.114 2.006 1.922 1.852 1.774 
47 1.475 1.389 1.321 1.264 1.201 2.116 2.009 1.925 1.856 1.779 
48 1.477 1.391 1.324 1.267 1.205 2.118 2.012 1.929 1.860 1.784 
49 1.478 1.393 1.327 1.271 1.209 2.120 2.015 1.933 1.865 1.789 
so 1.480 1.396 1.329 1.274 1.212 2.122 2.018 1.936 1.869 1.793 
55 1.487 1.406 1.343 1.289 1.230 2.131 2.031 1.952 1.887 1.815 
60 1.493 1.415 1.354 1.303 1.245 2.138 2.042 1.966 1.903 1.833 
65 1.498 1.424 1.364 1.315 1.259 2.145 2.052 1.979 1.918 1.850 
70 1.503 1.431 1.374 1.326 1.272 2.151 2.061 1.990 1.931 1.865 
75 1.508 1.438 1.382 1.335 1.283 2.156 2.069 2.000 1.943 1.879 
80 1.512 1.444 1.390 1.344 1.293 2.161 2.077 2.010 1.954 1.891 
85 1.515 1.449 1.397 1.352 1.302 2.166 2.083 2.018 1.964 1.903 
90 1.519 1.454 1.403 1.360 1.311 2.170 2.090 2.026 1.973 1.913 
95 1.522 1.459 1.409 1.367 1.319 2.174 2.095 2.033 1.981 1.923 
100 1.525 1.463 1.414 1.373 1.326 2.177 2.101 2.040 1.989 1.932 
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Table 21-11. Achievable Conf. Levels for One-Sided Non-Parametric Conf. Bounds 

Around Median, Upper 95th Percentile, and Upper 99th Percentile (n s 20) 

Rank of Confidence Level 

n Bound UCL SOth LCL SOth UCL 9Sth LCL 9Sth UCL 99th LCL 99th 

4 4 0.9375 0.0625 0.1855 0.8145 0.0394 0.9606 
4 3 0.6875 0.3125 0.0140 0.9860 0.0006 0.9994 
4 2 0.3125 0.6875 0.0005 0.9995 0.0000 1.0000 
4 1 0.0625 0.9375 0.0000 1.0000 0.0000 1.0000 

5 0.9688 0.0312 0.2262 0.7738 0.0490 0.9510 
4 0.8125 0.1875 0.0226 0.9774 0.0010 0.9990 
3 0.5000 0.5000 0.0012 0.9988 0.0000 1.0000 
2 0.1875 0.8125 0.0000 1.0000 0.0000 1.0000 
1 0.0312 0.9688 0.0000 1.0000 0.0000 1.0000 

6 6 0.9844 0.0156 0.2649 0.7351 0.0585 0. 9415 
6 5 0.8906 0.1094 0.0328 0.9672 0.0015 0.9985 
6 4 0.6562 0.3438 0.0022 0.9978 0.0000 1.0000 
6 3 0.3438 0.6562 0.0001 0.9999 0.0000 1.0000 
6 2 0.1094 0.8906 0.0000 1.0000 0.0000 1.0000 
6 1 0.0156 0.9844 0.0000 1.0000 0.0000 1.0000 

7 7 0.9922 0.0078 0.3017 0.6983 0.0679 0.9321 
7 6 0.9375 0.0625 0.0444 0. 9556 0.0020 0.9980 
7 5 0.7734 0.2266 0.0038 0.9962 0.0000 1.0000 
7 4 0.5000 0.5000 0.0002 0.9998 0.0000 1.0000 
7 3 0.2266 0.7734 0.0000 1.0000 0.0000 1.0000 
7 2 0.0625 0.9375 0.0000 1.0000 0.0000 1.0000 
7 1 0.0078 0.9922 0.0000 1.0000 0.0000 1.0000 

8 8 0.9961 0.0039 0.3366 0.6634 0.0773 0.9227 
8 7 0.9648 0.0352 0.0572 0.9428 0.0027 0.9973 
8 6 0 .8555 0.1445 0.0058 0.9942 0.0001 0.9999 
8 5 0.6367 0.3633 0.0004 0.9996 0.0000 1.0000 
8 4 0.3633 0.6367 0.0000 1.0000 0.0000 1.0000 
8 3 0.1445 0 .8555 0.0000 1.0000 0.0000 1.0000 
8 2 0.0352 0.9648 0.0000 1.0000 0.0000 1.0000 
8 1 0.0039 0.9961 0.0000 1.0000 0.0000 1.0000 

9 9 0.9980 0.0020 0.3698 0.6302 0.0865 0. 9135 
9 8 0.9805 0.0195 0.0712 0.9288 0.0034 0.9966 
9 7 0.9102 0.0898 0.0084 0.9916 0.0001 0.9999 
9 6 0.7461 0.2539 0.0006 0.9994 0.0000 1.0000 
9 5 0.5000 0.5000 0.0000 1.0000 0.0000 1.0000 
9 4 0.2539 0.7461 0.0000 1.0000 0.0000 1.0000 
9 3 0.0898 0.9102 0.0000 1.0000 0.0000 1.0000 
9 2 0.0195 0.9805 0.0000 1.0000 0.0000 1.0000 
9 1 0.0020 0.9980 0.0000 1.0000 0.0000 1.0000 

10 10 0.9990 0.0010 0.4013 0.5987 0.0956 0.9044 
10 9 0.9893 0.0107 0.0861 0.9139 0.0043 0.9957 
10 8 0.9453 0.0547 0.0115 0.9885 0.0001 0.9999 
10 7 0.8281 0.1719 0.0010 0.9990 0.0000 1.0000 
10 6 0.6230 0.3770 0.0001 0.9999 0.0000 1.0000 
10 5 0.3770 0.6230 0.0000 1.0000 0.0000 1.0000 
10 4 0.1719 0.8281 0.0000 1.0000 0.0000 1.0000 
10 3 0.0547 0.9453 0.0000 1.0000 0.0000 1.0000 
10 2 0.0107 0.9893 0.0000 1.0000 0.0000 1.0000 
10 1 0.0010 0.9990 0.0000 1.0000 0.0000 1.0000 

Footnote. LCL = lower confidence limit; UCL = upper confidence limit; 50th =median 
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Table 21-11. Achievable Conf. Levels for One-Sided Non-Parametric Conf. Bounds 

Around Median, Upper 95th Percentile, and Upper 99th Percentile (n s 20) 

Rank of Confidence Level 

n Bound UCL SOth LCL SOth UCL 9Sth LCL 9Sth UCL 99th LCL 99th 

11 11 0.9995 0.0005 0.4312 0.5688 0.1047 0.8953 
11 10 0.9941 0.0059 0.1019 0.8981 0.0052 0.9948 
11 9 0.9673 0.0327 0.0152 0.9848 0.0002 0.9998 
11 8 0.8867 0.1133 0.0016 0.9984 0.0000 1.0000 
11 7 0.7256 0.2744 0.0001 0.9999 0.0000 1.0000 
11 6 0.5000 0.5000 0.0000 1.0000 0.0000 1.0000 
11 5 0.2744 0.7256 0.0000 1.0000 0.0000 1.0000 
11 4 0.1133 0.8867 0.0000 1.0000 0.0000 1.0000 
11 3 0.0327 0.9673 0.0000 1.0000 0.0000 1.0000 
11 2 0.0059 0.9941 0.0000 1.0000 0.0000 1.0000 
11 1 0.0005 0.9995 0.0000 1.0000 0.0000 1.0000 

12 12 0.9998 0.0002 0.4596 0.5404 0.1136 0.8864 
12 11 0.9968 0.0032 0.1184 0.8816 0.0062 0.9938 
12 10 0.9807 0.0193 0.0196 0.9804 0.0002 0.9998 
12 9 0.9270 0.0730 0.0022 0.9978 0.0000 1.0000 
12 8 0.8062 0.1938 0.0002 0.9998 0.0000 1.0000 
12 7 0.6128 0.3872 0.0000 1.0000 0.0000 1.0000 
12 6 0.3872 0.6128 0.0000 1.0000 0.0000 1.0000 
12 5 0.1938 0.8062 0.0000 1.0000 0.0000 1.0000 
12 4 0.0730 0.9270 0.0000 1.0000 0.0000 1.0000 
12 3 0.0193 0.9807 0.0000 1.0000 0.0000 1.0000 
12 2 0.0032 0.9968 0.0000 1.0000 0.0000 1.0000 
12 1 0.0002 0.9998 0.0000 1.0000 0.0000 1.0000 

13 13 0.9999 0.0001 0.4867 0.5133 0.1225 0.8775 
13 12 0.9983 0.0017 0.1354 0.8646 0.0072 0.9928 
13 11 0.9888 0.0112 0.0245 0.9755 0.0003 0.9997 
13 10 0.9539 0.0461 0.0031 0.9969 0.0000 1.0000 
13 9 0.8666 0.1334 0.0003 0.9997 0.0000 1.0000 
13 8 0.7095 0.2905 0.0000 1.0000 0.0000 1.0000 
13 7 0.5000 0.5000 0.0000 1.0000 0.0000 1.0000 
13 6 0.2905 0.7095 0.0000 1.0000 0.0000 1.0000 
13 5 0.1334 0.8666 0.0000 1.0000 0.0000 1.0000 
13 4 0.0461 0.9539 0.0000 1.0000 0.0000 1.0000 
13 3 0.0112 0.9888 0.0000 1.0000 0.0000 1.0000 
13 2 0.0017 0.9983 0.0000 1.0000 0.0000 1.0000 
13 1 0.0001 0.9999 0.0000 1.0000 0.0000 1.0000 

14 14 0.9999 0.0001 0.5123 0.4877 0.1313 0.8687 
14 13 0.9991 0.0009 0.1530 0.8470 0.0084 0.9916 
14 12 0.9935 0.0065 0.0301 0.9699 0.0003 0.9997 
14 11 0.9713 0.0287 0.0042 0.9958 0.0000 1.0000 
14 10 0.9102 0.0898 0.0004 0.9996 0.0000 1.0000 
14 9 0.7880 0.2120 0.0000 1.0000 0.0000 1.0000 
14 8 0.6047 0.3953 0.0000 1.0000 0.0000 1.0000 
14 7 0.3953 0.6047 0.0000 1.0000 0.0000 1.0000 
14 6 0.2120 0.7880 0.0000 1.0000 0.0000 1.0000 
14 5 0.0898 0.9102 0.0000 1.0000 0.0000 1.0000 
14 4 0.0287 0.9713 0.0000 1.0000 0.0000 1.0000 
14 3 0.0065 0.9935 0.0000 1.0000 0.0000 1.0000 
14 2 0.0009 0.9991 0.0000 1.0000 0.0000 1.0000 
14 1 0.0001 0.9999 0.0000 1.0000 0.0000 1.0000 
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Table 21-11. Achievable Conf. Levels for One-Sided Non-Parametric Conf. Bounds 

Around Median, Upper 95th Percentile, and Upper 99th Percentile (n s 20) 

Rank of Confidence Level 

n Bound UCL 50th LCL 50th UCL 95th LCL 95th UCL 99th LCL 99th 

15 15 1.0000 0.0000 0.5367 0.4633 0.1399 0.8601 
15 14 0.9995 0.0005 0.1710 0.8290 0.0096 0.9904 
15 13 0.9963 0.0037 0.0362 0.9638 0.0004 0.9996 
15 12 0.9824 0.0176 0.0055 0.9945 0.0000 1.0000 
15 11 0.9408 0.0592 0.0006 0.9994 0.0000 1.0000 
15 10 0.8491 0.1509 0.0001 0.9999 0.0000 1.0000 
15 9 0.6964 0.3036 0.0000 1.0000 0.0000 1.0000 
15 8 0.5000 0.5000 0.0000 1.0000 0.0000 1.0000 
15 7 0.3036 0.6964 0.0000 1.0000 0.0000 1.0000 
15 6 0.1509 0.8491 0.0000 1.0000 0.0000 1.0000 
15 5 0.0592 0.9408 0.0000 1.0000 0.0000 1.0000 
15 4 0.0176 0.9824 0.0000 1.0000 0.0000 1.0000 
15 3 0.0037 0.9963 0.0000 1.0000 0.0000 1.0000 
15 2 0.0005 0.9995 0.0000 1.0000 0.0000 1.0000 
15 1 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

16 16 1.0000 0.0000 0.5599 0.4401 0.1485 0.8515 
16 15 0.9997 0.0003 0.1892 0.8108 0.0109 0.9891 
16 14 0.9979 0.0021 0.0429 0. 9571 0.0005 0.9995 
16 13 0.9894 0.0106 0.0070 0.9930 0.0000 1.0000 
16 12 0.9616 0.0384 0.0009 0.9991 0.0000 1.0000 
16 11 0.8949 0.1051 0.0001 0.9999 0.0000 1.0000 
16 10 0.7728 0.2272 0.0000 1.0000 0.0000 1.0000 
16 9 0.5982 0.4018 0.0000 1.0000 0.0000 1.0000 
16 8 0.4018 0.5982 0.0000 1.0000 0.0000 1.0000 
16 7 0.2272 0.7728 0.0000 1.0000 0.0000 1.0000 
16 6 0.1051 0.8949 0.0000 1.0000 0.0000 1.0000 
16 5 0.0384 0.9616 0.0000 1.0000 0.0000 1.0000 
16 4 0.0106 0.9894 0.0000 1.0000 0.0000 1.0000 
16 3 0.0021 0.9979 0.0000 1.0000 0.0000 1.0000 
16 2 0.0003 0.9997 0.0000 1.0000 0.0000 1.0000 
16 1 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

17 17 1.0000 0.0000 0.5819 0.4181 0.1571 0.8429 
17 16 0.9999 0.0001 0.2078 0.7922 0.0123 0.9877 
17 15 0.9988 0.0012 0.0503 0.9497 0.0006 0.9994 
17 14 0.9936 0.0064 0.0088 0.9912 0.0000 1.0000 
17 13 0. 9755 0.0245 0.0012 0.9988 0.0000 1.0000 
17 12 0.9283 0.0717 0.0001 0.9999 0.0000 1.0000 
17 11 0.8338 0.1662 0.0000 1.0000 0.0000 1.0000 
17 10 0.6855 0.3145 0.0000 1.0000 0.0000 1.0000 
17 9 0.5000 0.5000 0.0000 1.0000 0.0000 1.0000 
17 8 0.3145 0.6855 0.0000 1.0000 0.0000 1.0000 
17 7 0.1662 0.8338 0.0000 1.0000 0.0000 1.0000 
17 6 0.0717 0.9283 0.0000 1.0000 0.0000 1.0000 
17 5 0.0245 0.9755 0.0000 1.0000 0.0000 1.0000 
17 4 0.0064 0.9936 0.0000 1.0000 0.0000 1.0000 
17 3 0.0012 0.9988 0.0000 1.0000 0.0000 1.0000 
17 2 0.0001 0.9999 0.0000 1.0000 0.0000 1.0000 
17 1 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 
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Table 21-11. Achievable Conf. Levels for One-Sided Non-Parametric Conf. Bounds 

Around Median, Upper 95th Percentile, and Upper 99th Percentile (n s 20) 

Rank of Confidence Level 

n Bound UCL 50th LCL 50th UCL 95th LCL 95th UCL 99th LCL 99th 

18 18 1.0000 0.0000 0.6028 0.3972 0.1655 0.8345 
18 17 0.9999 0.0001 0.2265 0.7735 0.0138 0.9862 
18 16 0.9993 0.0007 0.0581 0.9419 0.0007 0.9993 
18 15 0.9962 0.0038 0.0109 0.9891 0.0000 1.0000 
18 14 0.9846 0.0154 0.0015 0.9985 0.0000 1.0000 
18 13 0.9519 0.0481 0.0002 0.9998 0.0000 1.0000 
18 12 0.8811 0.1189 0.0000 1.0000 0.0000 1.0000 
18 11 0.7597 0.2403 0.0000 1.0000 0.0000 1.0000 
18 10 0.5927 0.4073 0.0000 1.0000 0.0000 1.0000 
18 9 0.4073 0.5927 0.0000 1.0000 0.0000 1.0000 
18 8 0.2403 0.7597 0.0000 1.0000 0.0000 1.0000 
18 7 0.1189 0.8811 0.0000 1.0000 0.0000 1.0000 
18 6 0.0481 0.9519 0.0000 1.0000 0.0000 1.0000 
18 5 0.0154 0.9846 0.0000 1.0000 0.0000 1.0000 
18 4 0.0038 0.9962 0.0000 1.0000 0.0000 1.0000 
18 3 0.0007 0.9993 0.0000 1.0000 0.0000 1.0000 
18 2 0.0001 0.9999 0.0000 1.0000 0.0000 1.0000 
18 1 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

19 19 1.0000 0.0000 0.6226 0.3774 0.1738 0.8262 
19 18 1.0000 0.0000 0.2453 0.7547 0.0153 0.9847 
19 17 0.9996 0.0004 0.0665 0.9335 0.0009 0.9991 
19 16 0.9978 0.0022 0.0132 0.9868 0.0000 1.0000 
19 15 0.9904 0.0096 0.0020 0.9980 0.0000 1.0000 
19 14 0.9682 0.0318 0.0002 0.9998 0.0000 1.0000 
19 13 0.9165 0.0835 0.0000 1.0000 0.0000 1.0000 
19 12 0.8204 0.1796 0.0000 1.0000 0.0000 1.0000 
19 11 0.6762 0.3238 0.0000 1.0000 0.0000 1.0000 
19 10 0.5000 0.5000 0.0000 1.0000 0.0000 1.0000 
19 9 0.3238 0.6762 0.0000 1.0000 0.0000 1.0000 
19 8 0.1796 0.8204 0.0000 1.0000 0.0000 1.0000 
19 7 0.0835 0.9165 0.0000 1.0000 0.0000 1.0000 
19 6 0.0318 0.9682 0.0000 1.0000 0.0000 1.0000 
19 5 0.0096 0.9904 0.0000 1.0000 0.0000 1.0000 
19 4 0.0022 0.9978 0.0000 1.0000 0.0000 1.0000 
19 3 0.0004 0.9996 0.0000 1.0000 0.0000 1.0000 
19 2 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 
19 1 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 
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Table 21-11. Achievable Conf. Levels for One-Sided Non-Parametric Conf. Bounds 

Around Median, Upper 95th Percentile, and Upper 99th Percentile (n s 20) 

Rank of Confidence Level 

n Bound UCL SOth LCL SOth UCL 9Sth LCL 9Sth UCL 99th LCL 99th 

20 20 1.0000 0.0000 0.6415 0.3585 0.1821 0.8179 
20 19 1.0000 0.0000 0.2642 0.7358 0.0169 0.9831 
20 18 0.9998 0.0002 0.0755 0.9245 0.0010 0.9990 
20 17 0.9987 0.0013 0.0159 0.9841 0.0000 1.0000 
20 16 0.9941 0.0059 0.0026 0.9974 0.0000 1.0000 
20 15 0.9793 0.0207 0.0003 0.9997 0.0000 1.0000 
20 14 0.9423 0.0577 0.0000 1.0000 0.0000 1.0000 
20 13 0.8684 0.1316 0.0000 1.0000 0.0000 1.0000 
20 12 0.7483 0.2517 0.0000 1.0000 0.0000 1.0000 
20 11 0.5881 0.4119 0.0000 1.0000 0.0000 1.0000 
20 10 0.4119 0.5881 0.0000 1.0000 0.0000 1.0000 
20 9 0.2517 0.7483 0.0000 1.0000 0.0000 1.0000 
20 8 0.1316 0.8684 0.0000 1.0000 0.0000 1.0000 
20 7 0.0577 0.9423 0.0000 1.0000 0.0000 1.0000 
20 6 0.0207 0.9793 0.0000 1.0000 0.0000 1.0000 
20 5 0.0059 0.9941 0.0000 1.0000 0.0000 1.0000 
20 4 0.0013 0.9987 0.0000 1.0000 0.0000 1.0000 
20 3 0.0002 0.9998 0.0000 1.0000 0.0000 1.0000 
20 2 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 
20 1 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 
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D STATISTICAL TABLES 

D.5 TABLES FROM CHAPTER 22 

TABLE 22-1 Combs. of n and a Achieving Power to Detect Increases of 1.5xGWPS .............. D-256 

TABLE 22-2 Combs. of n and a Achieving Power to Detect Increases of 2.0xGWPS .............. D-257 

TABLE 22-3 Minimum Individual Test a Meeting Power criteria, given n and O/ .................. D-258 
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TABLE 22-5 Minimum n to Detect Increases of .SxGWPS, given 0/,1-/3, and a. .................... D-261 

TABLE 22-6 Minimum n to Detect Increases of .25xGWPS, given 0/, 1-/3, and a ................ D-263 

TABLE 22-7 Minimum n to Detect kPo Iner. over Percentile 1-p0 , with 1-/3 and o, k > 1.. ...... D-265 
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Table 22-1. Combinations of n (s 40) and a (s .20) Achieving (1-13) Power to Detect Increases of 1.5 x GWPS 

1-13 = 0.50 1-13 = 0.60 1-13 = 0.70 1-13 = 0.80 1-13 = 0.90 1-13 = 0.95 1-13 = 0.99 

n a n a n a n a n a n a n a 

4 0.177 6 0.179 8 0.197 12 0.195 19 0.191 26 0.188 
5 0.149 7 0.156 9 0.175 13 0.177 20 0.177 27 0.176 
6 0.127 8 0.136 10 0.156 14 0.160 21 0.163 28 0.164 
7 0.108 9 0.119 11 0.139 15 0.146 22 0.151 29 0.153 
8 0.093 10 0.104 12 0.124 16 0.132 23 0.139 30 0.143 
9 0.080 11 0.092 13 0.111 17 0.120 24 0.129 31 0.133 
10 0.069 12 0.081 14 0.099 18 0.109 25 0.119 32 0.124 
11 0.060 13 0.071 15 0.089 19 0.099 26 0.110 33 0.116 
12 0.052 14 0.063 16 0.079 20 0.090 27 0.101 34 0.108 
13 0.045 15 0.056 17 0.071 21 0.082 28 0.093 35 0.101 
14 0.039 16 0.049 18 0.064 22 0.074 29 0.086 36 0.094 
15 0.034 17 0.043 19 0.057 23 0.068 30 0.079 37 0.087 
16 0.030 18 0.038 20 0.051 24 0.061 31 0.073 38 0.081 
17 0.026 19 0.034 21 0.046 25 0.056 32 0.067 39 0.076 
18 0.023 20 0.030 22 0.041 26 0.051 33 0.062 40 0.070 
19 0.020 21 0.027 23 0.037 27 0.046 34 0.057 
20 0.018 22 0.024 24 0.033 28 0.042 35 0.053 
21 0.015 23 0.021 25 0.030 29 0.038 36 0.049 
22 0.014 24 0.019 26 0.027 30 0.034 37 0.045 
23 0.012 25 0.017 27 0.024 31 0.031 38 0.041 
24 0.010 26 0.015 28 0.022 32 0.029 39 0.038 
25 0.009 27 0.013 29 0.020 33 0.026 40 0.035 
26 0.008 28 0.012 30 0.018 34 0.023 
27 0.007 29 0.010 31 0.016 35 0.021 
28 0.006 30 0.009 32 0.014 36 0.019 
29 0.006 31 0.008 33 0.013 37 0.018 
30 0.005 32 0.007 34 0.011 38 0.016 
31 0.004 33 0.007 35 0.010 39 0.015 
32 0.004 34 0.006 36 0.009 40 0.013 
33 0.003 35 0.005 37 0.008 
34 0.003 36 0.005 38 0.007 
35 0.003 37 0.004 39 0.007 
36 0.002 38 0.004 40 0.006 
37 0.002 39 0.003 
38 0.002 40 0.003 
39 0.002 
40 0.002 
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Table 22-2. Combinations of n (s 40) and a (s .20) Achieving (1-13) Power to Detect Increases of 2 x GWPS 

1-13 = 0.50 1-13 = 0.60 1-13 = 0.70 1-13 = 0.80 1-13 = 0.90 1-13 = 0.95 1-13 = 0.99 

n a n a n a n a n a n a n a 

3 0.091 3 0.123 3 0.164 4 0.163 5 0.199 7 0.183 11 0.180 
4 0.057 4 0.080 4 0.113 5 0.119 6 0.152 8 0.144 12 0.148 
5 0.037 5 0.054 5 0.079 6 0.086 7 0.116 9 0.113 13 0.121 
6 0.024 6 0.036 6 0.055 7 0.063 8 0.088 10 0.089 14 0.099 
7 0.016 7 0.025 7 0.039 8 0.046 9 0.067 11 0.069 15 0.080 
8 0.011 8 0.017 8 0.027 9 0.034 10 0.051 12 0.054 16 0.065 
9 0.007 9 0.012 9 0.019 10 0.024 11 0.039 13 0.042 17 0.053 
10 0.005 10 0.008 10 0.014 11 0.018 12 0.029 14 0.033 18 0.043 
11 0.003 11 0.006 11 0.010 12 0.013 13 0.022 15 0.025 19 0.034 
12 0.002 12 0.004 12 0.007 13 0.010 14 0.017 16 0.020 20 0.027 
13 0.002 13 0.003 13 0.005 14 0.007 15 0.013 17 0.015 21 0.022 
14 0.001 14 0.002 14 0.004 15 0.005 16 0.010 18 0.012 22 0.018 
~ 15 <0.001 15 0.001 15 0.003 16 0.004 17 0.007 19 0.009 23 0.014 

~16 <0.001 16 0.002 17 0.003 18 0.005 20 0.007 24 0.011 
17 0.001 18 0.002 19 0.004 21 0.005 25 0.009 
~18 <0.001 19 0.002 20 0.003 22 0.004 26 0.007 

20 0.001 21 0.002 23 0.003 27 0.006 
~21 <0.001 22 0.002 24 0.002 28 0.004 

23 0.001 25 0.002 29 0.004 
~24 <0.001 26 0.002 30 0.003 

27 0.001 31 0.002 
~28 <0.001 32 0.002 

33 0.002 
34 0.001 
~35 <0.001 
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Table 22-3. Minimum Individual Test a Meeting Power Criteria Given n and CV 

SQO/o Power at R = 1.5 80°/o Power at R = 2 

CV n=4 n=6 n=8 n=10 n=12 n=4 n=6 n=8 n=10 n=12 

0.1 0.003 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 
0.2 0.022 0.005 0.001 0.000 0.000 0.014 0.002 0.000 0.000 0.000 
0.3 0.056 0.021 0.008 0.003 0.001 0.050 0.013 0.003 0.001 0.000 
0.4 0.097 0.048 0.025 0.014 0.007 0.113 0.043 0.017 0.007 0.003 
0.5 0.137 0.082 0.051 0.032 0.021 0.191 0.093 0.047 0.024 0.013 
0.6 0.174 0.116 0.080 0.056 0.040 0.270 0.156 0.094 0.057 0.035 
0.7 0.206 0.148 0.110 0.083 0.064 0.342 0.222 0.149 0.101 0.069 
0.8 0.233 0.177 0.139 0.110 0.088 0.402 0.284 0.206 0.151 0.112 
0.9 0.256 0.203 0.165 0.136 0.113 0.451 0.339 0.261 0.203 0.158 
1.0 0.276 0.226 0.189 0.160 0.136 0.492 0.386 0.310 0.251 0.205 
1.2 0.309 0.263 0.229 0.201 0.178 0.553 0.462 0.393 0.337 0.291 
1.4 0.333 0.293 0.261 0.235 0.214 0.596 0.517 0.456 0.406 0.362 
1.6 0.352 0.316 0.287 0.263 0.243 0.626 0.558 0.505 0.459 0.420 
1.8 0.368 0.335 0.308 0.286 0.267 0.650 0.590 0.542 0.502 0.466 
2.0 0.380 0.350 0.326 0.305 0.288 0.667 0.614 0.572 0.536 0.504 
2.2 0.391 0.363 0.341 0.322 0.305 0.682 0.634 0.596 0.564 0.534 
2.4 0.400 0.374 0.353 0.335 0.320 0.693 0.650 0.616 0.586 0.560 
2.6 0.407 0.383 0.364 0.347 0.333 0.703 0.664 0.632 0.605 0.581 
2.8 0.414 0.391 0.373 0.358 0.344 0.711 0.675 0.646 0.621 0.599 
3.0 0.419 0.398 0.381 0.367 0.354 0.718 0.685 0.658 0.635 0.614 
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Table 22-4. Minimum n (~ 4) to Detect Decreases of .75 x GWPS for Given CV, Power (1-(3), & Error Rate (a) 

CV= 0.2 CV= 0.4 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 4 4 4 4 4 0.20 4 4 4 6 8 11 
0.15 4 4 4 4 4 5 0.15 4 4 5 7 10 12 
0.10 4 4 4 4 4 5 0.10 4 5 6 8 11 15 
0.05 4 4 4 4 5 6 0.05 6 8 9 11 15 18 
0.01 6 6 6 7 8 9 0.01 11 13 15 18 22 26 

CV= 0.6 CV= 0.8 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 5 7 11 16 22 0.20 6 8 12 18 28 38 
0.15 5 7 9 13 19 25 0.15 8 11 15 22 33 43 
0.10 7 9 12 16 23 30 0.10 11 15 20 28 40 51 
0.05 11 14 17 22 30 37 0.05 18 23 29 38 51 65 
0.01 21 25 30 36 45 54 0.01 35 42 50 61 78 94 

CV= 1.0 CV= 1.2 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 8 12 18 27 42 58 0.20 11 17 25 38 60 82 
0.15 11 16 23 33 50 67 0.15 16 23 33 47 71 95 
0.10 17 23 31 42 61 79 0.10 23 32 44 60 87 113 
0.05 27 35 44 58 79 100 0.05 37 49 63 82 113 143 
0.01 52 63 76 93 120 145 0.01 74 90 109 133 172 208 

CV= 1.4 CV= 1.6 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 14 22 34 51 81 111 0.20 18 29 44 67 106 144 
0.15 21 31 44 64 96 129 0.15 26 40 58 83 125 168 
0.10 31 43 59 81 118 153 0.10 40 56 77 106 153 199 
0.05 50 66 85 111 153 193 0.05 65 85 110 144 199 252 
0.01 99 121 147 180 233 281 0.01 128 157 190 234 303 366 
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Table 22-4. Minimum n (~ 4) to Detect Decreases of .75 x GWPS for Given CV, Power (1-(3), & Error Rate (a) 

CV= 1.8 CV= 2.0 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 22 36 56 84 133 182 0.20 27 44 68 103 164 225 
0.15 33 50 72 104 158 212 0.15 40 61 89 128 195 261 
0.10 50 70 97 133 193 252 0.10 61 87 119 164 238 310 
0.05 81 107 139 182 252 318 0.05 100 132 171 225 310 392 
0.01 162 198 240 296 383 463 0.01 199 243 296 364 472 571 

CV= 2.2 CV= 2.4 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 32 54 83 125 198 271 0.20 38 63 98 148 235 323 
0.15 48 74 108 155 236 315 0.15 57 88 128 184 280 375 
0.10 73 104 144 198 288 375 0.10 87 124 171 235 342 446 
0.05 120 159 207 271 375 474 0.05 143 189 246 323 446 563 
0.01 239 293 357 440 570 690 0.01 284 348 425 523 678 821 

CV= 2.6 CV= 2.8 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 44 74 115 174 276 378 0.20 51 86 133 201 320 438 
0.15 67 103 150 216 329 439 0.15 77 119 173 250 381 509 
0.10 102 145 200 276 402 523 0.10 118 168 232 320 465 606 
0.05 167 221 288 378 523 661 0.05 193 256 334 438 606 766 
0.01 333 408 498 614 795 963 0.01 386 473 577 711 922 1116 
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Table 22-5. Minimum n (~ 4) to Detect Decreases of .5 x GWPS for Given CV, Power (1-(3), & Error Rate (a) 

CV= 0.2 CV= 0.4 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 4 4 4 4 4 0.20 4 4 4 4 4 4 
0.15 4 4 4 4 4 4 0.15 4 4 4 4 4 4 
0.10 4 4 4 4 4 4 0.10 4 4 4 4 4 4 
0.05 4 4 4 4 4 4 0.05 4 4 4 4 4 4 
0.01 4 4 4 4 4 4 0.01 4 4 5 5 5 6 

CV= 0.6 CV= 0.8 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 4 4 4 4 4 0.20 4 4 4 4 5 6 
0.15 4 4 4 4 4 5 0.15 4 4 4 4 5 7 
0.10 4 4 4 4 4 5 0.10 4 4 4 5 6 8 
0.05 4 4 4 4 5 6 0.05 4 5 5 6 8 9 
0.01 6 6 6 7 8 9 0.01 7 8 9 10 11 13 

CV= 1.0 CV= 1.2 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 4 4 4 6 8 0.20 4 4 4 6 8 11 
0.15 4 4 4 5 7 9 0.15 4 4 5 7 10 12 
0.10 4 4 5 6 9 11 0.10 4 5 6 8 11 15 
0.05 5 6 7 8 11 13 0.05 6 8 9 11 15 18 
0.01 9 10 11 13 16 19 0.01 11 13 15 18 22 26 

CV= 1.4 CV= 1.6 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 4 5 7 11 14 0.20 4 5 6 9 13 18 
0.15 4 5 6 8 12 16 0.15 4 6 8 11 16 20 
0.10 5 6 8 11 15 19 0.10 6 8 10 13 19 24 
0.05 8 9 11 14 19 24 0.05 9 11 14 18 24 30 
0.01 14 17 19 23 29 34 0.01 18 21 24 29 36 44 
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Table 22-5. Minimum n (~ 4) to Detect Decreases of .5 x GWPS for Given CV, Power (1-(3), & Error Rate (a) 

CV= 1.8 CV= 2.0 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 5 7 11 16 22 0.20 4 6 9 13 20 27 
0.15 5 7 9 13 19 25 0.15 6 8 11 16 23 31 
0.10 7 9 12 16 23 30 0.10 9 11 15 20 28 36 
0.05 11 14 17 22 30 37 0.05 13 17 21 27 36 46 
0.01 21 25 30 36 45 54 0.01 25 30 36 43 55 66 

CV= 2.2 CV= 2.4 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 5 7 10 15 23 32 0.20 6 8 12 18 28 38 
0.15 7 10 13 19 28 37 0.15 8 11 15 22 33 43 
0.10 10 13 17 23 34 44 0.10 11 15 20 28 40 51 
0.05 16 20 25 32 44 55 0.05 18 23 29 38 51 65 
0.01 30 36 43 52 66 79 0.01 35 42 50 61 78 94 

CV= 2.6 CV= 2.8 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 6 9 14 21 32 44 0.20 7 11 16 24 37 51 
0.15 9 13 18 25 38 51 0.15 10 15 21 29 44 58 
0.10 13 18 24 32 46 60 0.10 15 20 27 37 53 69 
0.05 21 27 34 44 60 76 0.05 24 30 39 51 69 87 
0.01 40 48 58 71 91 110 0.01 46 56 67 82 105 127 
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Table 22-6. Minimum n (~ 4) to Detect Decreases of .25 x GWPS for Given CV, Power (1-(3), & Error Rate (a) 

CV= 0.2 CV= 0.4 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 4 4 4 4 4 0.20 4 4 4 4 4 4 
0.15 4 4 4 4 4 4 0.15 4 4 4 4 4 4 
0.10 4 4 4 4 4 4 0.10 4 4 4 4 4 4 
0.05 4 4 4 4 4 4 0.05 4 4 4 4 4 4 
0.01 4 4 4 4 4 4 0.01 4 4 4 4 4 4 

CV= 0.6 CV= 0.8 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 4 4 4 4 4 0.20 4 4 4 4 4 4 
0.15 4 4 4 4 4 4 0.15 4 4 4 4 4 4 
0.10 4 4 4 4 4 4 0.10 4 4 4 4 4 4 
0.05 4 4 4 4 4 4 0.05 4 4 4 4 4 4 
0.01 4 4 4 4 4 4 0.01 4 4 4 4 4 4 

CV= 1.0 CV= 1.2 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 4 4 4 4 4 0.20 4 4 4 4 4 4 
0.15 4 4 4 4 4 4 0.15 4 4 4 4 4 4 
0.10 4 4 4 4 4 4 0.10 4 4 4 4 4 4 
0.05 4 4 4 4 4 4 0.05 4 4 4 4 4 4 
0.01 4 4 4 4 5 5 0.01 4 4 5 5 5 6 

CV= 1.4 CV= 1.6 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 4 4 4 4 4 0.20 4 4 4 4 4 4 
0.15 4 4 4 4 4 4 0.15 4 4 4 4 4 4 
0.10 4 4 4 4 4 4 0.10 4 4 4 4 4 5 
0.05 4 4 4 4 4 5 0.05 4 4 4 4 5 6 
0.01 5 5 5 5 6 7 0.01 5 5 6 6 7 8 
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Table 22-6. Minimum n (~ 4) to Detect Decreases of .25 x GWPS for Given CV, Power (1-(3), & Error Rate (a) 

CV= 1.8 CV= 2.0 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 4 4 4 4 4 0.20 4 4 4 4 4 5 
0.15 4 4 4 4 4 5 0.15 4 4 4 4 4 5 
0.10 4 4 4 4 4 5 0.10 4 4 4 4 5 6 
0.05 4 4 4 4 5 6 0.05 4 4 4 5 6 7 
0.01 6 6 6 7 8 9 0.01 6 6 7 8 9 10 

CV= 2.2 CV= 2.4 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 4 4 4 4 6 0.20 4 4 4 4 5 6 
0.15 4 4 4 4 5 6 0.15 4 4 4 4 5 7 
0.10 4 4 4 4 6 7 0.10 4 4 4 5 6 8 
0.05 4 4 5 6 7 8 0.05 4 5 5 6 8 9 
0.01 7 7 8 9 10 12 0.01 7 8 9 10 11 13 

CV= 2.6 CV= 2.8 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 

0.20 4 4 4 4 5 7 0.20 4 4 4 4 6 8 
0.15 4 4 4 4 6 8 0.15 4 4 4 5 7 8 
0.10 4 4 4 5 7 9 0.10 4 4 5 6 8 10 
0.05 5 5 6 7 9 11 0.05 5 6 6 8 10 12 
0.01 8 8 9 11 13 15 0.01 8 9 10 12 14 17 
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Table 22-7. Minimum n to Detect kpo Exceedances Over Percentile (1-po) with Power (1-13) and Error Rate (a) 

Percentile = goth Percentile = 95 th 

k=2 k=2 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 

0.20 7 13 22 35 59 83 140 0.20 14 27 47 77 130 184 311 
0.10 15 24 36 53 81 109 173 0.10 32 51 77 114 177 239 382 
0.05 25 26 50 69 102 133 203 0.05 52 76 107 150 221 291 447 
0.02 38 52 69 91 128 163 240 0.02 81 110 147 197 277 355 525 
0.01 49 64 83 108 147 184 266 0.01 103 136 177 231 318 401 581 

k = 2.5 k = 2.5 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 

0.20 3 6 11 17 29 42 71 0.20 6 13 23 38 66 95 162 
0.10 7 11 17 25 40 54 87 0.10 14 24 37 56 88 121 196 
0.05 11 17 24 33 49 65 101 0.05 23 35 51 73 109 145 227 
0.02 17 24 32 43 61 79 118 0.02 36 51 69 94 136 175 264 
0.01 22 29 39 51 70 89 130 0.01 46 63 83 110 155 197 290 

k=3 k=3 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 

0.20 2 4 7 11 18 26 44 0.20 4 8 14 24 42 60 103 
0.10 4 7 10 15 24 33 53 0.10 8 14 22 34 55 76 124 
0.05 7 10 14 20 30 39 61 0.05 13 21 30 44 67 90 142 
0.02 10 14 19 26 37 47 71 0.02 21 29 41 56 82 108 164 
0.01 13 17 23 30 42 53 78 0.01 26 36 49 66 94 120 179 
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Table 22-7. Minimum n to Detect kpo Exceedences Over Percentile (1-po) with Power (1-13) and Error Rate (a) 

Percentile = 98'h Percentile = 99th 

k=2 k=2 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 

0.20 35 71 122 200 341 485 823 0.20 71 143 247 407 693 987 1677 
0.10 81 132 200 297 464 630 1009 0.10 163 266 404 602 943 1281 2054 
0.05 133 196 278 391 580 764 1178 0.05 268 397 563 793 1178 1552 2395 
0.02 207 285 381 512 726 930 1382 0.02 418 576 772 1038 1473 1889 2810 
0.01 266 353 459 602 832 1050 1528 0.01 536 713 930 1221 1689 2133 3105 

k=3 k=3 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 

0.20 9 20 37 64 112 162 281 0.20 18 41 75 130 229 332 578 
0.10 21 36 58 90 147 204 335 0.10 41 73 118 184 300 417 688 
0.05 34 53 79 116 179 241 383 0.05 67 107 161 236 366 494 786 
0.02 52 76 107 149 219 288 442 0.02 105 154 216 303 448 588 904 
0.01 67 94 127 173 249 321 482 0.01 134 189 258 352 507 656 987 

k=4 k=4 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 

0.20 4 10 19 34 61 89 156 0.20 8 20 39 69 125 184 324 
0.10 9 18 29 47 78 109 183 0.10 19 35 59 96 160 225 379 
0.05 15 25 39 59 93 128 207 0.05 30 51 79 120 192 263 427 
0.02 23 36 52 74 113 150 235 0.02 47 72 105 152 231 309 485 
0.01 30 44 61 86 126 166 255 0.01 60 88 125 175 259 341 525 

k = 5 k = 5 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 a\1-13 0.50 0.60 0.70 0.80 0.90 0.95 0.99 

0.20 3 6 12 22 40 59 104 0.20 5 13 25 45 83 123 219 
0.10 6 11 18 30 50 71 121 0.10 11 21 37 61 104 148 252 
0.05 9 15 24 37 60 82 135 0.05 17 30 49 76 123 171 282 
0.02 13 21 31 46 71 96 152 0.02 27 43 64 94 147 198 317 
0.01 17 26 37 53 79 105 164 0.01 34 52 75 108 164 218 341 
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Table 22-8. Minimum n to Detect kpo Exceedences Over Percentile (1-po) with Power (1-13) and Error Rate (a) 

Percentile = goth Percentile = 9S th 

k =.so k =.so 

a\1-13 o.so 0.60 0.70 0.80 0.90 0.9S 0.99 a\1-13 0.50 0.60 0.70 0.80 0.90 0.9S 0.99 

0.20 26 38 54 77 114 150 231 0.20 54 80 113 159 236 311 479 
0.10 60 78 100 130 177 221 318 0.10 125 163 209 270 368 460 661 
0.05 98 121 148 184 239 291 401 0.05 206 254 311 384 500 606 834 
0.02 152 181 214 256 321 380 505 0.02 321 380 449 537 672 794 1052 
0.01 195 227 264 311 382 447 581 0.01 412 478 555 653 800 934 1212 

k = .2S k = .2S 

a\1-13 0.50 0.60 0.70 0.80 0.90 0.9S 0.99 a\1-13 o.so 0.60 0.70 0.80 0.90 0.9S 0.99 

0.20 12 16 20 27 37 47 68 0.20 24 32 42 55 76 96 139 
0.10 27 32 39 48 61 74 100 0.10 56 68 82 99 127 152 206 
0.05 44 51 59 70 86 101 131 0.05 92 107 124 146 179 209 271 
0.02 68 77 87 100 119 136 171 0.02 143 161 182 209 248 283 355 
0.01 87 97 109 123 144 163 201 0.01 183 204 228 257 300 339 417 

Percentile = 98th Percentile = ggth 

k =.so k =.so 

a\1-13 o.so 0.60 0.70 0.80 0.90 0.9S 0.99 a\1-13 0.50 0.60 0.70 0.80 0.90 0.9S 0.99 

0.20 139 205 290 407 602 793 1221 0.20 281 413 584 820 1213 1597 2457 
0.10 322 419 537 693 943 1178 1689 0.10 651 846 1083 1397 1900 2373 3402 
0.05 531 653 798 987 1281 1552 2133 0.05 1072 1319 1611 1990 2582 3129 4297 
0.02 827 979 1154 1379 1723 2036 2694 0.02 1671 1976 2330 2782 3475 4106 5430 
0.01 1061 1232 1428 1677 2054 2395 3105 0.01 2144 2487 2883 3384 4144 4830 6259 

k = .2S k = .2S 

a\1-13 o.so 0.60 0.70 0.80 0.90 0.9S 0.99 a\1-13 o.so 0.60 0.70 0.80 0.90 0.9S 0.99 

0.20 62 82 107 140 193 244 354 0.20 125 166 215 282 389 490 711 
0.10 144 173 209 254 324 388 525 0.10 290 350 420 512 653 782 1056 
0.05 236 274 318 373 458 533 692 0.05 477 553 641 753 922 1075 1393 
0.02 368 415 469 535 635 724 907 0.02 743 838 945 1080 1281 1460 1827 
0.01 472 525 585 659 770 868 1067 0.01 953 1060 1181 1330 1553 1749 2149 
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